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Abstract
Let F be an intersecting family. A (k− 1)-set E is called a unique shadow if it is contained in exactly one
member of F . Let A= {A ∈ ([n]

k

)
: |A∩ {1, 2, 3}| ≥ 2}. In the present paper, we show that for n≥ 28k, A

is the unique family attaining the maximum size among all intersecting families without unique shadow.
Several other results of a similar flavour are established as well.
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1. Introduction
Let n> k> t be positive integers and let [n]= {1, 2, . . . , n} be the standard n-element set. For
1≤ i< j≤ n, let [i, j]= {i, i+ 1, . . . , j}. Let ([n]

k
)
denote the collection of all k-subsets of [n].

Subsets of
([n]
k
)
are called k-uniform hypergraphs or k-graphs for short. A k-graph F is called

t-intersecting if |F ∩ F′| ≥ t for all F, F′ ∈F . In case of t = 1 we often use the term intersecting
instead of 1-intersecting. Investigating various properties of t-intersecting families is one of the
central topics of extremal set theory (cf. the recent book of Gerbner and Patkós [13]). Let us state
the quintessential result of this topic.

Erdős-Ko-Rado Theorem ([3]). Suppose that n≥ n0(k, t) and F ⊂ ([n]
k
)
is t-intersecting. Then

|F | ≤
(
n− t
k− t

)
. (1)

Remark 1. For t = 1 the exact value n0(k, t)= (k− t + 1)(t + 1) was proved in [3]. For t ≥ 15 it is
due to [5]. Finally Wilson [21] closed the gap 2≤ t ≤ 14 with a proof valid for all t.

Let us note that the full t-star,
{
F ∈ ([n]

k
)
: [t]⊂ F

}
shows that (1) is best possible. In general, for

a set T ⊂ [n] let ST =
{
S ∈ ([n]

k
)
: T ⊂ S

}
denote the star of T.

For t = 1, there is a strong stability for the Erdős-Ko-Rado Theorem.

Theorem 1.1 (Hilton-Milner Theorem [14]). Suppose that n> 2k≥ 4, F ⊂ ([n]
k
)
is intersecting

and F is not a star, then

|F | ≤
(
n− 1
k− 1

)
−

(
n− k− 1
k− 1

)
+ 1. (2)
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Let us define the Hilton-Milner Family

H(n, k)=
{
F ∈

(
[n]
k

)
: 1 ∈ F, F ∩ [2, k+ 1] 	= ∅

}
∪ {[2, k+ 1]},

showing that (2) is best possible.
Let us recall the notion of immediate shadow, ∂F : For F ⊂ ([n]

k
)
,

∂F =
{
G ∈

(
[n]
k− 1

)
: ∃F ∈F ,G⊂ F

}
.

If for some G ∈ ∂F there is only one choice of F ∈F satisfying G⊂ F then G is called unique or a
unique shadow. Note that in the full star S{x} for each member S, S \ {x} is unique. In the Hilton-
Milner familyH(n, k), each member H ∈H(n, k) \ {[2, k+ 1]} contains a unique shadow H \ {1}.
Just for curiosity let us mention that if each member of F ⊂ ([n]

k
)
contains a unique shadow then

|F | ≤ (n−1
k−1

)
.

Let us introduce the central notion of the present paper.

Definition 1.2. For an integer r ≥ 2 and a family F ⊂ ([n]
k
)
, we say that F is r-complete if every

G ∈ ∂F is contained in at least r members of F .

Note that F is r-complete if and only if the minimum non-zero co-degree of F is at least r.
This notion has been introduced and used by Kostochka et al. [17–19] to determine hypergraph
Turán numbers for paths, cycles and trees.

Clearly, if F ⊂ ([n]
k
)
is r-complete with r ≥ 2, then F is far from a star. It is natural to ask for

the maximum size of an r-complete intersecting family. Let us define the function:

f (n, k, r)=max
{
|F | : F ⊂

(
[n]
k

)
is intersecting and r-complete

}
.

Let us give some examples. For 1≤ r < k the complete k-graph
([k+r]

k
)
is intersecting and

(r + 1)-complete. This shows in particular that

f (n, k, k)≥
(
2k− 1

k

)
. (3)

Example 1.3. For n≥ k≥ r ≥ 1 define

L(n, k, r)=
{
F ∈

(
[n]
k

)
: |F ∩ [2r − 1]| ≥ r

}
.

Clearly L(n, k, r) is intersecting, r-complete and

|L(n, k, r)| =
∑

r≤i≤2r−1

(
2r − 1

i

)(
n− 2r + 1

k− i

)
.

Our main result shows that this example is best possible for n≥ n0(k, r).

Theorem 1.4. For n≥ 28k,
f (n, k, 2)= |L(n, k, 2)|. (4)

Moreover, up to isomorphism L(n, k, 2) is the only family attaining equality.

Theorem 1.5. For k≥ 3, r ≥ 3 and n≥ n0(k, r),

f (n, k, r)=
⎧⎨
⎩

|L(n, k, r)|, 3≤ r ≤ k;

0. r ≥ k+ 1.
(5)
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For a positive integer � and an �-graphH, define the clique family

K(H)=
{
K : |K| = � + 1,

(
K
�

)
⊂H

}
.

Define ν(F), thematching number of F as the maximum number of pairwise disjoint edges in F .
Note that ν(F)= 1 iff F is intersecting. We are going to prove Theorem 1.4 using the following
result exhibiting a surprising connection between the matching number and the size of the clique
family. Define the Erdős-family

E(n, k, s)=
{
E ∈

(
[n]
k

)
: E∩ [s] 	= ∅

}
.

Note that

K(E(n, k, s))=
{
K ∈

(
[n]
k+ 1

)
: |K ∩ [s]| ≥ 2

}
.

Theorem 1.6. Let F ⊂ ([n]
k
)
be a family with ν(F)≤ s. If n≥ 5sk+ 13k and s≥ 3, then

|K(F)| ≤ |K(E(n, k, s))|.
Moreover, up to isomorphism E(n, k, s) is the only family attaining equality.

Let us define the notion of r-complete edges.

Definition 1.7. For an integer r ≥ 2 and a family F ⊂ ([n]
k
)
, we say that F ∈F is r-complete if

every G ∈ ( F
k−1

)
is contained in at least r members of F .

Clearly, F is r-complete if and only if every F ∈F is r-complete. One can also ask for the
maximum number of r-complete edges in an intersecting family. For an intersecting family
F ⊂ ([n]

k
)
, define F∗

r (F) as the family of all r-complete edges in F . Let

f ∗(n, k, r)=max
{
|F∗

r (F)| : F ⊂
(
[n]
k

)
is intersecting.

}
If F is r-complete then we have F∗

r (F)=F , implying that f (n, k, r)≤ f ∗(n, k, r). For F ′ ⊂F ,
we say that F ′ is relatively r-complete with respect to F if every F′ ∈F ′ is an r-complete edge in
F . Clearly F∗

r (F) is a relatively r-complete family of the maximum size with respect to F .
Our next result determines f ∗(n, k, r) for all k≥ 3 and r ≥ 2, asymptotically.

Theorem 1.8. For k≥ 3, r ≥ 2 and n≥ n0(k, r),

f ∗(n, k, r)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|L(n, k, r)|, r = 2, 3;(n−3
k−3

) +O(nk−r), 4≤ r ≤ k− 1;(n−3
k−3

)
, r ≥ k≥ 4.

(6)

The next proposition shows that the term O(nk−r) in (6) cannot be removed for k≥ 5 and
4≤ r ≤ k− 1.

Proposition 1.9. For k≥ 5, 4≤ r ≤ k− 1 and n≥ k+ r − 1,

f ∗(n, k, r)≥
(
n− 3
k− 3

)
+

(
n− r − 2
k− r − 1

)
.

Proof. For 4≤ r ≤ k− 1, let
B(r)= {{1, 2}} ∪ {{3, i, j} : i= 1 or 2, 4≤ j≤ r + 2

} ∪ {[r + 2] \ {u, 3} : u= 1, 2}
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and let
I(n, k, r)=

⋃
B∈B(r)

SB, I∗(n, k, r)= S{1,2,3} ∪ S[r+2]\{3}.

