

ARTICLE

Intersecting families without unique shadow

Peter Frankl¹ and Jian Wang²

 1 Rényi Institute, Budapest, Hungary and 2 Department of Mathematics, Taiyuan University of Technology, Taiyuan, P. R. China

Corresponding author: Jian Wang; Email: wangjian01@tyut.edu.cn

(Received 16 July 2022; revised 14 August 2023; accepted 20 August 2023; first published online 2 October 2023)

Abstract

Let \mathcal{F} be an intersecting family. A (k-1)-set E is called a unique shadow if it is contained in exactly one member of \mathcal{F} . Let $\mathcal{A} = \{A \in \binom{[n]}{i}: |A \cap \{1,2,3\}| \geq 2\}$. In the present paper, we show that for $n \geq 28k$, \mathcal{A} is the unique family attaining the maximum size among all intersecting families without unique shadow. Several other results of a similar flavour are established as well.

Keywords: Finite sets; intersection; shadow

2020 MSC Codes: Primary: 05D05

1. Introduction

Let n > k > t be positive integers and let $[n] = \{1, 2, ..., n\}$ be the standard n-element set. For $1 \le i < j \le n$, let $[i, j] = \{i, i + 1, \dots, j\}$. Let $\binom{[n]}{k}$ denote the collection of all k-subsets of [n]. Subsets of $\binom{[n]}{k}$ are called *k-uniform hypergraphs* or *k-graphs* for short. A *k*-graph \mathcal{F} is called *t-intersecting* if $|F \cap F'| \ge t$ for all $F, F' \in \mathcal{F}$. In case of t = 1 we often use the term *intersecting* instead of 1-intersecting. Investigating various properties of t-intersecting families is one of the central topics of extremal set theory (cf. the recent book of Gerbner and Patkós [13]). Let us state the quintessential result of this topic.

Erdős-Ko-Rado Theorem ([3]). Suppose that $n \ge n_0(k, t)$ and $\mathcal{F} \subset \binom{[n]}{k}$ is t-intersecting. Then

$$|\mathcal{F}| \le \binom{n-t}{k-t}.\tag{1}$$

Remark 1. For t = 1 the exact value $n_0(k, t) = (k - t + 1)(t + 1)$ was proved in [3]. For $t \ge 15$ it is due to [5]. Finally Wilson [21] closed the gap $2 \le t \le 14$ with a proof valid for all t.

Let us note that the *full t-star*, $\{F \in \binom{[n]}{k} : [t] \subset F\}$ shows that (1) is best possible. In general, for a set $T \subset [n]$ let $S_T = \left\{ S \in {[n] \choose k} \colon T \subset S \right\}$ denote the *star of T*. For t = 1, there is a strong stability for the Erdős-Ko-Rado Theorem.

Theorem 1.1 (Hilton-Milner Theorem [14]). Suppose that $n > 2k \ge 4$, $\mathcal{F} \subset {n \choose k}$ is intersecting and \mathcal{F} is not a star, then

$$|\mathcal{F}| \le \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1. \tag{2}$$

© The Author(s), 2023. Published by Cambridge University Press.

Let us define the Hilton-Milner Family

$$\mathcal{H}(n,k) = \left\{ F \in \binom{[n]}{k} : 1 \in F, \ F \cap [2,k+1] \neq \emptyset \right\} \cup \{[2,k+1]\},$$

showing that (2) is best possible.

Let us recall the notion of *immediate shadow*, $\partial \mathcal{F}$: For $\mathcal{F} \subset \binom{[n]}{\iota}$,

$$\partial \mathcal{F} = \left\{ G \in \binom{[n]}{k-1} \colon \exists F \in \mathcal{F}, G \subset F \right\}.$$

If for some $G \in \partial \mathcal{F}$ there is only one choice of $F \in \mathcal{F}$ satisfying $G \subset F$ then G is called *unique* or a *unique shadow.* Note that in the full star $S_{\{x\}}$ for each member $S, S \setminus \{x\}$ is unique. In the Hilton-Milner family $\mathcal{H}(n, k)$, each member $H \in \mathcal{H}(n, k) \setminus \{[2, k+1]\}$ contains a unique shadow $H \setminus \{1\}$. Just for curiosity let us mention that if each member of $\mathcal{F} \subset \binom{[n]}{k}$ contains a unique shadow then $|\mathcal{F}| \leq {n-1 \choose k-1}.$ Let us introduce the central notion of the present paper.

Definition 1.2. For an integer $r \ge 2$ and a family $\mathcal{F} \subset {[n] \choose k}$, we say that \mathcal{F} is r-complete if every $G \in \partial \mathcal{F}$ is contained in at least r members of \mathcal{F} .

Note that \mathcal{F} is *r*-complete if and only if the minimum non-zero co-degree of \mathcal{F} is at least r. This notion has been introduced and used by Kostochka et al. [17-19] to determine hypergraph Turán numbers for paths, cycles and trees.

Clearly, if $\mathcal{F} \subset \binom{[n]}{k}$ is r-complete with $r \geq 2$, then \mathcal{F} is far from a star. It is natural to ask for the maximum size of an r-complete intersecting family. Let us define the function:

$$f(n,k,r) = \max\left\{|\mathcal{F}|\colon \mathcal{F} \subset \binom{[n]}{k} \text{ is intersecting and } r\text{-complete}\right\}.$$

Let us give some examples. For $1 \le r < k$ the complete k-graph $\binom{[k+r]}{k}$ is intersecting and (r+1)-complete. This shows in particular that

$$f(n,k,k) \ge \binom{2k-1}{k}.\tag{3}$$

Example 1.3. For n > k > r > 1 define

$$\mathcal{L}(n,k,r) = \left\{ F \in \binom{[n]}{k} : |F \cap [2r-1]| \ge r \right\}.$$

Clearly $\mathcal{L}(n, k, r)$ is intersecting, r-complete and

$$|\mathcal{L}(n,k,r)| = \sum_{r < i < 2r-1} {2r-1 \choose i} {n-2r+1 \choose k-i}.$$

Our main result shows that this example is best possible for $n \ge n_0(k, r)$.

Theorem 1.4. For $n \geq 28k$,

$$f(n, k, 2) = |\mathcal{L}(n, k, 2)|.$$
 (4)

Moreover, up to isomorphism $\mathcal{L}(n, k, 2)$ is the only family attaining equality.

Theorem 1.5. *For* $k \ge 3$, $r \ge 3$ *and* $n \ge n_0(k, r)$,

$$f(n, k, r) = \begin{cases} |\mathcal{L}(n, k, r)|, & 3 \le r \le k; \\ 0, & r \ge k + 1. \end{cases}$$
 (5)

For a positive integer ℓ and an ℓ -graph \mathcal{H} , define the *clique family*

$$\mathcal{K}(\mathcal{H}) = \left\{ K \colon |K| = \ell + 1, \binom{K}{\ell} \subset \mathcal{H} \right\}.$$

Define $v(\mathcal{F})$, the *matching number* of \mathcal{F} as the maximum number of pairwise disjoint edges in \mathcal{F} . Note that $v(\mathcal{F}) = 1$ iff \mathcal{F} is intersecting. We are going to prove Theorem 1.4 using the following result exhibiting a surprising connection between the matching number and the size of the clique family. Define the Erdős-family

$$\mathcal{E}(n,k,s) = \left\{ E \in \binom{[n]}{k} : E \cap [s] \neq \emptyset \right\}.$$

Note that

$$\mathcal{K}(\mathcal{E}(n,k,s)) = \left\{ K \in \binom{[n]}{k+1} : |K \cap [s]| \ge 2 \right\}.$$

Theorem 1.6. Let $\mathcal{F} \subset {[n] \choose k}$ be a family with $v(\mathcal{F}) \leq s$. If $n \geq 5sk + 13k$ and $s \geq 3$, then $|\mathcal{K}(\mathcal{F})| < |\mathcal{K}(\mathcal{E}(n,k,s))|$.

Moreover, up to isomorphism $\mathcal{E}(n, k, s)$ is the only family attaining equality.

Let us define the notion of *r*-complete edges.

Definition 1.7. For an integer $r \ge 2$ and a family $\mathcal{F} \subset {[n] \choose k}$, we say that $F \in \mathcal{F}$ is r-complete if every $G \in {F \choose k-1}$ is contained in at least r members of \mathcal{F} .

Clearly, \mathcal{F} is r-complete if and only if every $F \in \mathcal{F}$ is r-complete. One can also ask for the maximum number of r-complete edges in an intersecting family. For an intersecting family $\mathcal{F} \subset \binom{[n]}{k}$, define $\mathcal{F}_r^*(\mathcal{F})$ as the family of all r-complete edges in \mathcal{F} . Let

$$f^*(n, k, r) = \max \left\{ |\mathcal{F}_r^*(\mathcal{F})| \colon \mathcal{F} \subset {n \choose k} \text{ is intersecting.} \right\}$$

If \mathcal{F} is r-complete then we have $\mathcal{F}_r^*(\mathcal{F}) = \mathcal{F}$, implying that $f(n,k,r) \leq f^*(n,k,r)$. For $\mathcal{F}' \subset \mathcal{F}$, we say that \mathcal{F}' is r-complete with respect to \mathcal{F} if every $F' \in \mathcal{F}'$ is an r-complete edge in \mathcal{F} . Clearly $\mathcal{F}_r^*(\mathcal{F})$ is a relatively r-complete family of the maximum size with respect to \mathcal{F} .

Our next result determines $f^*(n, k, r)$ for all $k \ge 3$ and $r \ge 2$, asymptotically.

Theorem 1.8. *For* $k \ge 3$, $r \ge 2$ *and* $n \ge n_0(k, r)$,

$$f^*(n,k,r) = \begin{cases} |\mathcal{L}(n,k,r)|, & r = 2,3; \\ \binom{n-3}{k-3} + O(n^{k-r}), & 4 \le r \le k-1; \\ \binom{n-3}{k-3}, & r \ge k \ge 4. \end{cases}$$
 (6)

The next proposition shows that the term $O(n^{k-r})$ in (6) cannot be removed for $k \ge 5$ and $4 \le r \le k-1$.

Proposition 1.9. *For* $k \ge 5$, $4 \le r \le k - 1$ *and* $n \ge k + r - 1$,

$$f^*(n, k, r) \ge \binom{n-3}{k-3} + \binom{n-r-2}{k-r-1}.$$

Proof. For $4 \le r \le k-1$, let

$$\mathcal{B}(r) = \{\{1,2\}\} \cup \{\{3,i,j\}: i = 1 \text{ or } 2, \ 4 \le j \le r+2\} \cup \{[r+2] \setminus \{u,3\}: u = 1,2\}$$

and let

$$\mathcal{I}(n,k,r) = \bigcup_{B \in \mathcal{B}(r)} \mathcal{S}_B, \ \mathcal{I}^*(n,k,r) = \mathcal{S}_{\{1,2,3\}} \cup \mathcal{S}_{[r+2]\setminus\{3\}}.$$

It is easy to check that B(r) is intersecting, implying that $\mathcal{I}(n, k, r)$ is intersecting. Since $\mathcal{S}_{\{1,2,3\}} \subset \mathcal{S}_{\{1,2\}}$ and $\mathcal{S}_{[r+2]\setminus\{3\}} \subset \mathcal{S}_{\{1,2\}}$, $\mathcal{I}^*(n, k, r) \subset \mathcal{I}(n, k, r)$. In the rest of the proof, we show that $\mathcal{I}^*(n, k, r)$ is relatively r-complete with respect to $\mathcal{I}(n, k, r)$.

