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Abstract

Let F be an intersecting family. A (k — 1)-set E is called a unique shadow if it is contained in exactly one
member of F. Let A={A € ([Z]): |[AN{1,2,3}| > 2}. In the present paper, we show that for n > 28k, A
is the unique family attaining the maximum size among all intersecting families without unique shadow.
Several other results of a similar flavour are established as well.

Keywords: Finite sets; intersection; shadow

2020 MSC Codes: Primary: 05D05

1. Introduction
Let n> k > t be positive integers and let [n] ={1,2, ..., n} be the standard n-element set. For
l<i<j<mlet [i,jl=1{ii+1,...,j}. Let ([Z]) denote the collection of all k-subsets of [#].

Subsets of ([Z]) are called k-uniform hypergraphs or k-graphs for short. A k-graph F is called
t-intersecting if [FNF'| >t for all F, F' € F. In case of t =1 we often use the term intersecting
instead of 1-intersecting. Investigating various properties of t-intersecting families is one of the
central topics of extremal set theory (cf. the recent book of Gerbner and Patkds [13]). Let us state
the quintessential result of this topic.

Erd6s-Ko-Rado Theorem ([3]). Suppose that n > ng(k, ) and F C ([Z]) is t-intersecting. Then
n—t
Fl=< . 1
ME ( o t) ()

Remark 1. For t =1 the exact value ng(k, t) = (k — t + 1)(t 4+ 1) was proved in [3]. For t > 15 it is
due to [5]. Finally Wilson [21] closed the gap 2 < t < 14 with a proof valid for all ¢.

Let us note that the full t-star, {F € ([Z]) :[t]CF } shows that (1) is best possible. In general, for

aset T C [n]let ST = {S € ([Z]) : TC S} denote the star of T.
For t = 1, there is a strong stability for the Erdds-Ko-Rado Theorem.

Theorem 1.1 (Hilton-Milner Theorem [14]). Suppose that n > 2k >4, F C ([Z]) is intersecting

and F is not a star, then
("= (" T+ @)
“\k—-1 k—1 '
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Let us define the Hilton-Milner Family
H(n, k) = {Fe <[Z]>: leF, FN[2,k+1] 7&@} U{[2,k+ 1]},

showing that (2) is best possible.
Let us recall the notion of immediate shadow, 0 F: For F C ([Z]),

8F={GE(J?J:H@]ZGCF}

If for some G € d.F there is only one choice of F € F satistying G C F then G is called unique or a

unique shadow. Note that in the full star S,y for each member S, S\ {x} is unique. In the Hilton-

Milner family H(n, k), each member H € H(n, k) \ {[2, k + 1]} contains a unique shadow H \ {1}.

Just for curiosity let us mention that if each member of 7 C ([Z]) contains a unique shadow then

-1
1= (:2)-
Let us introduce the central notion of the present paper.

Definition 1.2. For an integer r > 2 and a family F C ([Z]), we say that F is r-complete if every
G € 0.F is contained in at least ¥ members of F.

Note that F is r-complete if and only if the minimum non-zero co-degree of F is at least r.
This notion has been introduced and used by Kostochka et al. [17-19] to determine hypergraph
Turdn numbers for paths, cycles and trees.

Clearly, if F C ([Z]) is r-complete with r > 2, then F is far from a star. It is natural to ask for
the maximum size of an r-complete intersecting family. Let us define the function:

f(n, k,r) = max {|f|: FcC <[:]> is intersecting and r—complete} .

Let us give some examples. For 1 <r <k the complete k-graph ([kzr]) is intersecting and
(r + 1)-complete. This shows in particular that

Fnk k) = (2" N 1). )

Example 1.3. For n >k > r > 1 define

amknz{FeCf

Clearly L(n, k, r) is intersecting, r-complete and

r<i<2r—1

): |Fﬂ[2r—1]|2r}‘

Our main result shows that this example is best possible for n > ny(k, r).
Theorem 1.4. For n > 28k,
ik, 2) = £(n, k,2)]. 4)
Moreover, up to isomorphism L(n, k, 2) is the only family attaining equality.

Theorem 1.5. For k> 3, r > 3 and n > ny(k, r),

|L(n,k, 1), 3<r<k;
fnk,r)= (5)
0. r>k—+1.
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For a positive integer £ and an £-graph H, define the clique family

K
0= 1=, () ).

Define v(F), the matching number of F as the maximum number of pairwise disjoint edges in F.
Note that v(F) = 1 ift F is intersecting. We are going to prove Theorem 1.4 using the following
result exhibiting a surprising connection between the matching number and the size of the clique
family. Define the Erd§s-family

Eln k,s) = {Ee ([”]

k):Eﬂ[s];ﬁ@}.

Note that

_ [n] .
K(En, k,s)) = {Ke (k+ 1). KN [s]] 22}.

Theorem 1.6. Let F C ([Z]) be a family with v(F) <s. If n > 5sk + 13k and s > 3, then
IK(F) < IK(E(n, k, 9))I.
Moreover, up to isomorphism E(n, k, s) is the only family attaining equality.
Let us define the notion of r-complete edges.
Definition 1.7. For an integer r > 2 and a family F C ([Z]), we say that F € F is r-complete if
every G € (")) is contained in at least r members of F.

Clearly, F is r-complete if and only if every F € F is r-complete. One can also ask for the
maximum number of r-complete edges in an intersecting family. For an intersecting family

FcC ([Z]), define F}'(F) as the family of all r-complete edges in F. Let
f*(n, k, r) = max {I]-',*(}")I: FC ([Z]> is intersecting.}
If F is r-complete then we have F,*(F) = F, implying that f(n, k,r) < f*(n, k, 7). For 7' C F,
we say that F' is relatively r-complete with respect to F if every F' € F' is an r-complete edge in

F. Clearly F}(F) is a relatively r-complete family of the maximum size with respect to F.
Our next result determines f*(u, k, r) for all k > 3 and r > 2, asymptotically.

Theorem 1.8. For k>3, r > 2 and n > ny(k, r),

|L(n, k,7)], r=2,3;
ffimkn=1 (23 +0nk"), 4<r<k-1 (6)
(:3): rzk=4

The next proposition shows that the term O(n*=") in (6) cannot be removed for k > 5 and
4<r<k-—1.

Proposition 1.9. Fork>54<r<k—landn>k+r—1,

n—3 n—r—2
*(n, k, r) > .
fn r)_(k—3>+(k—r—1)
Proof. For4 <r<k—1,let

B(r)={{1,2}}U{{3,i,j}:i=lor2, 4<j<r+2}U{lr+2]\{s,3}: u=1,2}
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and let
I(nk,r)= U Sp, I*(n, k,r) = Si23 U S[,+2]\{3}.
BeB(r)
It is easy to check that B(r) is intersecting, implying that Z(n, k, r) is intersecting. Since S{1,2,33 C
Sy and Sprpap 3y C Sp12p, L¥(n, k) CZ(n, k, v). In the rest of the proof, we show that
Z*(n, k, ) is relatively r- complete with respect to Z(n, k, r).