It is easy to check that B(r) is intersecting, implying that I(n, k, r) is intersecting. Since S{1,2,3} ⊂
S{1,2} and S[r+2]\{3} ⊂ S{1,2}, I∗(n, k, r)⊂ I(n, k, r). In the rest of the proof, we show that
I∗(n, k, r) is relatively r-complete with respect to I(n, k, r).

For any F ∈ S{1,2,3}, since S{1,2} ⊂ I(n, k, r) and n≥ k+ r − 1, we see that for each x ∈ F \ {1, 2},
F \ {x} is covered by at least rmembers of I(n, k, r).Moreover, sinceS{3,i,j} ⊂ I(n, k, r) for i ∈ {1, 2}
and j ∈ {4, 5, . . . , r + 2}, we infer that F \ {3− i} is covered by at least r members of I(n, k, r) for
i= 1, 2. Thus S{1,2,3} is relatively r-complete with respect to I(n, k, r).

Let F ∈ S[r+2]\{3} and G ∈ ( F
k−1

)
. If {1, 2} ⊂G, then by S{1,2} ⊂ I(n, k, r) and n≥ k+ r we infer

thatG is covered by at least rmembers of I(n, k, r). If i /∈G for i= 1, 2, since S[r+2]\{i,3} ⊂ I(n, k, r)
and n≥ k+ r − 1, then G is also covered by at least r members of I(n, k, r). Hence S[r+2]\{3} is
relatively r-complete with respect to I(n, k, r). Therefore, I∗(n, k, r) is relatively r-complete with
respect to I(n, k, r) and

f ∗(n, k, r)≥ |I∗(n, k, r)| =
(
n− 3
k− 3

)
+

(
n− r − 2
k− r − 1

)
.

�
The rest of the paper is organized as follows. We list some results that are needed in Section 2.

We prove Theorems 1.4 and 1.6 in Section 3 and prove Theorem 1.5 in Section 4. The proof of
Theorem 1.8 splits into two parts. In Section 5, we prove it for 3≤ r < k. In Section 6, we prove it
for r ≥ k. Finally, we give some concluding remarks in Section 7.

2. Preliminaries
In this section, we list some notions and results that are needed for the proofs.

For a family F ⊂ ([n]
k
)
define the family of transversals, T (F) by

T (F)= {
T ⊂ [n] : |T| ≤ k, T ∩ F 	= ∅ for all F ∈F

}
.

Note that F is intersecting iff F ⊂ T (F). Note also that T (F) is not uniform in general. Set
T (k)(F)= {T ∈ T (F) : |T| = k}. If F = T (k)(F) then F is called saturated. It is equivalent to the
fact thatF ∪ {H} is no longer intersecting forH ∈ ([n]

k
) \F . It should be clear that in the definition

of f ∗(n, k, r) it is sufficient to consider saturated intersecting families F .
Let us recall a special case of the Katona Intersecting Shadow Theorem [15].

Theorem 2.1 ([15]). Suppose that F ⊂ ([n]
k
)
is intersecting. Then

|∂F | ≥ |F | with equality iff F = (X
k
)
for some (2k− 1)-set X. (7)

We need the following generalization of (7) as well.

Theorem 2.2 ([8]). Suppose that F ⊂ ([n]
k
)
. Then

|∂F |ν(F)≥ |F |. (8)

We need also a classical result of Bollobás, the so-called Bollobás Set-pair Inequality.

Theorem 2.3 ([1]). Let a, b be positive integers, A1, . . . ,Am a-element sets, B1, . . . , Bm b-element
sets such that Ai ∩ Bj = ∅ iff i= j. Then

m≤
(
a+ b
b

)
(cf. [16] for a very slick proof.) (9)
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There is a very important operation on families of sets which was discovered by Erdős et al.
[3]. It is called shifting and it is known not to increase the matching number ν(F) ([7]) and not to
decrease the size of K(F) (cf. [20]).

Let us define the shifting partial order ≺. For two k-sets A and B where A= {a1, . . . , ak},
a1 < . . . < ak and B= {b1, . . . , bk}, b1 < . . . < bk we say that A precedes B and denote it by A≺ B
if ai ≤ bi for all 1≤ i≤ k.

A family F ⊂ ([n]
k
)
is called shifted (or initial) if A≺ B and B ∈F always imply A ∈F . By

repeated shifting one can transform an arbitrary k-graph into a shifted k-graph with the same
number of edges.

We need the following inequality generalizing the case t = 1 of the Erdős-Ko-Rado Theorem.

Proposition 2.4 ([7]). Suppose that F ⊂ ([n]
k
)
then

|F | ≤ ν(F)
(
n− 1
k− 1

)
. (10)

Finally we need the following stability theorem concerning the Erdős-Ko-Rado Theorem.

Hilton-Milner-Frankl Theorem ([6,14]). Suppose thatF ⊂ ([n]
k
)
is t-intersecting,F is not a t-star

and n≥ (k− t + 1)(t + 1). Then

|F | ≤max
{
|A(n, k, t)|,

(
n− t
k− t

)
−

(
n− k− 1
k− t

)
+ t

}
<

(
n− t − 1
k− t − 1

)
max{t + 2, k− t + 1}.

(11)

3. Intersecting families without unique shadow
In this section, we first prove Theorem 1.4 by assuming Theorem 1.6. Then by using the
decomposition method of a shifted family introduced in [9], we give a proof of Theorem 1.6.

Actually, we shall prove the following version of Theorem 1.4, which also gives the r = 2 case
of Theorem 1.8.

Theorem 3.1. For n≥ 28k,
f (n, k, 2)= f ∗(n, k, 2)= |L(n, k, 2)|. (12)

Moreover, up to isomorphism L(n, k, 2) is the only family attaining equality.

Proof of Theorem 1.4. Recall that L(n, k, 2) is 2-complete intersecting and f (n, k, 2)≤ f ∗(n, k, 2).
It follows that |L(n, k, 2)| ≤ f (n, k, 2)≤ f ∗(n, k, 2). Thus we are left to show f ∗(n, k, 2)≤
|L(n, k, 2)|.

Let F ⊂ ([n]
k
)
be an intersecting family. Let F∗ be the family of 2-complete sets in F and let

H= ∂F∗. Note that this guarantees that every member ofH is contained in at least two members
of F .

Claim 1. ν(H)≤ 3.

Proof. Suppose for contradiction that Di = Fi ∩Gi, 1≤ i≤ 4, are pairwise disjoint sets in H
and Fi,Gi ∈F . Define xi, yi by Fi \Di = {xi}, Gi \Di = {yi}. Since |{xi, yi}| = 2, by symmetry we
may assume that (x1, y1)∩D4 = ∅. This implies F1 ∩D4 = ∅,G1 ∩D4 = ∅. From F4 ∩ F1 	= ∅,
F4 ∩G1 	= ∅, G4 ∩ F1 	= ∅ and G4 ∩G1 	= ∅, we infer (x4, y4)⊂D1. Consequently F4 ∩Dp = ∅,
G4 ∩Dp = ∅ for p= 2, 3. This implies as above (xp, yp)⊂D4. Now x2 	= x3 or x2 	= y3 (or both)
hold. By symmetry x2 	= x3. Then F2 ∩ F3 = ∅, a contradiction. �

By Theorem 1.6 and Claim 1, for n≥ (5× 3+ 13)k= 28k we have |F∗| ≤ |K(H)| ≤
|K(E(n, k, 3))| = |L(n, k, 2)|. The uniqueness follows from Theorem 1.6. �
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The families F0,F1, . . . ,Fs are called overlapping if there is no choice of Fi ∈Fi such that
F0, F1, . . . , Fs are pairwise disjoint. For the proof of Theorem 1.6 the following lemma is needed.
A similar lemma was proved in [11], although without characterization of the case of equality.

Lemma 3.2. Let F0 ⊂F1 ⊂ · · · ⊂Fs ⊂
(Y
�

)
be overlapping families and let p0 ≥ p1 ≥ . . . ≥ ps be

positive reals. Let

d�p = s(p0 + · · · + ps)
p1 + · · · + ps

.

For |Y| ≥ (d�p + 1)�, ∑
0≤i≤s

pi|Fi| ≤ (p1 + · · · + ps)
(|Y|

�

)
, (13)

where the equality holds iff F1 = · · · =Fs =
(Y
�

)
, F0 = ∅.

