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In this paper, we study the effect of lateral wall vibrations on the excitation and evolution
of non-modal perturbations in hypersonic boundary layers subject to low-frequency
freestream vortical disturbances (FSVDs). A novel, high-efficiency numerical approach,
combining the harmonic weakly nonlinear Navier–Stokes and nonlinear parabolised
stability equation approaches, is developed, which is sufficient to accommodate both
the rapid distortion of the perturbation in the leading-edge vicinity and the nonlinear
development of finite-amplitude high-order harmonics in the downstream region. The
boundary-layer response to low-frequency FSVDs shows a longitudinal streaky structure,
for which the temperature perturbation shows much greater magnitude than the streamwise
velocity perturbation. The lateral vibration induces a Stokes layer solution for the spanwise
velocity perturbation, which interacts with the FSVD-induced perturbations and leads to a
suppression of the non-modal perturbation and an enhancement of the downstream modal
perturbation. The new perturbations excited by the FSVD–vibration interaction strengthen
as the vibration intensifies, and they could become comparable with the FSVD-induced
perturbations in downstream locations at a high vibration intensity, indicating a remarkable
modification of the streaky structure and its instability property. Secondary instability
(SI) analyses based on the streaky base flow indicate that the vibration could enhance
or suppress the SI modes, depending on their initial phases over the vibration period.
Overall, the average effect is that the low-frequency and high-frequency SI modes are
stabilised and destabilised by the vibration, respectively. Since the high-frequency SI
modes undergo higher amplifications, the subsequent bypass transition is likely to be
promoted by relatively strong vibrations.
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1. Introduction

Accurate predictions of the aerodynamic performance are usually the first task of
the design of high-speed flying vehicles, which are severely influenced by the
laminar–turbulent transition because the drag and heat flux undergo drastic increase
during the transition process (Zhong & Wang 2012). For low environmental perturbations,
the boundary-layer transition follows a natural route, for which the receptivity, linear
instability, nonlinear interaction of the normal instability mode and turbulence appear in
sequence (Kachanov 1994; Wu 2019). As reviewed by Mack (1987), there exist a multitude
of instability modes in hypersonic boundary layers, which are referred to as the Mack
first, second and high-order modes, and the second mode is more unstable. The traditional
method to predict the natural transition is based on the accumulated growth of the linear
instability modes, referred to as the e-N method (Smith 1956), which, however, often
provides unsatisfactory predictions due to its exclusion of the receptivity process, the effect
of surface imperfections, and the nonlinear instability mechanisms. Much attention has
been paid to these issues in the recent years. The theoretical descriptions of the hypersonic
receptivity mechanism include the leading-edge receptivity (Fedorov & Khokhlov 2001;
Goldstein & Ricco 2018), the local receptivity (Dong, Liu & Wu 2020; Zhao, He &
Dong 2023), and the receptivity at the neutral point as an optimal excitation (Qin &
Wu 2016; Hernández & Wu 2019). For hypersonic boundary layers with blunt noses,
the receptivity efficiency, including the impacts of the bow-shaped shock and entropy
layer, was studied by direct numerical simulations (DNS) (Wan, Su & Chen 2020; Niu
& Su 2023). The impacts of local roughness elements and thermal sources on the Mack
instability evolution were formulated by Dong & Zhao (2021) and Zhao & Dong (2022),
respectively. The mechanism of fundamental resonance in hypersonic boundary layers
was observed numerically by Hader & Fasel (2019), and subsequently formulated using
the asymptotic technique by Song, Dong & Zhao (2024). A comprehensive review of the
nonlinear instability theory can be found in Wu (2019).

When the intensity of the freestream perturbations is moderate, the transition may occur
bypassing the appearance of normal instability modes, referred to as the bypass transition.
Characterising the freestream vortical disturbances (FSVDs) and their entrainment into
the boundary layer is a crucial issue describing the bypass transition process. In the
incompressible regime and for relatively weak FSVDs, the mathematical theory for
entrainment was formulated by Leib, Wundrow & Goldstein (1999), who showed that
long-wavelength (low-frequency) FSVDs generate streaks, and the latter were governed
by linear boundary-region equations together with appropriate initial and boundary
conditions. The theory was extended by Ricco, Luo & Wu (2011) to the more realistic case
of strong FSVDs, where nonlinear boundary-region equations describe the generation and
evolution of streaks. The streaks do not break down themselves, but they could support
the amplification of the high-frequency perturbations due to the secondary instability
(SI) mechanism (Andersson et al. 2001; Ricco et al. 2011; Xu, Zhang & Wu 2017).
These modes would eventually cause the emergence of the turbulent spots (Wu, Moin
& Hickey 2014; Wu 2023), and their excitation by high-frequency FSVDs was studied
by Zhang, Dong & Zhang (2018). Simulations for the bypass transition by extending the
computational domain to include the region upstream of the leading edge can be found
in Nagarajan, Lele & Ferziger (2007) and Ovchinnikov, Choudhari & Piomelli (2008).
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Influence of wall vibration on non-modal perturbations

The theory for excitation of streaks by FSVDs in compressible flows was formulated by
Ricco & Wu (2007) and Marensi, Ricco & Wu (2017), using the linear and nonlinear
boundary-region equations, respectively. Theoretical studies of the bypass transition in
hypersonic boundary layers are quite insufficient, and the major difficulty is attributed
to the impact of the shock wave forming in the leading-edge vicinity, which, however,
could be overcome by numerics. Recently, numerical calculations of the optimal growth
of non-modal perturbations in blunt-cone hypersonic boundary layers were conducted by
Paredes et al. (2019a,b). It was found that the amplification rate of the optimal non-modal
perturbations increases with the radius of the nose tip, and the bypass transition may
appear if the nose radius is over a threshold. A subsequent analysis for hypersonic
boundary layers over an elliptic cone, performed by Quintanilha et al. (2022), reported
strong transient growth of the non-modal perturbations in the vicinity of the cone tip and
in the azimuthal locations away from both the centreline and the attachment line. It needs
to be noted that the optimal perturbations calculated in these papers do not have a clear
connection with the FSVDs, which is the central issue in the bypass transition.

In reality, there may be more complex factors to affect the boundary-layer transition
at the surface of cruising hypersonic flying vehicles. The surface vibration, induced by
either the mechanical vibration or the aeroelasticity, is a typical factor, but its mechanism
affecting the transition onset is not well understood. Usually, the vibration frequency is
rather low compared to the normal instability modes in hypersonic boundary layers, and
their interaction could be too weak to cause an appreciable impact on natural transition.
However, the vibration could affect the non-modal streaks because their frequency bands
could be close to each other, leading to potential influences on the bypass transition. For
an incompressible boundary layer, Ricco (2011) studied numerically the effect of steady
spanwise wall forcing with a streamwise distribution on the linear evolution of streaks
excited by FSVDs, and it was found that the streaks could be attenuated if the forcing has a
streamwise length scale comparable with the FSVD-induced streaks and a spanwise length
scale comparable to the boundary-layer thickness. Subsequently, Hicks & Ricco (2015)
considered the effect of a spanwise oscillating wall on the streak development. In their
formulation, the wavelengths of the streaks excited by low-frequency FSVDs are very long,
which is taken to be comparable with the Reynolds number based on the boundary-layer
thickness Rδ . Thus even if the amplitude of the spanwise velocity induced by the wall
oscillation is as small as O(R−1

δ ), the evolution of the streaks would be influenced by the
oscillation. In this case, the spanwise generalised Stokes layer, together with the Blasius
flow, was considered as the base flow for analysis of the streak evolution. It was found
that the wall oscillation with this magnitude can enhance or suppress the streak energy
remarkably, depending on the oscillation amplitude and frequency, as well as the FSVD
property. Similar observations were made by Hack & Zaki (2014, 2015) using DNS,
although their inflow conditions, the continuous modes of the Orr–Sommerfeld and Squire
equations, were not appropriate (Wu & Dong 2016). The spanwise oscillating wall was also
considered as a control strategy for the delay of bypass transition, as shown numerically
in Negi et al. (2019). Additionally, the wall oscillation may also be employed as a drag
reduction strategy in turbulent boundary layers (Jung, Mangiavacchi & Akhavan 1992;
Touber & Leschziner 2012; Ricco, Skote & Leschziner 2021).

However, the aforementioned works on the wall vibration effect were all focusing
on low-speed boundary layers. For hypersonic boundary layers, the scenarios may be
quite different. First, because the velocity of the oncoming stream is very high, the
dimensionless vibrating amplitude should be much lower than that for low-speed boundary
layers. Second, the frequency of the hypersonic boundary-layer instability is usually
several hundred kilohertz, which is usually much higher than the vibration frequency
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Figure 1. Sketch of the physical model, where the perturbations are defined in (2.3).

of the wall. Third, the entrainment of the FSVDs to hypersonic boundary layers and the
subsequent excitation of non-modal streaks may be severely affected by the compressible
effect (the temperature perturbation for a non-modal mode also shows a streaky feature,
but with an even stronger amplitude, which was found to be an important feature by Ricco
& Wu (2007) and Marensi et al. (2017)), as well as the interaction between the non-modal
streaks and the wall vibration. Therefore, in this paper, we consider the effect of spanwise
wall vibration on the evolution of the non-modal streaks subject to FSVDs in hypersonic
boundary layers.

The rest of the paper is organised as follows. In § 2, we introduce the physical
model and mathematical details for calculating the response of a vibrating boundary
layer to low-frequency FSVDs and nonlinear evolution of the excited boundary-layer
streaky perturbations. The numerical approach for analysing the growth and the amplitude
accumulation of the SI modes of the streaky profiles is introduced in § 2.6. The numerical
results of the linear evolution of the non-modal streaks are shown in § 3, and the nonlinear
development of the streaks and their SI analysis are shown in § 4. Concluding remarks are
provided in § 5.

