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Using the continuous parameter estimation model (CPEM), a large genotyped adult sample of the popu-
lation of Wisconsin, USA (the Wisconsin Longitudinal Study) is examined for evidence of the Scarr–Rowe
effect, a gene × environment (G×E) interaction that reduces the heritability of IQ among those with low so-
cioeconomic status (SES). This method allows the differential expressivity of polygenic scores predictive of
both educational attainment and IQ (EA3) on the phenotype of IQ to be directly operationalized through-
out the full range of these variables. Utilizing a parental SES factor-weighted composite as a measure of
childhood SES, evidence for the Scarr–Rowe effect was found, that is, the genetic expressivity of EA3 on
IQ increased with increasing parental SES (β = 0.08, p = 4.71×10−10, df = 6,255). The effect was found
for both the male and female samples separately, β(males) = 0.08, p = 5.27×10−5, df = 3,018; β(females)
= 0.08, p = 1.93×10−6, df = 3,236. The effects were furthermore robust to removing outlying values of
parental SES and to log-transforming the SES variable. The results are similar to those produced using a
more conventional two-way interaction model, with IQ predicting the EA3 × log of parental SES interaction
after the main effects; however, CPEM allows for greater model degrees of freedom, thus is better powered
to detect the effect when it is small in magnitude (CPEM β = 0.05, p = 6.69×10−5 vs. two-way interaction
β = 0.02, pone-tailed = .045, in both models log parental SES is used).
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The Scarr–Rowe effect is the apparent tendency of the her-
itability of IQ to be lower among those raised in fam-
ilies with lower socioeconomic status (SES). This effect
might result from adverse bioecological conditions restrict-
ing the variance in opportunities among thosewith lowSES,
which in turn supresses the expression of IQ-related genetic
variants during development via a gene × environment
(G× E) interaction (Bronfenbrenner &Ceci, 1994). The ef-
fect was first described by Scarr-Salapatek (1971) in a study
of Philadelphia school children and was subsequently repli-
cated in the U.S. population by Rowe and colleagues (1999).
Turkheimer et al. (2003) reported one of the largest Scarr–
Rowe effects, finding that among those with the lowest SES,
the heritability of IQ was close to zero.

A meta-analysis of 43 effect sizes sourced from 14
Scarr–Rowe effect studies found clear indications of
geographic clustering (Tucker-Drob & Bates, 2015). A sig-
nificant Scarr–Rowe effect (operationalized as a genetic ad-
ditivity× SES interaction) was present among theU.S. pop-
ulation (ρ = 0.07, SE = 0.03, p = .003); but among pop-
ulations sampled from Western Europe and Australia, the

effect was absent (ρ = −0.03, SE= 0.02, p= .223). Even re-
moving the U.S. effect sizes reported by Turkheimer’s group
(which were among the largest observed) yielded a signifi-
cant Scarr–Rowe effect for this country (ρ= 0.06, SE= 0.02,
p = .003), and also significant differences between the U.S.
and non-U.S. samples (�ρ = 0.09, SE = 0.03, p = .005).
This meta-analysis also yielded indications of rising heri-
tabilitywith age (theWilson effect), but no evidence that the
Scarr–Rowe effects were smaller among samples in which
IQ had been measured at a later age. A recently published
largeN (1,636,968) genetically informed study of the popu-
lation of Florida, containing 24,640 twins and 274,786 sib-
lings, found no evidence for the Scarr–Rowe effect, even
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though the sample used was highly socioeconomically het-
erogeneous (Figlio et al., 2017). It should be noted, how-
ever, that this study was conducted without knowledge of
zygosity, which potentially offsets some of the increment in
statistical power.

The recent availability of high-quality polygenic scores
(PGS; normally distributed genetic indices constructed by
summing alleles from a genome wide association study, or
GWAS, on a trait of interest and multiplying them by their
model β values) for educational attainment and also IQ
enables a new method for estimating G×E interaction ef-
fects, as their expressivity with respect to these phenotypes
(i.e., the degree to which the genotype directly influences
the phenotype) can be estimated, yielding more direct in-
dications of such interactions that overcome certain lim-
itations inherent in the twin design (such as ambiguities
regarding the causation of phenotypic convergence and di-
vergence; see, e.g., Segal, 2013). So far, one study has already
employed genomic data in investigating the Scarr–Rowe
effect on IQ (Tahmasbi et al., 2017). In this study, genome-
based restrictedmaximum likelihood estimates of heritabil-
ity (GCTA-GREML) were employed to examine the pres-
ence of Scarr–Rowe effects in a sample of 40,172 individuals
—sourced from theUKBioBank database. It was found that
genetic variance in IQ increased as SES decreased, yield-
ing an anti-Scarr–Rowe effect, which, as the authors note,
is consistent with the null and negative effects typically re-
ported outside of the United States (Tucker-Drob & Bates,
2015).