Forany F € 81,23, since Sq1,2y C Z(n, k, r) and n > k + r — 1, we see that for each x € F \ {1, 2},
F\ {x} is covered by at least r members of Z(n, k, r). Moreover, since S(3 i,y C Z(n, k, r) fori € {1, 2}
andje {4,5,...,r+ 2}, we infer that F \ {3 — i} is covered by at least r members of Z(n, k, r) for
i=1,2. Thus &1 ,5,3; is relatively r-complete with respect to Z(n, k, r).

Let Fe Sppyop3yand G e (kfl). If {1,2} C G, then by Sp1,5y C Z(n, k, ) and n > k + r we infer
that G is covered by at least r members of Z(n, k, r). If i ¢ G for i = 1, 2, since Sj;42)\(i3) C Z(n, k, 1)
and n > k+r — 1, then G is also covered by at least r members of Z(n, k, r). Hence Sjr12\(3) is
relatively r-complete with respect to Z(#, k, r). Therefore, Z*(n, k, r) is relatively r-complete with
respect to Z(n, k, r) and

. N _ n—3 n—r—2
frimknzIz (”’k”)'_<k—3)+<k—r—1>' 0

The rest of the paper is organized as follows. We list some results that are needed in Section 2.
We prove Theorems 1.4 and 1.6 in Section 3 and prove Theorem 1.5 in Section 4. The proof of
Theorem 1.8 splits into two parts. In Section 5, we prove it for 3 < r < k. In Section 6, we prove it
for r > k. Finally, we give some concluding remarks in Section 7.

2. Preliminaries

In this section, we list some notions and results that are needed for the proofs.
For a family F C ([Z]) define the family of transversals, T (F) by

T(F)={TCn]: IT| <k TNF#@forall Fe F}.

Note that F is intersecting iff 7 C T (F). Note also that 7(F) is not uniform in general. Set
TR(F)={T e T(F): |T| =k}. If F = TO(F) then F is called saturated. It is equivalent to the

fact that 7 U {H} is no longer intersecting for H € ([Z]) \ F.Itshould be clear that in the definition
of f*(n, k, r) it is sufficient to consider saturated intersecting families F.
Let us recall a special case of the Katona Intersecting Shadow Theorem [15].

Theorem 2.1 ([15]). Suppose that F C ([Z]) is intersecting. Then
[0F| > |F| with equality iff F = ()k() for some (2k — 1)-set X. (7)
We need the following generalization of (7) as well.
Theorem 2.2 ([8]). Suppose that F C ([Z]). Then
[0F|v(F) = | F. ®)
We need also a classical result of Bollobas, the so-called Bollobas Set-pair Inequality.

Theorem 2.3 ([1]). Let a, b be positive integers, A1, . .., Ay a-element sets, By, . .., By, b-element
sets such that A; N\ Bj = () iff i = j. Then

b
m< (a —;; )(cf. [16] for a very slick proof.) (9)
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There is a very important operation on families of sets which was discovered by Erdés et al.
[3]. It is called shifting and it is known not to increase the matching number v(F) ([7]) and not to
decrease the size of C(F) (cf. [20]).

Let us define the shifting partial order <. For two k-sets A and B where A={a,...,at},
a; <...<arand B={by,..., b}, by <...< by wesay that A precedes B and denote itby A < B
ifa; <b;foralll <i<k.

A family F C ([Z]) is called shifted (or initial) if A< B and B e F always imply A € F. By
repeated shifting one can transform an arbitrary k-graph into a shifted k-graph with the same
number of edges.

We need the following inequality generalizing the case t = 1 of the Erdds-Ko-Rado Theorem.

Proposition 2.4 ([7]). Suppose that F C ([Z]) then

17l < v(f)(’;: i) (10)

Finally we need the following stability theorem concerning the Erdés-Ko-Rado Theorem.

Hilton-Milner-Frankl Theorem ([6,14]). Suppose that 7 C ([Z]) is t-intersecting, F is not a t-star
andn > (k—t+ 1)(t + 1). Then

n—t n—k—1 n—t—1
|.7-'|§max{IA(n,k,t)|,<k_t>—< ot )+t}<<k_t_1)max{t+2,k—t+l}.
(11)

3. Intersecting families without unique shadow

In this section, we first prove Theorem 1.4 by assuming Theorem 1.6. Then by using the
decomposition method of a shifted family introduced in [9], we give a proof of Theorem 1.6.

Actually, we shall prove the following version of Theorem 1.4, which also gives the r =2 case
of Theorem 1.8.

Theorem 3.1. For n > 28k,
f(n, k,2) =f*(n,k,2) =|L(n, k,2)|. (12)
Moreover, up to isomorphism L(n, k, 2) is the only family attaining equality.

Proof of Theorem 1.4. Recall that £(n, k, 2) is 2-complete intersecting and f (1, k, 2) < f*(n, k, 2).
It follows that |L(n, k,2)| <f(n,k,2) <f*(n, k,2). Thus we are left to show f*(n, k,2)<
|L(n, k, 2)|.

Let F C ([Z]) be an intersecting family. Let 7* be the family of 2-complete sets in F and let
‘H = dF*. Note that this guarantees that every member of # is contained in at least two members

of F.
Claim 1. v(H) <3.

Proof. Suppose for contradiction that D;=F; N G;, 1 <i<4, are pairwise disjoint sets in
and F;, G; € F. Define x;, y; by F; \ D; = {x;}, G; \ D; = {y:}. Since |{x;, y;}| =2, by symmetry we
may assume that (x;, y;) N Ds=9. This implies F; N Dy =%, G N Dy = . From F4 N F; # 0,
FsN Gy #W, GyNF1 #0 and G4 N Gy # ¥, we infer (x4, y4) C D1. Consequently Fy N D, =0,
G4 N Dy = for p =2, 3. This implies as above (xp, yp) C D4. Now x5 # x3 or x2 # y3 (or both)
hold. By symmetry x; # x3. Then F, N F3 =, a contradiction. O

By Theorem 1.6 and Claim 1, for n> (5% 3+ 13)k=28k we have |F*|<|K(H)| <
IK(E(n, k, 3))| =|L(n, k, 2)|. The uniqueness follows from Theorem 1.6. 0
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The families Fo, Fi, ..., Fs are called overlapping if there is no choice of F; € F; such that
Fo, F1, . . ., Fs are pairwise disjoint. For the proof of Theorem 1.6 the following lemma is needed.
A similar lemma was proved in [11], although without characterization of the case of equality.