2. Physical model and mathematical descriptions

2.1. Physical model
In this paper, we study a hypersonic boundary-layer flow over a flat plate that is vibrating
laterally, as sketched in figure 1. The plate is assumed to be infinitely thin, such that a
rather weak oblique attached shock wave is formed from its leading edge. We introduce
low-frequency FSVDs in the oncoming stream, which enter the boundary layer from the
leading edge and generate streaks in the downstream locations. The streaks may undergo
transient growths, and reach finite amplitudes if the FSVDs are relatively strong. Then the
SI is likely to be excited, leading to bypass transition to turbulence eventually. Meanwhile,
the vibrating wall induces another group of low-frequency perturbations to the flow field,
which may interact with the FSVD-induced streaks, affecting their SI and leading to
premature downstream transition or its delay.

The flow field is described by the three-dimensional (3-D) Cartesian coordinate
(x∗, y∗, z∗), with its origin located at the leading edge of the plate, where x∗, y∗ and
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z∗ denote the streamwise, wall-normal and spanwise directions, respectively. The typical
spanwise wavelength of the FSVDs, Λ, is taken to be the reference length, which is also
roughly the length scale of the downstream boundary-layer thickness. The dimensionless
coordinate system is (x, y, z) = (x∗, y∗, z∗)/Λ. The velocity field u = (u, v, w), density ρ,
temperature T , pressure p, dynamic viscosity μ and time t are normalised by U∞, ρ∞,
T∞, ρ∞U2∞, μ∞ and Λ/U∞, respectively. The flow is governed by two dimensionless
parameters, the Reynolds number and the Mach number, which are defined as

R = ρ∞U∞Λ/μ∞, M = U∞/a∞, (2.1a,b)

where a∞ denotes the acoustic speed in the freestream.

2.2. Governing equations
The governing equations for a perfect-gas flow are the 3-D Navier–Stokes (N–S) equations,
which can be found in Dong & Zhao (2021). The Sutherland viscosity law is employed,
and we choose the ratio of the specific heats γ = 1.4 and the Prandtl number Pr = 0.72.

The instantaneous flow field ϕ ≡ (u, v, w, ρ, T, p) is decomposed as a two-dimensional
(2-D) steady base flow ΦB ≡ (UB, VB, 0, ρB, TB, PB) and an unsteady perturbation ϕ̆ ≡
(ŭ, v̆, w̆, ρ̆, T̆, p̆):

ϕ(x, y, z, t) = ΦB(x, y) + ϕ̆(x, y, z, t). (2.2)

In principle, the evolution of the perturbation ϕ̆ can be calculated by DNS; however,
this is too expensive, and most of the computational load is spent on the unnecessary
high-order harmonics. Therefore, in this paper, we develop a more efficient means, namely,
the harmonic weakly nonlinear Navier–Stokes (HWNNS) approach plus the nonlinear
parabolised stability equation (NPSE) approach, which will be introduced in detail in
§§ 2.4 and 2.5.

The excited perturbations ϕ̆ include the boundary-layer response to an FSVD ϕ̆f
(with frequency ωf ), a vibration-induced perturbation ϕ̆s (with frequency ωs), the
excited perturbation due to their mutual interaction, ϕ̆+ (with frequency ωf + ωs)
and ϕ̆− (with frequency ωf − ωs), and their high-order harmonics. As confirmed
by DNS, the amplitudes of the high-order harmonics are lower than those of the
direct-interaction-driven perturbations ϕ̆±. Therefore, the former are truncated in the
HWNNS analysis. We consider the frequencies of the FSVD and wall vibration to be low,
i.e. ωf � 1 and ωs � 1; then the boundary-layer perturbations ϕ̆ have long length scales in
the streamwise direction, λx � 1. Thus ∂x ∼ λ−1

x � 1. Note that even when the frequency
is zero, the streamwise length scale is still finite due to the presence of the non-parallelism
of the base flow, which is O(R). Because the wall is vibrating laterally as a whole, there is
no specific length scale for ϕ̆s in the z-direction, thus ϕ̆s is independent of z. Additionally,
from a preliminary analysis, it is found that the vibration-induced perturbation only has a
non-zero w̆s component, namely, ϕ̆s = (0, 0, w̆s(x, y), 0, 0, 0). The spanwise length scales
of ϕ̆f and ϕ̆± are determined by the spanwise wavelength of the FSVD, which is taken to
be O(1) from the normalisation in § 2.1; then we have ∂z(ϕ̆f ,±) ∼ ϕ̆f ,±.

Since the base-flow velocity is UB = O(1), the streamwise convection of the
boundary-layer perturbations scales like UB ∂xŭf ,± ∼ λ−1

x ŭf ,±, while the vibration-induced
spanwise redistribution is ws ∂zŭf ,± ∼ wsŭf ,±, where ws = w̆s exp(−iωst) + w̆C

s exp(iωst)
denotes the spanwise velocity induced by the wall vibration. In what follows, a superscript
C denotes the complex conjugate. Following Ricco (2011) and Hicks & Ricco (2015),
if we take ws ∼ λ−1

x � 1, then the leading-order balance in the momentum equations

999 A57-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.938


Q. Song, M. Dong, L. Zhao, X. Chu and N. Wu

determines UB ∂xϕ̆f ∼ w̆s ∂zŭ− + w̆C
s ∂zŭ+, UB ∂xϕ̆+ ∼ w̆s ∂zŭf and UB ∂xϕ̆− ∼ w̆C

s ∂zŭf .
Thus the perturbations ϕ̆f and ϕ̆± are coupled. Additionally, the back action of the mutual
interaction of ϕ̆f and ϕ̆± on w̆s is rather small; an estimate can be obtained by analysing the
spanwise momentum equation of ϕ̆s as follows. The convection term in the z momentum
equation scales as UB ∂xw̆s ∼ λ−1

x w̆s, while the mutual interaction of ϕ̆f and ϕ̆± scales as
ŭf ∂xw̆− ∼ λ−2

x ũf ũ−, where the condition w̃− ∼ λ−1
x ũ− is imposed from the continuity

equation. As mentioned before, we take w̆s ∼ λ−1
x ; then the mutual interaction of ϕ̆f

and ϕ̆± is negligible. In such a situation, the vibration-induced perturbation, to leading
order, is governed by the linearised N–S system without any inhomogeneous forcing. The
high-order harmonics, including the perturbations excited by the self-interactions of ϕ̆f ,
ϕ̆± and their mutual interactions, are O(ϕ̆2

f ), much smaller than the magnitude of each
individual. Because ϕ̆s only has non-zero w̆s component with no spanwise length scale, its
self-interaction does not induce further perturbations.

From the above analysis, we can express the perturbation field as

ϕ̆ =
∑[Es ϕ̃s(x, y) exp(−iωst) + Ef exp(ik3z)

(
ϕ̃f (x, y) exp(−iωf t)

+ ϕ̃+(x, y) exp(−i(ωf + ωs)t) + ϕ̃−(x, y) exp(−i(ωf − ωs)t)
)+ · · · ]

+ c.c. + h.o.h., (2.3)

where Es,f � 1 denotes the amplitude of each individual perturbation, ω ∈ R is the
dimensionless frequency, k3 ∈ R is the dimensionless spanwise wavenumber of the FSVD,
ϕ̃ ∈ C is the perturbation profile, and c.c. is the complex conjugate. Note that for
simplicity, we consider only one spanwise wavenumber k3 in the HWNNS calculations.
However, in the subsequent NPSE calculations, perturbations with both positive and
negative spanwise wavenumbers ±k3 are considered, as will be demonstrated in (4.1),
which is consistent with the set-up of Ricco et al. (2011) and Marensi et al. (2017).
In the vicinity of the leading edge, because the base flow shows strong non-parallelism
and the amplitudes of the high-order harmonics (h.o.h.) are negligibly small, we employ
the harmonic linearised Navier–Stokes (HLNS) approach (Zhao, Dong & Yang 2019) to
calculate ϕ̃s, and the HWNNS approach to calculate ϕ̃f and ϕ̃± (to be introduced in
§ 2.4.2); in the downstream region, where the base flow has reached the self-similarity
state but the higher-order harmonics have reached the finite-amplitude state, the NPSE
approach (Zhao et al. 2016) is employed to calculate the mutual interaction of the Fourier
modes.

2.3. Numerical approaches for the base-flow calculation
The 2-D base flow ΦB(x, y) is governed by the steady N–S equations. In the numerical
process, we select a rectangular box (x ∈ [x0, xI], y ∈ [0, yJ], with x0 = −0.426, xI = 300
and yJ = 90) as the computational domain, shown in figure 2, and discretise it into
(I + 1) × (J + 1) grid points. Here, the inlet of the computational domain x0 is chosen
to be slightly upstream of the plate leading edge for numerical convenience, and it
has been confirmed that changing x0 to another negative value does not change the
numerical results. Each grid point is labelled by (xi, yj), with i ∈ [0, I] and j ∈ [0, J]
in the streamwise and wall-normal directions, respectively. Using the Lax–Friedrichs
flux splitting method, the convective terms are discretised by the fifth-order weighted
essentially non-oscillatory (WENO) scheme (Jiang & Shu 1996); the viscous terms are
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Oncoming stream
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Figure 2. Sketch of the computational domain and the boundary conditions of the base-flow calculation (not
to scale).

discretised by the fourth-order central finite difference scheme; the lower–upper symmetric
Gauss–Seidel (LU-SGS) method is used for time advancing. The boundary conditions are
set as follows. The no-slip, no-penetration and isothermal conditions (UB, VB, WB, TB) =
(0, 0, 0, Tw) are imposed at the wall (x ∈ [0, xI] and y = 0), where Tw denotes the
dimensionless wall temperature. The inflow condition (x = x0, y ∈ [0, yJ]), the centreline
condition (x ∈ (x0, 0), y = 0) and the upper boundary condition (x ∈ (x0, xI], y = yJ) are
set to be the oncoming stream; the extrapolated boundary condition is employed at the
outlet (x = xI , y ∈ (0, yJ)).

