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Abstract

We consider the constrained-degree percolation model in a random environment
(CDPRE) on the square lattice. In this model, each vertex v has an independent random
constraint κv which takes the value j ∈ {0, 1, 2, 3} with probability ρj. The dynamics is
as follows: at time t= 0 all edges are closed; each edge e attempts to open at a random
time U(e)∼U(0, 1], independently of all the other edges. It succeeds if at time U(e) both
its end vertices have degrees strictly smaller than their respective constraints. We obtain
exponential decay of the radius of the open cluster of the origin at all times when its
expected size is finite. Since CDPRE is dominated by Bernoulli percolation, this result
is meaningful only if the supremum of all values of t for which the expected size of the
open cluster of the origin is finite is larger than 1

2 . We prove this last fact by showing a
sharp phase transition for an intermediate model.
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1. Introduction

Let L
2 = (Z2, E) be the usual square lattice. With each site v ∈Z2 we independently

associate a random variable κv, which takes the value j ∈ {0, 1, 2, 3} with probability ρj.

Denote by Pρ the corresponding product measure on {0, 1, 2, 3}Z2
. Consider the following

dependent continuous-time percolation process: let {U(e)}e∈E be a collection of independent
and identically distributed random variables with uniform distribution on the interval (0,1].
At time t= 0, all edges are closed; each edge e= 〈u, v〉 opens at time U(e) if |{z ∈Z2 −
{u} : 〈z, u〉 is open at time U(e)}|< κu and |{z ∈Z2 − {v} : 〈z, v〉 is open at time U(e)}|< κv. In
words, at the random time U(e), the edge e attempts to open. It succeeds if both its endpoints
have degrees smaller than their respective attached constraints. Once an edge is open, it remains
open.

The model described above draws inspiration from the deterministic constraint version
introduced in [5]. In the deterministic model, constraints are fixed to a constant value κ for
every vertex. The authors of [5] proved a non-trivial phase transition for the model on L

2 when
κ = 3. In contrast, they showed an absence of percolation when κ = 2, even at time t= 1. In
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a recent paper, see [11], the authors extended some of the results of [5], proving a phase tran-
sition for the model on L

d, d≥ 2, for several values of a deterministic constant κ . See [8–10,
13] for other models with some type of constraint.

The random constraint version we approach in this work was initially introduced in [15].
In that work, the authors showed a non-trivial phase transition for the model on L

2 when ρ3 is
sufficiently large, thus extending the main result of [5].

A formal definition of the constrained-degree percolation model in a random environment
(CDPRE) model reads as follows. To each edge e ∈ E , we independently assign a random vari-
able U(e)∼U(0, 1], independent of {κv}v∈Z2 . The corresponding product measure is denoted
by P. We think of U(e) as the time when edge e attempts to open and usually refer to {U(e)}e∈E
as a configuration of clocks. Given a collection of constraints κ = {κv}v∈Z2 and a clock configu-

ration U = {U(e)}e∈E , let ωt : {0, 1, 2, 3}Z2 × [0, 1]E→{0, 1}E be the function that associates
the pair (κ, U) with a configuration ωt(κ, U) of open and closed edges at time t. From now on,
we use the short notation ωt and denote by ωt,e the status of the edge e in the configuration
ωt. We say an edge e is t-open (t-closed) if ωt,e = 1 (ωt,e = 0). Formally, writing 1{A} for the
indicator function of the event A and deg(v, t) for the degree of vertex v in ωt, the configuration
at edge e= 〈u, v〉 is written as

ωt,e = 1{U(e)≤ t} × 1{deg (u, U(e)) < κu} × 1{deg (v, U(e)) < κv}.
Using Harris’s construction, it is straightforward to show that ωt is well defined for almost

all sequences U = {U(e)}e∈E and κ = {κv}v∈Z2 and all t ∈ [0, 1]; see the discussion after
[15, Theorem 2].

Denote by Pρ,t the pushforward product law governing ωt, that is, for any measurable set
A⊂ {0, 1}E , Pρ,t(A)= (Pρ × P)(ω−1

t (A)).
What makes this model interesting is that, at any fixed time t > 0, the configurations exhibit

infinite-range dependencies. However, as we will show later, the dependence between the states
of any two edges decays at least exponentially as the distance between them increases (see
Proposition 1 in Section 2.1), a fact that will be important in this work.