For any $F \in \mathcal{S}_{\{1,2,3\}}$, since $\mathcal{S}_{\{1,2\}} \subset \mathcal{I}(n,k,r)$ and $n \geq k+r-1$, we see that for each $x \in F \setminus \{1,2\}$, $F \setminus \{x\}$ is covered by at least r members of $\mathcal{I}(n,k,r)$. Moreover, since $\mathcal{S}_{\{3,i,j\}} \subset \mathcal{I}(n,k,r)$ for $i \in \{1,2\}$ and $j \in \{4,5,\ldots,r+2\}$, we infer that $F \setminus \{3-i\}$ is covered by at least r members of $\mathcal{I}(n,k,r)$ for i=1,2. Thus $\mathcal{S}_{\{1,2,3\}}$ is relatively r-complete with respect to $\mathcal{I}(n,k,r)$.

Let $F \in \mathcal{S}_{[r+2]\setminus\{3\}}$ and $G \in \binom{F}{k-1}$. If $\{1,2\} \subset G$, then by $\mathcal{S}_{\{1,2\}} \subset \mathcal{I}(n,k,r)$ and $n \geq k+r$ we infer that G is covered by at least r members of $\mathcal{I}(n,k,r)$. If $i \notin G$ for i=1,2, since $\mathcal{S}_{[r+2]\setminus\{i,3\}} \subset \mathcal{I}(n,k,r)$ and $n \geq k+r-1$, then G is also covered by at least r members of $\mathcal{I}(n,k,r)$. Hence $\mathcal{S}_{[r+2]\setminus\{3\}}$ is relatively r-complete with respect to $\mathcal{I}(n,k,r)$. Therefore, $\mathcal{I}^*(n,k,r)$ is relatively r-complete with respect to $\mathcal{I}(n,k,r)$ and

$$f^*(n, k, r) \ge |\mathcal{I}^*(n, k, r)| = \binom{n-3}{k-3} + \binom{n-r-2}{k-r-1}.$$

The rest of the paper is organized as follows. We list some results that are needed in Section 2. We prove Theorems 1.4 and 1.6 in Section 3 and prove Theorem 1.5 in Section 4. The proof of Theorem 1.8 splits into two parts. In Section 5, we prove it for $3 \le r < k$. In Section 6, we prove it for $r \ge k$. Finally, we give some concluding remarks in Section 7.

2. Preliminaries

In this section, we list some notions and results that are needed for the proofs.

For a family $\mathcal{F} \subset \binom{[n]}{k}$ define the family of *transversals*, $\mathcal{T}(\mathcal{F})$ by

$$\mathcal{T}(\mathcal{F}) = \left\{ T \subset [n] \colon |T| \le k, \ T \cap F \ne \emptyset \text{ for all } F \in \mathcal{F} \right\}.$$

Note that \mathcal{F} is intersecting iff $\mathcal{F} \subset \mathcal{T}(\mathcal{F})$. Note also that $\mathcal{T}(\mathcal{F})$ is not uniform in general. Set $\mathcal{T}^{(k)}(\mathcal{F}) = \{T \in \mathcal{T}(\mathcal{F}) : |T| = k\}$. If $\mathcal{F} = \mathcal{T}^{(k)}(\mathcal{F})$ then \mathcal{F} is called *saturated*. It is equivalent to the fact that $\mathcal{F} \cup \{H\}$ is no longer intersecting for $H \in \binom{[n]}{k} \setminus \mathcal{F}$. It should be clear that in the definition of $f^*(n, k, r)$ it is sufficient to consider saturated intersecting families \mathcal{F} .

Let us recall a special case of the Katona Intersecting Shadow Theorem [15].

Theorem 2.1 ([15]). Suppose that $\mathcal{F} \subset {[n] \choose k}$ is intersecting. Then

$$|\partial \mathcal{F}| \ge |\mathcal{F}|$$
 with equality iff $\mathcal{F} = {X \choose k}$ for some $(2k-1)$ -set X . (7)

We need the following generalization of (7) as well.

Theorem 2.2 ([8]). Suppose that $\mathcal{F} \subset {[n] \choose k}$. Then

$$|\partial \mathcal{F}| \nu(\mathcal{F}) > |\mathcal{F}|.$$
 (8)

We need also a classical result of Bollobás, the so-called Bollobás Set-pair Inequality.

Theorem 2.3 ([1]). Let a, b be positive integers, A_1, \ldots, A_m a-element sets, B_1, \ldots, B_m b-element sets such that $A_i \cap B_i = \emptyset$ iff i = j. Then

$$m \le {a+b \choose b}$$
 (cf. [16] for a very slick proof.) (9)

There is a very important operation on families of sets which was discovered by Erdős et al. [3]. It is called shifting and it is known not to increase the matching number $\nu(\mathcal{F})$ ([7]) and not to decrease the size of $\mathcal{K}(\mathcal{F})$ (cf. [20]).

Let us define the *shifting partial order* \prec . For two k-sets A and B where $A = \{a_1, \ldots, a_k\}$, $a_1 < \ldots < a_k$ and $B = \{b_1, \ldots, b_k\}$, $b_1 < \ldots < b_k$ we say that A precedes B and denote it by $A \prec B$ if $a_i \le b_i$ for all $1 \le i \le k$.

A family $\mathcal{F} \subset {[n] \choose k}$ is called *shifted* (or *initial*) if $A \prec B$ and $B \in \mathcal{F}$ always imply $A \in \mathcal{F}$. By repeated shifting one can transform an arbitrary k-graph into a shifted k-graph with the same number of edges.

We need the following inequality generalizing the case t = 1 of the Erdős-Ko-Rado Theorem.

Proposition 2.4 ([7]). Suppose that $\mathcal{F} \subset {[n] \choose k}$ then

$$|\mathcal{F}| \le \nu(\mathcal{F}) \binom{n-1}{k-1}.\tag{10}$$

Finally we need the following stability theorem concerning the Erdős-Ko-Rado Theorem.

Hilton-Milner-Frankl Theorem ([6,14]). Suppose that $\mathcal{F} \subset {[n] \choose k}$ is t-intersecting, \mathcal{F} is not a t-star and $n \geq (k-t+1)(t+1)$. Then

$$|\mathcal{F}| \le \max\left\{ |\mathcal{A}(n,k,t)|, \binom{n-t}{k-t} - \binom{n-k-1}{k-t} + t \right\} < \binom{n-t-1}{k-t-1} \max\{t+2, k-t+1\}. \tag{11}$$

3. Intersecting families without unique shadow

In this section, we first prove Theorem 1.4 by assuming Theorem 1.6. Then by using the decomposition method of a shifted family introduced in [9], we give a proof of Theorem 1.6.

Actually, we shall prove the following version of Theorem 1.4, which also gives the r = 2 case of Theorem 1.8.

Theorem 3.1. *For* $n \ge 28k$,

$$f(n, k, 2) = f^*(n, k, 2) = |\mathcal{L}(n, k, 2)|. \tag{12}$$

Moreover, up to isomorphism $\mathcal{L}(n, k, 2)$ is the only family attaining equality.

Proof of Theorem 1.4. Recall that $\mathcal{L}(n, k, 2)$ is 2-complete intersecting and $f(n, k, 2) \leq f^*(n, k, 2)$. It follows that $|\mathcal{L}(n, k, 2)| \leq f(n, k, 2) \leq f^*(n, k, 2)$. Thus we are left to show $f^*(n, k, 2) \leq |\mathcal{L}(n, k, 2)|$.

Let $\mathcal{F} \subset {[n] \choose k}$ be an intersecting family. Let \mathcal{F}^* be the family of 2-complete sets in \mathcal{F} and let $\mathcal{H} = \partial \mathcal{F}^*$. Note that this guarantees that every member of \mathcal{H} is contained in at least two members of \mathcal{F} .

Claim 1. $\nu(\mathcal{H}) \leq 3$.

Proof. Suppose for contradiction that $D_i = F_i \cap G_i$, $1 \le i \le 4$, are pairwise disjoint sets in \mathcal{H} and F_i , $G_i \in \mathcal{F}$. Define x_i , y_i by $F_i \setminus D_i = \{x_i\}$, $G_i \setminus D_i = \{y_i\}$. Since $|\{x_i, y_i\}| = 2$, by symmetry we may assume that $(x_1, y_1) \cap D_4 = \emptyset$. This implies $F_1 \cap D_4 = \emptyset$, $G_1 \cap D_4 = \emptyset$. From $F_4 \cap F_1 \ne \emptyset$, $F_4 \cap G_1 \ne \emptyset$, $G_4 \cap F_1 \ne \emptyset$ and $G_4 \cap G_1 \ne \emptyset$, we infer $(x_4, y_4) \subset D_1$. Consequently $F_4 \cap D_p = \emptyset$, $G_4 \cap D_p = \emptyset$ for p = 2, 3. This implies as above $(x_p, y_p) \subset D_4$. Now $x_2 \ne x_3$ or $x_2 \ne y_3$ (or both) hold. By symmetry $x_2 \ne x_3$. Then $F_2 \cap F_3 = \emptyset$, a contradiction.

By Theorem 1.6 and Claim 1, for $n \ge (5 \times 3 + 13)k = 28k$ we have $|\mathcal{F}^*| \le |\mathcal{K}(\mathcal{H})| \le |\mathcal{K}(\mathcal{E}(n,k,3))| = |\mathcal{L}(n,k,2)|$. The uniqueness follows from Theorem 1.6.

The families $\mathcal{F}_0, \mathcal{F}_1, \ldots, \mathcal{F}_s$ are called *overlapping* if there is no choice of $F_i \in \mathcal{F}_i$ such that F_0, F_1, \ldots, F_s are pairwise disjoint. For the proof of Theorem 1.6 the following lemma is needed. A similar lemma was proved in [11], although without characterization of the case of equality.

Lemma 3.2. Let $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_s \subset {Y \choose \ell}$ be overlapping families and let $p_0 \geq p_1 \geq \ldots \geq p_s$ be positive reals. Let

$$d_{\vec{p}} = \frac{s(p_0 + \dots + p_s)}{p_1 + \dots + p_s}.$$

For $|Y| \ge (d_{\vec{p}} + 1)\ell$,

$$\sum_{0 \le i \le s} p_i |\mathcal{F}_i| \le (p_1 + \dots + p_s) \binom{|Y|}{\ell}, \tag{13}$$

where the equality holds iff $\mathcal{F}_1 = \cdots = \mathcal{F}_s = {Y \choose \ell}$, $\mathcal{F}_0 = \emptyset$.

Proof. Let $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_s \subset {Y \choose \ell}$ be overlapping families. Let $t = \lfloor |Y|/\ell \rfloor \geq \lfloor d_{\vec{p}} \rfloor + 1 \geq s + 1$ and choose a random matching F_1, F_2, \ldots, F_t from ${Y \choose \ell}$. Consider the weighted bipartite graph G on partite sets $\{F_1, F_2, \ldots, F_t\}$ and $\{\mathcal{F}_0, \mathcal{F}_1, \cdots, \mathcal{F}_s\}$ where we have an edge (F_i, \mathcal{F}_j) iff $F_i \in \mathcal{F}_j$. This edge gets weight p_i .

Since $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_s$ are overlapping, G has matching number at most s. Applying the König-Hall Theorem we can find s vertices covering all edges of the bipartite graph G. Let F_1, \ldots, F_q be the vertices of the covering set chosen from the random matching and $\mathcal{F}_{q+1}, \ldots, \mathcal{F}_s$ the remaining s-q chosen from the families.