2.4. The HLNS and HWNNS approaches describing the perturbation evolution

2.4.1. The HLNS approach for calculating the boundary-layer response to lateral
vibrations

As illustrated in § 2.2, the vibration-induced perturbation is governed by the linearised
N–S equation system, which therefore can be solved by the HLNS approach. The excited
perturbation field ϕ̃s(x, y) exp(−iωst), which is independent of z, satisfies the linear system

L(ωs) ϕ̃s(x, y) ≡
(

D̃ + Ã ∂x + B̃ ∂y + V xx ∂xx + V yy ∂yy + V xy ∂xy

)
ϕ̃s(x, y) = 0, (2.4)

where L represents the linearised N–S operator. The coefficient matrices D̃, Ã, B̃,
V xx, V yy and V xy can be found in the appendix of Zhao et al. (2019). Such an
approach that allows the time-domain problems to be solved quickly by converting
them into Fourier series has also been applied in some previous works (Gopinath
& Jameson 2005, 2006). The perturbations at all boundaries are set to be zero
except at the wall, where w̃s = 1 is imposed. We introduce the unknown vector q̃ ≡
(ϕ̃f ,0,0, ϕ̃f ,0,1, . . . , ϕ̃f ,0,J, . . . , ϕ̃f ,I,0, . . . , ϕ̃f ,I,J), where ϕ̃f ,i,j denotes the value of ϕ̃f at
(xi, yj). Then q̃ is governed by a system of linear algebraic equations,

Mq̃ = r̃, (2.5)

where the coefficient matrix M can be readily derived from (2.4), and r̃ denotes the
inhomogeneous forcing from the wall. Here, the streamwise non-parallelism is retained,
such that the rapid distortion of the perturbation around the leading edge can be calculated.
The computational domain for the HLNS calculation is the same as that for the base-flow
calculation; see domain (I) in figure 3. It needs to be noted that our numerical scheme

999 A57-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.938


Q. Song, M. Dong, L. Zhao, X. Chu and N. Wu

x

y

ox0 xI

yJ

(Ⅱ) NPSE domain
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Wall
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Figure 3. Sketch of the computational domains for the HLNS/HWNNS and NPSE calculations.

for HLNS and the following HWNNS is not adequate to deal with the perturbations
around a shock wave. However, in the present flat-plate model, the leading-edge oblique
shock wave is rather weak, and its impact on the oncoming perturbations is quite limited.
Therefore, our scheme works well on describing the perturbation evolution, as confirmed
by comparing with the DNS results in Appendix B.

It is worth noting that the selection of the primitive variables ϕ̃ as the unknowns in
(2.4) and the following equation system (2.6) is not unique, and an alternative option is
to choose the conserved variables. The latter approach is particularly advantageous when
dealing with strong shock waves in the flow field. However, in the present problem, as the
oblique shock wave forming from the leading edge is relatively weak, both approaches
would yield identical results.

2.4.2. The HWNNS approach for calculation of the excited perturbations ϕ̃f and ϕ̃±
According to the scaling estimate in § 2.2, the excited perturbations ϕ̃f and ϕ̃± are
governed by the inhomogeneous equations

L(ωf ) ϕ̃f (x, y) = Es

(
b(ϕ̃C

s , −ωs) ϕ̃+ + b(ϕ̃s, ωs) ϕ̃−
)

, (2.6a)

L(ωf + ωs)ϕ̃+(x, y) = Esb(ϕ̃s, ωs)ϕ̃f , L(ωf − ωs)ϕ̃−(x, y) = Esb(ϕ̃C
s , −ωs)ϕ̃f ,

(2.6b,c)

where b is a coefficient matrix appearing as inhomogeneous forcing of the linearised N–S
operator. The generic form of b(ϕ̃1, ω) ϕ̃2 = [b(1), b(2), b(3), b(4), b(5)]T is expressed as

b(1) = −ik3w̃1ρ̃2, b(2) = −ik3ρBw̃1ũ2, b(3) = −ik3ρBw̃1ṽ2,

b(4) = −ρB(w̃1,xũ2 + w̃1,yṽ2 + ik3w̃1w̃2) − (UBw̃1,x + VBw̃1,y − iωw̃1)ρ̃2,

b(5) = −ik3w̃1

γ

[
ρBT̃2 + (1 − γ )TBρ̃2

]
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.7)

It is easy to see that in the incompressible limit, if the high-order interactions are truncated,
then (2.6) is equivalent to (2.14) of Hicks & Ricco (2015). The only difference is that in our
system, the vibration-induced spanwise redistribution term b appears as an inhomogeneous
forcing term on the right-hand side of each equation, while in Hicks & Ricco (2015),
the Stokes layer induced by the lateral vibration is considered as a part of the base flow.
The high-order interactions will be considered by the NPSE in § 2.5. Since ϕ̃s is obtained
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Influence of wall vibration on non-modal perturbations

beforehand, the system (2.6) is indeed a coupled linear system, but in the numerical process
(as will be shown at the end of this subsection) we treat these terms as the first-order
nonlinear forcing in each iterative step. The advantage of this treatment is that the linear
operator L on the left-hand side of each subequation of (2.6) is the same as that in
(2.4), rendering an easy extension of the HLNS framework. Because only the first-order
nonlinear terms are included here, this approach is named the harmonic weakly nonlinear
Navier–Stokes (HWNNS) approach. At first glance, the small quantity Es appearing on
the right-hand side of each equation in (2.6) is a little unsatisfactory. However, we would
like to emphasise that the linear operator L is also small due to the low-frequency and
long-wavelength nature (i.e. ∼λ−1

x ), and the magnitudes of Es and L are taken to be
comparable in this paper.

For a still-wall case where Es = 0, the perturbations ϕ̃± are both zero, and (2.6a) is
reduced to a homogeneous equation system, with the inhomogeneous forcing appearing
only at the oncoming stream. An FSVD with frequency ωf and the streamwise,
wall-normal and spanwise wavenumbers (k1, k2, k3) is expressed as

ϕ̂f exp(i(k1x + k2y + k3z − ωf t)) + c.c., (2.8)

where ϕ̂f ≡ (ûf , v̂f , ŵf , 0, 0, 0). Substituting (2.8) into the linearised N–S equations, we
obtain the dispersion relation of the FSVD, k1 = ωf + O(R−1/2) (Wu & Dong 2016).
Note that we are interested in the entrainment of the low-frequency perturbations, so
k1 � k2 ∼ k3 ∼ 1. Without loss of generality, we take the spanwise vorticity to be zero,
i.e. k1v̂f − k2ûf = 0. Note that this is an arbitrary choice, but the excitation process of the
boundary-layer perturbation for this condition is representative, as long as the magnitudes
of the wavenumbers in the three directions are fixed. Combining with the continuity
equation (k1ûf + k2v̂f + k3ŵf = 0), and taking the unit perturbation kinetic energy as the
normalisation condition ((û2

f + v̂2
f + ŵ2

f )/2 = 1), we obtain

(
ûf , v̂f , ŵf

) =
√

2
(k2

1 + k2
2)(k

2
1 + k2

2 + k2
3)

(
−k1k3, −k2k3, k2

1 + k2
2

)
. (2.9)

For (2.6a), the boundary conditions at (x = x0, y ∈ [0, yJ]), (x ∈ (x0, xI), y = yJ)
and (x ∈ (x0, 0), y = 0) are the FSVD ϕ̃f = ϕ̂f exp(i(k1x + k2y)), appearing as an
inhomogeneous forcing to the linear system; the extrapolated boundary condition is
employed at the outlet x = xI ; the zero-perturbation conditions are imposed at the other
boundaries.

Thus for a still wall, the excited perturbation ϕ̃f is obtained by directly solving the HLNS
equation system L(ωf ) ϕ̃f (x, y) = 0, whereas for a spanwise vibrating wall, an iterative
scheme is employed to deal with the coupled system (2.6).

(i) Set ϕ̃± = 0 at the beginning.
(ii) Solve for ϕ̃f from (2.6a) subject to the freestream forcing.

(iii) Calculate the inhomogeneous forcing of (2.6b,c) from the obtained ϕ̃f , and solve for
ϕ̃±.

(iv) Calculate the inhomogeneous forcing of (2.6a), and go to step (ii) until the solution
converges.

In steps (ii) (except for the first round of the iteration) and (iii), each governing equation
has a harmonic linear operator on its left-hand side, and only the first-order nonlinear
interaction terms are retained on its right-hand side, which is the reason for the name of
the HWNNS approach.
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2.5. The NPSE for the nonlinear evolution of the boundary-layer perturbations
In the HWNNS calculations illustrated in § 2.4, the high-order harmonics are truncated,
which may be important in the downstream regions. Therefore, the NPSE approach (Chang
& Malik 1994; Zhao et al. 2016) is employed in the downstream region; see domain (II)
in figure 3. Such a treatment is acceptable for the following reasons: (1) in the vicinity
of the leading edge, the perturbation deforms rapidly, but with a small amplitude, for
which the HLNS/HWNNS approach is rather efficient; (2) in the downstream region,
i.e. x � X0, the perturbation evolves slowly in the x-direction, but with a sufficiently
high amplitude for nonlinearity, for which the NPSE approach works well. Note that in
§ 2.4, the HLNS/HWNNS calculations were performed from x0 to xI , but the flow field in
x ∈ (X0, xI) is not needed physically. However, for code verification, we can compare this
flow field with the NPSE and DNS calculations for a small Ef , say Ef = 10−8, as will be
shown in figures 14 and 30.

In Ricco et al. (2011), Marensi et al. (2017), Xu et al. (2017) and Xu, Liu & Wu (2020),
the entrainment of FSVDs and the excitation of the boundary-layer streaks were formulated
by the nonlinear boundary-region equation, which is able to deal with both the rapid
distortion in the leading-edge vicinity and the nonlinearity in the downstream region. For
the present physical model, our numerical approach, combining HLNS/HWNNS with the
NPSE, in principle reproduces the nonlinear boundary-region calculations. However, our
approach is easy to apply to more complex situations, such as a hypersonic boundary layer
over a blunt body, for which the impacts of the bow-shaped shock wave and the entropy
layer need to be considered. The present work can be regarded as the first step to solve
more complex problems.