Proof. Let F0 ⊂F1 ⊂ · · · ⊂Fs ⊂
(Y
�

)
be overlapping families. Let t = �|Y|/�� ≥ �d�p� + 1≥ s+ 1

and choose a random matching F1, F2, . . . , Ft from
(Y
�

)
. Consider the weighted bipartite graph

G on partite sets {F1, F2, . . . , Ft} and {F0,F1, · · · ,Fs} where we have an edge (Fi,Fj) iff Fi ∈Fj.
This edge gets weight pj.

Since F0 ⊂F1 ⊂ · · · ⊂Fs are overlapping, G has matching number at most s. Applying the
König-Hall Theorem we can find s vertices covering all edges of the bipartite graph G. Let
F1, . . . , Fq be the vertices of the covering set chosen from the randommatching andFq+1, . . . ,Fs
the remaining s− q chosen from the families.

The total weight of the edges covered by Fi is at most p0 + . . . + ps. The total weight of the
edges covered by Fj is at most tpj. Thus, the total weight of the edges in G is at most

q(p0 + · · · + ps)+t(pq+1 + · · · + ps)
= t(p1 + · · · + ps)− t(p1 + · · · + pq)+ q(p0 + · · · + ps). (14)

Note that p1 ≥ . . . ≥ ps implies
i+ 1

p1 + · · · + pi+1
≥ i

p1 + · · · + pi
.

It follows that
q

p1 + · · · + pq
(p0 + · · · + ps)≤ s

p1 + · · · + ps
(p0 + · · · + ps)= d�p < t. (15)

By (14) and (15), the total weight of the edges in G is at most t(p1 + . . . + ps).
Since the probability

Pr(Fi ∈Fj)= |Fj|(|Y|
�

) ,
the expected value of the total weight of the edges in G is

∑s
j=0 tpj

|Fj|
(|Y|

� )
. Thus (13) follows. In case

of equality q= 0. Then for every t-matching F1, F2, . . . , Ft in Y ,F0 has degree 0 andFi has degree
t in G for i= 1, . . . , s. Hence the equality holds iff F1 = · · · =Fs =

(Y
�

)
, F0 = ∅. �

For the proof of Theorem 1.6 we also need the following proposition, which is proved in [20].
Here we include a short proof for self-containedness.

Proposition 3.3. For F ⊂ ([n]
k
)
and 1≤ i< j≤ n, |K(Sij(F))| ≥ |K(F)|.

Proof. We prove the statement by defining an injective map σ from K(F) \K(Sij(F)) to
K(Sij(F)) \K(F). Let K ∈K(F) \K(Sij(F)). Clearly j ∈K and i /∈K, and we define σ (K)=K′ =
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(K \ {j})∪ {i}. We show that σ is well-defined by checking K′ ∈K(Sij(F)) \K(F). Firstly, sup-
pose that K ′ /∈K(Sij(F)) and let F′ ∈ (K′

k
)
be an edge not in Sij(F). If i /∈ F′ then F′ =K \ {j}

and Sij(F′)= F′, implying that F′ ∈ Sij(F), a contradiction. If i ∈ F′, then F = (F′ \ {i})∪ {j} ⊂K
is an edge of F since K ∈K(F). Hence after shifting we have F′ ∈ Sij(F), a contradiction. This
shows K ′ ∈K(Sij(F)). Secondly, if K ′ ∈K(F) then K ∈K(F) implies K ∈K(Sij(F)), contradict-
ing the assumption that K /∈K(Sij(F)). Thus K ′ ∈K(Sij(F)) \K(F) and σ is indeed a map from
K(F) \K(Sij(F)) to K(Sij(F)) \K(F). Clearly, σ is injective and the proposition follows. �
Proof of Theorem 1.6. Since the shifting operator does not increase the matching number and
does not decrease the size of K(F), we may assume that F is shifted. Let K =K(F) and K∗ =
K(E(n, k, s)). For any S⊂ [s+ 1] and a familyH⊂ ([n]

h
)
, define

H(S) := {H \ [s+ 1] : H ∈H, H ∩ [s+ 1]= S} .
ClearlyH(S)⊂ ([s+2,n]

h−|S|
)
.

For |S| ≥ 3, we have K∗(S)= ( [s+2,n]
k+1−|S|

)
. It follows that∑

S⊂[s+1],|S|≥3
|K(S)| ≤

∑
S⊂[s+1],|S|≥3

|K∗(S)|. (16)

We are left to compare |K(S)| with |K∗(S)| for all S⊂ [s+ 1] with |S| ≤ 2.

Claim 2. K({i})=F(∅) for i= 1, 2, . . . , s+ 1 and K({i, j})=F({j}) for 1≤ i< j≤ s+ 1.

Proof. For F ∈K({i}), F ∪ {i} ∈K implies that F ∈F(∅). Let F ∈F(∅). Since x≥ s+ 2> i each
x ∈ F, by shiftedness (F \ {x})∪ {i} ∈F . It follows that

(F∪{i}
k

) ⊂F and F ∪ {i} ∈K. Thus F ∈
K({i}). Therefore K({i})=F(∅).

For any E ∈K({i, j}) we have
(E∪{i,j}

k
) ⊂F . It follows that E∪ {j} ∈F . Thus E ∈F({j}). Let

E ∈F({j}). By shiftedness and i< j, E∪ {i} ∈F . Moreover, E∪ {i, j} \ {x} ∈F for each x ∈ E. That
is,

(E∪{i,j}
k

) ⊂F and E∪ {i, j} ∈K. Thus E ∈K({i, j}). Therefore K({i, j})=F({j}). �
Note that for any K ∈K(∅) we have (K

k
) ⊂F(∅). It follows that ∂K(∅)⊂F(∅). Since ν(K(∅))

≤ s, by (8) we have

s|F(∅)| ≥ s|∂K(∅)| ≥ |K(∅)|. (17)

By Claim 2, ∑
1≤i≤s+1

|K({i})| = (s+ 1)|F(∅)|

and ∑
1≤i<j≤s+1

|K({i, j})| =
∑

2≤j≤s+1
(j− 1)|F({j})|.

It follows that ∑
S∈[n],|S|≤2

|K(S)| = |K(∅)| +
∑

1≤i≤s+1
|K({i})| +

∑
1≤i<j≤s+1

|K({i, j})|

(17)≤ s|F(∅)| + (s+ 1)|F(∅)| +
∑

2≤j≤s+1
(j− 1)|F({j})|

≤ (2s+ 1)|F(∅)| +
∑

2≤j≤s+1
(j− 1)|F({j})|. (18)
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Again by shiftedness ∂F(∅)⊂F({s+ 1}), and using (8) we infer
s|F({s+ 1})| ≥ s|∂F(∅)| ≥ |F(∅)|. (19)

Substituting (19) into (18), we arrive at∑
S∈[n],|S|≤2

|K(S)| ≤
∑
2≤j≤s

(j− 1)|F({j})| + s|F({s+ 1})| + (2s+ 1)s|F({s+ 1})|

= |F({2})| +
∑
3≤j≤s

(j− 1)|F({j})| + 2s(s+ 1)|F({s+ 1})|

≤ 1
2
|F({1})| + 1

2
|F({2})| +

∑
3≤j≤s

(j− 1)|F({j})| + 2s(s+ 1)|F({s+ 1})|.

By shiftedness, F({1})⊃ · · · ⊃F({s+ 1}) are overlapping families. Set
F0 =F({s+ 1}), F1 =F({s}), . . . ,Fs−2 =F({3}), Fs−1 =F({2}), Fs =F({1})

and set

p0 = 2s(s+ 1), p1 = s− 1, . . . , ps−2 = 2, ps−1 = 1
2
, ps = 1

2
.

Then p0 ≥ p1 ≥ . . . ≥ ps and by s≥ 3,

d�p = s(p0 + · · · + ps)
(p1 + · · · + ps)

= 4s(s+ 1)+ s(s− 1)
s− 1

= 5s+ 8+ 8
s− 1

≤ 5s+ 12.

By Lemma 3.2, for n− s− 1≥ (5s+ 13)(k− 1)≥ (d�p + 1)(k− 1) we have∑
S⊂[s+1],|S|≤2

|K(S)| ≤ (p1 + p2 + . . . + ps)
(
n− s− 1
k− 1

)

=
(
s
2

)(
n− s− 1
k− 1

)
=

∑
S⊂[s+1],|S|≤2

|K∗(S)|. (20)

Adding (16) and (20), we conclude that

|K(F)| =
∑

S⊂[s+1]
|K(S)| ≤

∑
S⊂[s+1]

|K∗(S)| = |K(E(n, k, s))|.