The total weight of the edges covered by F_i is at most $p_0 + \ldots + p_s$. The total weight of the edges covered by \mathcal{F}_i is at most tp_i . Thus, the total weight of the edges in G is at most

$$q(p_0 + \dots + p_s) + t(p_{q+1} + \dots + p_s)$$

$$= t(p_1 + \dots + p_s) - t(p_1 + \dots + p_a) + q(p_0 + \dots + p_s).$$
(14)

Note that $p_1 \ge ... \ge p_s$ implies

$$\frac{i+1}{p_1+\cdots+p_{i+1}} \ge \frac{i}{p_1+\cdots+p_i}.$$

It follows that

$$\frac{q}{p_1 + \dots + p_q}(p_0 + \dots + p_s) \le \frac{s}{p_1 + \dots + p_s}(p_0 + \dots + p_s) = d_{\vec{p}} < t.$$
 (15)

By (14) and (15), the total weight of the edges in G is at most $t(p_1 + \ldots + p_s)$. Since the probability

$$Pr(F_i \in \mathcal{F}_j) = \frac{|\mathcal{F}_j|}{\binom{|Y|}{\ell}},$$

the expected value of the total weight of the edges in G is $\sum_{j=0}^{s} tp_j \frac{|\mathcal{F}_j|}{\binom{|Y|}{\ell}}$. Thus (13) follows. In case of equality q=0. Then for every t-matching F_1, F_2, \ldots, F_t in Y, \mathcal{F}_0 has degree 0 and \mathcal{F}_i has degree t in G for $i=1,\ldots,s$. Hence the equality holds iff $\mathcal{F}_1=\cdots=\mathcal{F}_s=\binom{Y}{\ell}$, $\mathcal{F}_0=\emptyset$.

For the proof of Theorem 1.6 we also need the following proposition, which is proved in [20]. Here we include a short proof for self-containedness.

Proposition 3.3. For $\mathcal{F} \subset {[n] \choose k}$ and $1 \le i < j \le n$, $|\mathcal{K}(S_{ij}(\mathcal{F}))| \ge |\mathcal{K}(\mathcal{F})|$.

Proof. We prove the statement by defining an injective map σ from $\mathcal{K}(\mathcal{F}) \setminus \mathcal{K}(S_{ij}(\mathcal{F}))$ to $\mathcal{K}(S_{ij}(\mathcal{F})) \setminus \mathcal{K}(\mathcal{F})$. Let $K \in \mathcal{K}(\mathcal{F}) \setminus \mathcal{K}(S_{ij}(\mathcal{F}))$. Clearly $j \in K$ and $i \notin K$, and we define $\sigma(K) = K' = K$

pose that $K' \notin \mathcal{K}(S_{ij}(\mathcal{F}))$ and let $F' \in \binom{K'}{k}$ be an edge not in $S_{ij}(\mathcal{F})$. If $i \notin F'$ then $F' = K \setminus \{j\}$ and $S_{ij}(F') = F'$, implying that $F' \in S_{ij}(\mathcal{F})$, a contradiction. If $i \in F'$, then $F = (F' \setminus \{i\}) \cup \{j\} \subset K$ is an edge of \mathcal{F} since $K \in \mathcal{K}(\mathcal{F})$. Hence after shifting we have $F' \in S_{ij}(\mathcal{F})$, a contradiction. This shows $K' \in \mathcal{K}(S_{ij}(\mathcal{F}))$. Secondly, if $K' \in \mathcal{K}(\mathcal{F})$ then $K \in \mathcal{K}(\mathcal{F})$ implies $K \in \mathcal{K}(S_{ij}(\mathcal{F}))$, contradicting the assumption that $K \notin \mathcal{K}(S_{ij}(\mathcal{F}))$. Thus $K' \in \mathcal{K}(S_{ij}(\mathcal{F})) \setminus \mathcal{K}(\mathcal{F})$ and σ is indeed a map from $\mathcal{K}(\mathcal{F}) \setminus \mathcal{K}(S_{ij}(\mathcal{F}))$ to $\mathcal{K}(S_{ij}(\mathcal{F})) \setminus \mathcal{K}(\mathcal{F})$. Clearly, σ is injective and the proposition follows.

Proof of Theorem 1.6. Since the shifting operator does not increase the matching number and does not decrease the size of $\mathcal{K}(\mathcal{F})$, we may assume that \mathcal{F} is shifted. Let $\mathcal{K} = \mathcal{K}(\mathcal{F})$ and $\mathcal{K}^* = \mathcal{K}(\mathcal{E}(n,k,s))$. For any $S \subset [s+1]$ and a family $\mathcal{H} \subset {[n] \choose h}$, define

$$\mathcal{H}(S) := \{ H \setminus [s+1] \colon H \in \mathcal{H}, \ H \cap [s+1] = S \}.$$

Clearly $\mathcal{H}(S) \subset \binom{[s+2,n]}{h-|S|}$.

For $|S| \ge 3$, we have $\mathcal{K}^*(S) = \binom{[s+2,n]}{k+1-|S|}$. It follows that

$$\sum_{S \subset [s+1], |S| \ge 3} |\mathcal{K}(S)| \le \sum_{S \subset [s+1], |S| \ge 3} |\mathcal{K}^*(S)|. \tag{16}$$

We are left to compare $|\mathcal{K}(S)|$ with $|\mathcal{K}^*(S)|$ for all $S \subset [s+1]$ with $|S| \leq 2$.

Claim 2. $\mathcal{K}(\{i\}) = \mathcal{F}(\emptyset)$ for i = 1, 2, ..., s + 1 and $\mathcal{K}(\{i, j\}) = \mathcal{F}(\{j\})$ for $1 \le i < j \le s + 1$.

Proof. For $F \in \mathcal{K}(\{i\})$, $F \cup \{i\} \in \mathcal{K}$ implies that $F \in \mathcal{F}(\emptyset)$. Let $F \in \mathcal{F}(\emptyset)$. Since $x \ge s + 2 > i$ each $x \in F$, by shiftedness $(F \setminus \{x\}) \cup \{i\} \in \mathcal{F}$. It follows that $\binom{F \cup \{i\}}{k} \subset \mathcal{F}$ and $F \cup \{i\} \in \mathcal{K}$. Thus $F \in \mathcal{K}(\{i\})$. Therefore $\mathcal{K}(\{i\}) = \mathcal{F}(\emptyset)$.

For any $E \in \mathcal{K}(\{i,j\})$ we have $\binom{E \cup \{i,j\}}{k} \subset \mathcal{F}$. It follows that $E \cup \{j\} \in \mathcal{F}$. Thus $E \in \mathcal{F}(\{j\})$. Let $E \in \mathcal{F}(\{j\})$. By shiftedness and i < j, $E \cup \{i\} \in \mathcal{F}$. Moreover, $E \cup \{i,j\} \setminus \{x\} \in \mathcal{F}$ for each $x \in E$. That is, $\binom{E \cup \{i,j\}}{k} \subset \mathcal{F}$ and $E \cup \{i,j\} \in \mathcal{K}$. Thus $E \in \mathcal{K}(\{i,j\})$. Therefore $\mathcal{K}(\{i,j\}) = \mathcal{F}(\{j\})$.

Note that for any $K \in \mathcal{K}(\emptyset)$ we have $\binom{K}{k} \subset \mathcal{F}(\emptyset)$. It follows that $\partial \mathcal{K}(\emptyset) \subset \mathcal{F}(\emptyset)$. Since $\nu(\mathcal{K}(\emptyset)) \leq s$, by (8) we have

$$s|\mathcal{F}(\emptyset)| \ge s|\partial \mathcal{K}(\emptyset)| \ge |\mathcal{K}(\emptyset)|. \tag{17}$$

By Claim 2,

$$\sum_{1 \le i \le s+1} |\mathcal{K}(\{i\})| = (s+1)|\mathcal{F}(\emptyset)|$$

and

$$\sum_{1 \le i < j \le s+1} |\mathcal{K}(\{i, j\})| = \sum_{2 \le j \le s+1} (j-1)|\mathcal{F}(\{j\})|.$$

It follows that

$$\sum_{S \in [n], |S| \le 2} |\mathcal{K}(S)| = |\mathcal{K}(\emptyset)| + \sum_{1 \le i \le s+1} |\mathcal{K}(\{i\})| + \sum_{1 \le i < j \le s+1} |\mathcal{K}(\{i, j\})|$$

$$\stackrel{(17)}{\le} s |\mathcal{F}(\emptyset)| + (s+1)|\mathcal{F}(\emptyset)| + \sum_{2 \le j \le s+1} (j-1)|\mathcal{F}(\{j\})|$$

$$\le (2s+1)|\mathcal{F}(\emptyset)| + \sum_{2 \le j \le s+1} (j-1)|\mathcal{F}(\{j\})|. \tag{18}$$

Again by shiftedness $\partial \mathcal{F}(\emptyset) \subset \mathcal{F}(\{s+1\})$, and using (8) we infer

$$s|\mathcal{F}(\{s+1\})| \ge s|\partial \mathcal{F}(\emptyset)| \ge |\mathcal{F}(\emptyset)|. \tag{19}$$

Substituting (19) into (18), we arrive at

$$\begin{split} \sum_{S \in [n], |S| \le 2} |\mathcal{K}(S)| &\leq \sum_{2 \le j \le s} (j-1)|\mathcal{F}(\{j\})| + s|\mathcal{F}(\{s+1\})| + (2s+1)s|\mathcal{F}(\{s+1\})| \\ &= |\mathcal{F}(\{2\})| + \sum_{3 \le j \le s} (j-1)|\mathcal{F}(\{j\})| + 2s(s+1)|\mathcal{F}(\{s+1\})| \\ &\leq \frac{1}{2}|\mathcal{F}(\{1\})| + \frac{1}{2}|\mathcal{F}(\{2\})| + \sum_{3 \le j \le s} (j-1)|\mathcal{F}(\{j\})| + 2s(s+1)|\mathcal{F}(\{s+1\})|. \end{split}$$

By shiftedness, $\mathcal{F}(\{1\}) \supset \cdots \supset \mathcal{F}(\{s+1\})$ are overlapping families. Set

$$\mathcal{F}_0 = \mathcal{F}(\{s+1\}), \ \mathcal{F}_1 = \mathcal{F}(\{s\}), \ \dots, \mathcal{F}_{s-2} = \mathcal{F}(\{3\}), \ \mathcal{F}_{s-1} = \mathcal{F}(\{2\}), \ \mathcal{F}_s = \mathcal{F}(\{1\})$$

and set

$$p_0 = 2s(s+1), p_1 = s-1, \ldots, p_{s-2} = 2, p_{s-1} = \frac{1}{2}, p_s = \frac{1}{2}$$

Then $p_0 \ge p_1 \ge \ldots \ge p_s$ and by $s \ge 3$,

$$d_{\vec{p}} = \frac{s(p_0 + \dots + p_s)}{(p_1 + \dots + p_s)} = \frac{4s(s+1) + s(s-1)}{s-1} = 5s + 8 + \frac{8}{s-1} \le 5s + 12.$$

By Lemma 3.2, for $n - s - 1 \ge (5s + 13)(k - 1) \ge (d_{\vec{p}} + 1)(k - 1)$ we have

$$\sum_{S \subset [s+1], |S| \le 2} |\mathcal{K}(S)| \le (p_1 + p_2 + \dots + p_s) \binom{n-s-1}{k-1}$$

$$= \binom{s}{2} \binom{n-s-1}{k-1}$$

$$= \sum_{S \subset [s+1], |S| \le 2} |\mathcal{K}^*(S)|. \tag{20}$$

Adding (16) and (20), we conclude that

$$|\mathcal{K}(\mathcal{F})| = \sum_{S \subset [s+1]} |\mathcal{K}(S)| \le \sum_{S \subset [s+1]} |\mathcal{K}^*(S)| = |\mathcal{K}(\mathcal{E}(n, k, s))|.$$