In the NPSE, the perturbation ϕ̆(x, y, z, t) in (2.3) is expressed in terms of a truncated
Fourier series,

ϕ̆(x, y, z, t) =
M∑

m=−M

N∑
n=−N

Em,n ϕ̃m,n(x, y) exp
(

i
[∫ x

X0

αm,n(x̄) d x̄ + nβ0z − mω0t
])

,

(2.10)

where ω0 ∈ R and β0 ∈ R are the fundamental frequency and spanwise wavenumber,
respectively, m and n denote the orders of ω and β, respectively, Em,n � 1 and αm,n ∈ C

represent the amplitude and complex wavenumber of the harmonic mode, respectively,
ϕ̃m,n ≡ (ũm,n, ṽm,n, w̃m,n, ρ̃m,n, T̃m,n, p̃m,n) is the complex shape function that varies
slowly with x, X0 = 60 represents the inlet of the NPSE domain, and M and N denote the
limiting orders of the truncation for the frequency and spanwise wavenumber, respectively.
Here, ω0 is the common divisor of ωf and ωs if both frequencies are non-zero. Otherwise,
ω0 should be selected as the non-zero value of ωf and ωs. The value β0 is chosen to be k3.

Substituting (2.10) into the compressible N–S equations, subtracting out the base-flow
terms, and neglecting the terms associated with ∂xxϕ̃m,n and ∂xyϕ̃m,n, we obtain the NPSEs

(
Ãm,n ∂x + B̃m,n ∂y + D̃m,n + V yy ∂yy

)
ϕ̃m,n(x, y) = F̃ m,n exp

(
−i
∫ x

X0

αm,n(x̄) d x̄
)

,

(2.11)

where the coefficient matrices Ãm,n, B̃m,n, D̃m,n, V yy and the nonlinear term F̃ m,n can be
found in Zhao et al. (2016). Since the ∂xx terms are neglected, the elliptic N–S equations
are parabolised, such that a marching scheme can be employed in the numerical process.
The NPSE calculation begins at a position x = X0, as depicted in figure 3. This position is

999 A57-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.938


Influence of wall vibration on non-modal perturbations

chosen to be downstream of the rapid distortion region at the leading edge, and upstream
of the region where higher-order harmonics become significant. The inflow perturbation
profiles and their amplitudes are obtained through the HLNS calculations. Denote the
Fourier components of the FSVD ϕ̃f and vibration ϕ̃s by (m1, 1) and (m2, 0), respectively.
The perturbations ũm,n, ṽm,n, w̃m,n and T̃m,n are all set to be zero at the wall, except w̃m2,0 =
1. At the upper boundary, we set (ũm1,1, ṽm1,1, w̃m1,1) = ϕ̂f exp(i(k1x + k2y)) and ∂yṽ0,0 =
0, and the other quantities are all set to be zero. If F̃ m,n is set to be zero, then the system
(2.11) is reduced to the linear parabolised stability equation (LPSE), which can be used
to trace the linear amplification of each Fourier component. The NPSE code has been
applied in a few previous works (Zhao et al. 2016; Song, Zhao & Dong 2023a), which
were confirmed to be sufficiently accurate in comparison with DNS.

2.6. The SI analysis of streaks
The streaks themselves do not lead to transition; however, they could support rapid
growths of high-frequency perturbations via the SI regime. Since the length scale of
the SI modes is much shorter than that of the streaky base flow, we can introduce
the parallel-flow assumption for the SI analysis. The streaky base flow is expressed as
Φ̆B( y, z; x̆, t̆) ≡ [ŬB, 0, 0, ρ̆B, T̆B, P̆B], which is a superposition of the 2-D base flow and
the NPSE solutions at a streamwise position x̆ and a time instant t̆:

Φ̆B( y, z; x̆, t̆) = ΦB( y; x̆)

+
M∑

m=−M

N∑
n=−N

Em,n ϕ̃m,n( y; x̆)

× exp(i(nk3z − mω0 t̆)) exp

(
i
∫ x̆

X0

αm,n(x̄) d x̄

)
, (2.12)

where M, N , E , ϕ̃ and ω0 were defined in (2.10).
For simplicity, we perform the temporal-mode SI analysis, and the perturbations

ϕ̆SI(x, y, z, t) ≡ (ŭSI, v̆SI, w̆SI, ρ̆SI, T̆SI, p̆SI) are expressed as

ϕ̆SI(x, y, z, t) = ESI ϕ̃SI( y, z) exp(i(αx − ωt)) exp(iσdk3z) + c.c.,

ϕ̃SI( y, z) =
NSI∑

n=−NSI

ϕ̂SI,n( y) exp(ink3z),

⎫⎪⎪⎬
⎪⎪⎭ (2.13)

where α ∈ R and ω = ωr + iωi ∈ C are the streamwise wavenumber and complex
frequency of the SI mode, respectively, with ωi denoting its temporal growth rate. Here,
ESI is the amplitude, and NSI is the truncation order of the Fourier series. In this paper, we
set NSI = 8. Also, σd ∈ [0, 0.5] is a detuning parameter, which is zero for a fundamental
mode, 0.5 for a subharmonic mode and another value for the detuned mode, and all of them
could be unstable with comparable growth rates; see Ren & Fu (2015). As a representative
study, we focus only on the fundamental mode in this paper. Substituting (2.12) and (2.13)
into the linearised N–S equations, we arrive at a linear equation system,(

D̃SI + B̃SI ∂y + C̃SI ∂z + V yy ∂yy + V zz ∂zz + V yz ∂yz

)
ϕ̃SI( y, z) = 0. (2.14)
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M R T∞ Tw Tw/Tad Description

5.92 33 000 48.59 K 3.48 0.50 Cold wall

Table 1. Parameters for case studies.

The coefficient matrices D̃SI , B̃SI and C̃SI are given by

D̃SI = D − (iω)Γ + (iα)A + (iα)2V xx, (2.15a)

B̃SI = B + (iα)V xy, (2.15b)

C̃SI = C + (iα)V xz, (2.15c)

where the coefficient matrices D, Γ , A, B, C , V yy, V zz, V yz, V xx, V xy and V xz depend on
Φ̆B and can be found in the appendix of Zhao et al. (2019). The system (2.14) with the
homogeneous boundary conditions forms a generalised eigenvalue system,

A ϕ̃SI( y, z) = ωB ϕ̃SI( y, z), (2.16)

with ω being the eigenvalue, and the coefficient matrices A and B are readily derived from
(2.14). The Arnoldi iterative method is employed to search the eigenvalues initially, and
the Rayleigh quotient iteration method is used to confirm its accuracy, as has been used in
Han et al. (2021) and Song, Dong & Zhao (2023b).

3. Numerical results of the base flow and the linear evolution of the perturbations

3.1. Base flow
The controlling parameters selected in this paper are listed in table 1. The base-flow
calculation is based on the 2-D domain x ∈ [−0.426, 300] and y ∈ [0, 90]. We employ
1201 grid points in the x-direction, with 515 grid points clustered near the leading edge
(x � 60), and 301 grid points clustered near the wall are employed in the y-direction.
Figure 4(a) shows the contours of the pressure PB, where the yellow line forming from the
leading edge with an oblique angle 9.54◦, approximately equal to tan−1(1/M), denotes
the oblique attached shock wave. Figures 4(b) and 4(c) compare the UB and TB profiles
with the compressible Blasius solutions at different streamwise positions. The agreement
between the two families of curves confirms the accuracy of our base-flow calculations.

3.2. Instability property
Although we are not primarily focusing on the excitation and evolution of normal modes in
this paper, they could exist in a downstream position, where the local Reynolds number is
relatively large. For supersonic boundary layers with M > 4, there exist multiple unstable
modes, and the second mode is usually more unstable (Mack 1987). In this paper, we
are interested in the 3-D low-frequency perturbations, and the neutral curves of the
3-D Mack first modes for β = 0.33, 1, 2 and 2.67 in the x−ω plane are plotted in
figure 5(a). For ω < 0.2 and β � 1, the frequency of the neutral first mode decreases
with increase of x, indicating an enlargement of the unstable zone in the low-frequency
band. For higher β values, the unstable zone shrinks, and no unstable first mode is
observed for ω � 0.05. In figure 5(b), the neutral curve in the ω−x plane for β = 1
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1.0

1.5

2.0

Increasing x

Tw = 3.48

UB
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DNS
Blasius

Increasing x

y

(a)

(b) (c)

Figure 4. Base flow. (a) Contours of the mean pressure PB. (b,c) Comparisons of the streamwise velocity UB
and temperature TB profiles with the compressible Blasius solutions at x = 15, 30, 60, 120 and 240.

x
50 100 150 200 250 3000

0.1

0.2

0.3

ω

Stable

ω = 0.05

β = 0.33
β = 1
β = 2
β = 2.67

x
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1

2

3

Stable

Mack II

Mack I

β = 1

Stable

(b)(a)

Figure 5. (a) Neutral curves of the 3-D Mack modes for β = 0.33, 1, 2 and 2.67. (b) Neutral curves of the
first and second modes in a wider frequency band for β = 1.

in a wider frequency band is plotted, and the Mack second mode and the first mode
of the upper branch, appearing when ω = O(1), are excluded in the discussion of this
paper.

3.3. Linear response of a still boundary layer to FSVDs
In this subsection, we consider the results for still walls. For the HLNS calculations, the
same computational domain as in § 3.1 is used, but the number of grid points in the
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ũf,r

x x
50 100 150 200 250 3000

5

10

y
T̃f,r

50 100 150 200 250 3000

50 100 150 200 250 3000 50 100 150 200 250 3000

50 100 150 200 250 3000 50 100 150 200 250 3000

50 100 150 200 250

δ99

3000 50 100 150 200 250 3000

5

10 T̃f,r

20
0
–20

20
0
–20

1
0
–1

1
0
–1

1
0
–1

1
0
–1

50
0
–50

50
0
–50

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 6. Contours of the real parts of ũf , ṽf , w̃f and T̃f excited by the low-frequency FSVDs with
k2 = k3 = 1, for (a,c,e,g) ωf = 0, (b,d, f,h) ωf = 0.17. The dashed lines mark the nominal boundary-layer
thickness.

x-direction is reduced to 401. To characterise the ratio of k2 to k3, we introduce an oblique
wave angle Θ ≡ tan−1(k2/k3). Choosing k2 = k3 = 1 (Θ = 45◦), we plot the contours of
the perturbation field ϕ̃f in figure 6. For ωf = 0, the perturbations ṽf and w̃f show long
streamwise length scales in the external stream, and a mild kink appears at the oblique
shock wave. In the boundary layer, ṽf and w̃f are rather small, but the perturbations ũf and
T̃f undergo drastic amplifications, agreeing with Leib et al. (1999) and Ricco & Wu (2007).
For an FSVD with ωf = 0.17, the overall behaviour of the perturbation field remains the
same, but a finite streamwise length scale is observed due to the finite wavelength of the
FSVD.

