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Abstract 20 

Helicobacter pylori (H. pylori) is closely associated with gastric cancer and peptic ulcers. The 21 

effectiveness of antibiotic treatment against H. pylori is diminished by the emergence of drug-22 

resistant strains, side effects, high cost, and reinfections. Given the circumstances, it is 23 

imperative to develop a potent vaccination targeting H. pylori. Understanding H. pylori's 24 

pathogenicity and the host's immune response are essential to developing a vaccine. 25 

Furthermore, vaccine evaluation necessitates the careful selection of design formulation. This 26 

review article aims to provide a concise overview of the considerations involved in selecting the 27 

optimal antigen, adjuvant, vaccine delivery system, and laboratory animal model for vaccine 28 

formulation. Furthermore, we will discuss some significant obstacles in the realm of developing 29 

a potent vaccination against H. pylori. 30 
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Introduction 33 

H. pylori is a helical and partially oxygen-dependent bacteria that can endure in the stomach and 34 

establish a permanent presence. The incidence of H. pylori infection exhibits significant disparity 35 

among countries, with rates as high as 80% in African nations and above 60% in Latin American 36 

countries [1]. Economic development, education level, and sanitary conditions all have an impact 37 

on the variation in H. pylori infection prevalence [2]. Research has indicated that the primary 38 

variables contributing to the transmission of H. pylori during childhood are living in a crowded 39 

household, having a low socioeconomic position, and having parents, particularly mothers, who 40 

are infected with H. pylori [3]. The primary modes of transmission for this infection are oral-41 

oral, fecal-oral, and gastro-oral routes [4]. Transmission by raw chicken flesh is another recently 42 

studied route of infection [5,6]. A complex interaction of host, bacterial, and environmental 43 

factors mediates the clinical consequences of H. pylori infections [7]. Possible consequences 44 

include gastritis, ulcers in the digestive tract, lymphoproliferative gastric lymphoma, and even 45 

stomach cancer [8]. In addition, H. pylori is responsible for extra-gastrointestinal diseases such 46 

as skin disorders, kidney illnesses, allergy symptoms, metabolic syndrome, ischemic 47 

cardiovascular disease, and autoimmune diseases [9]. At present, there are four main first-line 48 

treatment regimens for H. pylori: clarithromycin-containing triple therapy, concurrent therapy, 49 

sequential therapy, and bismuth quadruple therapy. The recommended initial treatment is 50 

quadruple therapy [10]. It is possible for probiotics to improve intestinal microecology and 51 

overall health through their anti-inflammatory and antioxidant processes; nevertheless, they are 52 

not capable of increasing the pace at which H. pylori infections are eradicated. Because of this, 53 

probiotic therapy can only be utilized as an additional therapy in order to lessen the number of 54 

adverse events that are associated with antibiotics [11]. Nevertheless, the eradication of H. pylori 55 

is becoming increasingly challenging due to various factors, including biofilm formation and 56 

resistance to antibiotics [12]. In addition, despite the successful elimination of bacteria, H. pylori 57 

infection can potentially recur, causing financial and psychological burdens for patients. Hence, 58 

it is imperative to prioritize the focus on vaccine development. 59 

Despite the potential of the vaccine as a viable solution to achieve worldwide eradication of H. 60 

pylori, its development remains a formidable undertaking. The majority of research pertaining to 61 

this matter is still in its nascent phase and encounters significant obstacles, such as uncertainties 62 
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surrounding H. pylori's ability to evade the immune system and financial constraints [13,14]. 63 