Let \mathcal{F} be a family with $\nu(\mathcal{F}) \leq s$ and $|\mathcal{K}(\mathcal{F})| = |\mathcal{K}(\mathcal{E}(n,k,s))|$. If \mathcal{F} is shifted, then by Lemma 3.2 we have $\mathcal{F}(\{s+1\}) = \emptyset$. It follows that $\mathcal{F} = \mathcal{E}(n,k,s)$. Now assume that \mathcal{F} is not shifted. Then it changes to $\mathcal{E}(n,k,s)$ by applying shifting repeatedly. Let \mathcal{G} be the last family that is not isomorphic to $\mathcal{E}(n,k,s)$ in this process. That is, \mathcal{G} is not isomorphic to $\mathcal{E}(n,k,s)$ but $S_{ij}(\mathcal{G})$ is isomorphic to $\mathcal{E}(n,k,s)$ for some $1 \leq i < j \leq n$. By symmetry, we may assume that $\mathcal{G} \neq \mathcal{E}(n,k,s)$ and $S_{s,s+1}(\mathcal{G}) = \mathcal{E}(n,k,s)$. Let

$$\mathcal{G}(\overline{s(s+1)}) = \left\{ E \in {[n] \setminus \{s, s+1\} \choose k-1} : E \cup \{s\} \in \mathcal{G} \right\},$$

$$\mathcal{G}(\overline{s}(s+1)) = \left\{ E \in {[n] \setminus \{s, s+1\} \choose k-1} : E \cup \{s+1\} \in \mathcal{G} \right\}.$$

Since $S_{s,s+1}(\mathcal{G}) = \mathcal{E}(n,k,s)$, we see $\mathcal{G}(s(s+1)) \cup \mathcal{G}(\overline{s}(s+1)) = {n \choose k-1} \setminus s,s+1 \choose k-1}$ and $\mathcal{G}(s(s+1)) \cap \mathcal{G}(\overline{s}(s+1)) = \emptyset$. It follows that for each $E \in {n \choose k-1} \setminus s,s+1 \choose k-1}$, exactly one of $E \cup \{s\} \in \mathcal{G}$ and

 $E \cup \{s+1\} \in \mathcal{G}$ holds. Now consider a graph G on the vertex set $\binom{[n] \setminus \{s,s+1\}}{k-1}$ where (E_1, E_2) forms an edge if and only if $|E_1 \cap E_2| = k-2$. It is easy to see that G is a connected graph. Since \mathcal{G} is not isomorphic to $\mathcal{E}(n,k,s)$, we infer that $\mathcal{G}(\overline{s(s+1)}) \neq \emptyset$ and $\mathcal{G}(\overline{s(s+1)}) \neq \emptyset$. Then there exists an edge (E_1,E_2) in G such that $E_1 \cup \{s\} \in \mathcal{G}$ and $E_2 \cup \{s+1\} \in \mathcal{G}$. Let $F:=E_1 \cup E_2 \in \binom{[n] \setminus \{s,s+1\}}{k}$. Then $F \cup \{s+1\} \notin \mathcal{K}(\mathcal{G})$ and $F \cup \{s\} \notin \mathcal{K}(\mathcal{G})$. But $S_{s,s+1}(\mathcal{G}) = \mathcal{E}(n,k,s)$ implies $F \cup \{s\} \in \mathcal{K}(S_{s,s+1}(\mathcal{G}))$. Moreover, for any $K \in \mathcal{K}(\mathcal{G}) \setminus \mathcal{K}(S_{s,s+1}(\mathcal{G}))$, we have $(K \setminus \{s+1\}) \cup \{s\} \in \mathcal{K}(S_{s,s+1}(\mathcal{G})) \setminus \mathcal{K}(\mathcal{G})$ by the injective map defined in Proposition 3.3. Hence $|\mathcal{K}(S_{s,s+1}(\mathcal{G}))| > |\mathcal{K}(\mathcal{G})| \geq |\mathcal{K}(\mathcal{F})| = |\mathcal{K}(\mathcal{E}(n,k,s))|$, a contradiction. Thus up to isomorphism $\mathcal{E}(n,k,s)$ is the only family attaining equality.

4. The maximum size of an r-complete intersecting family

In this section, we determine f(n, k, r) for all $k, r \ge 3$ and $n \ge n_0(k, r)$, thereby proving Theorem 1.5.

Proposition 4.1. *For* $r \ge k + 1$, f(n, k, r) = 0. *For* $n \ge 2k - 1$,

$$f(n,k,k) = \binom{2k-1}{k}.$$

Moreover, the unique family satisfying the condition is $\binom{X}{k}$ with |X| = 2k - 1.

Proof. Suppose that \mathcal{F} is an intersecting k-graph and each $F \in \mathcal{F}$ is k-wise covered. Consider the bipartite graph with partite sets \mathcal{F} , $\partial \mathcal{F}$ and an edge between F and G iff $G \subset F$. It is clear that each $F \in \mathcal{F}$ has degree k. On the other hand, the condition implies that each $G \in \partial \mathcal{F}$ has degree at least k. Consequently, $|\mathcal{F}| \geq |\partial \mathcal{F}|$. In view of (7), we see $|\mathcal{F}| = |\partial \mathcal{F}|$ and equality holds iff $\mathcal{F} = {X \choose k}$ with |X| = 2k - 1. The same argument implies f(n, k, r) = 0 for $r \geq k + 1$.

We need a notion of basis for an intersecting family inspired by [6]. For any intersecting family $\mathcal{F} \subset {[n] \choose k}$, we define a basis $\mathcal{B}(\mathcal{F})$ which is not necessarily unique by the following process. We start with $\mathcal{F}^0 = \mathcal{F}$. Note that \mathcal{F}^0 is an antichain. A collection of sets F_0, \ldots, F_k is called a sunflower of size k+1 with centre C if $F_i \cap F_j = C$ for all distinct $i,j \in \{0,1,\ldots,k\}$. Note that in this case $F_0 \setminus C,\ldots,F_k \setminus C$ are pairwise disjoint. At the i-th step try and find in the current family \mathcal{F}^i a sunflower F_0,\ldots,F_k of size k+1 (the size of F_j may be distinct). Let C_i be the centre of the sunflower. Then let \mathcal{F}^{i+1} be the family obtained from \mathcal{F}^i by deleting all sets containing C_i and adding C_i . Clearly \mathcal{F}^{i+1} is also an antichain.

Claim 3. If \mathcal{F}^i is intersecting, then \mathcal{F}^{i+1} is also intersecting.

Proof. Take an arbitrary set F from \mathcal{F}^i . Since $|F| \leq k$, we have $F \cap (F_j \setminus C_i) = \emptyset$ for some j, $0 \leq j \leq k$. Then $F \cap C_i = F \cap F_j \neq \emptyset$.

Continue this process until no more sunflowers of size k+1 can be formed. Let $\mathcal{B}(\mathcal{F})$ be the final family. Clearly, $\mathcal{B}(\mathcal{F})$ is an antichain and for all $F \in \mathcal{F}$ there exists $B \in \mathcal{B}(\mathcal{F})$ with $B \subset F$. By Claim 3, $\mathcal{B}(\mathcal{F})$ is intersecting. In view of the Erdős-Rado sunflower lemma [4],

$$|\mathcal{B}^{(\ell)}| \le \ell! k^{\ell}, \ \forall 1 \le \ell \le k. \tag{21}$$

Proof of Theorem 1.5. By proposition 4.1, we may assume $3 \le r \le k$. Let \mathcal{F} be an r-complete intersecting family of maximal size and let $\mathcal{B} = \mathcal{B}(\mathcal{F})$ be its basis. Let $X = \bigcup_{B \in \mathcal{B}} B$. By (21) we have

$$|X| \le \sum_{1 \le \ell \le k} \ell! k^{\ell} \le 2k! k^k \le k^{2k}.$$

By the definition of \mathcal{B} , for any $F \in \mathcal{F}$ there exists $B \in \mathcal{B}$ such that $B \subset F$. Then for $F, F' \in \mathcal{F}$, there exist $B, B' \in \mathcal{B}$ such that $B \subset F$ and $B' \subset F'$. Since \mathcal{B} is intersecting, $\emptyset \neq B \cap B' \subset F \cap F' \cap X$. Thus, for all $F, F' \in \mathcal{F}$, $F \cap F' \cap X \neq \emptyset$.

Let us define $p = \min\{|F \cap X| : F \in \mathcal{F}\}$ and choose an arbitrary pair $(F, P_0), P_0 \in {X \choose p}, F \cap X = P_0$. Set $H = F \setminus P_0$ and define

$$\mathcal{P}(H) = \left\{ P \in \binom{X}{p} \colon H \cup P \in \mathcal{F} \right\}.$$

Note that $P_0 \in \mathcal{P}(H)$.

Claim 4. P(H) is intersecting and r-complete.

Proof. For $P, P' \in \mathcal{P}(H)$ fix $B, B' \in \mathcal{B}(\mathcal{F})$ satisfying $B \subset H \cup P, B' \subset H \cup P'$. Since $H \cap X = \emptyset$, $B \subset P$ and $B' \subset P'$. Consequently, $P \cap P' \supset B \cap B' \neq \emptyset$.

Let us prove the *r*-completeness of $\mathcal{P}(H)$ next. Fix $P \in \mathcal{P}(H)$ and $R \in \binom{P}{p-1}$. Using the *r*-completeness of \mathcal{F} there are *r* distinct elements x_1, x_2, \ldots, x_r such that $(H \cup R \cup \{x_i\}) \in \mathcal{F}$. The minimal choice of *p* implies $|(H \cup R \cup \{x_i\}) \cap X| \ge p$, whence $x_i \in X$, $1 \le i \le r$. Thus $R \cup \{x_i\} \in \mathcal{P}(H)$, proving the *r*-completeness of $\mathcal{P}(H)$.

If p < r, by Claim 4 and Proposition 4.1 we have $1 \le |\mathcal{P}(H)| \le f(|X|, p, r) = 0$, a contradiction. Thus $p \ge r$. Define

$$\mathcal{F}_0 = \{ F \in \mathcal{F} \colon |F \cap X| \ge r + 1 \} .$$

Then

$$|\mathcal{F}_0| \le \sum_{r+1 \le i \le k} {|X| \choose i} {n-|X| \choose k-i} \le \sum_{r+1 \le i \le k} {k^{2k} \choose i} {n-k^{2k} \choose k-i} < 2 {k^{2k} \choose r+1} {n-2r \choose k-r-1}.$$

If $p \ge r + 1$, then

$$|\mathcal{F}| = |\mathcal{F}_0| \le 2 \binom{k^{2k}}{r+1} \binom{n-2r}{k-r-1} \le \binom{2r-1}{r} \binom{n-2r+1}{k-r} < |\mathcal{L}(n,k,r)|.$$

Thus we assume p = r.

If $|\mathcal{P}(H)| \leq {2r-1 \choose r} - 1$ holds for all $H \in {[n] \setminus X \choose k-r}$, then

$$\begin{aligned} |\mathcal{F}| &\leq \sum_{H \in \binom{[n] \setminus X}{k-r}} |\mathcal{P}(H)| + |\mathcal{F}_0| \\ &\leq \left(\binom{2r-1}{r} - 1 \right) \binom{n-|X|}{k-r} + 2 \binom{k^{2k}}{r+1} \binom{n-2r}{k-r-1} \\ &\leq \binom{2r-1}{r} \binom{n-2r+1}{k-r} \text{ (for } n \geq n_0(k,r)) \\ &< |\mathcal{L}(n,k,r)|. \end{aligned}$$

Assume now that for some $H \in \binom{[n] \setminus X}{k-r}$, $|\mathcal{P}(H)| = \binom{2r-1}{r}$. By Proposition 4.1 we may assume that $\mathcal{P}(H) = \binom{Y}{r}$, $Y \in \binom{X}{2r-1}$. We claim that $|F \cap Y| \ge r$ for all $F \in \mathcal{F}$. Indeed the opposite would mean that $F \cap P = \emptyset$ for some $P \in \binom{Y}{r}$. Then $F \cap (H \cup P) \cap X = F \cap P = \emptyset$, a contradiction. Consequently $\mathcal{F} \subset \{F \in \binom{[n]}{k}: |F \cap Y| \ge r\}$, i.e., \mathcal{F} is contained in an isomorphic copy of $\mathcal{L}(n,k,r)$.