Remark 1. We stress that the model lacks the Fortuin–Kasteleyn–Ginibre (FKG) property,
which makes the analysis significantly harder. For instance, consider ρ3 = 1 and t > 0. Then,
the probability that all four edges incident to some vertex v are open at time t vanishes, while
the probability that any pair of such edges are open at time t remains strictly positive.

1.1. Results and discussion

Before we state our results, let us introduce some notation. A path of L2 is an alternating
sequence v0, e0, v1, e1, . . . , en−1, vn of distinct vertices vj and edges ej = 〈vj, vj+1〉. Such a
path has length n and is said to connect v0 to vn. A path is said to be open if all of its edges are
open. Write Cv for the open cluster of v ∈Z2, i.e. the set of vertices connected to v by an open
path. By translation invariance of the probability measure, we take this vertex to be the origin
and define the percolation and susceptibility critical thresholds

tc(ρ)= sup{t ∈ [0, 1] : Pρ,t(|C| =∞)= 0},
t̄c(ρ)= sup{t ∈ [0, 1] : Eρ,t(|C|) <∞},

respectively. Here, Eρ,t denotes expectation with respect to Pρ,t. Clearly, t̄c(ρ)≤ tc(ρ).
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Constrained-degree percolation 3

Let u, v ∈Z2 and denote by d(u,v) the graph distance between u and v. Write
B(n)= [− n, n]2 for the box of side length 2n centered at the origin. For x ∈Z2, we define
B(x, n)= x+ B(n). Given � ⊂Z

2, we write E(�) to denote the set of edges with both end-
points in �. We use ∂� to denote the vertex boundary of �, being the set of vertices in � which
are adjacent to some vertex not in �. We also write ∂e� for the external edge boundary of �,
i.e. the set of edges e= 〈u, v〉, with u ∈ � and v /∈ �.

It is not hard to see that the radius of the open cluster of the CDPRE model decays exponen-
tially fast when t < 1

2 . This follows since the model is stochastically dominated by independent
Bernoulli percolation, and the fact that the radius of the open cluster of the latter model decays
exponentially fast [1, 6] below its critical threshold [12]. Theorem 1, whose proof is deferred
to Section 2.2, states that t̄c(ρ) (and consequently tc(ρ)) is strictly larger than 1

2 . It is therefore
natural to ask: do we have exponential decay for all t smaller than tc(ρ)? We prove exponential
decay of the radius of the open cluster for all t < t̄c(ρ), giving a partial answer to this question.
A nice open problem consists in proving that the model exhibits a sharp phase transition, i.e.
that the radius of the open cluster decays exponentially fast for all t < tc(ρ). In particular, this
would give tc(ρ)= t̄c(ρ).

Theorem 1. t̄c(ρ) > 1
2 .

Let θn(t) denote the probability that the origin is connected to ∂B(n) at time t. We omit ρ

from the notation to keep it clean. We will prove the following theorem.

Theorem 2. Let ρ and t < t̄c(ρ) be given. There exists α > 0 such that θn(t)≤ e−αn for all n.

In Section 2, we prove Theorems 1 and 2. The proof of Theorem 1 is obtained by showing
a sharp phase transition for an intermediate model. The proof of Theorem 2 consists of an
application of a Simon–Lieb-type inequality. In Section 3, we make some final remarks and
describe some open problems.

Remark 2. Theorem 2 holds in greater generality under the assumption that the constraint
random variables are stationary. Moreover, it remains valid when assuming a model with
ρ4 > 0.

2. Proofs

2.1. Proof of Theorem 2

To prove Theorem 2, we will apply a Simon–Lieb-type inequality on boxes of several
lengths. Observe that if the origin is connected by an open path to ∂B(4n), then the origin must
be connected by an open path to ∂B(n), and there must exist a vertex w ∈ ∂B(2n) such that w is
connected to ∂B(4n) by an open path using edges on the complement of B(2n) only. The main
difficulty here is to control the decay of connectivity and the decay of correlations between
events whose occurrence depends only on the state of edges inside B(n) and those depend-
ing on the state of edges outside B(2n). We observe that the decay of correlations obtained in
[15, Theorem 2] is no longer sufficient here, and we derive a new decay rate which is improved
by a factor of log n.