Subsequently, the quest for a vaccination against H. pylori has entered a phase of swift 64 

advancement. Multiple H. pylori vaccines have been subjected to ongoing or concluded clinical 65 

trials. The primary obstacles to the development of an H. pylori vaccine encompasses the 66 

absence of sophisticated vaccine candidates [13,14], H. pylori's immune evasion tactics [15], 67 

restricted efficacy, insufficient animal models [16], as well as the financial and adherence 68 

aspects [17].  69 

This review article seeks to offer a succinct summary of the factors to be taken into account 70 

when choosing the most suitable antigens, adjuvants, vaccine delivery systems, route of 71 

administration, laboratory animal models, and the associated obstacles. Moreover, we will 72 

examine other substantial challenges in the field of establishing an efficacious vaccination for H. 73 

pylori. 74 

Vaccination against H. pylori, yes or not? 75 

Considering that almost 30 years have passed since the initial vaccine against H. pylori 76 

underwent a clinical trial, and no further progress has been made, it prompts the question of 77 

whether immunization against this bacterium should be pursued or not. If we persist in following 78 

this course of action, what are the impediments, and what strategies may we employ to enhance 79 

our accomplishments? 80 

The development of a vaccine against H. pylori has been challenging, and there are currently 81 

only a few vaccines in phase I clinical trials [14,18,19]. In addition, some progress has been 82 

made in the production of an efficient vaccine against H. pylori, with a recent phase III clinical 83 

trial reporting good prophylactic aspects for an oral vaccine [20]. Vaccination against H. pylori 84 

might have either positive or negative outcomes. The potential risks of an H. pylori vaccine 85 

includes the possibility of adverse effects for conditions that are inversely associated with H. 86 

pylori prevalence in worldwide populations, as H. pylori eradication may have unintended 87 

consequences [18]. Additionally, the limited protection generated in animal models raises 88 

concerns about the effectiveness of the vaccine in providing complete immunity [13]. 89 

Furthermore, the use of antibiotics in current H. pylori eradication therapies have drawbacks 90 

such as limited compliance, adverse reactions, and the risk of bacterial antibiotic resistance 91 
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development [21]. Therefore, the potential risks of H. pylori vaccine development encompasses 92 

not only the safety and efficacy of the vaccine itself but also the broader implications of H. pylori 93 

eradication and the limitations of current treatment options. Besides, vaccination has been shown 94 

to be effective in the prophylaxis and therapy of infectious diseases, and an H. pylori vaccine 95 

could protect against peptic ulcer disease and mucosa-associated lymphoid tissue (MALT) 96 

lymphoma [13,22]. Some vaccine formulations have shown a significant reduction in H. pylori 97 

colonization in animal models, indicating the potential for disease prevention . Additionally, 98 

vaccination could limit the use of antibiotics for H. pylori treatment, potentially reducing adverse 99 

reactions and the development of antibiotic resistance [14,17]. Overall, an effective H. pylori 100 

vaccine could provide significant benefits in terms of disease prevention, treatment, and public 101 

health impact. Despite these challenges, vaccination against H. pylori is considered the only 102 

practical approach to large-scale elimination of the bacterium [17]. 103 

Current status of the H. pylori vaccine 104 

Efforts by businesses and research institutions to create H. pylori vaccines in recent years have 105 

met with no results. Vaccines are now in their infancy, with the majority being in either phase I 106 

or preclinical development. Table 1 summarizes the most important potential vaccines, 107 

adjuvants, animal models, and immunological outcomes. 108 

 109 

Table1 . A summary of the primary H. pylori vaccines published in the literature, including their compositional 110 

properties and immune response data. 111 

Vaccine Antigen 

(s) 

Type of 

vaccine 

Prophylac

tic/ 

Therapeu

tic 

Route Adjuvant 

(s) 

Animal 

model 

Immunolog

ical effects 

 

Outcome Stage Re

f. 