LetF be a family with ν(F)≤ s and |K(F)| = |K(E(n, k, s))|. IfF is shifted, then by Lemma 3.2
we have F({s+ 1})= ∅. It follows that F = E(n, k, s). Now assume that F is not shifted. Then it
changes to E(n, k, s) by applying shifting repeatedly. Let G be the last family that is not isomorphic
to E(n, k, s) in this process. That is, G is not isomorphic to E(n, k, s) but Sij(G) is isomorphic to
E(n, k, s) for some 1≤ i< j≤ n. By symmetry, we may assume that G 	= E(n, k, s) and Ss,s+1(G)=
E(n, k, s). Let

G(s(s+ 1))=
{
E ∈

(
[n] \ {s, s+ 1}

k− 1

)
: E∪ {s} ∈ G

}
,

G(s(s+ 1))=
{
E ∈

(
[n] \ {s, s+ 1}

k− 1

)
: E∪ {s+ 1} ∈ G

}
.

Since Ss,s+1(G)= E(n, k, s), we see G(s(s+ 1))∪ G(s(s+ 1))= ([n]\{s,s+1}
k−1

)
and G(s(s+ 1))∩

G(s(s+ 1))= ∅. It follows that for each E ∈ ([n]\{s,s+1}
k−1

)
, exactly one of E∪ {s} ∈ G and
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E∪ {s+ 1} ∈ G holds. Now consider a graph G on the vertex set
([n]\{s,s+1}

k−1
)
where (E1, E2)

forms an edge if and only if |E1 ∩ E2| = k− 2. It is easy to see that G is a connected graph.
Since G is not isomorphic to E(n, k, s), we infer that G(s(s+ 1)) 	= ∅ and G(s(s+ 1)) 	= ∅. Then
there exists an edge (E1, E2) in G such that E1 ∪ {s} ∈ G and E2 ∪ {s+ 1} ∈ G. Let F := E1 ∪
E2 ∈ ([n]\{s,s+1}

k
)
. Then F ∪ {s+ 1} /∈K(G) and F ∪ {s} /∈K(G). But Ss,s+1(G)= E(n, k, s) implies

F ∪ {s} ∈K(Ss,s+1(G)). Moreover, for any K ∈K(G) \K(Ss,s+1(G)), we have (K \ {s+ 1})∪ {s} ∈
K(Ss,s+1(G)) \K(G) by the injective map defined in Proposition 3.3. Hence |K(Ss,s+1(G))| >
|K(G)| ≥ |K(F)| = |K(E(n, k, s))|, a contradiction. Thus up to isomorphism E(n, k, s) is the only
family attaining equality. �

4. The maximum size of an r-complete intersecting family
In this section, we determine f (n, k, r) for all k, r ≥ 3 and n≥ n0(k, r), thereby proving
Theorem 1.5.

Proposition 4.1. For r ≥ k+ 1, f (n, k, r)= 0. For n≥ 2k− 1,

f (n, k, k)=
(
2k− 1

k

)
.

Moreover, the unique family satisfying the condition is
(X
k
)
with |X| = 2k− 1.

Proof. Suppose that F is an intersecting k-graph and each F ∈F is k-wise covered. Consider the
bipartite graph with partite sets F , ∂F and an edge between F and G iff G⊂ F. It is clear that each
F ∈F has degree k. On the other hand, the condition implies that each G ∈ ∂F has degree at least
k. Consequently, |F | ≥ |∂F |. In view of (7), we see |F | = |∂F | and equality holds iff F = (X

k
)
with

|X| = 2k− 1. The same argument implies f (n, k, r)= 0 for r ≥ k+ 1. �
We need a notion of basis for an intersecting family inspired by [6]. For any intersecting family

F ⊂ ([n]
k
)
, we define a basisB(F) which is not necessarily unique by the following process.We start

with F0 =F . Note that F0 is an antichain. A collection of sets F0, . . . , Fk is called a sunflower
of size k+ 1 with centre C if Fi ∩ Fj = C for all distinct i, j ∈ {0, 1, . . . , k}. Note that in this case
F0 \ C, . . . , Fk \ C are pairwise disjoint. At the i-th step try and find in the current family F i a
sunflower F0, . . . , Fk of size k+ 1 (the size of Fj may be distinct). Let Ci be the centre of the
sunflower. Then let F i+1 be the family obtained from F i by deleting all sets containing Ci and
adding Ci. Clearly F i+1 is also an antichain.

Claim 3. If F i is intersecting, then F i+1 is also intersecting.

Proof. Take an arbitrary set F from F i. Since |F| ≤ k, we have F ∩ (Fj \ Ci)= ∅ for some j, 0≤ j≤
k. Then F ∩ Ci = F ∩ Fj 	= ∅. �

Continue this process until no more sunflowers of size k+ 1 can be formed. Let B(F) be the
final family. Clearly, B(F) is an antichain and for all F ∈F there exists B ∈ B(F) with B⊂ F. By
Claim 3, B(F) is intersecting. In view of the Erdős-Rado sunflower lemma [4],

|B(�)| ≤ �!k�, ∀1≤ � ≤ k. (21)

Proof of Theorem 1.5. By proposition 4.1, we may assume 3≤ r ≤ k. Let F be an r-complete
intersecting family of maximal size and let B = B(F) be its basis. Let X = ∪

B∈B
B. By (21) we have

|X| ≤
∑

1≤�≤k
�!k� ≤ 2k!kk ≤ k2k.
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By the definition of B, for any F ∈F there exists B ∈ B such that B⊂ F. Then for F, F′ ∈F , there
exist B, B′ ∈ B such that B⊂ F and B′ ⊂ F′. Since B is intersecting, ∅ 	= B∩ B′ ⊂ F ∩ F′ ∩ X. Thus,
for all F, F′ ∈F , F ∩ F′ ∩ X 	= ∅.

Let us define p=min {|F ∩ X| : F ∈F} and choose an arbitrary pair (F, P0), P0 ∈ (X
p
)
, F ∩ X =

P0. Set H = F \ P0 and define

P(H)=
{
P ∈

(
X
p

)
: H ∪ P ∈F

}
.

Note that P0 ∈P(H).

Claim 4. P(H) is intersecting and r-complete.

Proof. For P, P′ ∈P(H) fix B, B′ ∈ B(F) satisfying B⊂H ∪ P, B′ ⊂H ∪ P′. Since H ∩ X = ∅, B⊂
P and B′ ⊂ P′. Consequently, P ∩ P′ ⊃ B∩ B′ 	= ∅.

Let us prove the r-completeness of P(H) next. Fix P ∈P(H) and R ∈ ( P
p−1

)
. Using the r-

completeness of F there are r distinct elements x1, x2, . . . , xr such that (H ∪ R∪ {xi}) ∈F . The
minimal choice of p implies |(H ∪ R∪ {xi})∩ X| ≥ p, whence xi ∈ X, 1≤ i≤ r. Thus R∪ {xi} ∈
P(H), proving the r-completeness of P(H). �

If p< r, by Claim 4 and Proposition 4.1 we have 1≤ |P(H)| ≤ f (|X|, p, r)= 0, a contradiction.
Thus p≥ r. Define

F0 = {F ∈F : |F ∩ X| ≥ r + 1} .
Then

|F0| ≤
∑

r+1≤i≤k

(|X|
i

)(
n− |X|
k− i

)
≤

∑
r+1≤i≤k

(
k2k

i

)(
n− k2k

k− i

)
< 2

(
k2k

r + 1

)(
n− 2r

k− r − 1

)
.

If p≥ r + 1, then

|F | = |F0| ≤ 2
(

k2k

r + 1

)(
n− 2r

k− r − 1

)
≤

(
2r − 1

r

)(
n− 2r + 1

k− r

)
< |L(n, k, r)|.