In what follows, the notation {w A←→ B} means that the vertex w is connected to some vertex
in B using only edges with both endpoints in A. All constants c1, c2, c3, c4, c5 appearing in
this section are universal and do not depend on n, t, or ρ.
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Proposition 1. Fix m, n ∈N such that 2m < n and w ∈ ∂B(2m). Then

Pρ,t
(
0←→ ∂B(m), w

B(2m)c

←−−→ ∂B(n)
)≤ Pρ,t(0←→ ∂B(m)) Pρ,t(w←→∂B(n))

+ c1m exp
(− 1

2 m log m
)

for all ρ = (ρ0, ρ1, ρ2, ρ3) and t ∈ [0, 1].

Proof. We follow the argument in [3, Section 2.1]. Fix t > 0 and let Mt(x) be the set of
vertices y such that there is a path x, e1, x1, e2, x2 . . . , ek, y with t > U(e1) > U(e2) > · · ·>
U(ek). This gives, with the aid of Stirling’s formula,

Pρ,t
(
Mt(x)∩ {x+ ∂B(m)} �= ∅)≤ 4× 3m−1

m! ≤ 1

2
exp

(
−m log

(
m

3e

))
. (1)

The first inequality in (1) holds because if {Mt(x)∩ {x+ ∂B(m)} �= ∅)} occurs, there must exist
a self-avoiding path of length m starting at x such that all clocks ring in order before time t.

Write Mt(∂B(n))=⋃x∈∂B(n) Mt(x) and let w ∈ ∂B(2m). The union bound and (1) yields

Pρ,t
(
Mt(∂B(m))∩Mt(w) �= ∅)≤ 2Pρ,t

(
Mt(∂B(m))∩ ∂B(�3m/2�) �= ∅)

≤ c1m exp
(− 1

2 m log m
)

for m > 36e2. Note that on {Mt(∂B(m))∩Mt(w)=∅}, the events {0←→ ∂B(m)} and {w B(2m)c

←−−→
∂B(n)} are determined by random variables on disjoint sets of edges. Hence, in this case the
covariance vanishes. Therefore, we obtain

Cov
(
1{0←→ ∂B(m)}, 1{w B(2m)c

←−−→ ∂B(n)})≤ c1m exp
(− 1

2 m log m
)
.

The proof follows by observing that

Pρ,t
(
0←→ ∂B(m), w

B(2m)c

←−−→ ∂B(n)
)≤ Pρ,t(0←→ ∂B(m)) Pρ,t(w←→ ∂B(n))

+Cov
(
1{0←→ ∂B(m)}, 1{w B(2m)c

←−−→ ∂B(n)}). �

Proof of Theorem 2. Fix ρ, t < t̄c(ρ), and write θn(t)≡ θn. Following the discussion at the
beginning of this section, let us consider boxes of side length 2�√n�. We have

θn ≤ Pρ,t
(
0←→ ∂B(�√n�), there exists w ∈ ∂B(2�√n�) such that {w B(2�√n�)c

←−−−−→ ∂B(n)}).
Applying the union bound and then Proposition 1, we have

θn ≤ θ�√n�

( ∑
w∈∂B(2�√n�)

Pρ,t(w←→ ∂B(n))

)
+ c1n exp

(− 1
2�
√

n� log�√n�).
By translation invariance we have Pρ,t(w←→ ∂B(n))≤ θn−2�√n� for any w ∈ ∂B(2�√n�).
Hence

θn ≤ 16�√n�θ�√n�θn−2�√n� + c1n exp
(− 1

2�
√

n� log�√n�).
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Constrained-degree percolation 5

Iterating this 1
2�
√

n� times and using the same argument for θn−2j�√n�, j ∈ {1, 2, . . . , 1
2�
√

n�},
we obtain

θn ≤
(
c2�√n�θ�√n�

) 1
2 �
√

n� + c1n exp
(− 1

2�
√

n� log�√n�) �
√

n�−1∑
i=0

(
c2�√n�θ�√n�

)i. (2)

It is easy to see that if Eρ,t(|C|) <∞ then
∑

n≥1 θn(t) <∞. Since {θn(t)}n is decreasing, an
exercise in analysis gives

lim
n→∞ nθn(t)= 0. (3)

Hence we can find some n0 ∈N such that c2�√n�θ�√n� < e−2 for all n≥ n0. This gives

θn ≤ exp (−√n)+ c3n exp
(− 1

2�
√

n� log�√n�)
for all n≥ n0. Note that

c2n exp
(− 1

2�
√

n� log�√n�)
= exp

{
−
[�√n�

2
+ ( log�√n� − 1)�√n�

2
− log (c3n)

]}
≤ exp

(− 1
4

√
n
)

for all n large enough, and hence

θn ≤ 2 exp
(− 1

4 n1/2). (4)

The same reasoning yields, for any n, k ∈N, θ2(k+1)n ≤ c4nθnθ2kn + c4n exp
(− 1

2 n log n
)
.