H. pylori 
Hel 305 

- Whole cell Prophylact

ic 

Sublingual/ 

Oral 

mmCT C57BL/

6 mice 

↑α4β7+CD4
+ T cells, 

IFN-γ, and 
IL-17A 

↓Hp 

colonizatio

n 

Preclini

cal 

[38

] 

H. pylori 

SS1  

 

- Whole cell Therapeuti

c 

Oral Chitosan 

particles 

BALB/c 

mice 

↑IL-12, 

IFN-γ, IL-2, 

IL-10, 

humoral, 

Th1 and 

↓Gastritis 

and  Hp 

colonizatio

n 

Preclini

cal 

[39

] 
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Th2 

responses 

H. pylori  

 

- Whole cell Prophylact

ic 

Intranasal/

Oral 

CpG-ODN C57BL/

6 mice 

↑IgG2a and 

IFN-γ 

Prevention 

90% 

Preclini

cal 

[40

] 

H. pylori 

SS1 

- Whole cell Prophylact

ic 

Oral α-GalCer C57BL/

6 mice 

↑Intestinal 

and 

systemic 

Th1 

responses, 

antibody, 

CD1d, IL-

1R, IL-17R 

signaling 

Prevention 

70%, 

↓inflamma

tion 

Preclini

cal 

[21

] 

H. pylori 

 

- Whole cell Therapeuti

c 

Oral LT 

(R192G) 

- ↑Specific 

antibodies 

Did not 

eradicate 

H. pylori 

Phase I [41

] 

H. pylori - Whole cell Therapeuti

c 

Oral Chitosan 

particles 

BALB/c 

mice 

↑IFN, IL-

12, IL-10, 

IL-4 

↓IgG2a/IgG

1 ratio 

Prevention 

60% 

Preclini

cal 

[42

] 

pBudCE

4.1 

vector- 

FlaA 

FlaA Nucleic acid - Intramuscu

lar 

- BALB/c 

mice 

↑IgG, IgM, 

INF-γ, IL-2, 

IL-4, and 

IL-12 

 

- Preclini

cal 

[43

] 

pcDNA3

.-cagW–

CS-NPs 

CagW Nucleic acid Therapeuti

c 

Intramuscu

lar 

Chitosan 

nanoparticl

es 

BALB/c 

mice 

↑IFN-γ, IL-

2, IL-4, and 

IL-12, IgG, 

IgM 

↓Hp 

colonizatio

n 

100% of 

mice 

survived 

from 

challenge 

Preclini

cal 

[44

] 

pIRES2-

oipA-

IL(17-

18-22) 

OipA Nucleic acid Prophylact

ic 

Intraderma

l 

IL-17A, 

IL-18, IL-

22, Foxp3 

BALB/c 

mice 

↑IgG1, 

IgG2, IgA 

↑Th1 and 

Th17 

response 

 

Sterile 

immunity 

in  IL-17-

adjuvanted 

↓4-log 

bacterial 

load in 

Preclini

cal 

[45

] 
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IL-22- 

adjuvanted 

pcDNA3

- CagA-

VacA-

BabA 

CagA, 

VacA, 

BabA 

Nucleic acid Therapeuti

c 

Intramuscu

lar 

PVP40 BALB/c 

mice 

↑Apoptosis, 

T cell 

proliferation

, TNF-α, 

Th1,  Th2 

and  CD3+T 

cells 

activation 

↓Infiltration 

FOXP3+ T 

cells 

Suppress 

growth of 

GC 

Preclini

cal 

[46

] 

pVAX1-

pOipA 

OipA Nucleic acid Prophylact

ic 

Intraderma

l 

pIL-2 and 

pLTB 

C57BL/

6 

↑IFN-γ, IL-

2, IL-10, 

IL-12, IgG1 

and IgG2a 

Shifting the 

immune 

response 

from a Th2 

to a Th1 

Sterile 

immunity 

in  two 

mice 

(n=10) 

↓4-log 

bacterial 

load 

 

Preclini

cal 

[47

] 

CFAdE 

 

UreA, 

UreB, 

Lpp20, 

HpaA,Ca

gL 

Epitope Prophylact

ic 

Oral CTB, CFA, 

Polysaccha

ride 

adjuvant 

(PA) 