5. Maximizing the number of r-complete sets in an intersecting family

In this section, we prove Theorem 1.8 for $3 \le r < k$ and $n \ge n_0(k, r)$. We need a different notion of basis. For a saturated intersecting family \mathcal{F} , define $\mathcal{B}(\mathcal{F})$ be the family of minimal (for containment) sets in $\mathcal{T}(\mathcal{F})$. Define $X = \bigcup_{B \in \mathcal{B}} B$ the *support* of \mathcal{B} . The following properties of $\mathcal{B}(\mathcal{F})$ were proved in [10].

Lemma 5.1 ([10]). Suppose that $\mathcal{F} \subset {[n] \choose k}$ is a saturated intersecting family and $\mathcal{B} = \mathcal{B}(\mathcal{F})$. Then

- (i) B is an intersecting antichain,
- (ii) $\mathcal{F} = \{ H \in \binom{[n]}{k} : \exists B \in \mathcal{B}, B \subset H \},$
- (iii) for all $F, F' \in \mathcal{F}$,

$$F \cap F' \cap X \neq \emptyset. \tag{22}$$

The following lemma is essentially proved in [10]. For self-containedness we include its proof as well.

Lemma 5.2 ([10]). Suppose that $\mathcal{F} \subset {[n] \choose k}$ is a saturated intersecting family. Then $|\mathcal{B}(\mathcal{F})| \leq k^k$.

Proof. Let $\mathcal{B} = \mathcal{B}(\mathcal{F})$. For the proof we use a branching process. During the proof *a sequence* $S = (x_1, x_2, \dots, x_\ell)$ is an ordered sequence of distinct elements of [n] and we use \widehat{S} to denote the underlying unordered set $\{x_1, x_2, \dots, x_\ell\}$. At the beginning, we assign weight 1 to the empty sequence S_{\emptyset} . At the first stage, we choose $B_1 \in \mathcal{B}$ with $|B_1|$ minimal. For any vertex $x \in B_1$, define one sequence (x) and assign the weight $|B_1|^{-1}$ to it.

In each subsequent stage, we pick a sequence $S = (x_1, \dots, x_p)$ and denote its weight by w(S). If $\widehat{S} \cap B \neq \emptyset$ holds for all $B \in \mathcal{B}$ then we do nothing. Otherwise we pick $B \in \mathcal{B}$ satisfying $\widehat{S} \cap B = \emptyset$ and replace S by the |B| sequences (x_1, \dots, x_p, y) with $y \in B$ and assign weight $\frac{w(S)}{|B|}$ to each of them. Clearly, the total weight is always 1.

We continue until $\widehat{S} \cap B \neq \emptyset$ for all sequences S and all $B \in \mathcal{B}$. Since [n] is finite, each sequence has length at most n and eventually the process stops. Let S be the collection of sequences that survived in the end of the branching process and let $S^{(\ell)}$ be the collection of sequences in S with length ℓ .

Claim 5. For each $B \in \mathcal{B}^{(\ell)}$, there is some sequence $S \in \mathcal{S}^{(\ell)}$ with $\widehat{S} = B$.

Proof. Let us suppose the contrary and let $S = (x_1, \dots, x_p)$ be a sequence of maximal length that occurred at some stage of the branching process satisfying $\widehat{S} \subsetneq B$. Since \mathcal{B} are intersecting, $B_1 \cap B \neq \emptyset$, implying that $p \geq 1$. Since \widehat{S} is a proper subset of B and $B \in \mathcal{B}$, it follows that $\widehat{S} \notin \mathcal{T}(\mathcal{F})$. Thereby there exists $F \in \mathcal{F}$ with $\widehat{S} \cap F = \emptyset$. In view of Lemma 5.1 (ii), we can find $B' \in \mathcal{B}$ such that $\widehat{S} \cap B' = \emptyset$. Thus at some point we picked S and some $\widetilde{B} \in \mathcal{B}$ with $\widehat{S} \cap \widetilde{B} = \emptyset$. Since \mathcal{B} is intersecting, $B \cap \widetilde{B} \neq \emptyset$. Consequently, for each $y \in B \cap \widetilde{B}$ the sequence (x_1, \dots, x_p, y) occurred in the branching process. This contradicts the maximality of p. Hence there is an S at some stage satisfying $\widehat{S} = B$. Since \mathcal{B} is intersecting, $\widehat{S} \cap B' = B \cap B' \neq \emptyset$ for all $B' \in \mathcal{B}$. Thus $\widehat{S} \in \mathcal{S}$ and the claim holds. \square

By Claim 5, we see that $|\mathcal{B}^{(\ell)}| \leq |\mathcal{S}^{(\ell)}|$ for all $\ell \geq 1$. Let $S = (x_1, \dots, x_\ell) \in \mathcal{S}^{(\ell)}$ and let $S_i = (x_1, \dots, x_i)$ for $i = 1, \dots, \ell$. At the first stage, $w(S_1) = 1/|B_1|$. Assume that B_i is the selected set when replacing S_{i-1} in the branching process for $i = 2, \dots, \ell$. Then

$$w(S) = \prod_{i=1}^{\ell} \frac{1}{|B_i|} \ge k^{-\ell}.$$

It follows that

$$k^{-k}\sum_{1\leq\ell\leq k}|\mathcal{B}^{(\ell)}|\leq \sum_{1\leq\ell\leq k}k^{-\ell}|\mathcal{B}^{(\ell)}|\leq \sum_{1\leq\ell\leq k}k^{-\ell}|\mathcal{S}^{(\ell)}|\leq \sum_{1\leq\ell\leq k}\sum_{S\in\mathcal{S}^{(\ell)}}w(S)\leq \sum_{S\in\mathcal{S}}w(S)=1.$$

Thus
$$|\mathcal{B}| = \sum_{1 \le \ell \le k} |\mathcal{B}^{(\ell)}| \le k^k$$
.

Proposition 5.3. *If* $\partial \mathcal{F}$ *is intersecting, then* \mathcal{F} *is 3-intersecting.*

Proof. Suppose that $|F \cap F'| \le 2$ and $F, F' \in \mathcal{F}$. If $F \cap F' = \{x, x'\}$ then $F \setminus \{x\}, F' \setminus \{x'\} \in \partial \mathcal{F}$ and they are disjoint, a contradiction. The case $F \cap F' = \{x\}$ is even easier.

Proposition 5.4. Let $\mathcal{F} \subset {[n] \choose 3}$ be a saturated intersecting family and let \mathcal{F}^* be the family of r-complete sets in \mathcal{F} . For r=3, $|\mathcal{F}^*| \leq {5 \choose 3}$ with equality holding iff $\mathcal{F} = {[5] \choose 3}$ up to isomorphism. For $r \geq 4$, $|\mathcal{F}^*| \leq 1$ with equality holding iff $\mathcal{F} = \mathcal{L}(n, 3, 2)$ up to isomorphism.

Proof. Let r = 3. Suppose that there exist two edges intersecting in one vertex, say $(x_1, x_2, z), (y_1, y_2, z) \in \mathcal{F}^*$, since (x_1, x_2) is 3-fold covered and \mathcal{F} is intersecting, we have $(x_1, x_2, y_i) \in \mathcal{F}$, i = 1, 2. Similarly, $(y_1, y_2, x_i) \in \mathcal{F}$, i = 1, 2. Since $(x_1, x_2, y_2) \in \mathcal{F}$ and (z, y_1) is 3-fold covered, $(z, y_1, x_1), (z, y_1, x_2) \in \mathcal{F}$. Similarly, $(z, y_2, x_1), (z, y_2, x_2) \in \mathcal{F}$. Hence $\{x_1, x_2, y_1, y_2, z\}$ spans a complete 3-graph in \mathcal{F} . Since \mathcal{F} is intersecting, we conclude that $\mathcal{F} = {5 \brack 3}$ up to isomorphism and $|\mathcal{F}^*| = 10$. Suppose next that there are two edges intersecting in two vertices say $(x, z_1, z_2), (y, z_1, z_2) \in \mathcal{F}^*$, since $(x, z_1), (y, z_2)$ are 3-fold covered and \mathcal{F} is intersecting, there exists \mathcal{F} we such that $(x, z_1, y), (y, z_2, x), (x, z_1, w), (y, z_2, w) \in \mathcal{F}$. Arguing with (x, z_2) and (y, z_1) , we infer that $(x, z_2, y), (y, z_1, x), (x, z_2, w), (y, z_1, w) \in \mathcal{F}$. Hence $\{x, y, z_1, z_2, w\}$ spans a complete 3-graph in \mathcal{F} . Since \mathcal{F} is intersecting, we conclude that $\mathcal{F} = {5 \brack 3}$ up to isomorphism and $|\mathcal{F}^*| = 10$. If \mathcal{F}^* is 3-intersecting, then $|\mathcal{F}^*| \leq 1$ holds trivially.

For $r \ge 4$, we claim that each member in $\partial \mathcal{F}^*$ is a transversal of \mathcal{F} . Otherwise, let $G \in \partial \mathcal{F}^*$ be a 2-set that is not a transversal. Then there exists $F \subset \mathcal{F}$ such that $F \cap G = \emptyset$. Since $G \in \partial \mathcal{F}^*$ and $r \ge 4 > |F|$, there exists x such that $G \cup \{x\} \in \mathcal{F}$ and $F \cap (G \cup \{x\}) = \emptyset$, a contradiction.

Thus $\partial \mathcal{F}^* \subset \mathcal{T}(\mathcal{F})$. By Lemma 5.1 (i) $\partial \mathcal{F}^*$ is intersecting. In view of Proposition 5.3, \mathcal{F}^* is 3-intersecting. For $n \geq 6$, by Proposition 5.3 and (1) we have $|\mathcal{F}^*| \leq \binom{n-3}{3-3} = 1$. In the case of equality, by symmetry we may assume that $\mathcal{F}^* = [3]$.

Then we claim $|F \cap [3]| \ge 2$ for all $F \in \mathcal{F}$. Indeed, otherwise $|F \cap [3]| = 1$ for some $F \in \mathcal{F}$, without loss of generality assume $F \cap [3] = \{1\}$, then we can find an $F' \in \mathcal{F}$ disjoint to F since (2,3) is r-fold covered with $r \ge 4 > |F|$, a contradiction. Thus $|F \cap [3]| \ge 2$ for all $F \in \mathcal{F}$. Using that \mathcal{F} is saturated, we conclude that $\mathcal{F} = \mathcal{L}(n,3,2)$ up to isomorphism. For $n \le 5$, clearly $\mathcal{F} \subset {5 \choose 3}$. Since no 2-set is contained in 4 or more 3-sets in ${5 \choose 3}$, we have $|\mathcal{F}^*| = 0$.

The following proposition proves Theorem 1.8 for $3 \le r \le k - 1$ and $n \ge n_0(k, r)$.