Lemma 3.2. Let Fo CF1 C---CFsC (g) be overlapping families and let po > p1 > ... > ps be
positive reals. Let
St tp)
D — - .
p1+---+ps
For |Y| > (d; + 1)¢,

Y
Z pil Fil S(p1+"‘+ps)<|£|)) (13)

0<i<s
where the equality holds iff F1 = - - - = Fs = (D’ Fo=0.

Proof. Let Fy CF, C--- CFs C (?) be overlapping families. Let t = [ |Y]/£] > dp] +1>s+1

and choose a random matching Fj, F, . .., F; from (i) Consider the weighted bipartite graph
G on partite sets {Fy, F, . . ., F} and {Fo, F1, - - - , F5} where we have an edge (F;, 7)) iff F; € F;.
This edge gets weight p;.

Since Fo C F1 C - - - C F; are overlapping, G has matching number at most s. Applying the
Koénig-Hall Theorem we can find s vertices covering all edges of the bipartite graph G. Let
Fy, ..., F4 be the vertices of the covering set chosen from the random matching and 11, . . ., Fs
the remaining s — q chosen from the families.

The total weight of the edges covered by F; is at most pg + . . . + ps. The total weight of the
edges covered by F; is at most tp;. Thus, the total weight of the edges in G is at most

q(po + -+ p)+t(pgs1 + -+ ps)
=tp1+---+ps) —tpr+---+pg) +qpo+-- -+ ps). (14)
Note that p; > ... > ps implies

i+1 - i
pir+-+piy1 prt+--+pi
It follows that
p1++-+pq(p0+”-+PS)§p1+'s--+ps(p0+“.+p5):dﬁ <t. (15)
By (14) and (15), the total weight of the edges in G is at most t(p1 + . . . + ps).
Since the probability

|75l
PT’(F,’ € ‘7:]) = -

()

the expected value of the total weight of the edges in G is st'zo tpj%. Thus (13) follows. In case
¢

of equality ¢ = 0. Then for every t-matching Fy, F», . . ., F; in Y, Fj has degree 0 and F; has degree

tin Gfori=1,...,s. Hence the equality holds ift F; =- .- = F; = (g), Fo=40. O

For the proof of Theorem 1.6 we also need the following proposition, which is proved in [20].
Here we include a short proof for self-containedness.

Proposition 3.3. For F C (['Z]) and 1 <i<j<n, |K(S;(F))| = |K(F)|

Proof. We prove the statement by defining an injective map o from K(F)\ K(S;(F)) to
K(Sii(F)\ K(F). Let K € K(F) \ K(S;j(F)). Clearly j € K and i ¢ K, and we define 0 (K) =K' =
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(K\ {j}) U {i}. We show that o is well-defined by checking K" € K(S;;(F)) \ K(F). Firstly, sup-
/

pose that K’ ¢ K(S;;(F)) and let F' € (If() be an edge not in S;i(F). If i ¢ F' then F =K\ {j}
and S;;(F') = F, implying that F’ € S;;(F), a contradiction. If i € F/, then F = (F'\ {i}) U {j} CK
is an edge of F since K € K(F). Hence after shifting we have F’ € S;;(F), a contradiction. This
shows K’ € KC(S;;(F)). Secondly, if K € K(F) then K € K(F) implies K € K(S;;(F)), contradict-
ing the assumption that K ¢ K(S;;(F)). Thus K’ € K(S;;(F)) \ K(F) and o is indeed a map from
K(F)\ K(Si(F)) to K(S;;(F)) \ K(F). Clearly, o is injective and the proposition follows. g
Proof of Theorem 1.6. Since the shifting operator does not increase the matching number and
does not decrease the size of K(F), we may assume that F is shifted. Let = IC(F) and K* =
K(E(n, k,s)). Forany S C [s+ 1] and a family H C ([Z]), define

HES):={H\[s+1]: HeH, HN[s+1]=S}.
Clearly H(S) C ([th‘snl])
For || > 3, we have £*(S) = ( [s+2n] )- It follows that

k+1—|S|
dYoook®Is Y KO (16)
SC[s+1],181=3 SC[s+1],181>3

We are left to compare |/C(S)| with [IC*(S)| for all S C [s + 1] with |S| < 2.
Claim 2. K({i}) =F @) fori=1,2,...,s+1land C{i,j}) =F{j}) forl <i<j<s+1.

Proof. For F € KC({i}), F U {i} € K implies that F € F(#). Let F € F(#). Since x > s+ 2 > i each
x € F, by shiftedness (F\ {x}) U {i} € F. It follows that (FL;({"}) CF and FU{i}e K. Thus Fe
K({i}). Therefore K({i}) = F(¥). N

For any E € K({i,j}) we have (EUIEI’]}) C F. It follows that EU {j} € 7. Thus E € F({j}). Let
E € F({j}). By shiftedness and i < j, EU {i} € F. Moreover, EU {i,j} \ {x} € F for each x € E. That

is, (Eulii’j}) C Fand EU {i,j} € K. Thus E € K({i, j}). Therefore K({i, j}) = F({j}). U
Note that for any K € K(f) we have (I,f) C F (D). It follows that 9/C(@) C F(¥). Since v(K (D))

<s, by (8) we have

sIF(@)] = s|oC(@)] = [IK(D)]. (17)
By Claim 2,

> Ik =+ DIF®)|

I<i<s+1
and
Yo K= Y G- DIFEGHI-
1<i<j<s+1 2<j<s+1

It follows that

Yo KOI=K@+ Y KA+ Y 1K)

Se[n],|S|<2 1<i<s+1 1<i<j<s+1

LIFOI+ 6+ DIFGI+ Y G— DIFQG)

2<j<s+1

<@+DIFGI+ Y. G- DIFGHI. (18)

2<j<s+1
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Again by shiftedness d F(#) C F({s + 1}), and using (8) we infer
sIF({s + DI = s|aF(D)] = | F(D)]. (19)
Substituting (19) into (18), we arrive at

Y KO Y G DIFGH]+sIF((s + 1)1+ @5+ DsIF({s + 1)

Selnl,|S|=2 2<j<s
= 72D+ Y = DIFGHI+ 25+ DIF({s + 1)
3<j<s
=< lIF({I})I + lIF({Z})I + Y G = DIFEGD]+ 256+ DIFUs + 1)
-2 2 .

35jss
By shiftedness, F({1}) D - - - D F({s + 1}) are overlapping families. Set
Fo=F({s+1}), Fi=F({s}), ..., Fs—2=F({3}), Fs-1 =F({2}), Fs=F({1})

and set
1
po=2s(s+1), pr=s—1,...,ps—2=2, p5—1=£> ps=—.