In the present study, a large and socioeconomically rep-
resentative genotyped sample of the state of Wisconsin (the
Wisconsin Longitudinal Study; WLS) will be used to inves-
tigate the presence of Scarr–Rowe effects via the application
of a novel (and very straightforward) method that permits
the direct operationalization of the expressivity of PGS on
IQ, which will be used to determine the presence of G × E
interactions as a function of parental SES.

Methods
Sample and Measures

All data were collected from the WLS, a longitudinal study
of a randomly selected sample of Wisconsin High School
students, and their siblings, born between 1937 and 1940,
which began data collection in 1957 (when the participants
were in their late teens and early 20s); the most recently
collected data wave is from 2011. The sample is nearly ex-
clusively of European descent, consistent with its high rep-
resentativeness of mid-century Wisconsin demographics
(Herd et al., 2014).

Polygenic Score for General Intelligence

In the period 2007–2008 and again in 2010, a large genetic
data collection exercise was undertaken in which saliva
samples were obtained from a total of 9,012 individuals,

who were subsequently genotyped using the Illumina Hu-
manOmniExpress array as part of a very large GWAS, ex-
amining variants predictive of individual differences in ed-
ucational attainment and related cognitive phenotypes (Lee
et al., 2018). For full information on genotyping procedures,
see https://www.ssc.wisc.edu/wlsresearch/documentation/
GWAS/Herd_QC_report.pdf. Several alternative PGS were
released, each representing different collections of pheno-
types against which variants had been regressed, and also
different methods (e.g., GWAS vs. MTAG—a multivari-
ate regression-based estimation method). One PGS was se-
lected for the present analysis, PGS_EA3_MTAG (hence-
forth EA3), whichwas trained viamultivariate analysis with
respect to several convergent cognitive phenotypes, includ-
ing an IQ test from UK BioBank, various neuropsychologi-
cal functioning tests and IQ subscales from COGENT, self-
reported mathematical ability, and highest mathematics
class successfully completed. Finally, also included among
the training phenotypes was educational attainment, de-
fined based on the 1997 ISCED UNEASCO classification,
which ranks individuals based on seven internationally
comparable categories of educational attainment, rescaled
in terms of U.S. equivalent years of schooling. EA3 comes
closest to capturing variance with respect to an overarching
general intelligence factor. It should finally be noted that the
sample from which Lee et al. (2018) derived EA3 was ex-
tremely large (N > 1 million; WLS was but a small part of
the overall sample) and was ethnically heterogeneous, thus
EA3 is corrected for population stratification. This, coupled
with the extremely high ethnic homogeneity of the WLS
sample (Herd et al., 2014), eliminates the need to include
additional controls for population stratification in analyses
utilizing these scores.

An additional step was taken to reducemodel autocorre-
lation by only selecting one sibling from each family. Based
on WLS recommendations, we employed the following se-
lection protocol. When there is at least one graduate with
EA3, we select the first graduate listed. In the event that
there are no graduates with EA3, but there is at least one
sibling with EA3, we selected the first listed sibling.

Henmon–Nelson Test of Mental Ability

The WLS contains participant scores on the Henmon–
Nelson IQ test, which measures the domains of spatial,
verbal, and mathematical ability. The test is timed, taking
30 min to complete, and consists of 90 items presented
in ascending order of difficulty. The test was standard-
ized state-wide in Wisconsin during the initial 1957 data
collection wave, when the participants were in their late
teens and early 20s. The test exhibits excellent psychome-
tric characteristics, including high internal consistency (α
≈ 0.95; Hansen, 1968; Harley, 1977) and also high conver-
gent validity with respect to other measures of IQ, corre-
lating in the r ≈ 0.80–0.85 range with Fullscale IQ as mea-
sured using the WAIS (Klett et al., 1986; Kling et al., 1978).
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The same test was administered to the participant’s siblings
(N = 852) in a subsequent survey wave (1977), when the
participants were in their late 30s and early 40s. To compute
a combined IQ measure for the entire cohort, we standard-
ized each cohort’s IQ scores separately and then merged
them together (thus controlling for any divergent factors
that may have influenced the IQs of each group, such as age
at test administration). The resultantmerged scorewas then
restandardized.