By (4), there exists a large fixed n=N ∈N and some constant c5 such that

θN ≤ 1

4αc5N2
.

Here, α > 1 can be taken as any fixed number, e.g. α= 2. We claim that

θ2kN ≤ 1

2kαkc4Nk
(5)

for all k= 1, 2, . . . , kmax. The number kmax will be established below, but it suffices that
kmax ≥ 7.

We prove (5) by induction on k. Since θn is non-increasing, we have θ2N ≤ θN , and (5)
follows when k= 1. Let

kmax =max
{
k : c4N exp

(− 1
2 N log N

)≤ 1
2 × (2k+1αk+1c3Nk+1)−1}.

Assuming (5) holds for k= 	 ∈ {1, 2, . . . , kmax − 1}, the claim follows since

θ2(	+1)N ≤ c4N

(4αc4N2)(2	α	c4N	)
+ c4N exp

(− 1
2 N log N

)≤ 1

2	+1α	+1c4N	+1
.

In particular, loosening the upper bound θ2kN ≤ 1/(2kαkc4Nk), we have that
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(i) θm ≤ α−m/(2N), m ∈ {2N, 4N, . . . , 2kmaxN};
(ii) θN′ ≤ 1/(4α′c4(N′)2), where 2kmaxN =N′ and α′ = αkmax .

Item (ii) follows since if kmax ≥ 7, then 2kmax Nkmax ≥ 4(2kmaxN)2. Repeating the same
argument with N’ and α′, we obtain a new set of values m ∈ {2N′, . . . , 2kmaxN′}, for

which θm ≤ (α′)−m/(2N′) = α−m/(2N). Continuing inductively, we obtain an infinite subse-
quence m1, m2, . . . with the property that mj+1 ≤ 2mj for all j ∈N, such that θmj ≤ α−mj/(2N).
Since θn is non-increasing in n, it follows that θn ≤ α−n/(4N) for all n > N. This completes the
proof. �

2.2. Proof of Theorem 1

In this section we prove Theorem 1. We break the proof into two parts, assuming first that
0 < ρ0 < 1. Let {U(e)}e∈E and {κv}v∈Z2 be given. Define a new percolation configuration ηt at
edge e= 〈u, v〉 as

ηt,e =
{

1{U(e)≤ t} if v= u+ (0, 1),

1{U(e)≤ t}1{κu �= 0} if v= u+ (1, 0).
(6)

This corresponds to a percolation model where vertical edges are independently open with
probability t and horizontal edges are independently open with probability t(1− ρ0).

Let ω̂t denote an independent Bernoulli bond percolation configuration with parameter t.
According to the terminology used in [2, 4], ηt is an essential diminishment of ω̂t. This means
that there exists a configuration where ω̂t(U) has a doubly infinite open path, but a doubly infi-
nite open path is not present after the diminishment is activated at the origin. To see this, take
a Bernoulli configuration ω̂t and consider the following rule: for each vertex u ∈Z2, activate
a diminishment at u with probability (1− ρ0). If the diminishment is activated at u, delete the
edge v= u+ (1, 0). This constitutes an essential diminishment (take any configuration where
the edge 〈(0, 0), (1, 0)〉 is open, and the events {0←→∞} and {1←→∞} occur disjointly), and
the diminished configuration follows the same distribution as ηt. Consequently, based on the
results in [2, 4], the critical threshold for the model in (6) strictly increases and is there-
fore larger than 1

2 . Moreover, due to the stochastic dominance of the random variable ωt,e

by ηt,e, the desired result can be derived from the sharpness of the phase transition observed
for independent inhomogeneous Bernoulli percolation [1].

We turn to the case ρ0 = 0. Based on ideas from [5], we construct an intermediate model
that dominates the CDPRE process when ρ0 = 0 and is dominated by independent Bernoulli
percolation. We will show that the intermediate model phase transition is sharp, yielding the
desired result.