Then py > p; > ... > psand by s > 3,
J _s(po+ - 4ps)  As(s+1)+s(s—1)

P pid 40 s—1
By Lemma 3.2, forn —s— 1> (5s+ 13)(k— 1) > (d;,—l— 1)(k — 1) we have

) I/C(S)IS(p1+pz+...+ps)(n;i_l>

SC[s+1],S]1<2 !
(s n—s—1
2 k—1

= > KO (20)

SC[s+1],|S|=2

8
=5s+8+ — =55+12
T

Adding (16) and (20), we conclude that
KE)= DY KOOI Y 1K) =IKEmn k).

SC[s+1] SC[s+1]

Let F be a family with v(F) < sand |IC(F)| = |K(E(n, k, s))|. If F is shifted, then by Lemma 3.2
we have F({s + 1}) = @. It follows that 7 = £(n, k, s). Now assume that F is not shifted. Then it
changes to £(n, k, s) by applying shifting repeatedly. Let G be the last family that is not isomorphic
to £(n, k, s) in this process. That is, G is not isomorphic to £(n, k, s) but S;;(G) is isomorphic to
E(n, k, s) for some 1 <i < j < n. By symmetry, we may assume that G # £(n, k, s) and S;41(G) =
E(n, k, s). Let

[n]\ {s,s + 1}

g(s(s—i-l)):{Ee( ):EU{S}EQ},

k—1
GG(s+1)) = {Ee (M \k{s_’ler ”); EUfs+1} € g} .

Since Sqe41(9) =E(nk,5), we see G(sGs+ D) UGEGs+1) = (") and GGG+1)N
GG(s+1))=¢. It follows that for each Ee([”]\k{fslﬂ}), exactly one of EU{s}€G and
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EU{s+ 1} €G holds. Now consider a graph G on the vertex set (["]\k{fsfl}) where (Ej, E)
forms an edge if and only if |E; N Ey| =k — 2. It is easy to see that G is a connected graph.
Since G is not isomorphic to £(n, k, s), we infer that G(s(s + 1)) # @ and G(5(s + 1)) # @. Then
there exists an edge (E;, Ez) in G such that EyU{s}e G and E,U{s+1}€G. Let F:= E; U
E; € (") Then FU {s+ 1} ¢ K(G) and FU {s} ¢ K(G). But Sys11(G) = E(n, k, s) implies
FU {s} € K(Ss,5+1(G)). Moreover, for any K € K(G) \ K(Ss5+1(G)), we have (K\ {s+1}) U {s} €
K(Ss5+1(G)) \ KK(G) by the injective map defined in Proposition 3.3. Hence [K(Sss+1(G))| >
IKK(G)| = |IKK(F)| = |K(E(n, k, 5))|, a contradiction. Thus up to isomorphism £(#, k, s) is the only
family attaining equality. U

4. The maximum size of an r-complete intersecting family
In this section, we determine f(n,k,r) for all k,r>3 and n>ng(k,r), thereby proving
Theorem 1.5.

Proposition 4.1. Forr>k—+1, f(n, k,r) =0. For n > 2k — 1,

fln,k, k)= (2k k_ 1).

Moreover, the unique family satisfying the condition is ()k() with | X| =2k — 1.

Proof. Suppose that F is an intersecting k-graph and each F € F is k-wise covered. Consider the
bipartite graph with partite sets 7, 3 F and an edge between F and G iff G C F. It is clear that each
F € F has degree k. On the other hand, the condition implies that each G € 9.F has degree at least

k. Consequently, |F| > |0F|. In view of (7), we see | F| = |dF| and equality holds iff F = ()k() with
|X| =2k — 1. The same argument implies f(n, k, r) =0 for r > k + 1. O
We need a notion of basis for an intersecting family inspired by [6]. For any intersecting family
FC ([Z]), we define a basis B(F) which is not necessarily unique by the following process. We start
with 70 = F. Note that 7° is an antichain. A collection of sets Fo, . . ., F is called a sunflower
of size k + 1 with centre C if F; N F; = C for all distinct i,j € {0, 1,.. ., k}. Note that in this case
Fo\C,...,F\ C are pairwise disjoint. At the i-th step try and find in the current family F* a
sunflower Fy, ..., Fy of size k + 1 (the size of F; may be distinct). Let C; be the centre of the
sunflower. Then let 7! be the family obtained from JF' by deleting all sets containing C; and
adding C;. Clearly F**! is also an antichain.
Claim 3. If F' is intersecting, then F'*1 is also intersecting.

Proof. Take an arbitrary set F from F. Since |F| < k, we have F N (F; \ C;) = for some j, 0 <j <
k. Then FNC;=FNF; #. (]

Continue this process until no more sunflowers of size k + 1 can be formed. Let B(F) be the
final family. Clearly, B(F) is an antichain and for all F € F there exists B € B(F) with B C F. By
Claim 3, B(F) is intersecting. In view of the Erd6s-Rado sunflower lemma [4],

IBO| < 0kt, V1< <k (21)

Proof of Theorem 1.5. By proposition 4.1, we may assume 3 <r <k. Let F be an r-complete
intersecting family of maximal size and let B = B(F) be its basis. Let X = UB B. By (21) we have
Be

XI< Y ok < 2Kkt <k,
1<t<k
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By the definition of B, for any F € F there exists B € B3 such that B C F. Then for F, F' € F, there
exist B, B’ € B such that BC F and B’ C F'. Since B is intersecting, # # BN B C FN F' N X. Thus,
forall F,FF e F, FNF NX # .

Let us define p = min {|F N X|: F € F} and choose an arbitrary pair (F, Py), Py € ( ), FNX=

Py. Set H=F\ Py and define
X
P(H):{Pe (p): HUPe]—"}.

Note that Py € P(H).
Claim 4. P(H) is intersecting and r-complete.

Proof. For P, P’ € P(H) fix B, B’ € B(F) satisfyingBC HUP,B'C HUP'.Since HNX =@, BC
Pand B' C P'. Consequently, PNP D BN B #0.
Let us prove the r-completeness of P(H) next. Fix Pe P(H) and Re (pf 1). Using the r-

completeness of F there are r distinct elements xj, x5, . . . , X, such that (HURU {x;}) € F. The
minimal choice of p implies |(HURU {x;}) N X| > p, whence x; € X, 1 <i<r. Thus RU {x;} €
P(H), proving the r-completeness of P(H). O

If p < r, by Claim 4 and Proposition 4.1 we have 1 < |P(H)| < f(|X|, p, r) = 0, a contradiction.
Thus p > r. Define

Fo={FeF: |FNX|>r+1}.
Then

e 3 (0= 2 ) ()0

r+1<i<k r+1<i<k

If p>r+ 1, then

K2k n—2r 2r—1\ /n—2r+1
|f|=|f0|§2<r+1>(k_r_l>§< . >( — )<I£(n,k,r)|-

Thus we assume p =r.
If [P(H)| < (") — 1 holds for all H € (/'¥), then

IFl< D" [PHE)|+ | Fol
([n]\X)

()02
) o

< |L(n, k, 7).