Parental SES

TheWLS contains a factor-weighted composite measure of
parental SES. This measure is comprised of father’s years
of schooling, mother’s years of schooling, Duncan’s socioe-
conomic index for father’s 1957 occupation, and average
parental income, with estimates for missing data. All data
were collected in the 1957 wave.

Sex

Data on the sex ofWLS respondents were collected in order
to test for sex differences in the magnitudes of any Scarr–
Rowe effects that might be present. This variable was mea-
sured in 1957, with 1 = male and 2 = female.

Analytical Strategy

For the present analysis, the Continuous parameter estima-
tion model (CPEM) will be used to test for Scarr–Rowe ef-
fects on genetic expressivity. CPEM was developed by Gor-
such (2005) and is based on the mathematics of the Pear-
son product moment correlation. The formula for the Pear-
son correlation can be written as r = �(zx∗zy)/N, where
zx and zy are the standardized scores for the independent
and dependent variables, respectively, and zx∗zy is the dot
product term for the two—the average of which across sub-
jects yields the correlation coefficient r. Gorsuch (2005)
proposed that the product term (zx∗zy) for each individ-
ual is mathematically equivalent to a correlation for anN of
1. That a dot product for a single pair of observations from
a single individual can function equivalently to a correla-
tion is logically entailed by the fact that it encapsulates two
properties, sign, and magnitude. When two equivalently
signed z-score values are combined, the resultant product
term will always be positive, indicating that the vector of
deviation from the mean is conserved for both of the ob-
servations. Thus, two negatively and two positively signed
observations will always yield a positively signed product
term—equivalent to two negatively or positively covarying
parameters in conventional correlational analysis. Oppos-
ingly, signed observations (i.e., where one is positively and
the other negatively deviated with respect to the means)
will always yield negative product terms—aswith negatively
covarying parameters in correlational analysis. The second
property is magnitude, which relates to the dispersion, or
absolute difference between the observations comprising
the product terms. Thus, the dot product term functions as

a continuous parameter estimate (CPE) of the covariance
between the independent and dependent variables for each
individual in the sample and can be used in regressionmod-
els along with other variables for moderation analysis.

A very fruitful application of this technique has been for
examining differentiation effects, such as the cognitive and
strategic (behavioral) differentiation–integration effort ef-
fects, where covariance among clusters of cognitive abilities
or behavioral indicators is expected to vary as a function
of participants’ life history speed (Figueredo et al., 2013;
Woodley et al., 2013). CPEMhas also beenutilized in the es-
timation of individual-level heritabilities derived using the
correlational Falconer’s formula, for the purpose of exam-
ining whether the heritability of the latent life history K
factor decreases as level of K increases (Woodley of Menie
et al., 2015). The technique has been used as an alternative
to the method of correlated vectors in establishing latent
variablemoderation effects (Woodley ofMenie et al., 2015),
in quantifying the impact of age on assortative mating on
emotional intelligence (Śmieja & Stolarski, 2018), in exam-
ining the role of SES as a moderator of the association be-
tween stable life history strategy and sexual debut (Dunkel
et al., 2015), and for examining the curvilinear associations
between longitudinal trends among the WAIS scale-scores
and participant age (Lee et al., 2008), among other things.

Here, it is proposed that CPEM can be used to compute
the individual-level covariance among EA3 and IQ scores
for each participant utilizing the dot product terms to cap-
ture the strength of the association between subject geno-
type and phenotype, which is a direct measure of genetic
expressivity. By regressing parental SES against the CPE, the
presence of a Scarr–Rowe effect can be determined if the
resulting β value is positive, as this would indicate that the
genetic expressivity (i.e., the covariance) of EA3 to IQ in-
creases as parental SES increases. Given that large amounts
of data are available in WLS for both sexes, comparison of
the effect sizes can be used to determine the presence of
a sex difference in the effect. All analyses were conducted
in R and the code is publicly archived at http://rpubs.com/
Jonatan/cpem

Results
Analysis 1: Combined Sample

Table 1 presents the descriptive statistics and correlations
for the variables utilized in the analysis of the combined
sample.