Let �= [0, 5]× [0, 4] and �= [1, 4]× [1, 3]. For each (r, s) ∈Z2, define �r,s =�+
(6r, 5s) and �r,s =�+ (6r, 5s). Consider the following sets of edges in E(�r,s):

gr,s = 〈(6r+ 2, 5s+ 2), (6r+ 3, 5s+ 2)〉,
Ar,s = {e ∈ E(�r,s) : |e∩ ∂�r,s| = 1},
Br,s = E(�r,s) \ (gr,s ∪ Ar,s).

Observe that gr,s is not an element of Ar,s.
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( )

FIGURE 1. �r,s (larger box), �r,s (gray box), and the edge gr,s. Ar,s consists of the dashed edges.

The intermediate model is constructed as follows: let {U(e)}e∈E be an independent collec-
tion of uniform random variables on [0,1] with corresponding product measure P, and define
the event

Cr,s =
{

U ∈ [0, 1]E : max
e∈Ar,s

U(e) < min
e∈E(�r,s)\Ar,s

U(e)
}

.

See Figure 1 for a sketch of the boxes and edges involved in the construction.
A configuration of the intermediate model is a function ω̃t : [0, 1]E −→{0, 1}E such that

ω̃t,e =
{

1{U(e)≤ t} if e /∈ ∪r,s{gr,s},
1{U(e)≤ t}1{Cc

r,s} if e= gr,s.
(7)

Note that this has the effect of ‘diminishing’ the percolation configuration by changing the state
of some edges from t-open to t-closed. It is important to highlight that there are no constraints
in the intermediate model. Write t̂c and t̃c for the susceptibility critical thresholds (the supre-
mum of t ∈ [0, 1] such that the mean size of the open cluster is finite almost surely) of Bernoulli
percolation and the intermediate model, respectively. Note that ω̃t,e can be obtained through a
standard coupling (using the same variables U(e)) with the CDPRE model. In particular, we
have ω̃t,e ≥ωt,e for all t ∈ [0, 1] and for all e ∈ E , whenever ρ0 = 0.

Denoting an independent Bernoulli configuration of parameter t by ω̂t, we observe that ω̃t

is an essential diminishment of ω̂t. More precisely, let W = {x ∈Z2 : x= (4r+ 1, 3s+ 1) for
some (r, s)}, which consists of vertices that are left end points of some gr,s. Independently
activate a diminishment at each vertex x ∈W with probability 1. When activated, the diminish-
ment acts on �r,s by deleting the edge gr,s whenever Cr,s occurs. Therefore, applying the main
result in [2, 4] once again, we conclude that the critical threshold of the intermediate model is
strictly larger than 1

2 .
Assuming that the intermediate model phase transition is sharp, we have the inequality

1
2 = t̂c < t̃c. Since the CDPRE model is dominated by the intermediate model, this gives 1

2 <

t̃c ≤ t̄c(ρ) for all ρ with ρ0 = 0.
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Remark 3. We observe that the domination argument described above does not hold when
ρ0 > 0. For instance, suppose κ(2,3) = κ(3,3) = 0 and κ(2,2) = κ(3,2) = 3. If C0,0 occurs, then
ω̃t,g0,0 = 0 while ωt,g0,0 = 1.

Based on the ideas developed in [7], we will prove the sharpness of the phase transi-
tion for the intermediate model by applying the O’Donnell–Saks–Schramm–Servedio (OSSS)
inequality for Boolean functions and a suitable randomized algorithm.

Let us introduce some further notation. Assume I is a countable set, and let (�I, π⊗I) be a
product probability space with elements denoted by ω= (ωi)i∈I . Consider a Boolean function
f : �I→{0, 1}. An algorithm T determining f takes a configuration ω as input and reveals
the value of ω in different coordinates one by one. At each step, the next coordinate to be
revealed depends on the values of ω revealed so far. This process continues until the value of f
is determined, regardless of the values of ω on the remaining coordinates. We refer the reader
to [14] for a formal description of a randomized algorithm.