Assume now that for some H e ([”]\X) |P(H)| = (2r 1) By Proposition 4.1 we may assume
that P(H) = ( ) Ye (Zr 1) We claim that |[FNY|>r for all Fe F. Indeed the opposite
would mean that FNP = for some P e ():) Then FN(HUP)NX =FNP=, a contradic-
tion. Consequently F C {F € ([Z]): [FNY|>r}, ie., F is contained in an isomorphic copy Ef
L(n,k, 7).
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5. Maximizing the number of r-complete sets in an intersecting family

In this section, we prove Theorem 1.8 for 3 <r < k and n > ny(k, r). We need a different notion

of basis. For a saturated intersecting family F, define B(F) be the family of minimal (for contain-

ment) sets in 7 (F). Define X = BUBB the support of B. The following properties of B(F) were
€

proved in [10].
Lemma 5.1 ([10]). Suppose that F C ([Z]) is a saturated intersecting family and B = B(F). Then

(i) B is an intersecting antichain,
(i) F={He (V): 3BeB,BCH),
(iii) forall F,F € F,

FNF NX#$. (22)

The following lemma is essentially proved in [10]. For self-containedness we include its proof
as well.

Lemma 5.2 ([10]). Suppose that F C (["]) is a saturated intersecting family. Then |B(F)| < kK.

Proof. Let B=B(F). For the proof we use a branching process. During the proof a sequence
S=(x1,x2,...,x¢) is an ordered sequence of distinct elements of [n] and we use S to denote
the underlying unordered set {x;, x2, . . ., x¢}. At the beginning, we assign weight 1 to the empty
sequence Sy. At the first stage, we choose B € B with |B;| minimal. For any vertex x € B, define
one sequence (x) and assign the weight |B;|~! to it.

In each subsequent stage, we pick a sequence S = (xi, . . ., xp) and denote its weight by w(S).
If SN B # @ holds for all B € B then we do nothing. Otherwise we pick B € B satisfying SN B = ¢}
and replace S by the | B| sequences (x1, . . ., X, y) with y € B and assign weight 1T(B|) to each of them.
Clearly, the total weight is always 1.

We continue until $ N B # ¢ for all sequences S and all B € B. Since [#] is finite, each sequence
has length at most # and eventually the process stops. Let S be the collection of sequences that
survived in the end of the branching process and let S be the collection of sequences in S with
length £.

Claim 5. For each B € B, there is some sequence S € S©) with S = B.

Proof. Let us suppose the contrary and let S = (x1, . . ., xp) be a sequence of maximal length that
occurred at some stage of the branching process satisfying S S B. Since B are intersecting, B; N

B # ¢, implying that p > 1. Since S'is a proper subset of B and B € B, it follows that S ¢ T(F).
Thereby there exists F € F with SN F = . In view of Lemma 5.1 1 (ii), we can find B’ € B such that
SN B = . Thus at some point we picked S and some B € Bwith SN B = ¢. Since B is intersecting,
BN B # . Consequently, for each y € BN B the sequence (xi, . . ., Xp, ) occurred in the branching
process. This contradicts the maximality of p. Hence there is an S at some stage satisfying S=B.
Since B is intersecting, SNB =BNB # (@ for all B € B. Thus S € S and the claim holds. g

By Claim 5, we see that IBO| <8 for all £>1. Let S= (x1,...,x) € SY and let S; =
(x1,...,x) fori=1,..., ¢ At the first stage, w (Sl) = 1/|Bl| Assume that B; is the selected set
when replacing S;—1 in the branching process for i = ,£. Then

¢
1 —¢
S):Hﬁzk .
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It follows that
KR B9 Y kY1 YD ks Y0 Y we) =)y we) =1
1<t<k 1<t<k 1<(<k 1<t<k SeS© SeS

Thus |[B|= Y |BO| <Kk
1<t<k u

Proposition 5.3. If 0.F is intersecting, then F is 3-intersecting.

Proof. Suppose that [FNF|<2and F,F € F.If FNF = {x,x’} then F\ {x}, F'\ {x'} € F and
they are disjoint, a contradiction. The case F N F' = {x} is even easier. U

Proposition 5.4. Let F C ([g’]) be a saturated intersecting family and let F* be the family of r-

complete sets in F. For r =3, | F*| < (g) with equality holding iff F = ([g]) up to isomorphism. For

r > 4, | F*| <1 with equality holding iff F = L(n, 3, 2) up to isomorphism.

Proof. Let r=3. Suppose that there exist two edges intersecting in one vertex, say
(x1, %2, 2), V1, ¥2,2) € F*, since (x1,x2) is 3-fold covered and F is intersecting, we have
(x1, %2, yi) € F, i=1,2. Similarly, (y1, y2, i) € F, i=1,2. Since (x1,x2, ¥2) € F and (z, y1) is 3-
fold covered, (z, y1, x1), (2, ¥1, x2) € F. Similarly, (z, 2, x1), (2, y2, x2) € F. Hence {x1, x2, y1, ¥2, 2}
spans a complete 3-graph in F. Since F is intersecting, we conclude that F = ([g]) up to iso-
morphism and |F*| = 10. Suppose next that there are two edges intersecting in two vertices say
(%, 21, 22), (9> 21, 72) € F*, since (x, 21), (, z2) are 3-fold covered and F is intersecting, there exists
w such that (x, z1, ¥), (1, 22, x), (%, 21, W), (, 22, w) € F. Arguing with (x, z;) and (y, z1), we infer
that (x, 22, ¥), (¥, 21, X), (x, 22, w), (¥, z1, w) € F. Hence {x, ¥, z1, 22, w} spans a complete 3-graph in
F. Since F is intersecting, we conclude that 7 = ([g]) up to isomorphism and |F*| = 10. If F* is
3-intersecting, then |F*| <1 holds trivially.

For r > 4, we claim that each member in 9 F™ is a transversal of F. Otherwise, let G € 0 F* be
a 2-set that is not a transversal. Then there exists F C F such that FN G = @. Since G € 3™ and
r >4 > |F|, there exists x such that GU {x} € F and F N (G U {x}) = @, a contradiction.

Thus 0F* C T(F). By Lemma 5.1 (i) dF* is intersecting. In view of Proposition 5.3, F* is
3-intersecting. For n > 6, by Proposition 5.3 and (1) we have |F*| < (g’:g) = 1. In the case of
equality, by symmetry we may assume that 7* = [3].

Then we claim |F N [3]| > 2 for all F € F. Indeed, otherwise |F N [3]| = 1 for some F € F, with-
out loss of generality assume F N [3] = {1}, then we can find an F’ € F disjoint to F since (2, 3) is
r-fold covered with r > 4 > |F|, a contradiction. Thus |F N [3]| > 2 for all F € F. Using that F is
saturated, we conclude that F = £(#, 3, 2) up to isomorphism. For n <5, clearly F C ([g’]). Since
no 2-set is contained in 4 or more 3-sets in ([i])’ we have | F*| =0. O

The following proposition proves Theorem 1.8 for 3 <r <k — 1 and n > ny(k, r).