More information on the descriptives is available at
http://rpubs.com/Jonatan/cpem. Table 2 presents the re-
sults of the CPEM analysis. As is standard in analyses in-
volving CPEM, all variables are standardized prior to entry
into the regression (e.g., Figueredo et al., 2013). This means
that the resultant b values correspond to standardized β val-
ues, and no intercept term needs to be computed, yield-
ing one additional model degree of freedom (the results
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TABLE 1
Descriptive Statistics and Correlations for the Combined Sex
Sample

Descriptives PGS IQ Parental SES

N 6256 6256 6256
Min. −3.28 57.85 1
Max. 4.16 143.65 97
Mean 0 100 16.33
Std. dev. 1 15 11.06
Correlations
PGS 1
IQ 0.31 1
Parental SES 0.16 0.30 1

Note: All correlations are significant at <0.001.

TABLE 2
The Results of Regressing the CPE z(EA3)∗z(IQ), Which Captures
Differences in Levels of Genetic Expressivity on Parental SES

z(EA3)∗z(IQ) β (SE) t p r(>|t|) df z (residual)

Parental SES 0.08 (0.01) 6.24 4.71×10−10 6255 1.45

Note: The model t statistic, significance, degrees of freedom and the skew
on the model residual are also presented. Adj. R2 = 0.006, F= 38.92.

TABLE 3
Correlations Broken Out by Sex, with Males below the Diagonal
and Females Above

PGS IQ Parental SES

PGS 1 0.32 0.17
IQ 0.30 1 0.30
Parental SES 0.14 0.31 1

Note: All correlations are significant at p < .001.

including the intercepts are available at the Rpubs archive).
In addition to the CPEM regression parameter, the model
residual skewness is also estimated in order to ensure that
there are no normality violations.

The regression model yields indications of a small-
magnitude (i.e., <0.29; Cohen, 1988) Scarr–Rowe effect
when parental SES is used to predict variation in the genetic
expressivity of the participants’ PGS on their IQ scores. The
effect is highly statistically significant (which is unremark-
able given the very high model degrees of freedom) and the
skew on the model residual falls within the levels generally
considered acceptable for parametric regression (i.e., z be-
tween +2 and -2; George & Mallery, 2010). The results of
this analysis are graphed in Figure 1.

Analysis 2: Broken Out by Sex

Table 3 presents the correlations broken out by sex.
Table 4 presents the results of CPEM analyses for males

and females separately. In addition to the CPEM regression
parameter, themodel residual skewness is also estimated for
both regressions in order to ensure that there are no nor-
mality violations.

The effect is present in both males and females sepa-
rately and to an equal extent, indicating no sex differences.

TABLE 4
The Results of Regressing the CPE z(EA3)∗z(IQ), Which Captures
Differences in Levels of Genetic Expressivity Against Parental
SES for Males (Top Row) and Females (Bottom Row) Separately

z(EA3)∗z(IQ) β (SE) t p r(>|t|) df z (residual)

Male Parental SES 0.08 (0.02) 4.05 5.27×10−5 3018 1.48
Female Parental SES 0.08 (0.02) 4.77 1.93×10−6 3236 1.42

Note: The model t statistics, significances, degrees of freedom, and the
skew on the model residuals are also presented. Males adj. R2 =
0.005, F = 16.4. Females adj. R2 = 0.007, F = 22.75.

TABLE 5
The Results of Regressing the CPE z(EA3)∗z(IQ), Which Captures
Differences in Levels of Genetic Expressivity Against Parental
SES for the Combined Sample (Top Row), Males (Middle Row)
and Females (Bottom Row) Separately. Outlying values of
parental SES ≥+3 SD removed.

z(EA3)∗z(IQ) β (SE) t p r(>|t|) df z (residual)

Parental SES 0.06 (0.01) 5.00 5.91×10−7 6062 0.70
Male Parental SES 0.05 (0.02) 2.69 .007 2926 0.72
Female Parental SES 0.07 (0.02) 4.37 1.29×10−5 3136 0.68

Note: The model t statistics, significances, degrees of freedom, and the
skew on the model residuals are also presented. Combined sample
adj. R2 = 0.004, F = 24.99, Males adj. R2 = 0.002, F = 7.25. Females
adj. R2 = 0.006, F = 19.09.