Proposition 5.5. $f^*(n, k, r) = \binom{n-3}{k-3} + O(n^{k-r})$ for $4 \le r \le k-1$ and $n \ge n_0(k, r)$; $f^*(n, k, 3) = |\mathcal{L}(n, k, 3)|$ for $n \ge n_0(k)$.

Proof. Let $\mathcal{F} \subset {[n] \choose k}$ be a saturated intersecting family and let \mathcal{F}^* be the family of r-complete sets in \mathcal{F} . Let $\mathcal{B} = \mathcal{B}(\mathcal{F})$ and $X = \bigcup_{B \in \mathcal{B}} B$. By Lemma 5.2, we have $|X| \le k \cdot k^k = k^{k+1}$. Let

$$p = \min \{ |F \cap X| \colon F \in \mathcal{F}^* \}.$$

If $p \ge 4$, then for $n \ge n_0(k, r)$ we have

$$|\mathcal{F}^*| \leq \sum_{4 \leq i \leq k} \binom{|X|}{i} \binom{n - |X|}{k - i} \leq \sum_{4 \leq i \leq k} \binom{k^{k+1}}{i} \binom{n - k^{k+1}}{k - i} \leq 2 \binom{k^{k+1}}{4} \binom{n - 6}{k - 4} < \binom{n - 3}{k - 3}$$

and we are done. If p=1, then there exists $F^* \in \mathcal{F}^*$ such that $F^* \cap X = \{x\}$. It follows that $\{x\} \in \mathcal{B}$. By saturatedness we have $\mathcal{F} = \mathcal{S}_x$ and $|\mathcal{F}^*| = 0$. If p=2 then for some $F^* \in \mathcal{F}^*$, $F^* \cap X = \{x,y\} \in \mathcal{B}$. Using r-completeness we find $F_x \in \mathcal{F}$, $F_x \supset F^* \setminus \{y\}$ and $F_y \in \mathcal{F}$, $F_y \supset F^* \setminus \{x\}$ and $F_x \cap F_y \cap X = \emptyset$, contradicting (22). Thus we may assume p=3.

Define the 3-graph

$$\mathcal{T}^* = \left\{ T \in \binom{X}{3} \colon \exists F^* \in \mathcal{F}^*, F^* \cap X = T \right\}, \ \mathcal{T} = \left\{ T \in \binom{X}{3} \colon \exists F \in \mathcal{F}, F \cap X = T \right\}.$$

Note that p = 3 implies $\mathcal{T} \neq \emptyset$. By (22) we infer that \mathcal{T} is intersecting. We distinguish two cases.

Case 1. r = 3.

If there exist (x_1, y_1, z) , $(x_2, y_2, z) \in \mathcal{T}^*$, let $H_i \in {[n] \setminus X \choose k-3}$ such that $H_i \cup \{x_i, y_i, z\} \in \mathcal{F}^*$, i = 1, 2. By 3-completeness and (22), we have

$$(x_1, y_1, x_2), (x_1, y_1, y_2), (x_2, y_2, x_1), (x_2, y_2, y_1) \in \mathcal{T}.$$

Then there exists $H_3 \in {[n] \setminus X \choose k-3}$ such that $H_3 \cup \{x_1, y_1, x_2\} \in \mathcal{F}$. Since $H_2 \cup \{y_2, z\}$ is covered by at least 3 members of \mathcal{F} , by (22) we infer $H_2 \cup (x_1, y_2, z)$, $H_2 \cup (y_1, y_2, z) \in \mathcal{F}$. Similarly, we have $H_2 \cup (x_2, y_1, z)$, $H_2 \cup (x_1, x_2, z) \in \mathcal{F}$. Hence $\{x_1, x_2, y_1, y_2, z\}$ spans a complete 3-graph in \mathcal{T} . We claim that $|F \cap \{x_1, x_2, y_1, y_2, z\}| \geq 3$ for all $F \in \mathcal{F}$. Indeed, otherwise suppose that there is $F \in \mathcal{F}$ with $|F \cap \{x_1, x_2, y_1, y_2, z\}| \leq 2$. Without loss of generality assume that $F \cap \{y_1, y_2, z\} = \emptyset$. Since $\{y_1, y_2, z\} \in \mathcal{T}$, there exists $H \in {[n] \setminus X \choose k-3}$ such that $H \cup \{y_1, y_2, z\} = :F' \in \mathcal{F}$. But then $F \cap F' \cap X = \emptyset$, contradicting (22). By saturatedness, we conclude that $\mathcal{F} = \mathcal{L}(n, k, 3)$ up to isomorphism and $|\mathcal{F}^*| = |\mathcal{L}(n, k, 3)|$.

If there exist $(x_1, y, z), (x_2, y, z) \in \mathcal{T}^*$, let $H_i \in \binom{[n] \setminus X}{k-3}$ such that $H_i \cup \{x_i, y, z\} \in \mathcal{F}^*$, i = 1, 2. Since $H_1 \cup \{x_1, y\}, H_2 \cup \{x_2, z\}$ are 3-fold covered, by (22) there exists $w \in X$ such that $H_1 \cup \{x_1, y, x_2\}, H_1 \cup \{x_1, y, w\}, H_2 \cup \{x_2, z, x_1\}, H_2 \cup \{x_2, z, w\} \in \mathcal{F}$. Similarly, $H_1 \cup \{x_1, z, x_2\}, H_1 \cup \{x_1, z, w\}, H_2 \cup \{x_2, y, x_1\}, H_2 \cup \{x_2, y, w\} \in \mathcal{F}$. Then $\{x_1, x_2, y, z, w\}$ spans a complete 3-graph in \mathcal{T} . By the same argument and saturatedness, we conclude that $\mathcal{F} = \mathcal{L}(n, k, 3)$ up to isomorphism and $|\mathcal{F}^*| = |\mathcal{L}(n, k, 3)|$.

Now we may assume that \mathcal{T}^* is 3-intersecting. Since \mathcal{T}^* is a 3-graph, we trivially have $|\mathcal{T}^*| \le 1$. Then for $n \ge n_0(k)$ we obtain that

$$|\mathcal{F}^*| \le \binom{n-|X|}{k-3} + \sum_{4 \le i \le k} \binom{|X|}{i} \binom{n-|X|}{k-i} \le 10 \binom{n-5}{k-3} \le |\mathcal{L}(n,k,3)|.$$

Case 2. r > 4.

Claim 6. For all $F \in \mathcal{F}^*$ and $T \in \mathcal{T}^*$,

$$|F \cap T| > 2. \tag{23}$$

Proof. Suppose the contrary. By symmetry let $T = \{1, 2, 3\}$, $F \cap T = \{3\}$ $(F \cap T \neq \emptyset)$ by (22)). By r-completeness there are distinct elements y_1, \ldots, y_r such that $(F \setminus \{3\}) \cup \{y_i\} \in \mathcal{F}$. Since $r \geq 4$, without loss of generality, assume $y_r \notin \{1, 2, 3\}$. Then $((F \setminus \{3\}) \cup \{y_r\}) \cap T = \emptyset$ contradicting (22).

Claim 7. $|\mathcal{T}^*| = 1$.

Proof. Otherwise using Claim 6, without loss of generality, $\{1, 2, 3\}$, $\{1, 2, 4\} \in \mathcal{T}^*$. Let $H_i \in {n \mid X \mid X}$ such that $H_i \cup \{1, 2, i\} \in \mathcal{F}^*$, i = 3, 4. Let x_1, \ldots, x_r be such that $H_3 \cup \{1, 3, x_j\} \in \mathcal{F}$, $j = 1, \ldots, r$. Let y_1, \ldots, y_r be such that $H_4 \cup \{2, 4, y_j\} \in \mathcal{F}$, $j = 1, \ldots, r$. By $r \geq 4$, without loss of generality assume $x_1 \notin \{2, 4\}$ and $y_1 \notin \{1, 3, x_1\}$. Then

$$(H_3 \cup \{1, 3, x_1\}) \cap (H_4 \cup \{2, 4, y_1\}) \cap X = \emptyset,$$

contradicting (22).

By Claim 7, we may assume that $\mathcal{T}^* = \{(1, 2, 3)\}$. Define

$$\mathcal{F}_{i}^{*} = \{ F \in \mathcal{F}^{*} : F \cap [3] = [3] \setminus \{i\} \}, i = 1, 2, 3.$$

Claim 8. $F \in \mathcal{F}_{i}^{*}$ implies $|F \cap X| \ge r, i = 1, 2, 3$.

Proof. By symmetry assume i = 1 and set $S = F \cap X$. Suppose indirectly |S| < r. Let $\tilde{F} \in \mathcal{F}^*$ with $\tilde{F} \cap X = [3]$. By r-completeness there are x_1, x_2, \ldots, x_r distinct elements with $(\tilde{F} \setminus \{3\}) \cup \{x_j\} \in \mathcal{F}$, $1 \le j \le r$. Also $F \setminus \{2\}$ is contained in r > 3 members of \mathcal{F} . Let \hat{F} be one of them with $\hat{F} \cap [3] = \{3\}$ and let $\hat{S} = \hat{F} \cap X$. Clearly, $|\hat{S}| \le |S| < r$. Consequently we can choose $x_j \notin \hat{S}$. Then

$$((\tilde{F} \setminus \{3\}) \cup \{x_i\}) \cap \hat{F} \cap X = \emptyset,$$

contradicting (22).

By Claims 6, 7, 8, we have

$$|\mathcal{F}^*| \le |\mathcal{T}^*| \binom{n-|X|}{k-3} + \sum_{1 \le i \le 3} |\mathcal{F}_i^*|$$

$$\le \binom{n-|X|}{k-3} + \sum_{r \le i \le k} \binom{3}{2} \binom{|X|}{i-2} \binom{n-|X|}{k-i}$$

$$= \binom{n-3}{k-3} + O(n^{k-r})$$

and the proposition is proven.

6. Maximizing the number of k-complete sets in an intersecting family

In this section, we prove Theorem 1.8 for $r \ge k$. By using Bollobás Set-pairs Inequality (Theorem 2.3) and the Hilton-Milner-Frankl Theorem, we determine $f^*(n, k, k)$ for $k \ge 5$ and $n \ge n_0(k)$. The cases $r \ge k+1$ and r=k=4 of Theorem 1.8 will be proved separately.

First we show that if an intersecting family contains a relatively *k*-complete sunflower of given shape, then Theorem 1.8 holds.

Lemma 6.1. Let $\mathcal{F} \subset {[n] \choose k}$ be an intersecting family and let \mathcal{F}^* be the family of k-complete sets in \mathcal{F} . If \mathcal{F}^* contains a sunflower with k+1 petals and centre C of size 3 and $k \geq 4$, then $C \subset F$ for all $F \in \mathcal{F}^*$. In particular,

$$|\mathcal{F}^*| \le \binom{n-3}{k-3}.$$

Proof. Suppose that $F_1, F_2, \ldots, F_{k+1}$ is a sunflower in \mathcal{F}^* with centre [3] and let $G_i = F_i \setminus [3]$, $i = 1, \ldots, k+1$.

If there exists $F \in \mathcal{F}^*$ with $|F \cap [3]| \le 1$, pick $G \in \binom{F}{k-1}$ with $G \cap [3] = \emptyset$. Then $G \cap F_i \ne \emptyset$ can hold for at most k-1 values of i. Pick F_p , F_r disjoint to G. Now k-completeness and $k \ge 4$ imply that we can choose $z \notin [3]$, $G \cup \{z\} \in \mathcal{F}$. Then either F_p or F_r is disjoint to $G \cup \{z\}$, a contradiction.