Proposition 5.5. f*(n,k,r) = (Z:g) + 0 ") for 4<r<k—1 and n>no(k,7); f*(n,k,3) =
|L(n, k, 3)| for n > no(k).

Proof. Let F C ([Z]) be a saturated intersecting family and let 7* be the family of r-complete sets
inF.Let B=B(F)and X = BUB B. By Lemma 5.2, we have |X| < k- k¥ = K+, Let
€

p=min {|[FNX|: Fe F*}.
If p > 4, then for n > ny(k, r) we have
X\ (1 — |X]| KRN (' — R KN 7n— 6 n—3
F* 2
| |§4;k<i>(k—i>§4;k<i k—i )= 4 M=) " k-3
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and we are done. If p = 1, then there exists F* € 7™ such that F* N X = {x}. It follows that {x} € B.
By saturatedness we have 7 = Sy and | F*| = 0. If p =2 then for some F* € F*, F* N X ={x, y} €
B. Using r-completeness we find Fx € F, Fx D F*\ {y} and F, € F, F, D F*\ {x} and FxNF, N
X = (), contradicting (22). Thus we may assume p = 3.

Define the 3-graph

X X
7'*:{Te(3):3F*e]—'*,F*ﬂX=T}, T={T€(3>:EIFG}',F0X=T}.

Note that p = 3 implies 7 # . By (22) we infer that 7 is intersecting. We distinguish two cases.
Case 1. r=3.
If there exist (x1, y1, 2), (X2, ¥2,2) € T*, let H; € ([Z]_\;() such that H; U {x;, y;,z} € F*, i=1,2.
By 3-completeness and (22), we have

(x1, y1> %2), (%1, 15 ¥2)5 (X2, Y2, %1)5 (X2, y2, y1) € T

Then there exists H3 € ([Zl\f) such that H3 U {x1, y1, x2} € F. Since Hy U {y», z} is covered by at
least 3 members of F, by (22) we infer H, U (x1, y2, 2), H2 U (y1, ¥2, 2) € F. Similarly, we have
H, U (x2, y1, 2), Hy U (x1, %2, 2) € F. Hence {x1, x2, 1, ¥2, 2z} spans a complete 3-graph in 7. We
claim that |F N {x1, X2, y1, 2, z}| > 3 for all F € F. Indeed, otherwise suppose that there is F € F
with |F N {x1, x2, y1, 2, z}| < 2. Without loss of generality assume that F N {y1, y2, z} = . Since
{y1, 92,2} € T, there exists H € ([Z]_\f) such that HU {y1, y,2} =:F € F. But then FNFNX =
@, contradicting (22). By saturatedness, we conclude that 7 = L(n, k, 3) up to isomorphism and
|F*| = |L(n, k,3)].

If there exist (x1,¥,2),(x2,5,2)€T*, let H;e ([Z]_\X) such that H;U{x;y,z2} € F¥,
i=1,2. Since HjU({xy,y},HyU{x2,z} are 3-fold covered, by (22) there exists weX
such  that HyU{xy,y,x}, HHU{x,y, wh, HoU{x2, 2,51}, HyU {x3,z, w} € F.  Similarly,
H; U {x1, 2, %2}, H U {x1,z, w}, Ho U {x2, , %1}, Hy U {x2, ¥, w} € F. Then {x1, x2, y, z, w} spans a
complete 3-graph in 7. By the same argument and saturatedness, we conclude that 7 = L(n, k, 3)
up to isomorphism and | F*| = |L(n, k, 3)|.

Now we may assume that 7* is 3-intersecting. Since 7 * is a 3-graph, we trivially have | 7| < 1.
Then for n > ny(k) we obtain that

1= () () ol
4<i<k
Case2.r > 4.
Claim 6. Forall Fe F*and T € T*,
[FNT|>2. (23)

Proof. Suppose the contrary. By symmetry let T={1,2,3}, FNT={3} (FNT#§Y by
(22)). By r-completeness there are distinct elements yi,...,y, such that (F\ {3}) U {y;} € F.
Since r >4, without loss of generality, assume y, ¢ {1,2,3}. Then (F\{3)U{y,)NT=0
contradicting (22). O

Claim 7. |T*| = 1.
Proof. Otherwise using Claim 6, without loss of generality, {1, 2, 3}, {1,2,4} € T*.Let H; € ([Z]_\f )
such that H; U {1,2,i} € F*, i=3,4. Let x1,...,x, be such that H; U{1,3,x} € F, j=1,...,r.

Let y1,...,yr be such that Hy U {2,4,y;} € F, j=1,...,r. By r > 4, without loss of generality
assume x; ¢ {2,4} and y; ¢ {1, 3, x1}. Then

(H3U{L,3,x1}) N (H U {2,4, 1)) N X =0,
contradicting (22). O
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By Claim 7, we may assume that 7* = {(1, 2, 3)}. Define
Ff={FeF*:Fn[3]=[3]\{i}}, i=1,23.
Claim 8. F € F}" implies [FNX| >r1,i=1,2,3.

Proof. By symmetry assume i = 1 and set S = F N X. Suppose indirectly |S| < r. Let F € F* with
FNnX=[3]. By r-completeness there are x1, x3, . . . , X, distinct elements with (F\{3) U {xj} € F,
1 <j<r. AlsoF\ {2} is contained in r > 3 members of F. Let F be one of them with F N [3] = {3}
andletS=FNX. Clearly, 1| < IS| < 7. Consequently we can choose x; ¢ S. Then

(F\3B)Ui{x})nFnx=9,
contradicting (22). O
By Claims 6, 7, 8, we have

— X
|f*|s|7‘*|<"k_|3l>+ > IF

1<i<3
n—|X| 3\ ( IX]\[/n—IX]
<
(% 5) 2 O
r<i<k
n—3 k—
= (@) r
(k B 3) +O0(n*™")
and the proposition is proven. U

6. Maximizing the number of k-complete sets in an intersecting family

In this section, we prove Theorem 1.8 for r>k. By using Bollobas Set-pairs Inequality
(Theorem 2.3) and the Hilton-Milner-Frankl Theorem, we determine f*(#n, k, k) for k> 5 and
n > no(k). The cases r > k+ 1 and r = k =4 of Theorem 1.8 will be proved separately.

First we show that if an intersecting family contains a relatively k-complete sunflower of given
shape, then Theorem 1.8 holds.