Figure 7(a) plots the streamwise evolution of the amplitude of the streamwise velocity
perturbation Ũf (x) = maxy(|ũf (x, y)|) for five representative frequencies (ωf = 0, 0.05,
0.1, 0.17 and 0.33). Each curve shows a drastic increase in the vicinity of the leading
edge, i.e. x < 15, indicating a rapid adjustment of the perturbation in a region where
the non-parallelism of the mean flow is strong; after a mild decay, it grows until the
end of the calculation. Overall, the amplitude Ũf increases as the frequency increases.
The temperature perturbation T̃f = maxy(|T̃f (x, y)|) is one order of magnitude greater
than that of Ũf , agreeing with the solutions given by the boundary-region equations in
Ricco & Wu (2007). In the downstream region, the non-stationary perturbations would
enter the unstable zone of the Mack first mode, and a comparison with the predictions by
linear stability theory (LST), shown by the open symbols, and LPSE, shown by the filled
symbols, is provided. The disparity between the LST and LPSE calculations arises from
the consideration of non-parallelism in the base flow, which is neglected in the former
but retained in the latter. The overall agreement between the HLNS calculations and the
LST/LPSE predictions is evident in the region approximately downstream of the neutral
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Figure 7. Evolution of (a) Ũf , (b) T̃f , and (c) the growth rate −αi, for k2 = k3 = 1. The vertical lines denote
the intersection positions of the non-modal and modal perturbations.

points of the Mack first mode, shown by the vertical lines. A clearer observation of each
curve is provided by plotting the streamwise evolution of the growth rates (Ũ−1

f dŨf /dx
for HLNS and LPSE, and −αi for LST) in figure 7(c). Again, the HLNS calculations
agree well with the LPSE predictions for ωf � 0.10, and the LST curves underpredict
the growth rate due to the neglect of the non-parallelism. Because the growth rate for
ωf = 0.05 is quite low, the agreement between the HLNS and LPSE calculations is
expected in further downstream regions. In the region upstream of the neutral point, all
the normal modes are damped, but their non-orthogonal nature determines that they could
show an algebraic growth, referring to as the non-modal growth. The non-modal growth
rate in the leading-edge vicinity oscillates remarkably, indicating the rapid distortion
of the perturbation due to the strong non-parallelism. The transition from non-modal
perturbation to normal instability mode was also reported by Ricco & Wu (2007). Because
the Mack mode is unstable only in travelling wave forms, the boundary-layer response to
the FSVD with ωf = 0 is always non-modal.

Figures 8(a,c,e,g) display the perturbation profiles with ωf = 0. As x approaches
downstream, the amplitudes of |ũf | and |T̃f | exhibit significant amplification, while those
of |ṽf | and |w̃f | remain relatively unchanged. This behaviour is a characteristic feature
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Figure 8. Wall-normal profiles of |ũf |, |ṽf |, |w̃f | and |T̃f | at x = 120, 180, 240 and 300, where k2 = k3 = 1,
for (a,c,e,g) ωf = 0, (b,d, f,h) ωf = 0.17. The results are normalised by the maximum of |ũf | at x = 300. The
horizontal dashed lines denote the nominal boundary-layer thickness δ99.
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of non-modal streaks, where the amplification of ũf and T̃f is attributed to the lift-up
mechanism. Notably, the peak of the temperature profile is closer to the boundary-layer
edge compared to the peak of the ũf profile. In contrast, for ωf = 0.17, as depicted in
figures 8(b,d, f ,h), the amplitudes of |ũf |, |ṽf |, |w̃f | and |T̃f | grow progressively as they
propagate downstream. These profiles align with the linear prediction of the Mack first
mode obtained by LST, thus confirming the modal nature of the perturbations for ω = 0.17
and x � 120.

Figure 9(a) summarises the variation of the perturbation amplitude Ũf with ωf at
different streamwise locations for k3 = 0.33 and Θ = 45◦. At x = 30 and 60, Ũf decreases
monotonically with increase of ωf , and the amplitude is greater in a downstream position.
As x increases to 120, the amplitude shows a local peak at around ωf = 0.02, and
decreases with ωf for higher frequencies. When x = 240, the amplitude shows a local
minimum (marked by a circle) at around ωf = 0.03, and for higher ωf values, the curve
shows the same feature as that for x = 120. Comparing the Ũf curves with the LST
predictions, we find that the local minimum point can be viewed as a critical frequency
distinguishing the normal and non-modal growth of each perturbation at one location.
Changing the wavenumbers k3 and keeping Θ = 45◦, we plot Ũf in figures 9(b), 9(c) and
9(d), and similar trend is observed. For the same k3, the transition from non-modal to
modal perturbations appears earlier as ωf increases, and at the same position, the critical
frequency increases with k3.

3.4. Linear response of a boundary layer to a spanwise vibration
For a weak wall vibration without any FSVD, the boundary-layer response ϕ̃s is obtained
by solving (2.4) numerically. Only w̃s is non-zero, and its profiles for ωs = 0.05 at
different streamwise locations are shown in figure 10(a). As expected, the perturbation
peaks at the wall, and attenuates as the boundary-layer edge is approached. Neglecting the
non-parallelism, the lateral velocity perturbation can be approximated by the Stokes layer
solution EsWStokes exp(−iωst) + c.c., where

WStokes( y) = exp((−iωsR)1/2y), (3.1)

with −i chosen to be exp(3πi/2). The comparison of w̃s at x = 240 with WStokes is plotted
in figure 10(b), showing a good agreement.

3.5. The HWNNS calculations for the perturbations excited by FSVD–vibration
interaction

As suggested by (2.3), the perturbation field for a vibration configuration includes ϕ̃f ,
ϕ̃s and ϕ̃±. The streamwise velocity and temperature amplitudes of ϕ̃± are denoted
by Ũ±(x) = maxy(|ũ±(x, y)|) and T̃±(x) = maxy(|T̃±(x, y)|), respectively. Actually, there
would be more perturbations excited by the higher-order interactions, such as the
perturbation with frequencies 2ωs + ωf and ωs + 2ωf , which are neglected in this
subsection due to their smaller magnitudes. The resolution study for the HWNNS
calculations is provided in figure 29(a) in Appendix A, and its comparison with the DNS
result is provided in figure 30 in Appendix B.

For different vibration amplitudes, figures 11(a) and 11(b) display the evolutions of Ũf

and T̃f obtained by HWNNS, respectively. All the curves follow the same trend as the
non-vibration curve (red solid lines), i.e. increase drastically in the close neighbourhood
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Figure 9. Amplitudes of the excited perturbations with Θ = 45◦ at different locations, where the circles mark
the critical frequency distinguishing the non-modal and modal perturbations, for (a) k3 = 0.33, (b) k3 = 1,
(c) k3 = 2, (d) k3 = 2.67.
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Figure 10. (a) Wall-normal profiles of |w̃s| at different stations with ωs = 0.05. (b) Comparison of w̃s,r for
x = 240 with WStokes.
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of the leading edge, followed by mild decreases, and then increase gently with x until
the end of the calculations. Again, T̃f is more than one order of magnitude higher than
Ũf . Remarkably, inclusion of the surface vibration leads to a reduction of the amplitudes
Ũf and T̃f in the downstream region, and such a reduction strengthens as the vibration
intensifies, indicating a suppression of the FSVD-induced streak. Such an observation
agrees with that of Hicks & Ricco (2015). Figures 11(c) and 11(d) show the evolution of
Ũ± and T̃±, respectively, and a monotonic increase with x is observed for each curve.
As expected, a stronger vibration results in a greater amplitude of Ũ± or T̃± in the
downstream region, and at the same location, Ũ+ (T̃+) is greater than Ũ− (T̃−). A clearer
measurement of the excited mode Ũ± is to normalise them by Ũf at each x location,
namely,

Ã±(x) ≡ Ũ±(x)/Ũf (x). (3.2)

The evolution of Ã± for different Es is shown in figures 11(e) and 11( f ). Overall, each curve
shows a sharp increase in the leading-edge vicinity (x < 40), followed by a mild variation,
including an almost constant state in the downstream limit of Ã− and an increase with x
of Ã+. Increase of Es leads to higher values of Ã±, and for Es = 0.03, the value of Ã+ can
even reach unity, indicating a strong distortion of the FSVD-induced streaks. If the wave
angle Θ of the FSVD were changed from 45◦ to −45◦, then the evolution curves of Ũ+
and Ũ− would swap.

Increasing the frequency of the FSVD to ωf = 0.17, the streamwise evolutions of
the perturbations, shown in figure 12, are similar to those for the stationary-FSVD
configuration shown in figure 11. However, the amplification rates of Ũf and Ũ± in
the downstream region are much greater, because the perturbations at these frequencies
enter the unstable region of the Mack first mode. Comparing the results for different
vibration amplitudes, it is found that in the region x < 100, the vibration suppresses
the FSVD-induced perturbation Ũf , but a destabilising effect is observed in further
downstream locations where the perturbation is the Mack mode. The implication is that
the lateral vibration would suppress the non-modal perturbations but enhance the modal
perturbations.