If there exists $F \in \mathcal{F}^*$ with $|F \cap [3]| = 2$, without loss of generality, assume that $F \cap [3] = \{1, 2\}$ and let $G = F \setminus \{1, 2\}$. Pick F_p , F_q , F_r disjoint to G. Since $k \ge 4$, we can choose $z, w \notin [3]$ such that $G \cup \{1, z\}$, $G \cup \{1, w\} \in \mathcal{F}$. Then one of F_p , F_q , F_r , without loss of generality say F_p , is disjoint to both $G \cup \{z\}$ and $G \cup \{w\}$. Since $F_p \setminus \{1\}$ is covered by at least k members of \mathcal{F} , we can find $u \notin G \cup \{1\}$ such that $(F_p \setminus \{1\}) \cup \{u\} \in \mathcal{F}$. Then either $z \ne u$ or $w \ne u$ holds. Without loss of generality,

assume that $z \neq u$, then $(F_p \setminus \{1\}) \cup \{u\}$ and $G \cup \{1, z\}$ are disjoint, a contradiction. Thus, $[3] \subset F$ for all $F \in \mathcal{F}^*$ and the lemma follows.

We prove Theorem 1.8 for $r \ge k + 1$ and $k \ge 4$ by the following proposition.

Proposition 6.2. $f^*(n, k, r) = \binom{n-3}{k-3}$ for $r \ge k+1$ and $n \ge \max\{4(k-2), k+r-1\}$.

Proof. Let $\mathcal{F} \subset {[n] \choose k}$ be a saturated intersecting family. Let \mathcal{F}^* be the family of r-complete sets in \mathcal{F} and let $\mathcal{G} = \partial \mathcal{F}^*$. We claim that each member in \mathcal{G} is a transversal of \mathcal{F} . Otherwise, let $G \in \mathcal{G}$ be a (k-1)-set that is not a transversal. Then there exists $F \subset \mathcal{F}$ such that $F \cap G = \emptyset$. Since $G \in \partial \mathcal{F}^*$ and $F \cap |F|$, there exists $F \subset \mathcal{F}$ and $F \cap (G \cup \{x\}) = \emptyset$, a contradiction. Thus $\mathcal{G} \subset \mathcal{T}(\mathcal{F})$.

Since \mathcal{F} is saturated, all k-element supersets of any $G \in \mathcal{T}(\mathcal{F})$ are members of \mathcal{F} . By Lemma 5.1 (i) we see that \mathcal{G} is intersecting. In view of Proposition 5.3, \mathcal{F}^* is 3-intersecting. Since $n \geq 4(k-2)$, by (1) we have $|\mathcal{F}^*| \leq \binom{n-3}{k-3}$.

By using the Bollobás Set-pairs Theorem and the Hilton-Milner-Frankl Theorem, we prove Theorem 1.8 for r = k and $k \ge 5$.

Proposition 6.3. $f^*(n, k, k) = \binom{n-3}{k-3}$ for $r = k \ge 5$ and $n \ge k^3 \binom{2k-1}{k}$.

Proof. Let $\mathcal{F} \subset {[n] \choose k}$ be a saturated intersecting family. Let \mathcal{F}^* be the family of k-complete sets in \mathcal{F} and let $\mathcal{G} = \partial \mathcal{F}^*$. Define

$$\mathcal{G}' = \{G \in \mathcal{G} : G \notin \mathcal{T}(\mathcal{F})\} \text{ and } \mathcal{E} = \left\{E \in \mathcal{F}^* : \binom{E}{k-1} \cap \mathcal{G}' \neq \emptyset\right\}.$$

Claim 9. To every $G \in \mathcal{G}'$ there is a unique k-element set $H(G) \in \mathcal{F}$ which is disjoint to G.

Proof. Let $G \cup \{x_i\} \in \mathcal{F}$, i = 1, ..., k, the existence of x_i is guaranteed by k-completeness. Since $G \notin \mathcal{T}(\mathcal{F})$, there is $F \in \mathcal{F}$ satisfying $G \cap F = \emptyset$. As \mathcal{F} is intersecting, $F \cap (G \cup \{x_i\}) = \{x_i\}$ for $1 \le i \le k$. Using |F| = k, $F = \{x_1, ..., x_k\} = :H(G)$ is the unique possibility.

From Claim 9 it is clear that $H(G) \neq H(G')$ imply $G \cap H(G') \neq \emptyset$. Define

$$\mathcal{H} = \{ H(G) \colon G \in \mathcal{G}' \}.$$

Let $\mathcal{H} = \{H_1, \dots, H_m\}$. To each $H_i \in \mathcal{H}$, fix $G_i \in \mathcal{G}'$ satisfying $H(G_i) = H_i$. Now $H_i \cap G_j = \emptyset$ iff i = j, By (9), we obtain

$$|\mathcal{H}| = m \le \binom{2k-1}{k}.\tag{24}$$

For each $H \in \mathcal{H}$, let

$$\mathcal{G}'(H) = \{ G \in \mathcal{G}' : H(G) = H \}.$$

Claim 10. For each $H \in \mathcal{H}$, $\mathcal{G}'(H)$ is 2-intersecting.

Proof. Suppose that there exist $G_1, G_2 \in \mathcal{G}'(H)$ with $G_1 \cap G_2 = \{x\}$. Let $H = \{x_1, \dots, x_k\}$. Since $G_1 \in \partial \mathcal{F}^*$, there is $F_1 = G_1 \cup \{x_i\}$ such that $F_1 \in \mathcal{F}^*$. By symmetry we assume that i = 1. By k-completeness, we have $(F_1 \setminus \{x\}) \cup \{y_p\} \in \mathcal{F}$ for $p = 1, \dots, k$. Since $|\{y_1, \dots, y_k\}| > |G_2|$, there exist $y_{p_0} \notin G_2$. Since $k \geq 3$, we may assume that $x_2 \neq y_{p_0}$. Then $G_1 \cup \{x_1, y_{p_0}\} \setminus \{x\}$, $G_2 \cup \{x_2\}$ are disjoint, a contradiction.

Now we distinguish two cases.

Case 1. There exists $H \in \mathcal{H}$ such that $|\mathcal{G}'(H)| > k(k-1)\binom{n-4}{k-4}$.

Since $\mathcal{G}'(H)$ is a 2-intersecting (k-1)-graph, by (11) $\mathcal{G}'(H)$ is a 2-star. So let $\mathcal{G}'(H)$ be a star with centre $\{1, 2\}$. Let $H = \{x_1, \dots, x_k\}$. Define

$$\mathcal{G}_i^H = \left\{ G \in \mathcal{G}'(H) \colon G \cup \{x_i\} \in \mathcal{F}^* \right\}.$$

Note that $\mathcal{G}'(H) = \mathcal{G}_1^H \cup \ldots \cup \mathcal{G}_k^H$. Without loss of generality, we may assume that $|\mathcal{G}_1^H| \geq \ldots \geq |\mathcal{G}_k^H|$.

Claim 11. $\mathcal{G}_2^H = \cdots = \mathcal{G}_k^H = \emptyset$.

Proof. Suppose for contradiction that $\mathcal{G}_2^H \neq \emptyset$ and let $R_2 \in \mathcal{G}_2^H([2])$. Since

$$|\mathcal{G}_1^H([2])| \ge \frac{1}{k}|\mathcal{G}'(H)| \ge (k-1)\binom{n-4}{k-4},$$

we have

$$\left| \mathcal{G}_{1}^{H}([2]) \cap \binom{[n] \setminus R_{2}}{k-3} \right| \ge |\mathcal{G}_{1}^{H}([2])| - |R_{2}| \binom{n-k-3}{k-4}$$

$$\ge (k-1) \binom{n-4}{k-4} - (k-3) \binom{n-4}{k-4}$$

$$= 2 \binom{n-4}{k-4}.$$

By (10) we have $\nu(\mathcal{G}_1^H([2]) \cap {[n] \setminus R_2 \choose k-3}) \ge 2$. It follows that there are $R_0, R_1 \in \mathcal{G}_1^H([2])$ such that R_0, R_1, R_2 are pairwise disjoint sets. Set $G_i = R_i \cup [2]$ for i = 0, 1, 2. Since $G_1 \cup \{x_1\}$, $G_2 \cup \{x_2\} \in \mathcal{F}^*$, we know that $E_1 = R_1 \cup \{1, x_1\}$, $E_2 = R_2 \cup \{2, x_2\}$ are both covered by k members of \mathcal{F} . To avoid disjointness, we have $E_1 \cup \{y_2\} \in \mathcal{F}$ for each $y_2 \in E_2$ and $E_2 \cup \{y_1\} \in \mathcal{F}$ for each $y_1 \in E_1$. Moreover, there is an extra element z such that $E_1 \cup \{z\}$, $E_2 \cup \{z\} \in \mathcal{F}$.

Let $E_0 = R_0 \cup \{1, x_1\}$ and clearly $E_0 \cap E_2 = \emptyset$. Since $E_0 \subset G_0 \cup \{x_1\} \in \mathcal{F}^*$, E_0 is covered by k members of \mathcal{F} , we can find $w \notin E_2$ such that $E_0 \cup \{w\} \in \mathcal{F}$. For $k \ge 5$ we may choose $u \in R_1$, $u \ne w$. Then $E_2 \cup \{u\} \in \mathcal{F}$ and $E_0 \cup \{w\}$, $E_2 \cup \{u\}$ are disjoint, a contradiction.

Claim 11 implies $\mathcal{G}'(H) = \mathcal{G}_1^H$ and $G \cup \{x_1\} \in \mathcal{F}^*$ for all $G \in \mathcal{G}'(H)$. Then by Lemma 6.1 we may assume that $\nu(\mathcal{G}_1^H([2])) \leq k$. By (10),

$$|\mathcal{G}'(H)| \le k \binom{n-4}{k-4},$$

contradicting our assumption.

Case 2. For each $H \in \mathcal{H}$, $|\mathcal{G}'(H)| \le k(k-1) \binom{n-4}{k-4}$.

By the definition of \mathcal{E} , we infer that each E in \mathcal{E} contains a (k-1)-set $G \in \mathcal{G}'$, implying $|\mathcal{E}| \le |\mathcal{G}'|$. By Claim 9 and (24),

$$|\mathcal{E}| \le |\mathcal{G}'| \le \sum_{H \in \mathcal{H}} |\mathcal{G}'(H)| \le \binom{2k-1}{k} k(k-1) \binom{n-4}{k-4}.$$

Define $\mathcal{F}_1 = \mathcal{F}^* \setminus \mathcal{E}$. Note that each member of $\partial \mathcal{F}_1$ is a transversal of \mathcal{F} . Since \mathcal{F} is saturated, by Lemma 5.1 (i) the family $\partial \mathcal{F}_1$ is intersecting. By Proposition 5.3, \mathcal{F}_1 is 3-intersecting. If $|\mathcal{F}_1| \leq k \binom{n-4}{k-4}$, then

$$|\mathcal{F}^*| = |\mathcal{E}| + |\mathcal{F}_1| \le \left(\binom{2k-1}{k} k(k-1) + k \right) \binom{n-4}{k-4} \le \binom{n-3}{k-3}.$$

Otherwise, by (11) we have $[3] \subset F$ for all $F \in \mathcal{F}_1$. Then by Lemma 6.1, we may assume $\nu(\mathcal{F}_1([3])) \leq k$ and (10) implies

$$|\mathcal{F}_1| \le k \binom{n-4}{k-4},$$

which contradicts the assumption and the proposition is proven.

Let $g(v, \Delta)$ be the maximum number of edges in a graph \mathcal{G} with $v(\mathcal{G}) \leq v$ and the maximum degree at most Δ . To determine $f^*(n, 4, 4)$, we need the following result due to Chvátal and Hanson [2].