Lemma 6.1. Let F C ([Z]) be an intersecting family and let F* be the family of k-complete sets in
F.If F* contains a sunflower with k + 1 petals and centre C of size 3 and k > 4, then C C F for all

F € F*. In particular,
n—3
FH < .
Fl = <k— 3)

Proof. Suppose that Fy, F, ..., Fiy; is a sunflower in F* with centre [3] and let G; =F; \ [3],
i=1,...,k+1.

If there exists F € F* with [FN [3]| <1, pick G € (kfl) with GN [3] =@. Then GN F; # ¥ can
hold for at most k — 1 values of i. Pick Fp, F, disjoint to G. Now k-completeness and k > 4 imply
that we can choose z ¢ [3], GU {z} € F. Then either F, or F, is disjoint to G U {z}, a contradiction.

If there exists F € F* with |F N [3]| = 2, without loss of generality, assume that F N [3] = {1, 2}
and let G=F\ {1, 2}. Pick Fy, Fg, Fr disjoint to G. Since k > 4, we can choose z, w ¢ [3] such that
GU({l1,z},GU{1,w} € F. Then one of F, Fy, F;, without loss of generality say F,, is disjoint to
both GU {z} and GU {w}. Since F, \ {1} is covered by at least k members of 7, we can find u ¢ G U
{1} such that (F, \ {1}) U {u} € F. Then either z # u or w # u holds. Without loss of generality,
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assume that z # u, then (F, \ {1}) U {u} and GU {1, z} are disjoint, a contradiction. Thus, [3] C F
for all F € F* and the lemma follows. O

We prove Theorem 1.8 for r > k + 1 and k > 4 by the following proposition.
Proposition 6.2. f*(n, k,r) = (Z:g) forr>k+1and n> max{4(k —2),k+r—1}.

Proof. Let F C ([Z]) be a saturated intersecting family. Let 7* be the family of r-complete sets
in F and let G = 0F™*. We claim that each member in G is a transversal of F. Otherwise, let
G € G be a (k — 1)-set that is not a transversal. Then there exists F C F such that F N\ G = (. Since
G € 0F* and r > |F|, there exists x such that GU {x} € F and F N (GU {x}) = @, a contradiction.
Thus G C T(F).

Since F is saturated, all k-element supersets of any G € T (F) are members of . By Lemma 5.1
(i) we see that G is intersecting. In view of Proposition 5.3, F* is 3-intersecting. Since n > 4(k — 2),

by (1) we have | F*| < (}73). )

By using the Bollobas Set-pairs Theorem and the Hilton-Milner-Frankl Theorem, we prove
Theorem 1.8 for r =k and k > 5.

Proposition 6.3. f*(n, k, k) = (2:2) forr=k=5andn>k (Zkk_l) :

Proof. Let F C ([Z]) be a saturated intersecting family. Let 7* be the family of k-complete sets in
F and let G = 9.F*. Define

G ={GegG: G¢T(]—")}and8=:Ee]-"*: (kfl>ﬂg’7&@}_

Claim 9. To every G € G’ there is a unique k-element set H(G) € F which is disjoint to G.

Proof. Let GU {x;} € F,i=1,...,k, the existence of x; is guaranteed by k-completeness. Since
G ¢ T(F), there is F € F satisfying GNF={. As F is intersecting, FN (GU {x;}) = {x;} for 1 <
i <k.Using |F| =k, F={x1, ..., x;} =:H(G) is the unique possibility. O

From Claim 9 it is clear that H(G) # H(G') imply G N H(G') # @. Define
H={H(G): GeG'}.

Let H ={Hi,...,Hp}. To each H; € H, fix G; € G’ satisfying H(G;) = H;. Now H; N G; =¥ iff

i=1j, By (9), we obtain
2k—1
|’H|=m§< P ) (24)

For each H € H, let

G'(H)={GeG': HG)=H]}.
Claim 10. For each H € H, G'(H) is 2-intersecting.
Proof. Suppose that there exist G, G; € G'(H) with G; N G, = {x}. Let H={x1, ..., x¢}. Since
G; € 0F%, there is F| = G U {x;} such that F; € F*. By symmetry we assume that i = 1. By k-
completeness, we have (Fy\ {x}) U {y,} € F for p=1,...,k Since |{y1,...,yk}| > |Ga|, there

exist yp, € Ga. Since k > 3, we may assume that x; # yp,. Then Gy U {x1, yp,} \ {x}, G2 U {x2} are
disjoint, a contradiction. ]

Now we distinguish two cases.
Case 1. There exists H € H such that |G’ (H)| > k(k — 1)(2::).

https://doi.org/10.1017/5S0963548323000305 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548323000305

106 P. Frankl and J. Wang
Since G'(H) is a 2-intersecting (k — 1)-graph, by (11) G'(H) is a 2-star. So let G'(H) be a star
with centre {1, 2}. Let H = {x, . . ., x;}. Define
G ={Geg (H): GU{x}eF*}.

Note that G'(H) = g{f U...u gf. Without loss of generality, we may assume that |Q{{| >, .. >
|Qf|.
Claim 11. g;':..-:gfzw.

Proof. Suppose for contradiction that gf #PandletR, gfl ([2]). Since

H I, n—4
G121 o= -0} ")

we have

—k-3
z|g{*([z1)|—|R2|(”k_4 )

n—4 n—4

>(k—-1 — (k-3

() ()

_5 n—4

\k—4)
By (10) we have v(g{{([Z]) N ([721;2)) > 2. It follows that there are Ry, R; € g{’([z]) such that
Ry, Ry, R are pairwise disjoint sets. Set G; = R; U [2] for i=0, 1, 2. Since G; U {x1}, G, U {x3} €
F*, we know that E; =Ry U {1,x1}, E; = Ry U {2, x,} are both covered by k members of F. To
avoid disjointness, we have E; U {y,} € F for each y, € E; and E, U {y;} € F for each y, € E;.
Moreover, there is an extra element z such that E; U {z}, E; U {z} € F.

Let Eg =Ry U {1,x1} and clearly Ey N E; = . Since Ey C Gy U {x1} € F*, Ey is covered by k

members of F, we can find w ¢ E, such that Eg U {w} € F. For k > 5 we may choose u € Ry, u # w.
Then E; U {u} € F and Eg U {w}, E; U {u} are disjoint, a contradiction.

Claim 11 implies G'(H) = G and GU {x;} € F* for all G € G'(H). Then by Lemma 6.1 we may
assume that v(gf{([Z])) < k. By (10),

Gi(2)) N (["] \R2>

k—3

9] < k(Z:;‘)

contradicting our assumption.

Case 2. For each H € 1, |G/ (H)| < k(k — 1)(}_}).

By the definition of £, we infer that each E in £ contains a (k — 1)-set G € G/, implying |€| <
|G’|. By Claim 9 and (24),

, , 2k —1 n—4
El<1g'1< )19 (H)|§< B )k(k—l)(k_4).