Thus we assume p= r.
If |P(H)| ≤ (2r−1

r
) − 1 holds for all H ∈ ([n]\X

k−r
)
, then

|F | ≤
∑

H∈([n]\Xk−r )

|P(H)| + |F0|

≤
((

2r − 1
r

)
− 1

) (
n− |X|
k− r

)
+ 2

(
k2k

r + 1

)(
n− 2r

k− r − 1

)

≤
(
2r − 1

r

)(
n− 2r + 1

k− r

)
(for n≥ n0(k, r))

< |L(n, k, r)|.
Assume now that for some H ∈ ([n]\X

k−r
)
, |P(H)| = (2r−1

r
)
. By Proposition 4.1 we may assume

that P(H)= (Y
r
)
, Y ∈ ( X

2r−1
)
. We claim that |F ∩ Y| ≥ r for all F ∈F . Indeed the opposite

would mean that F ∩ P = ∅ for some P ∈ (Y
r
)
. Then F ∩ (H ∪ P)∩ X = F ∩ P = ∅, a contradic-

tion. Consequently F ⊂ {F ∈ ([n]
k
)
: |F ∩ Y| ≥ r}, i.e., F is contained in an isomorphic copy of

L(n, k, r). �
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5. Maximizing the number of r-complete sets in an intersecting family
In this section, we prove Theorem 1.8 for 3≤ r < k and n≥ n0(k, r). We need a different notion
of basis. For a saturated intersecting family F , define B(F) be the family of minimal (for contain-
ment) sets in T (F). Define X = ∪

B∈B
B the support of B. The following properties of B(F) were

proved in [10].

Lemma 5.1 ([10]). Suppose that F ⊂ ([n]
k
)
is a saturated intersecting family and B = B(F). Then

(i) B is an intersecting antichain,
(ii) F = {H ∈ ([n]

k
)
: ∃B ∈ B, B⊂H},

(iii) for all F, F′ ∈F ,

F ∩ F′ ∩ X 	= ∅. (22)

The following lemma is essentially proved in [10]. For self-containedness we include its proof
as well.

Lemma 5.2 ([10]). Suppose that F ⊂ ([n]
k
)
is a saturated intersecting family. Then |B(F)| ≤ kk.

Proof. Let B = B(F). For the proof we use a branching process. During the proof a sequence
S= (x1, x2, . . . , x�) is an ordered sequence of distinct elements of [n] and we use Ŝ to denote
the underlying unordered set {x1, x2, . . . , x�}. At the beginning, we assign weight 1 to the empty
sequence S∅. At the first stage, we choose B1 ∈ B with |B1| minimal. For any vertex x ∈ B1, define
one sequence (x) and assign the weight |B1|−1 to it.

In each subsequent stage, we pick a sequence S= (x1, . . . , xp) and denote its weight by w(S).
If Ŝ∩ B 	= ∅ holds for all B ∈ B then we do nothing. Otherwise we pick B ∈ B satisfying Ŝ∩ B= ∅
and replace S by the |B| sequences (x1, . . . , xp, y) with y ∈ B and assign weight w(S)

|B| to each of them.
Clearly, the total weight is always 1.

We continue until Ŝ∩ B 	= ∅ for all sequences S and all B ∈ B. Since [n] is finite, each sequence
has length at most n and eventually the process stops. Let S be the collection of sequences that
survived in the end of the branching process and let S(�) be the collection of sequences in S with
length �.

Claim 5. For each B ∈ B(�), there is some sequence S ∈ S(�) with Ŝ= B.

Proof. Let us suppose the contrary and let S= (x1, . . . , xp) be a sequence of maximal length that
occurred at some stage of the branching process satisfying Ŝ� B. Since B are intersecting, B1 ∩
B 	= ∅, implying that p≥ 1. Since Ŝ is a proper subset of B and B ∈ B, it follows that Ŝ /∈ T (F).
Thereby there exists F ∈F with Ŝ∩ F = ∅. In view of Lemma 5.1 (ii), we can find B′ ∈ B such that
Ŝ∩ B′ = ∅. Thus at some point we picked S and some B̃ ∈ B with Ŝ∩ B̃= ∅. Since B is intersecting,
B∩ B̃ 	= ∅. Consequently, for each y ∈ B∩ B̃ the sequence (x1, . . . , xp, y) occurred in the branching
process. This contradicts the maximality of p. Hence there is an S at some stage satisfying Ŝ= B.
Since B is intersecting, Ŝ∩ B′ = B∩ B′ 	= ∅ for all B′ ∈ B. Thus Ŝ ∈ S and the claim holds. �

By Claim 5, we see that |B(�)| ≤ |S(�)| for all � ≥ 1. Let S= (x1, . . . , x�) ∈ S(�) and let Si =
(x1, . . . , xi) for i= 1, . . . , �. At the first stage, w(S1)= 1/|B1|. Assume that Bi is the selected set
when replacing Si−1 in the branching process for i= 2, . . . , �. Then

w(S)=
�∏

i=1

1
|Bi| ≥ k−�.
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It follows that

k−k
∑

1≤�≤k
|B(�)| ≤

∑
1≤�≤k

k−�|B(�)| ≤
∑

1≤�≤k
k−�|S(�)| ≤

∑
1≤�≤k

∑
S∈S(�)

w(S)≤
∑
S∈S

w(S)= 1.

Thus |B| = ∑
1≤�≤k

|B(�)| ≤ kk. �
Proposition 5.3. If ∂F is intersecting, then F is 3-intersecting.

Proof. Suppose that |F ∩ F′| ≤ 2 and F, F′ ∈F . If F ∩ F′ = {x, x′} then F \ {x}, F′ \ {x′} ∈ ∂F and
they are disjoint, a contradiction. The case F ∩ F′ = {x} is even easier. �
Proposition 5.4. Let F ⊂ ([n]

3
)
be a saturated intersecting family and let F∗ be the family of r-

complete sets in F . For r = 3, |F∗| ≤ (5
3
)
with equality holding iff F = ([5]

3
)
up to isomorphism. For

r ≥ 4, |F∗| ≤ 1 with equality holding iff F =L(n, 3, 2) up to isomorphism.

Proof. Let r = 3. Suppose that there exist two edges intersecting in one vertex, say
(x1, x2, z), (y1, y2, z) ∈F∗, since (x1, x2) is 3-fold covered and F is intersecting, we have
(x1, x2, yi) ∈F , i= 1, 2. Similarly, (y1, y2, xi) ∈F , i= 1, 2. Since (x1, x2, y2) ∈F and (z, y1) is 3-
fold covered, (z, y1, x1), (z, y1, x2) ∈F . Similarly, (z, y2, x1), (z, y2, x2) ∈F . Hence {x1, x2, y1, y2, z}
spans a complete 3-graph in F . Since F is intersecting, we conclude that F = ([5]

3
)
up to iso-

morphism and |F∗| = 10. Suppose next that there are two edges intersecting in two vertices say
(x, z1, z2), (y, z1, z2) ∈F∗, since (x, z1), (y, z2) are 3-fold covered and F is intersecting, there exists
w such that (x, z1, y), (y, z2, x), (x, z1,w), (y, z2,w) ∈F . Arguing with (x, z2) and (y, z1), we infer
that (x, z2, y), (y, z1, x), (x, z2,w), (y, z1,w) ∈F . Hence {x, y, z1, z2,w} spans a complete 3-graph in
F . Since F is intersecting, we conclude that F = ([5]

3
)
up to isomorphism and |F∗| = 10. If F∗ is

3-intersecting, then |F∗| ≤ 1 holds trivially.
For r ≥ 4, we claim that each member in ∂F∗ is a transversal of F . Otherwise, let G ∈ ∂F∗ be

a 2-set that is not a transversal. Then there exists F ⊂F such that F ∩G= ∅. Since G ∈ ∂F∗ and
r ≥ 4> |F|, there exists x such that G∪ {x} ∈F and F ∩ (G∪ {x})= ∅, a contradiction.

Thus ∂F∗ ⊂ T (F). By Lemma 5.1 (i) ∂F∗ is intersecting. In view of Proposition 5.3, F∗ is
3-intersecting. For n≥ 6, by Proposition 5.3 and (1) we have |F∗| ≤ (n−3

3−3
) = 1. In the case of

equality, by symmetry we may assume that F∗ = [3].
Then we claim |F ∩ [3]| ≥ 2 for all F ∈F . Indeed, otherwise |F ∩ [3]| = 1 for some F ∈F , with-

out loss of generality assume F ∩ [3]= {1}, then we can find an F′ ∈F disjoint to F since (2, 3) is
r-fold covered with r ≥ 4> |F|, a contradiction. Thus |F ∩ [3]| ≥ 2 for all F ∈F . Using that F is
saturated, we conclude that F =L(n, 3, 2) up to isomorphism. For n≤ 5, clearly F ⊂ ([5]

3
)
. Since

no 2-set is contained in 4 or more 3-sets in
([5]
3
)
, we have |F∗| = 0. �

The following proposition proves Theorem 1.8 for 3≤ r ≤ k− 1 and n≥ n0(k, r).