BALB/c 

mice 

↑IgG, sIgA, 

CD4+ Tcells 

↓Hp 

colonizatio

n, Gastritis 

Preclini

cal 

[26

] 

FVpE NAP, 

CagA,  

VacA, 

Urease 

Epitope Therapeuti

c 

Oral NAP, PA, 

LBP, 

chitosan 

Mongol

ian 

gerbil 

↑IgG, IgA, 

IFN-γ, IL-4, 

IL-17, 

CD4+ T cell 

↓Hp 

colonizatio

n 

Preclini

cal 

[48

] 

HUepi Urease, 

CagA, 

HpaA 

Epitope Therapeuti

c 

Oral LTB BALB/c 

mice 

↑CD4+ T 

cell 

Mucosal 

IgA, IgG 

↓Hp 

colonizatio

n 

Preclini

cal 

[49

] 

CWAE 
 

Urease, 
NAP, 

Hsp60, 
HpaA 

 

Epitope Therapeuti

c 

Oral CTB, NAP, 

CFA, 

aluminium 

hydroxide 

BALB/c 

mice 

↑mixed 
CD4+ T cell 

response 
IgG, IgA 

(sIgA), IL-
4, IFN-γ, 
and IL-17 

↓Gastritis, 

Hp 

colonizatio

n 

Preclini

cal 

[28

] 

Ty1033 UreA Vector (S. Therapeuti Oral - Human No immune Couldn’t  Phase I [31
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and 

UreB 

enterica 

Typhi) 

c volunte

ers 

response to 

antigens 

eradicate 

H. pylori 

infection, 

No serious 

adverse 

effects 

] 

Ty21a- 

UreA-

UreB 

UreA 

and 

UreB 

Vector (S. 

enterica 

Typhi) 

Prophylact

ic 

Oral - Human 

volunte

ers 

Detected 

specific T 

helper cells 

in 69% (9 

of 13) 

Well 

tolerance, 

cannot 

satisfactor

y 

protection 

Phase I [50

] 

EGDeA

B-

MECU 

UreB, 

FlaA, 

AlpB, 

SabA, 

and 

HpaA 

Vector (L. 

monocytoge

nes) 

Therapeuti

c 

Oral and 

Intravenou

s 

- BALB/c 

mice 

↑IgG, IgA 

(sIgA), IL-

4, IFN-γ, 

and IL-17 

↓Hp 

colonizatio

n 

Preclini

cal 

[33

] 

UreB-

LTB 

UreB Subunit Prophylact

ic 

Oral LTB children 

aged 6–

15 years 

↑IgG, IgA, 

sIgA, IL-4, 

IFN-γ, and 

IL-2 

Strong 

humoral 

and 

cellular 

immunity, 

can 

provide up 

to 3 years 

of 

continuous 

protection 

against H. 

pylori 

infection 

Phase 

III 

[20

] 

Multi-

antigen 

VacA, 

CagA, 

NAP 

Subunit Prophylact

ic 

Intramuscu

lar 

Aluminium 

hydroxide 

Human 

volunte

ers 

↑IgG, IgA, 

sIgA, IL-4, 

IFN-γ, IL-

10, IL-17, 

and IL-2 

Strong 

humoral 

and 

cellular 

immunity, 

cannot 

satisfactor

y 

protection 

Phase 

I/II 

[51

] 
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 112 

 113 

Due to the continuous regeneration of the stomach mucosa and the acidic pH of the stomach, H. 114 

pylori is able to evade the body's immunological response [23]. Also, complete eradication of H. 115 

pylori does not guarantee continuous safety. An H. pylori vaccination would decrease the 116 

occurrence and intensity of gastrointestinal diseases while also providing protection or large-117 

scale elimination of the bacterium [24]. Choosing a viable technique for administering a 118 

preventative or therapeutic vaccine, along with an efficient adjuvant and immunogenic bacterial 119 

antigens, is crucial [25]. Vaccines contain several antigens associated with vaccination, such as 120 