HeH

Define F; = F* \ £. Note that each member of 3.7 is a transversal of F. Since F is saturated, by
Lemma 5.1 (i) the family dF; is intersecting. By Proposition 5.3, Fj is 3-intersecting. If | F;| <

k(z:i),then
. 2k —1 n—4 n—3
|f|—|€|+|f1|s<( . )k(k—1)+k> (k_4)5(k_3).
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Otherwise, by (11) we have [3] CF for all Fe F;. Then by Lemma 6.1, we may assume
v(F1([3])) < k and (10) implies
n—4
Fil <k ,
[F1] = (k—4>

which contradicts the assumption and the proposition is proven. O

Let g(v, A) be the maximum number of edges in a graph G with v(G) <v and the maxi-
mum degree at most A. To determine f*(n, 4, 4), we need the following result due to Chvatal
and Hanson [2].

Lemma 6.4 ([2]). Foreveryv > 1and A > 1,

A v
s A)=VvA+| — A+v. 25
g, A)=v +L2JLA/ZTJSV +v (25)
Proposition 6.5. f*(n,4,4) =n — 3 for n > 63.

Proof. Let F C ([Z]) be a saturated intersecting family. Let 7* be the family of 4-complete
sets in F.

Claim 12. If there are Fy, F, € F* with |F1 N Fo| = 1, then | F*| < 35.

Proof. Without loss of generality, assume that F; = (x1, x2, x3, 2) and F, = (y1, ¥2, ¥3, 2). Using
that (x1, x2, x3) is 4-fold covered in F which is intersecting, the only possible extra 4-sets are
(x1, X2, %3, i) € F, 1 <i < 3. Similarly for (y1, y2, y3) we infer (y1, y2, y3,xj) € F, 1 <j < 3. Now
consider (x1, X3, 2), it is disjoint to (y1, y2, ¥3,x3). Hence its covering sets are (x1, x2, X3, z) and
(x1,%2, 2, ¥i) € F, 1 <i<3. Arguing in the same way with (x1, x3, 2), (x2, X3, 2), (J1, ¥2, 2), etc, we
infer that all sets R € (FIL:Fz) with ze Rarein F. If F C (FlL:FZ) then |F*| < |F| < (Z) =35, we
are done. Otherwise we infer z € F for all F € F \ (FIZJFZ). Using F N (x1, x2, %3, ¥;) ¥ and FN
(V1> ¥2, ¥35 Xj) # 0, we infer that such F are of form (xj, y;, z, w;) with w; in the outside of F; U
F>. Now the intersecting property implies that (xj, y;, w;) cannot be 4-fold covered by F. Thus

(xj, yi» 2 wy) ¢ F*. Hence | F*| < (}) = 35. 0
By Claim 12 and n > 38, we may assume that 7™ is 2-intersecting.

Claim 13. F* contains no sunflower with 3 petals and a centre of size 2.

Proof. Assume that (1,2,3,4),(1,2,5,6),(1,2,7,8) form such a sunflower in F*. Since
(2,3,4), (1,5, 6) are 4-fold covered in F, we may assume that

(2’ 3) 4) a)) (2) 3) 4) b)) (2) 3’ 4) C)) (1’ S) 6)p)’ (1’ 5) 6) q)’ (1) 5) 6’ r) e f'

The intersecting property of F implies that (by symmetry) (a, b) =(5,6), (p,q) =(3,4), c=r.
Since (1, 7, 8) is 4-fold covered in F, let (1,7, 8, u), (1,7, 8,v), (1,7, 8, w) € F. Then one of u, v, w
is not in {5, 6}, by symmetry assume w ¢ {5, 6}, it implies that (2, 3,4, a), (1, 7, 8, w) are disjoint, a
contradiction. U

Let F € F*. Forany P € (5), define
G(P)={F \P: PCF e F*}.

By Claim 13, v(G(P)) < 2. By Lemma 6.1, we may assume that 7* contains no sunflower with 5
petals and a centre of size 3. It follows that the maximum degree of G(P) is at most 4. Then (25)
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implies |G(P)| < 2 %4 4 2 =10. Since F* is 2-intersecting, we conclude that for n > 63,

4
< Y 16(P)] < (2> x10=60<n—3
Pe(3)
and the proposition is proven. U

Theorem 1.8 follows from Theorem 3.1 and Propositions 5.4, 5.5, 6.2, 6.3, 6.5.

7. Concluding remarks

In this paper we considered intersecting k-graphs F C ([Z]). For a positive parameter r we called

an edge F € F r-complete ifall G € (kf |) were contained in at least r members of F, including F.
For r = 1 this condition is automatically satisfied. For r > 2 we defined f(#, k, r) as the maximum
of | F| for families with all edges being r-complete and f*(#, k, r) as the maximum number of -
complete edges in F. The inequality f(n, k, r) < f*(n, k, r) is obvious. For 2 < r < k all edges of the
family

L(n, k,r) = {Fe <[Z]): |[FN[2r—1]| > r}

are r-complete. We showed that for n > ng(k, r), f(n, k,r) = |L(n, k, r)| and for r =2 or 3 even
[*(n, k, r) shares this value. However, for r > 4, f*(n, k, r) is much larger:

" _ n—3
f*(n,k,r)= 1+ o(1)) (k—3>'

In the case r =2 we exploited some connections with the Erdés Matching Conjecture and suc-
ceeded in proving the statements with a linear constraint, n > 28k. However for > 3 our proof
requires ng(k, r) > k200K,

Problem 7.1. Does f(n,k,r)=|L(n,k,r)| hold for 3<r<k and n>ck with an absolute
constant c?

Another open problem is to determine the exact value of f*(n, k,r) for4 <r<k—1and n>
no(k, ).

As the analogous problems for ¢-intersecting families, we can define two more functions.
n
f(n, k, t,r) = max {l]:l : FC <[k]) is t-intersecting and r-complete} R

ff(nk t,r) | AF C ([Z]) is t-intersecting, F* C F,
n, K, t, ) = max .

F* is relatively r-complete in F

Example 7.2. Forn>k>t>1and 1 <r <k —t—+ 1 define

Aln, k, t,r)=1A € <[Z]>: [FN[t+2r—=2]|>t+r— 1} .
By essentially the same proof as in Sections 3 and 4, one can obtain the following two results:
Theorem 7.3. For k>3, r > 2 and n > ny(k, r),
|[A(n, k. t,7r)], 2<r<k—t+1;

fnk,t,r)= (26)
0. r>k—t+2.

https://doi.org/10.1017/5S0963548323000305 Published online by Cambridge University Press


https://doi.org/10.1017/S0963548323000305

Combinatorics, Probability and Computing 109

Theorem 7.4. Fork> 3, r> 2 and n > ny(k, 1),

|A(n, k, t, 1), r=2,3;
frktn=1(Z23) +0m=*h), 4<r<k—t+1 (27)
() r>k—t+2.
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