Denote by δi(T) and Infi(f ) the revealment and the influence of the ith coordinate,
respectively, defined as follows:

δi(T) := π⊗I(T reveals the value of ωi),

Infi(f ) := π⊗I(f (ω) �= f (ω∗)),

where ω∗ is equal to ω in every coordinate except the ith coordinate, which is resampled
independently. The OSSS inequality [14] provides a bound on the variance of f in terms of the
influence and the computational complexity of an algorithm for this function. It states that for
any function f : �I→{0, 1} and any algorithm T determining f ,

Var(f )≤
∑
i∈I

δi(T)Infi(f ). (8)

Since the state of any edge gr,s depends only on U(e) for e ∈�r,s, the intermediate model
is a 3-dependent percolation process and the OSSS inequality cannot be directly applied. To
overcome this difficulty, we introduce a suitable product space to encode the measure of the
intermediate model. We take �= [0, 1], I = E , and π⊗I = P. Writing Bn = {0←→∂B(n)}, we
are interested in bounding the variance of the Boolean function 1{ω̃−1

t (Bn)} considered as a
function from [0, 1]E onto {0, 1}.
2.2.1. Bound on the revealment. Recall the definition of ω̃t in (7) and denote by P̃t the law
of the intermediate model, i.e. P̃t(A)= P(U ∈ [0, 1]E : ω̃t(U) ∈ A) for all A⊂ {0, 1}E . Write
θ̃n(t)= P̃t(Bn) and Sn(t)=∑n

k=1 θ̃k(t). The next lemma shows the existence of an algorithm
determining the Boolean function 1{ω̃−1

t (Bn)} and gives an upper bound on its revealment. For
each (r, s) ∈Z2, write gr,s = 〈ur,s, vr,s〉.
Lemma 1. For any k ∈ {0, . . . , n}, there exists an algorithm Tk determining 1{ω̃−1

t (Bn)} with
the property that, for each e= 〈x1, x2〉 ∈ E ,

δe(Tk)≤
∑

i=1,2

P̃t(xi←→ ∂B(k))+ 1{�r,s}(e)
[̃
Pt(ur,s←→ ∂B(k))+ P̃t(vr,s←→ ∂B(k))

]
. (9)

Once Lemma 1 is proved, observe that, for any x ∈ B(n), by summing (9) over k, we get

n∑
k=1

P̃t(xi←→ ∂B(k))≤
n∑

k=1

P̃t
(
xi←→ ∂B(xi, d(xi, ∂B(k)))

)≤ 2Sn(t), (10)
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where the last inequality follows by translation invariance. Plugging (10) into (9) yields

n∑
k=1

δe(Tk)≤ βSn(t) (11)

for some constant β > 0.
Let Fn denote the set of edges between two vertices within a distance n of the origin. We

define our algorithm using two growing sequences, ∂B(k)= Z0 ⊂ Z1 ⊂ · · · ⊂Z
2 and ∅= F0 ⊂

F1 ⊂ · · · ⊂ Fn. At step m, we see Zm as representing the set of vertices that the algorithm found
to be connected to ∂B(k), and Fm as the set of edges explored by the algorithm.

Definition 1. (Algorithm Tk.) Algorithm Tk is defined as follows. Let e1, e2, . . . be a fixed
ordering of the edges in En. Write F0 =∅ and Z0 = ∂B(k). Assume Zm ⊂Z

2 and Fm ⊂ En are
given.

(i) If there is an edge e= 〈x, y〉 ∈ En \ Fm with x ∈ Zm and y /∈ Zm, choose the earliest one
according to the fixed ordering, set Fm+1 = Fm ∪ {e}, and write

Zm+1 =
{

Zm ∪ {y} if ωt,e = 1,

Zm otherwise.

(ii) If such an e does not exist, write Zm+1 = Zm and Fm+1 = Fm ∪ {e}.
Note that, as long as we are in the first case of Definition 1, we are still discovering the

connected component of ∂B(k). On the other hand, as soon as we are in the second case, we
remain there. Also, observe that the event where the origin is connected to the boundary of
B(n) is already determined before we leave the first case. We are ready to prove Lemma 1.

Proof of Lemma 1. First, note that the algorithm Tk discovers the union of all open com-
ponents of ∂B(k) at time t; in particular, it determines the function 1{ω̃−1

t (Bn)}. Observe that
e= 〈x, y〉 ∈�r,s is revealed if and only if either x, y, ur,s, or vr,s are connected by a t-open path
to ∂B(k). Indeed, to determine the status of gr,s, all edges in �r,s must be revealed. If e /∈�r,s

for all (r,s), then e is revealed if and only if x or y are connected to ∂B(k). This completes the
proof. �

2.2.2. A Russo-type formula. As before, let Bn be the event that the origin is connected to the
boundary of the box B(n). We have the following Russo-type formula.