Urease (UreB and UreA), Vacuolating cytotoxin A (VacA), Cytotoxin-Associated Gene A 121 

(CagA), Neutrophil-activating protein (NapA), H. pylori adhesin A (HpaA), Blood group 122 

antigen-binding adhesion (BabA), hook-associated protein 2 homologue (FliD), outer membrane 123 

proteins (OMPs), Heat-shock protein A (HspA), gamma-glutamyl transpeptidase (GGT), and 124 

Outer inflammatory protein A (OipA)  [15]. The CFAdE [26], CTB-HUUC [27], and CWAE 125 

[28] vaccines consist of antigens and adjuvants that contain epitopes specifically expressed on 126 

CD4+ and CD8+ cells. Mucosal adjuvants, such as cholera toxin and Escherichia coli 127 

enterotoxin, have been used to increase the immunogenicity of many vaccinations, including 128 

whole-cell, subunit, and multiepitope vaccines [29]. Moreover, it is recommended to use 129 

intramuscular H. pylori subunit vaccines along with aluminum hydroxide adjuvants. 130 

Additionally, administering live vector vaccines such as Salmonella, Lactobacillus, and Listeria 131 

monocytogenes that express H. pylori antigens orally can help improve long-lasting immunity 132 

[30–33] 133 

Vaccines are predominantly in the preclinical or phase I stages, exhibiting inconsistency and 134 

yielding varying outcomes . The findings of a phase III randomized trial, however, demonstrated 135 

that oral vaccinations containing recombinant UreB were both safe and efficacious in children 136 

[14,19,20]. H. pylori vaccinations proved ineffective in reducing microbial load and only offered 137 

limited immunity in smaller animals and people [34]. One of the best ways to stop malignant 138 

gastric tumors and other serious problems linked to H. pylori infection, though, would be to 139 

create a vaccine that targets the bacteria [35]. Especially in the context of antibiotic resistance, 140 

the development of vaccines could make a particularly significant contribution [14,24,36]. 141 
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Potential candidates for the H. pylori vaccination are thoroughly reviewed in the references 142 

[14,36,37]. 143 

Host immune response against H. pylori 144 

H. pylori can trigger a diverse range of immune responses, leading to chronic inflammation and 145 

infection in the stomach. Bacterial components such as lipopolysaccharide, peptidoglycan, 146 

lipoteichoic acid, HspA, hypo-methylated CpG DNA, and NapA stimulate pattern recognition 147 

receptors, leading to the activation of many signal transduction pathways in gastric epithelial 148 

cells [15]. The intracellular signaling pathways involving mitogen-activated protein kinases and 149 

NF-κB play a significant role in activating the c-fos and c-jun genes. This activation leads to a 150 

substantial increase in the production of pro-inflammatory cytokines, specifically IL-8 [52]. A 151 

recent study discovered a correlation between certain variations in the genes responsible for toll-152 

like receptors (TLRs) 1, 2, 5, and 10 and an increased occurrence of H. pylori infection in a 153 

population from Turkey [53]. This discovery corroborates previous studies that have highlighted 154 

the significance of these pattern recognition receptors in the commencement of the infection 155 

[54,55]. The conserved domain D1 is found in bacterial flagellins and is acknowledged by TLR5. 156 

It is noteworthy that H. pylori does not exhibit this domain. However, a recent study found that 157 

the CagL protein, which is a component of the type IV secretion system (T4SS), can activate 158 