As with the combined sample, the residual model skewness
falls within the acceptable range of values (i.e., z between
+2 and -2).

Robustness Analysis 1: Outlier Removal

To test the robustness of the effects to potentially outlying
values of parental SES, the analyses were rerun for the com-
bined sample and male and female subsamples, excluding
all values of parental SES that were >+3 standard devia-
tions above themean (the 3 SD labelingmethod; Seo, 2002).
The results of this analysis are presented in Table 5. The re-
sults indicate that outlying values of parental SES are not
driving these effects and that there is only a very small re-
duction in the effect sizes for the combined sample and the
male and female subsamples.

Robustness Analysis 2: Log-Transformation of Parental
SES

Of all of the variables utilized, the most heavily skewed
was parental SES (z = 1.29). Although regression analysis
does not require that the inputs be normally distributed,
relatively pronounced deviation from normality can never-
theless cause skew in the model residual, which may affect
the stability of the result when this is pronounced. Table 6
presents the results of utilizing (natural) log-transformed
parental SES as the predictor. Doing so very slightly reduces
the effect sizes for the combined sample and male and fe-
male subsamples.
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FIGURE 1
Scatter plot and regression line of the CPE z(EA3)∗z(IQ) capturing individual differences in genetic expressivity as a function of parental
SES for the combined sample, N = 6,256.

TABLE 6
The Results of Regressing the CPE z(EA3)∗z(IQ), Which Captures
Differences in Levels of Genetic Expressivity Against
Log-Transformed Parental SES for Males (Top Row) and Females
(Bottom Row) Separately

z (resi-
z(EA3)∗z(IQ) β (SE) t p r(>|t|) df dual)

Parental SES 0.05 (0.01) 3.99 6.69×10-5 6,255 1.46
Male Parental SES 0.05 (0.02) 2.80 .005 3,018 1.49
Female Parental SES 0.05 (0.02) 2.84 .005 3,236 1.43

Note: The model t statistics, significances, degrees of freedom, and the
skew on the model residuals are also presented. Combined sample
adj. R2 = 0.002, F = 15.92, Males adj. R2 = 0.002, F = 7.84. Females
adj. R2 = 0.002, F = 8.08.

Robustness Analysis 3: Comparison with a Conven-
tional Two-Way Interaction Model

The conventional method for estimating Scarr–Rowe ef-
fects is via a two-way interaction term between the genetic
parameter and SES, estimated net of the main effects of the
two (or in the case of behavior genetic studies, four) con-
stituent variables (i.e., A, C, E, and SES), with IQ as the de-
pendent variable (Tucker-Drobb & Bates, 2015). Based on
a simulation (which can be viewed at http://jsmp.dk/files/
cpem_sim.html), we expect the results of CPEM and a two-
way interaction model to be similar, with the former enjoy-
ing a slight advantage in terms ofmodel degrees of freedom.
Consistent with this, the interaction model (presented in
Table 7; note that as all terms were standardized prior to en-
try into the regression no intercept was estimated) yields a

TABLE 7
The Results of a Regression Model Using IQ to Predict EA3, Log
Parental SES and the Two-Way Interaction Between EA3 and
Log Parental SES

IQ β (SE) t p r(>|t|)

EA3 0.28 (0.01) 24.00 2.00×10-16

Log parental SES 0.24 (0.01) 20.81 2.00×10-16

EA3 × Log 0.02 (0.01) 1.70 .089 (one-tailed p = .045)
parental SES

Note: The model t statistics and significances are also presented. adj. R2 =
0.16, F = 390 on 3 and df = 6253, p < 2.2×10-16.

similar β value to the CPEManalysis when log-transformed
SES is used in both cases. The reduced model degrees of
freedom in the interaction model (6,253 vs. 6,255), coupled
with the slightly lower magnitude effect size (β = 0.02 vs.
0.05), led to a non-significant value for the EA3 × parental
SES interaction term. Despite this, given that the results of
the CPEM analysis and the priormeta-analysis of U.S. stud-
ies based on the use of twins and siblings permit a direc-
tional prediction of the interaction effect to be made, the
use of one-tailed significance is justified in this instance
(Kimmel, 1957), which yields a significant result (p= .045).