In figure 13, we probe the behaviours of Ũf and Ũ+ by varying ωf , k3 and Θ . Comparing
figure 13(a) to figure 9(b), we find that the vibration impact on the FSVD-induced
perturbation at this Es value is rather limited, and again, the minima of the Ũf curves
indicate the critical frequency distinguishing the non-modal and modal perturbations.
In contrast, the amplitudes Ũ+ in the downstream locations do not show local minima,
as shown in figure 13(d). To avoid the transition of Ũf from non-modal to modal
perturbations and perform a clear investigation of the bypass transition, we select ωf = 0
in the following. It is seen from figures 13(b,e) that Ũf and Ũ+ show broad peaks at a
downstream location x = 240 in a region around k3 = 1.4. Setting k3 = 1 and ωf = 0, we
plot the dependence of Ũf and Ũ+ on the wave angle Θ = tan−1(k2/k3) in figures 13(c, f ),
respectively. It should be noted that an FSVD with both ωf = 0 and k2 = 0 is not possible
from the dispersion relation (2.9), so the curves in the close neighbourhood of Θ = 0
are not shown. Apparently, the boundary-layer response to both FSVD and vibration is
stronger when the wave angle Θ is small. Therefore, in order to achieve a relatively
high boundary-layer response, we choose ωf = 0, k3 = 1 and Θ = 15◦ in the following
nonlinear calculations.
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Figure 11. Streamwise evolution of (a) Ũf , (b) T̃f ), (c) Ũ±, (d) T̃±, and (e, f ) Ã± ≡ Ũ±/Ũf ), where k3 = 1,
Θ = 45◦, ωs = 0.05 and ωf = 0.

4. Nonlinear evolution of the streaks and their SI

4.1. Nonlinear evolution of the streaks excited by FSVD–vibration interaction

As shown in the previous section, the vibration modulates perturbations Ũ± with
frequencies different from that of the FSVD-induced streak, and influences the amplitude
evolution of the latter. If the amplitude of the FSVD Ef is moderate, then the nonlinearity
would not be negligible in the downstream region. In this subsection, we will perform
NPSE calculations for the nonlinear evolution of the boundary-layer perturbations.
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Figure 12. Streamwise evolution of Ũf and Ũ± for k3 = 1, Θ = 45◦ and ωf = 0.17.
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Figure 13. Streamwise evolution of (a–c) Ũf and (d–f ) Ũ± for ωs = 0.05 and Es = 0.01: (a,d) dependence
on ωf for k3 = 1 and Θ = 45◦; (b,e) dependence on k3 for ωf = 0 and Θ = 45◦; (c, f ) dependence on Θ for
ωf = 0 and k3 = 1.

The NPSE calculation starts from X0 = 60, where the base flow already satisfies the
self-similarity solution, and the inflow perturbations are obtained by the aforementioned
HWNNS calculations. In the physical situation, the vibration frequency is usually low, so
the FSVDs with lower frequencies play a more important role. Thus, for demonstration,
we choose the frequency of the FSVD ωf to be zero; the perturbation evolution with
sufficiently low Ef values was shown in figure 11. In NPSE calculations, we choose
(M,N ) = (5, 5), which has been confirmed to be sufficiently accurate as compared with
the results with (M,N ) doubled. The mesh resolution study of the NPSE can be found
in figure 29(b) in Appendix A, and the comparison of the HWNNS + NPSE calculations
with DNS is provided in figure 31 in Appendix B.
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Figure 14. Evolution of the perturbation amplitudes (a) Ũm,n and (b) T̃m,n for ωf = 0, Ef = 10−8, k3 = 1,
Θ = 15◦, ωs = 0.05 and Es = 0.01.

We first choose Ef = 10−8 and perform a comparison between the HWNNS and
NPSE calculations to confirm the consistency of our numerical results. The controlling
parameters are ωs = 0.05, Es = 0.01, ωf = 0, k3 = 1 and Θ = 15◦. The amplitudes of
Ũm,n(x) = maxy(Em,n |ũm,n(x, y)|) and T̃m,n(x) = maxy(Em,n |T̃m,n(x, y)|) obtained by the
two approaches are shown in figure 14. Here, (m, n) denotes a Fourier mode with frequency
mωs and spanwise wavenumber nk3. Both the entrainment of the vortical perturbation
(0, 1) and its interaction with the surface vibration (±1, 1) obtained by the two approaches
agree perfectly. The agreement of the perturbation profiles at x = 300, as shown in
figure 15, is also achieved.

For the calculations of the nonlinear evolution, we choose five groups of controlling
parameters with different vibration amplitudes Es as shown in table 2. In this subsection,
we let the FSVDs consist of a pair of oblique stationary vortical perturbations with
opposite wall-normal wavenumbers ±k2:

Ef
(
ϕ̂f ,+ exp(i(k2y + k3z)) + ϕ̂f ,− exp(i(−k2y + k3z))

)+ c.c. (4.1)

Such a selection ensures the symmetric feature about the y = 0 plane. Note that although
the FSVD amplitudes Ef in table 2 are chosen to be as small as 0.0005, the superposition
of the four Fourier components (including ϕ̂f ,+, ϕ̂f ,− and their complex conjugates)
determines the physical amplitude of the FSVD to be 0.002. The boundary-layer responses
to the FSVDs are denoted by ϕ̃f ,±(x, y) exp(ik3z), and the two components together show
a longitudinal streak feature in the boundary layer.

Figure 16(a) plots the streamwise evolution of Ũm,n of the representative Fourier modes
excited by the FSVDs for case A. Because Ef is not large, the excited streak mode (0, 1)

calculated by NPSE (marked by the red solid line) agrees well with the prediction given
by the HWNNS approach (marked by the squares) or the LPSE (marked by the circles).
However, the NPSE has the capability to predict the evolution of higher-order harmonics,
such as (0, 2), (0, 3), and so on, as well as the mean-flow distortion (MFD) (0, 0). Initially,
these components are taken to be zero at the inlet due to their small magnitudes. However,
they are excited in the downstream region due to nonlinearity. This mismatch results in a
kink in each curve near the inlet, but it does not affect the downstream NPSE calculations
since different choices of X0 yield the same downstream perturbation field. The harmonic
streak mode (0, 2) and MFD (0, 0) are generated through the self-interaction of (0, 1)

or the mutual interaction of (0, ±1), which grow with a rate twice of that of (0, 1) in
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Figure 15. Wall-normal profiles of (a) ũf , (b) w̃s, (c) ũ+ and (d) ũ− at x = 300. The parameters are the same
as in figure 14.

Case ωf k3 Θ Ef ωs Es

A 0 1 15◦ 0.0005 0 0
B 0 1 15◦ 0.0005 0.05 0.005
C 0 1 15◦ 0.0005 0.05 0.01
D 0 1 15◦ 0.0005 0.05 0.02
E 0 1 15◦ 0.0005 0.05 0.03

Table 2. Parameters for perturbations for the nonlinear calculations.

the downstream region, with the former being stronger. For the vibrating wall cases, as
shown in figures 16(b–e), because of the additionally introduced perturbation (1, 0), the
Fourier modes (±1, 1) are exited. Overall, the NPSE calculations of (±1, 1) and (0, 1)

are smaller than the HWNNS calculations in the region x > 120, and the discrepancy
enlarges as the vibration intensifies. Comparing the evolution of the streak mode (0, 1)

for different cases, it is again seen that the stabilising effect of the vibration on the
streak mode is evident, and the amplitudes of (±1, 1) even exceed the FSVD-induced
perturbation (0, 1) in downstream locations for case E. The implication is that for this
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Figure 16. Nonlinear evolution of the amplitude of the boundary-layer perturbations Ũm,n for ωf = 0 and
ωs = 0.05, where (a–e) show cases A–E.

case, the streaky structure is strongly influenced by the vibration, which could alter its
SI. This phenomenon was also reported in many papers for incompressible flows (Hack
& Zaki 2014, 2015; Hicks & Ricco 2015). Since the amplitudes of the components (0, 2)

and (0, 0) have reached O(0.01) in the downstream region for all cases considered, their
influence on the streaky structure and its instability property is non-negligible, as will be
studied in the next subsection.
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ŬB
0.5 1.0

3
6

2

0

1

50
100

150
200

300
250

3
6

2

0

1y

z x

x
z

y

x
z

y

y

z x

(b)

(a)

(c)

Figure 17. Contours of the streamwise velocity ŬB of the streaky base flow: (a) case A; (b) case C with t = 0;
(c) case E with t = 0.

4.2. The SI analysis
The streaks do not break down themselves, but they could support SI modes with higher
growth rates, which can be analysed by the numerical approach in § 2.6.

4.2.1. The SI analysis for case A
For case A, the streak is stationary with a long streamwise length scale compared to the
SI wavelength, and the SI analysis can be performed at a chosen x position based on
the parallel-flow assumption. Figure 17(a) shows the streaky structure obtained by the
NPSE calculation, where the spanwise domain size is set to be one wavelength of the
FSVD, 2π/k3 ≈ 6.28. As x approaches downstream, the mean velocity ŬB shows stronger
gradients in both the spanwise and wall-normal directions.

The temporal SI analysis is performed by solving (2.14) numerically. The growth rates ωi
of the most unstable varicose and sinuous modes at three streamwise locations are shown
in figure 18(a). The perturbation profiles of representative varicose and sinuous modes at
x = 300 are displayed in figure 19, showing a symmetric and an anti-symmetric feature
along the centreline, respectively. For the base-flow profiles concerned here, the varicose
mode is overall more unstable. At each streamwise location, the unstable zone shows two
peaks, and the one with a higher wavenumber is more unstable. This is a reminiscent
of the Mack mode instability for a Blasius base flow, but the instability property is
modified quantitatively by the streaks. As x approaches downstream, the peak value of the
second lobe decreases mildly, with its corresponding wavenumber shifted to a lower value.

999 A57-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.938


Q. Song, M. Dong, L. Zhao, X. Chu and N. Wu

0 0.5 1.0 1.5 2.0 2.5
0.85

0.90

0.95

1.00

Cr

Mode I

Mode II

x = 180 x = 240 x = 300

0.5 1.0 1.5 2.0 2.50

0.02

0.04ωi

ω

0.06

0.08

0 0.5 1.0 1.5 2.0 2.5

0.02

0.04

0.06

0.08

α α

–α∼i

(b)(a) (c)

Figure 18. Dependence on α of (a) the temporal growth rate ωi, (b) the phase speed Cr and (c) the spatial
growth rate −α̃i, of representative unstable SI modes for case A.
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Figure 19. Eigenfunctions of |ũSI | at x = 300 for case A: (a) mode I for α = 1.4; (b) mode II for α = 1.57.
The dashed lines represent the contours of the base flow ŬB.