Proposition 5.5. f ∗(n, k, r)= (n−3
k−3

) +O(nk−r) for 4≤ r ≤ k− 1 and n≥ n0(k, r); f ∗(n, k, 3)=
|L(n, k, 3)| for n≥ n0(k).

Proof. Let F ⊂ ([n]
k
)
be a saturated intersecting family and let F∗ be the family of r-complete sets

in F . Let B = B(F) and X = ∪
B∈B

B. By Lemma 5.2, we have |X| ≤ k · kk = kk+1. Let

p=min
{|F ∩ X| : F ∈F∗} .

If p≥ 4, then for n≥ n0(k, r) we have

|F∗| ≤
∑
4≤i≤k

(|X|
i

)(
n− |X|
k− i

)
≤

∑
4≤i≤k

(
kk+1

i

)(
n− kk+1

k− i

)
≤ 2

(
kk+1

4

)(
n− 6
k− 4

)
<

(
n− 3
k− 3

)
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and we are done. If p= 1, then there exists F∗ ∈F∗ such that F∗ ∩ X = {x}. It follows that {x} ∈ B.
By saturatedness we have F = Sx and |F∗| = 0. If p= 2 then for some F∗ ∈F∗, F∗ ∩ X = {x, y} ∈
B. Using r-completeness we find Fx ∈F , Fx ⊃ F∗ \ {y} and Fy ∈F , Fy ⊃ F∗ \ {x} and Fx ∩ Fy ∩
X = ∅, contradicting (22). Thus we may assume p= 3.

Define the 3-graph

T ∗ =
{
T ∈

(
X
3

)
: ∃F∗ ∈F∗, F∗ ∩ X = T

}
, T =

{
T ∈

(
X
3

)
: ∃F ∈F , F ∩ X = T

}
.

Note that p= 3 implies T 	= ∅. By (22) we infer that T is intersecting. We distinguish two cases.
Case 1. r = 3.
If there exist (x1, y1, z), (x2, y2, z) ∈ T ∗, let Hi ∈

([n]\X
k−3

)
such that Hi ∪ {xi, yi, z} ∈F∗, i= 1, 2.

By 3-completeness and (22), we have
(x1, y1, x2), (x1, y1, y2), (x2, y2, x1), (x2, y2, y1) ∈ T .

Then there exists H3 ∈ ([n]\X
k−3

)
such that H3 ∪ {x1, y1, x2} ∈F . Since H2 ∪ {y2, z} is covered by at

least 3 members of F , by (22) we infer H2 ∪ (x1, y2, z),H2 ∪ (y1, y2, z) ∈F . Similarly, we have
H2 ∪ (x2, y1, z),H2 ∪ (x1, x2, z) ∈F . Hence {x1, x2, y1, y2, z} spans a complete 3-graph in T . We
claim that |F ∩ {x1, x2, y1, y2, z}| ≥ 3 for all F ∈F . Indeed, otherwise suppose that there is F ∈F
with |F ∩ {x1, x2, y1, y2, z}| ≤ 2. Without loss of generality assume that F ∩ {y1, y2, z} = ∅. Since
{y1, y2, z} ∈ T , there exists H ∈ ([n]\X

k−3
)
such that H ∪ {y1, y2, z} = :F′ ∈F . But then F ∩ F′ ∩ X =

∅, contradicting (22). By saturatedness, we conclude that F =L(n, k, 3) up to isomorphism and
|F∗| = |L(n, k, 3)|.

If there exist (x1, y, z), (x2, y, z) ∈ T ∗, let Hi ∈
([n]\X
k−3

)
such that Hi ∪ {xi, y, z} ∈F∗,

i= 1, 2. Since H1 ∪ {x1, y},H2 ∪ {x2, z} are 3-fold covered, by (22) there exists w ∈ X
such that H1 ∪ {x1, y, x2},H1 ∪ {x1, y,w},H2 ∪ {x2, z, x1},H2 ∪ {x2, z,w} ∈F . Similarly,
H1 ∪ {x1, z, x2},H1 ∪ {x1, z,w},H2 ∪ {x2, y, x1},H2 ∪ {x2, y,w} ∈F . Then {x1, x2, y, z,w} spans a
complete 3-graph in T . By the same argument and saturatedness, we conclude that F =L(n, k, 3)
up to isomorphism and |F∗| = |L(n, k, 3)|.

Now wemay assume that T ∗ is 3-intersecting. Since T ∗ is a 3-graph, we trivially have |T ∗| ≤ 1.
Then for n≥ n0(k) we obtain that

|F∗| ≤
(
n− |X|
k− 3

)
+

∑
4≤i≤k

(|X|
i

)(
n− |X|
k− i

)
≤ 10

(
n− 5
k− 3

)
≤ |L(n, k, 3)|.

Case 2. r ≥ 4.

Claim 6. For all F ∈F∗ and T ∈ T ∗,
|F ∩ T| ≥ 2. (23)

Proof. Suppose the contrary. By symmetry let T = {1, 2, 3}, F ∩ T = {3} (F ∩ T 	= ∅ by
(22)). By r-completeness there are distinct elements y1, . . . , yr such that (F \ {3})∪ {yi} ∈F .
Since r ≥ 4, without loss of generality, assume yr /∈ {1, 2, 3}. Then ((F \ {3})∪ {yr})∩ T = ∅
contradicting (22). �
Claim 7. |T ∗| = 1.

Proof. Otherwise using Claim 6, without loss of generality, {1, 2, 3}, {1, 2, 4} ∈ T ∗. LetHi ∈
([n]\X
k−3

)
such that Hi ∪ {1, 2, i} ∈F∗, i= 3, 4. Let x1, . . . , xr be such that H3 ∪ {1, 3, xj} ∈F , j= 1, . . . , r.
Let y1, . . . , yr be such that H4 ∪ {2, 4, yj} ∈F , j= 1, . . . , r. By r ≥ 4, without loss of generality
assume x1 /∈ {2, 4} and y1 /∈ {1, 3, x1}. Then

(H3 ∪ {1, 3, x1})∩ (H4 ∪ {2, 4, y1})∩ X = ∅,
contradicting (22). �

https://doi.org/10.1017/S0963548323000305 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000305


104 P. Frankl and J. Wang

By Claim 7, we may assume that T ∗ = {(1, 2, 3)}. Define
F∗
i = {F ∈F∗ : F ∩ [3]= [3] \ {i}}, i= 1, 2, 3.

Claim 8. F ∈F∗
i implies |F ∩ X| ≥ r, i= 1, 2, 3.

Proof. By symmetry assume i= 1 and set S= F ∩ X. Suppose indirectly |S| < r. Let F̃ ∈F∗ with
F̃ ∩ X = [3]. By r-completeness there are x1, x2, . . . , xr distinct elements with (F̃ \ {3})∪ {xj} ∈F ,
1≤ j≤ r. Also F \ {2} is contained in r > 3 members ofF . Let F̂ be one of them with F̂ ∩ [3]= {3}
and let Ŝ= F̂ ∩ X. Clearly, |Ŝ| ≤ |S| < r. Consequently we can choose xj /∈ Ŝ. Then((

F̃ \ {3}) ∪ {xj}
) ∩ F̂ ∩ X = ∅,

contradicting (22). �
By Claims 6, 7, 8, we have

|F∗| ≤ |T ∗|
(
n− |X|
k− 3

)
+

∑
1≤i≤3

|F∗
i |

≤
(
n− |X|
k− 3

)
+

∑
r≤i≤k

(
3
2

)( |X|
i− 2

)(
n− |X|
k− i

)

=
(
n− 3
k− 3

)
+O(nk−r)

and the proposition is proven. �

6. Maximizing the number of k-complete sets in an intersecting family
In this section, we prove Theorem 1.8 for r ≥ k. By using Bollobás Set-pairs Inequality
(Theorem 2.3) and the Hilton-Milner-Frankl Theorem, we determine f ∗(n, k, k) for k≥ 5 and
n≥ n0(k). The cases r ≥ k+ 1 and r = k= 4 of Theorem 1.8 will be proved separately.