TLR5 even in the absence of flagellins [56]. Furthermore, as reviewed  in [57], the T4SS plays a 159 

crucial role in facilitating the activity of CagA by delivering this pathogenic factor directly into 160 

the cells of the gastric epithelium.  161 

At first, when the immune system is triggered, phagocytes are called upon, specifically in the 162 

stomach mucosa. Additional mechanisms include the production of targeted antibodies and the 163 

movement of activated CD4+ and CD8+ T cells to the stomach epithelium [58]. There is 164 

increasing evidence suggesting that a T helper 1 (Th1) response, which stimulates inflammation, 165 

may arise [59]. Furthermore, inspection of H. pylori infection in adults discovered increased 166 

levels of IL-17, emphasizing the significance of  T helper 17 (Th17)-type cytokines in that 167 

particular context [60]. An interesting component of the effectiveness of the anti-H. pylori 168 

vaccine is its ability to stimulate the Th17 immune profile [61,62]. H. pylori must decrease the 169 

activity, proliferation, and clonal expansion of effector T cells (Th1 and Th17 subsets) in order to 170 

colonize successfully. The γ-glutamyl transpeptidase (GGT) and VacA are two important 171 
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virulence factors that destroy T cell-mediated immunity. As a result, considering these two Th 172 

subsets and eliciting vaccination against GGT and VacA is critical to developing an effective 173 

vaccine [63]. Furthermore, IL-27 is a cytokine that plays a crucial role in determining the 174 

consequences of H. pylori infection. The latest investigation revealed that levels of IL-27 are 175 

elevated in patients who are positive for H. pylori in comparison to those who are negative for H. 176 

pylori. Remarkably, this molecule was discovered to have a positive correlation with Th1 177 

cytokine expression and a negative correlation with Th17 cytokine expression in both human 178 

serum and stomach mucosa [64]. When developing an anti-H. pylori vaccine, it is crucial to 179 

consider the role of IL-27, as it seems to have a substantial inhibitory impact on the Th17 profile. 180 

Several studies evaluated cell- and antibody-mediated immunity in urease vaccine-induced H. 181 

pylori protection in mice. The research shows that vaccination with the urease antigen requires 182 

MHC class II-restricted, cell-mediated pathways to protect against H. pylori infection, not 183 

antibody responses. Cell-mediated immunity was essential to removing H. pylori in mice 184 

injected with urease vaccination and adjuvant [65,66]. Post-H. pylori infection, gastrointestinal 185 

mucosa responses were dominated by CD4+ T cells, notably Th1 cells that produce interferon-186 

gamma IFN-γ [67,68]. in addition, H. pylori infection increased CD4+ T cells in rhesus monkey 187 

stomachs [69]. The main immunological responses seen were Th1 responses, typified by IL-2 188 

and IFN-γ production, and proinflammatory cytokine responses. No T helper (Th2) response was 189 

observed [69]. Tregs suppress the immune system by releasing immunosuppressive cytokines 190 

like IL-10 and transforming growth factor-β (TGF-β) to manage the inflammatory response to H. 191 

pylori [70,71]. In purposefully infected mice, Tregs decreased CD4+ T cell development, which 192 

may persistent the infection [72,73]. Conversely, mice without Treg cells had lower bacterial 193 

levels, increased Th1 responses, and more severe gastritis [72]. According to accumulated 194 

evidence, the protective immunity that the H. pylori vaccination induces might not be an 195 

antibody-based response. Ermak et al. showed that the urease vaccination protected B-cell-196 

deficient mice as well as wild-type mice [66]. A study found that B-cell-deficient (μMT) mice 197 

had better H. pylori eradication after 8 weeks of infection compared to wild-type mice [74]. 198 

However, investigations have shown that antibodies are essential for H. pylori eradication [75]. 199 

Targeted monoclonal antibodies can effectively inhibit urease [76]. Guo et al. created and tested 200 

the UreB vaccination on mice. This immunization increased IgG and IgA antibody production, 201 
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which blocked urease and reduced H. pylori in mice's stomachs. Thus, increased antibodies may 202 

protect against H. pylori [77]. 203 

Vaccine design against H. pylori varies between pediatric and adult populations [78]. Most 204 

infections typically arise during childhood and persist without receiving any treatment 205 

throughout a person's lifetime. Children often do not show symptoms and develop an 206 

immunological response that promotes tolerance. This response involves T regulatory cells and 207 

their products, as well as immunosuppressive cytokines including IL-10 and TGF-β. In contrast, 208 

adults with H. pylori infection experience a primarily inflammatory immune response that 209 

includes Th1 and Th17 cells as well as inflammatory cytokines like TNF-α, IFN-γ, IL-1, IL-6, 210 