The phase speeds Cr, shown in figure 18(b), vary in the region (0.88, 0.94), indicating an
inviscid nature of the SI modes. Using the Gaster transformation (Gaster 1962; Xu et al.
2023), we are able to convert the temporal growth rate to the spatial growth rate via

α̃ = α̃r + iα̃i = (α − ωi sin ϑ/|Cg|) − i(ωi cos ϑ/|Cg|), (4.2)

where Cg ≡ |Cg| exp(iϑ) ≡ ∂ω/∂α is the complex group velocity. The spatial growth rate
−α̃i is plotted in figure 18(c), and a feature similar to that in figure 18(a) is evident.

The accumulated amplitude of a linear perturbation can be predicted by an N-factor,
defined by

N(x) =
∫ x

x1

−α̃i(x) dx, (4.3)

where x1 denotes the neutral location of the unstable perturbation. Based on the spatial
growth rates −α̃i shown in figure 20(a), the N-factors for different ω values are shown
in figure 20(b). For ω � 1.17, the N-factor grows gently with x until the end of the
calculation, and the greatest value of the N-factor is 4.49, appearing for ω = 0.5 at
x = 300. For a higher ω value, the N curve undergoes a sharp increase at a certain position,
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Figure 20. Evolution of (a) spatial growth rates −α̃i and (b) N-factors of the SI modes for different
frequencies predicted by SI analysis for case A. The dash-dot-dotted lines denote the zero value.

due to the appearance of the second peak of the varicose mode. This sharp increase moves
upstream as ω increases, agreeing with the peaks of the growth rates shown in figure 20(a).

4.2.2. The SI analysis for cases with vibrating walls
For a vibrating wall, because the excited streaks vary with longer time and length scales
than the SI modes, the SI analysis should be performed at a frozen time and streamwise
location. Two snapshots of the streaky structure of cases C and E at t = 0 are shown
in figures 17(b) and 17(c), respectively. Figures 21(b), 21(c) and 21(d) further show the
contours of the unsteady streaky base flow at x = 300 at different time instants for case
C, and the base flow for case A is also shown in figure 21(a) for comparison. Here, the
vibrating period is defined as Ts = 2π/ωs. The distortion of the streaky base flow by the
unsteady vibration at different phases is clearly displayed.

The growth rates of the SI modes for the base flow shown in figure 21 are compared
in figure 22. Because the base flow for case C is not symmetric along the centreline, it
is not possible to define the varicose and sinuous modes. Therefore, we denote the two
most unstable modes by mode I and mode II. For case C at t = Ts/4, the growth rate
for the most unstable wavenumber band is quite close to that for case A. The vibration
leads to a slight destabilising and stabilising effects on modes I and II, respectively. The
instability properties for t = 0 and Ts/2 are almost the same, for which both modes I and
II have greater growth rates in a wide wavenumber band, except in a local region around
the peaks of the two modes for case A. For case E, because the streaky structure is severely
influenced by the vibration, more SI modes with greater growth rates can be found, and
figure 23 displays only the most unstable two or three modes at different time instants.
The destabilising effect due to the vibration is evident for the whole wavenumber band.
The eigenfunctions of the most unstable modes for cases C and E are show in figure 24.
For all the plots, the eigenfunctions peak at the localised region around the shoulder of the
skewed mushroom-type structure where the shear is strong.

For an unsteady streaky base flow, the amplitude accumulation should be calculated
in a more complicated way than that for case A, i.e. the integral path of the N-factor
should follow the trajectory of the group velocity of the SI mode. The premise is that the
variation of the streaky base flow is in a much longer length scale than the wavelength of
the SI mode. Denote the SI growth rate at a time t and a location x as −α̃i(x, t). Then the
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Figure 21. Contours of the instant streamwise velocity ŬB of the unsteady streaky base flow at x = 300:
(a) case A; (b) case C at t = 0; (c) case C at t = Ts/4; (d) case C at t = Ts/2.
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Figure 22. Dependence on α of the temporal growth rate ωi of representative unstable SI modes for case C at
x = 300, where the result for case A is also shown for reference: (a) mode I, (b) mode II.

N-factor can be calculated by

N(x, t̄0) =
∫ x

x1

−α̃i(x̄, t̄0 + x̄/Cg,r) d x̄, (4.4)
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Figure 23. Dependence on α of the temporal growth rate ωi of representative unstable SI modes for case E at
x = 300, where the result for case A is also shown for reference: (a) t = 0 and Ts/2; (b) t = Ts/4.

where Cg,r denotes the group velocity of the SI mode, and t̄0 is the initial time instant
t0 distinguishing the initial phase. In figure 25, we show one example of the calculation
strategy for ω = 1.33 for case C. First, we plot the growth rate contours in the x−t plane in
figure 25(a), where the results for five time periods are shown. The growth rate shows
an appreciable variation for different phases within one period, but overall it shows a
broad peak in the interval x ∈ (210, 300). The contours of the group velocity are shown in
figure 25(b), which shows a peak at x ≈ 195, but becomes smaller at further downstream
positions. The propagation trajectories of the SI modes in the x−t plane are shown by
the arrowed lines, which are the basis for the calculations of the N-factor starting from
different phases. In figure 25(c), the dependence on x of the growth rates along the
16 trajectories is shown by the grey curves, with their averaged value marked by the
red dashed line. For comparison, the result for case A is plotted by the black line. For
x < 180, the effect of vibration on the SI growth is a little stabilising, but a destabilising
effect is evident for most of the initial phases in further downstream locations. Integrating
−α̃i(x̄, t̄0 + x̄/Cg,r) along x̄, we obtain the N-factor for different initial phases t̄0, as shown
in figure 25(d). It is seen that at this frequency, the evolution of the averaged N-factor
for case C is rather close to that of case A, but the instantaneous N-factor scatters in the
downstream region, showing an intermittent feature of the accumulated SI perturbations.

In figure 26, we examine the evolution of the growth rate and the N-factor for two other
representative frequencies. Among the 16 curves starting from different initial instants, we
choose the two with the maximum and minimum values of the N-factor at x = 300, shown
by the dashed and dotted lines. The time-averaged values are also shown by the curves
with circles. As shown in figures 26(a,c), the growth rate for each case fluctuates in the
downstream region, but the averaged growth rate is overall suppressed by the vibration
for ω = 0.83, and enhanced by the vibration for ω = 2. Integrating the growth rate along
x, we obtain the evolution of the N-factors in figures 26(b,d). As expected, the averaged
N-factor in the downstream region is reduced for a low frequency, but is increased for a
high frequency. Since the high-frequency perturbations attain a greater N-factor, they may
be more important on triggering the bypass transition. Additionally, comparing the results
for cases C and D, it is found that a stronger vibration leads to a greater increment of the
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Figure 24. Eigenfunctions of |ũSI | of mode I for cases C and E at x = 300: (a,b) t = 0; (c,d) t = Ts/4;
(e, f ) t = Ts/2. The dashed lines represent the contours of the base flow ŬB.

N-factor. Meanwhile, at different initial time instants, the N-factor at x = 300 and ω = 2
for case D can vary from 5 to 11, indicating the intermittent emergence of high-amplitude
perturbations.

The dependence of the N-factors on ω for x = 240 and 300 is summarised in
figures 27(a) and 27(b), respectively, where the shaded areas represent the results for the
16 initial phases. To better quantify the impact of the wall vibration on the amplitude
accumulation, we introduce

�N(x, t̄0) = N(x, t̄0) − NEs=0(x) (4.5)
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Figure 25. Contours of (a) the growth rate −α̃i(x, t) and (b) the group velocity Cg,r in the x−t plane for
ω = 1.33 for case C. The arrowed lines denote the trajectories of the SI propagation for different initial phases.
(c,d) The growth rate and the N-factor for different initial phases, respectively, where the results for their
averaged value and those for case A are shown by the red and black lines, respectively.

to denote the change of the N-factor relative to the no-vibration case. The results of
�N(240, t̄0) and �N(300, t̄0) are shown in figures 27(c) and 27(d), respectively. It is
clearly seen that for ω < 1.33, the majority of the SI perturbations are suppressed by the
vibration (�N < 0), whereas for ω > 1.33, an overall enhancement is observed (�N > 0).
Additionally, the shaded areas are wider for a higher-frequency band. The implication is
that although on average the perturbations are enhanced by the vibration with ω > 1.33, a
postponement of transition can also be observed at some time instants, showing a strong
intermittent feature.

In figure 28(a), we further summarise the dependence of �N at x = 300 on initial phases
for ω = 0.83. The values of �N for both cases B and C are less than −0.18, indicating
a stabilising effect of the vibration for the relatively low-frequency SI modes. The �N
values vary remarkably as the initial phase changes, and the averaged stabilising effect,
shown by the dashed lines, is stronger when the vibration amplitude Es is larger. However,
for higher frequencies, ω = 1.33 or 1.67, as shown in figures 28(b,c), an overall strong
destabilising effect of the vibration is observed, except at some particular initial phases.
The implication is that premature transition may appear if the high-frequency SI modes
are the key factor to trigger the bypass transition.

5. Concluding remarks and discussion

For cruising high-speed vehicles, the surface vibration frequently appears as wall
perturbations, which may induce an appreciative effect on the laminar–turbulent transition,
leading to a remarkable change of the aerodynamic performance of the flights.
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Figure 26. Streamwise evolution of (a,c) growth rate −α̃i and (b,d) the N-factor of the SI modes, for (a,b)
ω = 0.83 and (c,d) ω = 2.0. Black curves indicate case A; red curves indicate case C; blue curves indicate
case D. Solid lines with circles indicate time-averaged value; dashed (dotted) lines indicate a phase where the
growth rate at x = 300 reaches the maximum (minimum) value.