Lemma 2. Let 0 < α1 < α2 < 1. There exists a constant q > 0 such that, for all t ∈ [α1, α2],

d

dt
P̃t(Bn)≥ q

∑
e∈E(B(n))

P̃t(e is pivotal for Bn). (11)

Proof. Let δ > 0. Then

P̃t+δ(Bn)− P̃t(Bn)

= P(ω̃t+δ ∈Bn, ω̃t /∈Bn)

= P
(
ω̃t+δ ∈Bn, ω̃t /∈Bn, there exists e ∈ E(Bn) such that t < U(e)≤ t+ δ

)
. (12)
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Let Wt,δ be the random set of edges f such that t < U(f )≤ t+ δ. Clearly, P(|Wt,δ| ≥ 2)= o(δ).
From this and (12), we obtain

P̃t+δ(Bn)− P̃t(Bn)= P
(
ω̃t+δ ∈Bn, ω̃t /∈Bn, |Wt,δ| = 1

)+ o(δ)

=
∑

e∈E(B(n))

P
(
ω̃t+δ ∈Bn, ω̃t /∈Bn, Wt,δ = {e}

)+ o(δ).

We now consider three cases. Remember that E(�r,s)= {gr,s} ∪ Ar,s ∪ Br,s. First, let e ∈
E(B(n))−⋃r,s E(�r,s). Then

P
(
ω̃t+δ ∈Bn, ω̃t /∈Bn, Wt,δ = {e}

)= P
(
e is pivotal for Bn in ω̃t, Wt,δ = {e}

)+ o(δ)

= δ× P(e is pivotal for Bn in ω̃t)+ o(δ)

= δ× P̃t(e is pivotal for Bn)+ o(δ).

Now let e= gr,s = 〈ur,s, vr,s〉 for some pair (r,s). Consider the event

X = {U(〈vr,s, vr,s + (1, 0)〉) > t+ δ}.
Observing that {X, Wt,δ = {e}} ⊂Cc

r,s, we obtain the inclusion{
ω̃t+δ ∈Bn, ω̃t /∈Bn, Wt,δ = {e}

}⊃ {X, e is pivotal for Bn in ω̃t, Wt,δ = {e}
}
.

Note that the event X ∩ {e is pivotal for Bn in ω̃t} depends only on the variables U(f ) with
f �= gr,s. Hence

P
(
X, e is pivotal for Bn in ω̃t, Wt,δ = {e}

)= P
(
X, e is pivotal for Bn in ω̃t

)
P(Wt,δ = {e}).

Since P(X | e is pivotal for Bn in ω̃t) > 0 for all t ∈ [α1, α2], and since the function t→ P(ω̃t ∈
A) is continuous for any local event A, Weierstrass’s theorem implies the existence of a constant
M1 > 0 such that

P
(
X, e is pivotal for Bn in ω̃t, Wt,δ = {e}

)≥M1δ× P̃t(e is pivotal for Bn).

Finally, let e ∈ Ar,s ∪ Br,s and write Y = {U(gr,s) < U(f )}, where f ∈ Ar,s ∪ Br,s, f �= e. Observe
that {

ω̃t+δ ∈Bn, ω̃t /∈Bn, Wt,δ = {e}
}= {e is pivotal for Bn in ω̃t, Wt,δ = {e}

}
⊃ {Y, e is pivotal for Bn in ω̃t, Wt,δ = {e}

}
.

Note that the event Y ∩ {e is pivotal for Bn in ω̃t} depends only on the variables U(f ) with f �=
e. Therefore, as in the previous case, there exists a constant M2 > 0 such that

P
(
Y, e is pivotal for Bn in ω̃t, Wt,δ = {e}

)= P
(
Y, e is pivotal for Bn in ω̃t

)
P(Wt,δ = {e})

≥M2δ× P̃t(e is pivotal for Bn).

Taking q=min{M1, M2}, we obtain

P̃t+δ(Bn)− P̃t(Bn)≥ δq
∑

e∈E(B(n))

P̃t(e is pivotal for Bn)+ o(δ).