Lemma 6.4 ([2]). For every $v \ge 1$ and $\Delta \ge 1$,

$$g(\nu, \Delta) = \nu \Delta + \left\lfloor \frac{\Delta}{2} \right\rfloor \left\lfloor \frac{\nu}{\lceil \Delta/2 \rceil} \right\rfloor \le \nu \Delta + \nu.$$
 (25)

Proposition 6.5. $f^*(n, 4, 4) = n - 3$ for $n \ge 63$.

Proof. Let $\mathcal{F} \subset {[n] \choose 4}$ be a saturated intersecting family. Let \mathcal{F}^* be the family of 4-complete sets in \mathcal{F} .

Claim 12. *If there are* F_1 , $F_2 \in \mathcal{F}^*$ *with* $|F_1 \cap F_2| = 1$, *then* $|\mathcal{F}^*| \leq 35$.

Proof. Without loss of generality, assume that $F_1 = (x_1, x_2, x_3, z)$ and $F_2 = (y_1, y_2, y_3, z)$. Using that (x_1, x_2, x_3) is 4-fold covered in \mathcal{F} which is intersecting, the only possible extra 4-sets are $(x_1, x_2, x_3, y_i) \in \mathcal{F}$, $1 \le i \le 3$. Similarly for (y_1, y_2, y_3) we infer $(y_1, y_2, y_3, x_j) \in \mathcal{F}$, $1 \le j \le 3$. Now consider (x_1, x_2, z) , it is disjoint to (y_1, y_2, y_3, x_3) . Hence its covering sets are (x_1, x_2, x_3, z) and $(x_1, x_2, z, y_i) \in \mathcal{F}$, $1 \le i \le 3$. Arguing in the same way with $(x_1, x_3, z), (x_2, x_3, z), (y_1, y_2, z)$, etc, we infer that all sets $R \in \binom{F_1 \cup F_2}{4}$ with $z \in R$ are in \mathcal{F} . If $\mathcal{F} \subset \binom{F_1 \cup F_2}{4}$ then $|\mathcal{F}^*| \le |\mathcal{F}| \le \binom{7}{4} = 35$, we are done. Otherwise we infer $z \in F$ for all $z \in \mathcal{F} \setminus \binom{F_1 \cup F_2}{4}$. Using $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$ and $z \in \mathcal{F} \cap (x_1, x_2, y_3, x_j) \ne \emptyset$, we infer that such $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$ and $z \in \mathcal{F} \cap (x_1, x_2, y_3, x_i) \ne \emptyset$, we infer that such $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$ and $z \in \mathcal{F} \cap (x_1, x_2, y_3, x_i) \ne \emptyset$, we infer that such $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$ and $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$ and $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$. Thus $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$ and $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$. Thus $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$ and $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$. Thus $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$ and $z \in \mathcal{F} \cap (x_1, x_2, x_3, y_i) \ne \emptyset$.

By Claim 12 and n > 38, we may assume that \mathcal{F}^* is 2-intersecting.

Claim 13. \mathcal{F}^* contains no sunflower with 3 petals and a centre of size 2.

Proof. Assume that (1, 2, 3, 4), (1, 2, 5, 6), (1, 2, 7, 8) form such a sunflower in \mathcal{F}^* . Since (2, 3, 4), (1, 5, 6) are 4-fold covered in \mathcal{F} , we may assume that

$$(2, 3, 4, a), (2, 3, 4, b), (2, 3, 4, c), (1, 5, 6, p), (1, 5, 6, q), (1, 5, 6, r) \in \mathcal{F}.$$

The intersecting property of \mathcal{F} implies that (by symmetry) (a, b) = (5, 6), (p, q) = (3, 4), c = r. Since (1, 7, 8) is 4-fold covered in \mathcal{F} , let (1, 7, 8, u), (1, 7, 8, v), $(1, 7, 8, w) \in \mathcal{F}$. Then one of u, v, w is not in $\{5, 6\}$, by symmetry assume $w \notin \{5, 6\}$, it implies that (2, 3, 4, a), (1, 7, 8, w) are disjoint, a contradiction.

Let $F \in \mathcal{F}^*$. For any $P \in \binom{F}{2}$, define

$$\mathcal{G}(P) = \{ F' \setminus P \colon P \subset F' \in \mathcal{F}^* \} .$$

By Claim 13, $\nu(\mathcal{G}(P)) \le 2$. By Lemma 6.1, we may assume that \mathcal{F}^* contains no sunflower with 5 petals and a centre of size 3. It follows that the maximum degree of $\mathcal{G}(P)$ is at most 4. Then (25)

implies $|\mathcal{G}(P)| \le 2 * 4 + 2 = 10$. Since \mathcal{F}^* is 2-intersecting, we conclude that for $n \ge 63$,

$$|\mathcal{F}^*| \le \sum_{P \in \binom{F}{2}} |\mathcal{G}(P)| \le \binom{4}{2} * 10 = 60 \le n - 3$$

and the proposition is proven.

Theorem 1.8 follows from Theorem 3.1 and Propositions 5.4, 5.5, 6.2, 6.3, 6.5.

7. Concluding remarks

In this paper we considered intersecting k-graphs $\mathcal{F} \subset {[n] \choose k}$. For a positive parameter r we called an edge $F \in \mathcal{F}$ r-complete if all $G \in {[r \choose k-1})$ were contained in at least r members of \mathcal{F} , including F. For r=1 this condition is automatically satisfied. For $r\geq 2$ we defined f(n,k,r) as the maximum of $|\mathcal{F}|$ for families with all edges being r-complete and $f^*(n,k,r)$ as the maximum number of r-complete edges in \mathcal{F} . The inequality $f(n,k,r) \leq f^*(n,k,r)$ is obvious. For $2 \leq r \leq k$ all edges of the family

$$\mathcal{L}(n,k,r) = \left\{ F \in \binom{[n]}{k} : |F \cap [2r-1]| \ge r \right\}$$

are *r*-complete. We showed that for $n \ge n_0(k, r)$, $f(n, k, r) = |\mathcal{L}(n, k, r)|$ and for r = 2 or 3 even $f^*(n, k, r)$ shares this value. However, for $r \ge 4$, $f^*(n, k, r)$ is much larger:

$$f^*(n, k, r) = (1 + o(1)) \binom{n-3}{k-3}.$$

In the case r = 2 we exploited some connections with the Erdős Matching Conjecture and succeeded in proving the statements with a linear constraint, $n \ge 28k$. However for $r \ge 3$ our proof requires $n_0(k, r) > k^{2(r+1)k}$.

Problem 7.1. Does $f(n, k, r) = |\mathcal{L}(n, k, r)|$ hold for $3 \le r \le k$ and n > ck with an absolute constant c?

Another open problem is to determine the exact value of $f^*(n, k, r)$ for $4 \le r \le k - 1$ and $n > n_0(k, r)$.

As the analogous problems for *t*-intersecting families, we can define two more functions.

$$f(n, k, t, r) = \max \left\{ |\mathcal{F}| \colon \mathcal{F} \subset {n \choose k} \text{ is } t\text{-intersecting and } r\text{-complete} \right\},$$

$$f^*(n, k, t, r) = \max \left\{ |\mathcal{F}^*| \colon \exists \mathcal{F} \subset {n \choose k} \text{ is } t\text{-intersecting, } \mathcal{F}^* \subset \mathcal{F}, \right\}.$$

$$\mathcal{F}^* \text{ is relatively } r\text{-complete in } \mathcal{F}$$

Example 7.2. For $n \ge k \ge t \ge 1$ and $1 \le r \le k - t + 1$ define

$$\mathcal{A}(n,k,t,r) = \left\{ A \in {[n] \choose k} : |F \cap [t+2r-2]| \ge t+r-1 \right\}.$$

By essentially the same proof as in Sections 3 and 4, one can obtain the following two results:

Theorem 7.3. *For* $k \ge 3$, $r \ge 2$ *and* $n \ge n_0(k, r)$,

$$f(n, k, t, r) = \begin{cases} |\mathcal{A}(n, k, t, r)|, & 2 \le r \le k - t + 1; \\ 0, & r \ge k - t + 2. \end{cases}$$
 (26)

Theorem 7.4. *For* $k \ge 3$, $r \ge 2$ *and* $n \ge n_0(k, r)$,

$$f^{*}(n, k, t, r) = \begin{cases} |\mathcal{A}(n, k, t, r)|, & r = 2, 3; \\ \binom{n-t-2}{k-t-2} + O(n^{k-t-r+1}), & 4 \le r \le k-t+1; \\ \binom{n-t-2}{k-t-2}, & r \ge k-t+2. \end{cases}$$
 (27)

Acknowledgement

We would like to thank the referees for their helpful comments and corrections.

References

- [1] Bollobás, B. (1965) On generalized graph. Acta Math. Acad. Sci. Hungar. 16(3-4) 447-452.
- [2] Chvátal, V. and Hanson, D. (1976) Degrees and matchings. J. Combin. Theory Ser. B 20 128-138.
- [3] Erdős, P., Ko, C. and Rado, R. (1961) Intersection theorems for systems of finite sets. *Quart. J. Math. Oxford Ser.* 12(1) 313–320.
- [4] Erdős, P. and Rado, R. (1960) Intersection theorems for systems of sets. J. Lond. Math. Soc. 35(1) 85-90.
- [5] Frankl, P. (1978) The Erdős-Ko-Rado theorem is true for n = ckt. Coll. Math. Soc. J. Bolyai 18 365–375.
- [6] Frankl, P. (1978) On intersecting families of finite sets. J. Combin. Theory Ser. A 24(2) 146–161.
- [7] Frankl, P. (1987) The shifting technique in extremal set theory. Surv. Combin. 123 81-110.
- [8] Frankl, P. (1991) Shadows and shifting. Graph Combin. 7(1) 23-29.
- [9] Frankl, P. (2013) Improved bounds for Erdős' matching conjecture. J. Combin. Theory Ser. A 120(5) 1068-1072.
- [10] Frankl, P., Kupavskii, A. and Kiselev, S. (2022) On the maximum number of distinct intersections in an intersecting family. Discrete Math. 345(4) 112757.
- [11] Frankl, P. and Wang, J. (2022) On the sum of sizes of overlapping families. Discrete Math. 345(11) 113027.
- [12] Frankl, P. and Wang, J. (2023) Intersections and distinct intersections in cross-intersecting families. Eur. J. Combin. 110 103665.
- [13] Gerbner, D. and Patkós, B. (2018) Extremal Finite Set Theory. CRC Press, 1st edition.
- [14] Hilton, A. J. W. and Milner, E. C. (1967) Some intersection theorems for systems of finite sets. Q. J. Math. 18(1) 369-384.
- [15] Katona, G. O. H. (1964) Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hungar 15(3-4) 329-337.
- [16] Katona, G. O. H. (1974) Solution of a problem of Ehrenfeucht and Mycielski. J. Combin. Theory Ser. A 17(2) 265-266.
- [17] Kostochka, A., Mubayi, D. and Verstraëte, J. (2017) Turán problems and shadows II: trees. J. Combin. Theory Ser. B 122 457–478.
- [18] Kostochka, A., Mubayi, D. and Verstraëte, J. (2015) Turán problems and shadows I: paths and cycles. J. Combin. Theory Ser. A 129 57–79.
- [19] Kostochka, A., Mubayi, D. and Verstraëte, J. (2015) Turán problems and shadows III: expansions of graphs. SIAM J. Discrete Math. 29(2) 868–876.
- [20] Liu, E. L. L. and Wang, J. (2020) The Maximum number of cliques in hypergraphs without large matchings. *Electron. J. Combin.* 27(4) P4.14.
- [21] Wilson, R. M. (1984) The exact bound in the Erdős-Ko-Rado theorem. Combinatorica 4(2-3) 247-257.