However, this mechanism is not well understood. To address this issue, in this paper
we develop a novel, high-efficiency numerical approach, namely (i) calculating the
entrainment of the freestream vortical disturbances (FSVDs) and the excitation of
the non-modal streaks using the harmonic weakly nonlinear Navier–Stokes (HWNNS)
approach to accommodate the rapid distortion of the perturbation in the leading-edge
vicinity, and (ii) calculating the nonlinear evolution of the streaks in the downstream
region to accommodate the nonlinear interaction of finite-amplitude Fourier modes.
From comparison with the DNS results for a number of representative case studies, the
HWNNS + NPSE approach (where NPSE means nonlinear parabolised stability equation)
is confirmed to be reliable and accurate for calculating the evolution of boundary-layer
perturbations excited by the FSVD–vibration interaction in hypersonic boundary layers.

It is found that the entrainment of low-frequency FSVDs would lead to excitation and
amplification of non-modal perturbations in hypersonic boundary layers, appearing as
longitudinal streaks in both the streamwise velocity and temperature components, and
the temperature perturbation is much greater due to the compressibility effect. If the
perturbation frequency is above a certain value, then the non-modal perturbation would
evolve into the Mack first mode in a downstream position. For a higher frequency, the
transition from non-modal perturbation to the Mack mode appears earlier, and at the same
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Figure 27. Dependence on ω of (a,b) the N-factor and (c,d) �N at x = 240 and 300 for cases A, B, C and D.
Lines indicate time-averaged solutions; shaded areas indicate 16-instants solutions.
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Figure 28. Dependence on t̄0/Ts of �N for the SI modes with (a) ω = 0.83, (b) ω = 1.33 and (c) ω = 1.83 at
x = 300. Lines with symbols indicate results with different initial phases; dashed lines indicate time-averaged
results; yellow-shaded areas indicate �N < 0.

position, the critical frequency distinguishing the non-modal and modal perturbations
increases with the spanwise wavenumber.

When the lateral vibration is considered, the perturbations with frequencies ωf ± ωs
would be excited in the boundary layer. It is found from a scaling estimate that even if
the vibration amplitude is as small as R−1, it would have a leading-order impact on the
FSVD-induced perturbation (with frequency ωf ), because the streamwise gradient of the
FSVD-induced perturbation is also of that magnitude. Therefore, the governing equations
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of ũf and ũ± form a coupled linear system, which is in principle the same as in the
asymptotic study conducted by Hicks & Ricco (2015). These equations are solved using
an iterative scheme. Because in each iterative step the governing equations appear as a
weakly nonlinear form, the HWNNS approach is so-named. A parametric study of the
response to the interaction of the FSVD and the surface vibration based on the HWNNS
approach is carried out. The FSVD-induced non-modal perturbation ũf is suppressed by
the lateral vibration, but the Mack first mode in the downstream region is enhanced. Such
an effect becomes more evident as the vibration intensifies. The perturbation excited by
the FSVD–vibration interaction ũ± increases monotonically with the vibration amplitude.
Therefore, when the vibration is relatively strong, say Es = 0.03, the amplitude of ũ± could
become comparable with that of ũf in a downstream location, indicating a severe distortion
of the FSVD-induced streaks.

Choosing Ef = 0.0005, the FSVD-induced streaks may accumulate to finite amplitudes
in the downstream region. Therefore, the NPSE approach is employed for calculations of
the nonlinear interactions among different Fourier modes. The NPSE calculations start
from x = 60, where the nonlinearity is rather weak, and the inflow perturbations are
obtained by the HWNNS calculations. The lateral vibration induces a Stokes layer of the
spanwise velocity perturbation, which distorts the FSVD-induced streaks remarkably if
the vibration intensity is moderate. Performing the secondary instability (SI) analysis, it
is found that the instability property of the streaky base flow depends strongly on time,
and the SI modes may be promoted or suppressed depending on their initial phases.
Overall, the averaged effect is that the low-frequency and high-frequency SI modes are
stabilised and destabilised by the vibration, respectively. Integrating the growth rates along
the streamwise direction, we find that the high-frequency SI modes can be amplified
by a greater factor, indicating their dominant role in triggering the bypass transition to
turbulence. Therefore, the vibration is likely to promote the bypass transition for our cases,
and a stronger vibration enhances the promotion effect.

It should be noted that our observation is a little different from the incompressible
configurations studied by Hack & Zaki (2014), for which a severe suppression of the
non-modal streaks is observed for the properly chosen parameter set. This may be
attributed to the following reason. The dimensionless amplitude of the vibration velocity
for incompressible boundary layers could reach magnitudes of O(0.1), but such values
are unrealistic for a hypersonic configuration. In the case of weak vibrations with Es =
O(0.01), the suppression effect of the FSVD-induced streaks with frequency ωf is limited.
However, the vibration induces an additional perturbation with a different frequency
ωf ± ωs, which has the potential to be amplified to the nonlinear phase in the downstream
region. Indeed, whether the SI of the streaks is enhanced or suppressed depends on the
combined effect of the aforementioned two factors.

Actually, for hypersonic flights, the flat-plate model with a sharp leading edge studied
in this paper is only idealised, and a blunt leading edge is usually employed to avoid
extreme heat load. In such situations, the bow-shaped leading-edge shock appears, and
the numerical scheme for the HLNS/HWNNS approach employed in this paper is not
adequate to deal with the sharp jump of perturbations. Thus future work may be directed
to the development of the shock-fitting scheme for the HLNS/HWNNS approach, to cope
with the hypersonic transition for more complex geometries. Nevertheless, the present
paper is still a significant step for developing an efficient means for the study of hypersonic
transition.

Funding. This work is supported by the National Science Foundation of China (grant nos U20B2003,
92371104, 12372222, 12002235 and 11988102) and the Strategic Priority Research Program, CAS
(no. XDB22040104).
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Figure 29. Resolution studies for HWNNS and NPSE obtained by different mesh scales. Lines indicate the
standard mesh; squares indicate the mesh refined in the x-direction; circles indicate the mesh refined in the
y-direction.
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Appendix A. Resolution studies for HWNNS and NPSE

In figures 29(a) and 29(b), we show the resolution studies for the HWNNS and NPSE
approaches, respectively, where ωf = 0, k3 = 1, Θ = 45◦ and ωs = 0.05. For the NPSE
calculation, the amplitudes of the FSVD and vibration are chosen from case C. The results
for three mesh scales are compared, where the standard mesh includes 401 × 301 for the
HWNNS approach and 230 × 301 for the NPSE, and the other two mesh scales include
doubled grid points in the x- and y-directions, respectively. Perfect agreement is achieved,
confirming the reliability of our calculations.

Appendix B. Verification of HWNNS and NPSE calculations by DNS

As a newly-developed approach combining the HWNNS and NPSE approaches, the central
issue is to confirm its reliability and accuracy by the well-accepted tool (DNS). The DNS
code is the same as that used in § 2.3, but we need to introduce a low-frequency FSVD
at both the inlet and upper boundaries and a lateral vibration at the wall, and extend the
calculations to be 3-D; the detailed introduction of the DNS approach can be found in
Song, Zhao & Huang (2020) and Song et al. (2023a).

The first group of case studies for verification is selected by putting the amplitude of
FSVDs to be small, Ef = 10−8, for which the high-order harmonics in (2.3) are indeed
negligible. For these cases, the DNS results can be compared directly to the HWNNS
calculations. Figures 30(a) and 30(b) display the streamwise evolution of the amplitude
of Ũf and Ũ± for Es = 0.0001 and 0.01, respectively, and the perturbation profiles at
representative x locations are shown in figures 30(c–h). Although a slight discrepancy
appears for ũ± in the downstream locations, the overall agreement between the results
obtained by the two approaches is quite satisfactory.
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Figure 30. Comparison of the evolution of perturbations between HWNNS and DNS for Ef = 10−8, where
ωf = 0, k3 = 1 and Θ = 15◦, for (a,c,e,g) Es = 0.0001, (b,d, f,h) Es = 0.01. (a,b) Streamwise evolution of Ũf

and Ũ±. (c–h) Wall-normal profiles at x = 15, 30 and 60, in which the horizontal dashed lines denote the
nominal boundary-layer thickness.

In figure 31, we show the results by increasing the FSVD amplitude to Ef = 0.0005,
and the parameters are chosen from cases C and E. It needs to be emphasised that for a
clean comparison, only one Fourier component in (4.1), Ef ϕ̂f ,+ exp(i(k2y + k3z)) + c.c.,
is considered here. Therefore, the numerical results in this figure are different from the
NPSE calculations in figure 16. Although the HWNNS calculations for ũf (or Ũ0,1) and
ũ± (or Ũ±1,1) agree overall with the DNS results with a limited discrepancy, they do
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Figure 31. Comparison of the evolution of perturbations between HWNNS, NPSE and DNS for (a,c,e,g) case
C, and (b,d, f,h) case E. (a,b) Streamwise evolution of Ũm,n. (c–h) Wall-normal profiles at x = 180 and 300, in
which the horizontal dashed lines denote the nominal boundary-layer thickness.

not include the evolution of the MFD, component (0, 0), and the harmonics shown by the
black and brown curves in the DNS results. Since the MFD has reached amplitude 0.006 at
x = 300 for both cases, its impact on the SI would not be neglected. Therefore, the NPSE
calculation is employed to take into account the nonlinear interaction among different
Fourier components, starting from x = 60. After a short adjustment (x ∈ (60, 100)), the
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agreement between the NPSE and DNS results is quite satisfactory. Additionally, as
expected, the NPSE calculations of Ũ0,1 and Ũ±1,1 are a little closer to the DNS results in
comparison with the HWNNS calculations in downstream regions.

To conclude, the above comparison confirms that our HWNNS + NPSE approach
provides reliable and accurate results in comparison with those obtained by DNS, although
there exists a small discrepancy in the downstream region for both low and high Ef values.
The reason may be attributed to the difference between the numerical schemes, i.e. the
central scheme is employed for HWNNS, and the flux-splitting method with the WENO
scheme is employed for DNS. The existence of the sharp leading edge challenges the
numerical approach, and a small discrepancy computed by different numerical schemes
may occur in the leading-edge vicinity, which will not be diminished by increasing the
grid resolution. Such a discrepancy may be removed if the sharp leading edge is replaced
by a blunt leading edge, which will be considered in our future study.
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