The result follows by dividing both sides by δ and taking the limit when δ goes to zero. �
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2.2.3. A bound on the influences. We now seek a bound on the influence of an edge e ∈ E(B(n))
on 1{Bn}, i.e. we seek a bound on Infe(1{Bn}) := P

(
U : 1{Bn}(ω̃t(U)) �= 1{Bn}(ω̃t(U∗))

)
, where

U is equal to U∗ for every edge except edge e, which is resampled independently. We do this
in two steps. First, assume e ∈ (⋃r,s E(�r,s)

)c ∪ {gr,s} for some pair (r,s). In this case, the
probability that the state of the indicator function changes is

Infe(1{Bn})≤ λP̃t(e is pivotal for Bn)

for some constant λ > 0.
Next, let e ∈ E(�r,s) \ {gr,s}. We have

Infe(1{Bn})≤ P
(
U : 1{Bn}(ω̃t(U)) �= 1{Bn}(ω̃t(U

∗)), U(gr,s) > t
)

+ P
(
U : 1{Bn}(ω̃t(U)) �= 1{Bn}(ω̃t(U

∗)), U(gr,s)≤ t
)
.

If U(gr,s) > t and the indicator of Bn is changed, then e must be pivotal for Bn. If U(gr,s)≤ t
and the indicator of Bn is changed, then either e or gr,s must be pivotal for Bn. Putting all this
together, we obtain ∑

e∈B(n)

Infe(1{Bn})≤ γ
∑

e∈B(n)

P̃t(e is pivotal for Bn) (13)

for some constant γ > 0.
Let t∗c denote the percolation critical threshold for the intermediate model. By stochastic

dominance and the results of [5], we know that 1
2 < t∗c < 1. We now prove that the intermediate

model undergoes a sharp phase transition, a fact of which Theorem 1 is a corollary.

Theorem 3. Consider the intermediate model on Z
2.

(i) For t < t∗c , there exists ct > 0 such that, for all n≥ 1, θ̃n(t)≤ exp (− ctn).

(ii) There exists c > 0 such that, for t > t∗c , P̃t(0←→∞)≥ c(t− t∗c ).

Proof. Applying the OSSS inequality (8) for each k and then summing on k, (11) gives

θ̃n(t)(1− θ̃n(t))≤ βSn(t)

n

∑
e∈B(n)

Infe(1{Bn}).

The inequality in (13) and Lemma 2 give∑
e∈E(B(n))

Infe(1{Bn})≤ γ q−1 d

dt
θ̃t(n).

Hence, there is a constant ν > 0 such that

d

dt
θ̃n(t)≥ νn

Sn(t)
θ̃n(t)(1− θ̃n(t)).

Fix t0 ∈ (t∗c , α2). Since θ̃n(t) is increasing in t and n, we have 1− θ̃n(t)≥ 1− θ̃1(t0) for all t≤ t0.
The result follows with an application of [7, Lemma 3] to the function

fn = θ̃n(t)

ν(1− θ̃1(t0))
. �
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3. Final remarks

We conclude this paper with a few remarks and some unanswered questions.

(i) Does tc(ρ)= t̄c(ρ) hold for any ρ = (ρ0, ρ1, ρ2, ρ3)? One approach to tackle this prob-
lem is to demonstrate a sharp phase transition for the CDPRE model, meaning that the
radius of the open cluster decays exponentially fast for all t < tc(ρ). The OSSS method
in [7], for example, emerges as a promising tool to prove such decay. On one hand,
there is a small and well-controlled probability that we need to look at a distant edge
to determine the state of a fixed edge f (because the sequence of the U(e) needs to be
decreasing; see also Proposition 1). Hence, when exploring, it should not be difficult to
explore the cluster along with the additional edges needed to determine f . On the other
hand, proving a Margulis–Russo-type formula seems problematic, given that events of
interest are not even monotone in the uniform variables and that the 0–1 variables do
not vary nicely in terms of the parameter.

(ii) Does the statement of Theorem 2 hold for d > 2? If we take d > 2, then there would be
an entropy factor of order nd−1 in the first term on the right-hand side of (2). In this case
we would not have (3), which is crucial for our estimate.

(iii) Assume ρ stochastically dominates ρ̃. Does tc(ρ)≤ tc(ρ̃) hold?
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