Discussion
An analysis using CPEM indicates the presence of an ap-
parent Scarr–Rowe effect on the genetic expressivity of EA3
capturing variance in general intelligence on a phenotypic
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measure of intelligence in a large study. Genetic expres-
sivity increases as SES increases, consistent with the find-
ings of gene × SES interaction effects from U.S. cohorts
(Tucker-Drob & Bates, 2015), whichmeans that the present
method of estimating the effect using the differential ex-
pressivity of EA3 on IQ as a function of SES yields equiva-
lent results to studies estimating gene × SES interaction ef-
fects derived using more conventional behavior genetic ap-
proaches (i.e., biometric structural equation modeling in-
volving twins and siblings). This is illustrated via both sim-
ulation and comparison of CPEM results to a regression
analysis involving a two-way interaction between EA3 and
log-transformed parental SES, which yielded a (one-tailed
significant) interaction effect. Furthermore, to the best of
our knowledge, this is the first time that the possibility of
sex differences in the Scarr–Rowe effect has been investi-
gated, with no apparent difference in the magnitudes being
present.

While these findings are supportive of the existence of
the Scarr–Rowe effect and are broadly congruent with rel-
evant studies from the United States, there is evidence that
not all parts of the United States are equally conducive to
the effect, possibly due to high SES variation both within
and among U.S. States. The Florida cohort study of Figlio
et al. (2017) is illustrative on this score, as it was extremely
highly powered to detect the effect yet found no indications
of an SES× IQ heritability interaction using both twins and
siblings (although the lack of data on zygosity noted in the
introduction should be kept in mind). The most conserva-
tive interpretation of our results, therefore, is that the bioe-
cological factors that suppress the expressivity of cognitive
genetic variants among those with low levels of childhood
SES were present specifically among those born in the state
of Wisconsin in the late 1930s and early 1940s. From this
arises the question ofwhether theremight be a secular trend
in the strength of the Scarr–Rowe effect. Perhaps one rea-
son that Figlio et al. (2017) were unable to detect the effect
in their young sample is that environmental quality in the
United States among those with low SES has improved in
the decades since theWLS cohort was born (the Figlio et al.,
2017 cohorts were born between 1994 and 2002, approxi-
mately six decades later), thus erasing the effect. A cross-
temporal,meta-analysis of theU.S. data inTucker-Drob and
Bates (2015) along with the results of newer studies such as
Figlio et al. (2017) might help to determine whether such a
trend exists, net of factors such as participant age at cogni-
tive evaluation and location within the United States.

Finally, given that g has a potentially very flat norm of
reaction (meaning that the trait seems to be well canal-
ized against environmental influences experienced during
childhood; Protzko, 2015; Sesardic, 2005), it is predicted
that the biggest and, critically, most persistent impact of
bioecological elicitors of the Scarr–Rowe effect will be on
measures of IQ exhibiting low g saturation, and thus low
heritability (see, e.g., Voronin et al., 2016, Table 3, p. 835),

which potentially leaves greater ‘room’ for G×E interac-
tions in the determination of trait variance. If it is found that
g loading negatively moderates ability measures’ sensitivity
to the Scarr–Rowe effect, then the g loading of testsmight be
an important factor to control for in future meta-analyses.
Moreover, it suggests that the Scarr–Rowe effect may help
increase our understanding of the Flynn effect (which also
occurs to the greatest extent on the least g-loaded abilities;
te Nijenhuis & van der Flier, 2013), as reductions in the
strength of the former effect may be a driver of the latter
effect. This is because reduced variance in the provision-
ing of environmental factors such as educational attainment
and other inducements toward cognitive specializationmay
be boosting opportunities for those with low SES to reach
their genetic potential in terms of their capacity to culti-
vate specialized abilities, leading to potentially large gains
in IQ, especially in instances where the transition from a
poor- to a high-quality environment is very rapid. This may
explain why in a substantial subset of studies, the Flynn ef-
fect appears to be larger among those with lower levels of
IQ (which tracks lower SES; e.g., Flynn, 2012).
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