First we show that if an intersecting family contains a relatively k-complete sunflower of given
shape, then Theorem 1.8 holds.

Lemma 6.1. Let F ⊂ ([n]
k
)
be an intersecting family and let F∗ be the family of k-complete sets in

F . If F∗ contains a sunflower with k+ 1 petals and centre C of size 3 and k≥ 4, then C ⊂ F for all
F ∈F∗. In particular,

|F∗| ≤
(
n− 3
k− 3

)
.

Proof. Suppose that F1, F2, . . . , Fk+1 is a sunflower in F∗ with centre [3] and let Gi = Fi \ [3],
i= 1, . . . , k+ 1.

If there exists F ∈F∗ with |F ∩ [3]| ≤ 1, pick G ∈ ( F
k−1

)
with G∩ [3]= ∅. Then G∩ Fi 	= ∅ can

hold for at most k− 1 values of i. Pick Fp, Fr disjoint to G. Now k-completeness and k≥ 4 imply
that we can choose z /∈ [3],G∪ {z} ∈F . Then either Fp or Fr is disjoint toG∪ {z}, a contradiction.

If there exists F ∈F∗ with |F ∩ [3]| = 2, without loss of generality, assume that F ∩ [3]= {1, 2}
and let G= F \ {1, 2}. Pick Fp, Fq, Fr disjoint to G. Since k≥ 4, we can choose z,w /∈ [3] such that
G∪ {1, z},G∪ {1,w} ∈F . Then one of Fp, Fq, Fr , without loss of generality say Fp, is disjoint to
bothG∪ {z} andG∪ {w}. Since Fp \ {1} is covered by at least kmembers ofF , we can find u /∈G∪
{1} such that (Fp \ {1})∪ {u} ∈F . Then either z 	= u or w 	= u holds. Without loss of generality,
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assume that z 	= u, then (Fp \ {1})∪ {u} and G∪ {1, z} are disjoint, a contradiction. Thus, [3]⊂ F
for all F ∈F∗ and the lemma follows. �

We prove Theorem 1.8 for r ≥ k+ 1 and k≥ 4 by the following proposition.

Proposition 6.2. f ∗(n, k, r)= (n−3
k−3

)
for r ≥ k+ 1 and n≥max{4(k− 2), k+ r − 1} .

Proof. Let F ⊂ ([n]
k
)
be a saturated intersecting family. Let F∗ be the family of r-complete sets

in F and let G = ∂F∗. We claim that each member in G is a transversal of F . Otherwise, let
G ∈ G be a (k− 1)-set that is not a transversal. Then there exists F ⊂F such that F ∩G= ∅. Since
G ∈ ∂F∗ and r > |F|, there exists x such that G∪ {x} ∈F and F ∩ (G∪ {x})= ∅, a contradiction.
Thus G ⊂ T (F).

SinceF is saturated, all k-element supersets of anyG ∈ T (F) are members ofF . By Lemma 5.1
(i) we see that G is intersecting. In view of Proposition 5.3,F∗ is 3-intersecting. Since n≥ 4(k− 2),
by (1) we have |F∗| ≤ (n−3

k−3
)
. �

By using the Bollobás Set-pairs Theorem and the Hilton-Milner-Frankl Theorem, we prove
Theorem 1.8 for r = k and k≥ 5.

Proposition 6.3. f ∗(n, k, k)= (n−3
k−3

)
for r = k≥ 5 and n≥ k3

(2k−1
k

)
.

Proof. Let F ⊂ ([n]
k
)
be a saturated intersecting family. Let F∗ be the family of k-complete sets in

F and let G = ∂F∗. Define

G′ = {G ∈ G : G /∈ T (F)} and E =
{
E ∈F∗ :

(
E

k− 1

)
∩ G′ 	= ∅

}
.

Claim 9. To every G ∈ G′ there is a unique k-element set H(G) ∈F which is disjoint to G.

Proof. Let G∪ {xi} ∈F , i= 1, . . . , k, the existence of xi is guaranteed by k-completeness. Since
G /∈ T (F), there is F ∈F satisfying G∩ F = ∅. As F is intersecting, F ∩ (G∪ {xi})= {xi} for 1≤
i≤ k. Using |F| = k, F = {x1, . . . , xk} = :H(G) is the unique possibility. �

From Claim 9 it is clear that H(G) 	=H(G′) imply G∩H(G′) 	= ∅. Define
H= {H(G) : G ∈ G′}.

Let H= {H1, . . . ,Hm}. To each Hi ∈H, fix Gi ∈ G′ satisfying H(Gi)=Hi. Now Hi ∩Gj = ∅ iff
i= j, By (9), we obtain

|H| =m≤
(
2k− 1

k

)
. (24)

For each H ∈H, let

G′(H)= {G ∈ G′ : H(G)=H}.
Claim 10. For each H ∈H, G′(H) is 2-intersecting.

Proof. Suppose that there exist G1,G2 ∈ G′(H) with G1 ∩G2 = {x}. Let H = {x1, . . . , xk}. Since
G1 ∈ ∂F∗, there is F1 =G1 ∪ {xi} such that F1 ∈F∗. By symmetry we assume that i= 1. By k-
completeness, we have (F1 \ {x})∪ {yp} ∈F for p= 1, . . . , k. Since |{y1, . . . , yk}| > |G2|, there
exist yp0 /∈G2. Since k≥ 3, we may assume that x2 	= yp0 . Then G1 ∪ {x1, yp0} \ {x}, G2 ∪ {x2} are
disjoint, a contradiction. �

Now we distinguish two cases.
Case 1. There exists H ∈H such that |G′(H)| > k(k− 1)

(n−4
k−4

)
.
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Since G′(H) is a 2-intersecting (k− 1)-graph, by (11) G′(H) is a 2-star. So let G′(H) be a star
with centre {1, 2}. Let H = {x1, . . . , xk}. Define

GH
i = {

G ∈ G′(H) : G∪ {xi} ∈F∗} .
Note that G′(H)= GH

1 ∪ . . . ∪ GH
k . Without loss of generality, we may assume that |GH

1 | ≥ . . . ≥
|GH

k |.
Claim 11. GH

2 = · · · = GH
k = ∅.

Proof. Suppose for contradiction that GH
2 	= ∅ and let R2 ∈ GH

2 ([2]). Since

|GH
1 ([2])| ≥

1
k
|G′(H)| ≥ (k− 1)

(
n− 4
k− 4

)
,

we have ∣∣∣∣GH
1 ([2])∩

(
[n] \ R2
k− 3

)∣∣∣∣ ≥ |GH
1 ([2])| − |R2|

(
n− k− 3
k− 4

)

≥ (k− 1)
(
n− 4
k− 4

)
− (k− 3)

(
n− 4
k− 4

)

= 2
(
n− 4
k− 4

)
.

By (10) we have ν(GH
1 ([2])∩

([n]\R2
k−3

)
)≥ 2. It follows that there are R0, R1 ∈ GH

1 ([2]) such that
R0, R1, R2 are pairwise disjoint sets. Set Gi = Ri ∪ [2] for i= 0, 1, 2. Since G1 ∪ {x1}, G2 ∪ {x2} ∈
F∗, we know that E1 = R1 ∪ {1, x1}, E2 = R2 ∪ {2, x2} are both covered by k members of F . To
avoid disjointness, we have E1 ∪ {y2} ∈F for each y2 ∈ E2 and E2 ∪ {y1} ∈F for each y1 ∈ E1.
Moreover, there is an extra element z such that E1 ∪ {z}, E2 ∪ {z} ∈F .

Let E0 = R0 ∪ {1, x1} and clearly E0 ∩ E2 = ∅. Since E0 ⊂G0 ∪ {x1} ∈F∗, E0 is covered by k
members ofF , we can findw /∈ E2 such that E0 ∪ {w} ∈F . For k≥ 5 wemay choose u ∈ R1, u 	=w.
Then E2 ∪ {u} ∈F and E0 ∪ {w}, E2 ∪ {u} are disjoint, a contradiction. �

Claim 11 implies G′(H)= GH
1 andG∪ {x1} ∈F∗ for allG ∈ G′(H). Then by Lemma 6.1 we may

assume that ν(GH
1 ([2]))≤ k. By (10),

|G′(H)| ≤ k
(
n− 4
k− 4

)
,

contradicting our assumption.
Case 2. For each H ∈H, |G′(H)| ≤ k(k− 1)

(n−4
k−4

)
.

By the definition of E , we infer that each E in E contains a (k− 1)-set G ∈ G′, implying |E | ≤
|G′|. By Claim 9 and (24),

|E | ≤ |G′| ≤
∑
H∈H

|G′(H)| ≤
(
2k− 1

k

)
k(k− 1)

(
n− 4
k− 4

)
.

Define F1 =F∗ \ E . Note that each member of ∂F1 is a transversal of F . Since F is saturated, by
Lemma 5.1 (i) the family ∂F1 is intersecting. By Proposition 5.3, F1 is 3-intersecting. If |F1| ≤
k
(n−4
k−4

)
, then

|F∗| = |E | + |F1| ≤
((

2k− 1
k

)
k(k− 1)+ k

) (
n− 4
k− 4

)
≤

(
n− 3
k− 3

)
.
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Otherwise, by (11) we have [3]⊂ F for all F ∈F1. Then by Lemma 6.1, we may assume
ν(F1([3]))≤ k and (10) implies

|F1| ≤ k
(
n− 4
k− 4

)
,

which contradicts the assumption and the proposition is proven. �
Let g(ν,�) be the maximum number of edges in a graph G with ν(G)≤ ν and the maxi-

mum degree at most �. To determine f ∗(n, 4, 4), we need the following result due to Chvátal
and Hanson [2].

Lemma 6.4 ([2]). For every ν ≥ 1 and � ≥ 1,

g(ν,�)= ν� +
⌊

�

2

⌋ ⌊
ν

��/2�
⌋

≤ ν� + ν. (25)

Proposition 6.5. f ∗(n, 4, 4)= n− 3 for n≥ 63.

Proof. Let F ⊂ ([n]
4
)
be a saturated intersecting family. Let F∗ be the family of 4-complete

sets in F .

Claim 12. If there are F1, F2 ∈F∗ with |F1 ∩ F2| = 1, then |F∗| ≤ 35.

Proof. Without loss of generality, assume that F1 = (x1, x2, x3, z) and F2 = (y1, y2, y3, z). Using
that (x1, x2, x3) is 4-fold covered in F which is intersecting, the only possible extra 4-sets are
(x1, x2, x3, yi) ∈F , 1≤ i≤ 3. Similarly for (y1, y2, y3) we infer (y1, y2, y3, xj) ∈F , 1≤ j≤ 3. Now
consider (x1, x2, z), it is disjoint to (y1, y2, y3, x3). Hence its covering sets are (x1, x2, x3, z) and
(x1, x2, z, yi) ∈F , 1≤ i≤ 3. Arguing in the same way with (x1, x3, z), (x2, x3, z), (y1, y2, z), etc, we
infer that all sets R ∈ (F1∪F2

4
)
with z ∈ R are in F . If F ⊂ (F1∪F2

4
)
then |F∗| ≤ |F | ≤ (7

4
) = 35, we

are done. Otherwise we infer z ∈ F for all F ∈F \ (F1∪F2
4

)
. Using F ∩ (x1, x2, x3, yi) 	= ∅ and F ∩

(y1, y2, y3, xj) 	= ∅, we infer that such F are of form (xj, yi, z,wt) with wt in the outside of F1 ∪
F2. Now the intersecting property implies that (xj, yi,wt) cannot be 4-fold covered by F . Thus
(xj, yi, z,wt) /∈F∗. Hence |F∗| ≤ (7

4
) = 35. �

By Claim 12 and n≥ 38, we may assume that F∗ is 2-intersecting.
Claim 13. F∗ contains no sunflower with 3 petals and a centre of size 2.
Proof. Assume that (1, 2, 3, 4), (1, 2, 5, 6), (1, 2, 7, 8) form such a sunflower in F∗. Since
(2, 3, 4), (1, 5, 6) are 4-fold covered in F , we may assume that

(2, 3, 4, a), (2, 3, 4, b), (2, 3, 4, c), (1, 5, 6, p), (1, 5, 6, q), (1, 5, 6, r) ∈F .

The intersecting property of F implies that (by symmetry) (a, b)= (5, 6), (p, q)= (3, 4), c= r.
Since (1, 7, 8) is 4-fold covered in F , let (1, 7, 8, u), (1, 7, 8, v), (1, 7, 8,w) ∈F . Then one of u, v,w
is not in {5, 6}, by symmetry assume w /∈ {5, 6}, it implies that (2, 3, 4, a), (1, 7, 8,w) are disjoint, a
contradiction. �

Let F ∈F∗. For any P ∈ (F
2
)
, define

G(P)= {
F′ \ P : P ⊂ F′ ∈F∗} .

By Claim 13, ν(G(P))≤ 2. By Lemma 6.1, we may assume that F∗ contains no sunflower with 5
petals and a centre of size 3. It follows that the maximum degree of G(P) is at most 4. Then (25)
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implies |G(P)| ≤ 2 ∗ 4+ 2= 10. Since F∗ is 2-intersecting, we conclude that for n≥ 63,

|F∗| ≤
∑
P∈(F2)

|G(P)| ≤
(
4
2

)
∗ 10= 60≤ n− 3

and the proposition is proven. �
Theorem 1.8 follows from Theorem 3.1 and Propositions 5.4, 5.5, 6.2, 6.3, 6.5.

7. Concluding remarks
In this paper we considered intersecting k-graphs F ⊂ ([n]

k
)
. For a positive parameter r we called

an edge F ∈F r-complete if all G ∈ ( F
k−1

)
were contained in at least r members of F , including F.

For r = 1 this condition is automatically satisfied. For r ≥ 2 we defined f (n, k, r) as the maximum
of |F | for families with all edges being r-complete and f ∗(n, k, r) as the maximum number of r-
complete edges inF . The inequality f (n, k, r)≤ f ∗(n, k, r) is obvious. For 2≤ r ≤ k all edges of the
family

L(n, k, r)=
{
F ∈

(
[n]
k

)
: |F ∩ [2r − 1]| ≥ r

}
are r-complete. We showed that for n≥ n0(k, r), f (n, k, r)= |L(n, k, r)| and for r = 2 or 3 even
f ∗(n, k, r) shares this value. However, for r ≥ 4, f ∗(n, k, r) is much larger:

f ∗(n, k, r)= (1+ o(1))
(
n− 3
k− 3

)
.

In the case r = 2 we exploited some connections with the Erdős Matching Conjecture and suc-
ceeded in proving the statements with a linear constraint, n≥ 28k. However for r ≥ 3 our proof
requires n0(k, r)> k2(r+1)k.

Problem 7.1. Does f (n, k, r)= |L(n, k, r)| hold for 3≤ r ≤ k and n> ck with an absolute
constant c?

Another open problem is to determine the exact value of f ∗(n, k, r) for 4≤ r ≤ k− 1 and n>

n0(k, r).
As the analogous problems for t-intersecting families, we can define two more functions.

f (n, k, t, r)=max
{
|F | : F ⊂

(
[n]
k

)
is t-intersecting and r-complete

}
,

f ∗(n, k, t, r)=max

⎧⎨
⎩|F∗| : ∃F ⊂ ([n]

k
)
is t-intersecting, F∗ ⊂F ,

F∗ is relatively r-complete in F

⎫⎬
⎭ .

Example 7.2. For n≥ k≥ t ≥ 1 and 1≤ r ≤ k− t + 1 define

A(n, k, t, r)=
{
A ∈

(
[n]
k

)
: |F ∩ [t + 2r − 2]| ≥ t + r − 1

}
.

By essentially the same proof as in Sections 3 and 4, one can obtain the following two results:

Theorem 7.3. For k≥ 3, r ≥ 2 and n≥ n0(k, r),

f (n, k, t, r)=
⎧⎨
⎩

|A(n, k, t, r)|, 2≤ r ≤ k− t + 1;

0. r ≥ k− t + 2.
(26)
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Theorem 7.4. For k≥ 3, r ≥ 2 and n≥ n0(k, r),

f ∗(n, k, t, r)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|A(n, k, t, r)|, r = 2, 3;(n−t−2
k−t−2

) +O(nk−t−r+1), 4≤ r ≤ k− t + 1;(n−t−2
k−t−2

)
, r ≥ k− t + 2.

(27)
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