IL-8, and IL-17. Infected  children generally experience less stomach inflammation and peptic 211 

ulcer disease compared to adults . Different vaccines may be necessary for children and adults 212 

because of the variations in the immune responses to H. pylori colonization. One could argue 213 

that adults benefit more from therapeutic vaccines and children from prophylactic ones. The 214 

innate and specific immune responses against H. pylori are summarized in Figure 1. 215 

 216 

 217 

Figure 1. A schematic representation of the host immune system's reactions to the H. pylori 218 

infection in the stomach. The first inflammation eradicates the bacteria and inhibits its dissemination. Capillary 219 

wall cells generate chemical mediators that infiltrate white blood cells at the site of injury during inflammation. As a 220 

result, neutrophils and monocytes in the blood are rejected. Dendritic cells, macrophages and neutrophils, 221 
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lymphocytes, and endothelium activate simple CD4+ T cells and trigger antigen-specific responses in Th1 and Th17 222 

cells. Th1 cells produce IFN-γ and regulate cellular immunity, whereas Th17 cells produce IL-17. IL-12 and IL-23 223 

are also present in H. pylori-stimulated macrophages.  A T-reg regulatory cellular response is also observed, which 224 

enhances immunity while suppressing Th1 and Th17-induced immunity by generating IL-10 and TGF-β. 225 

 226 

Antigen screening  227 

In order to prevent infections and/or treat existing diseases, vaccine-induced immunity must be 228 

achieved, which is known to be a complex process that depends on numerous variables. 229 

Considering the context of H. pylori infection, various antigens have been examined as 230 

prospective candidates for the development of vaccinations. It is widely acknowledged that 231 

vaccination antigens are often chosen based on unique traits. The presence of target antigens on 232 

the surface of the bacteria is necessary for their detection by the immune system. The antigens 233 

should be abundant, able to trigger an immune response, present in every bacterial isolate, and 234 

factors that contribute to the pathogenicity of the bacteria [19,29,79]. Figure 2 is a schematic 235 

representation of the primary targets for H. pylori vaccines that have been discussed in the 236 

literature. Some of these targets are described below. 237 

 238 
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Figure 2. The most effective antigens and various types of vaccines used in vaccine development against H. 239 

pylori.  240 

 241 

cagPAI 242 

The cag pathogenicity island (cagPAI) is a segment of the chromosome that spans 40 kilobases 243 

and contains a functional type IV secretory system (T4SS). This system is crucial for the 244 

development of H. pylori-related diseases. Within this region, there are three genes, namely 245 

cagA, cagL, and cagW, which can serve as potential antigens for incorporation into vaccines 246 

[44,80,81]. While the presence of cagPAI ensures the presence of a functional CagT4SS, around 247 

30% of H. pylori strains lack cagPAI entirely, and in certain strains, it is only partially present 248 

[82,83]. The clinical results caused by H. pylori vary in severity based on the presence of 249 

cagPAI. Consequently, partial deletions within cagPAI lead to a decrease in pathogenic 250 

characteristics [84,85]. The cagPAI is present in around 70% of all H. pylori strains worldwide, 251 

with a prevalence of 60% in western isolates and 95% in East Asian isolates [86].  252 

The CagA is situated near the terminal region of cagPAI, which is strongly associated with the 253 

synthesis of VacA [87,88]. Evidence suggests that CagA fragments can elicit an immune 254 

response. The recombinant protein CagA (rCagA) is bound to human antiserum [89]. Mohabati-255 

Mobarez et al. showed that the combined-immunization group of mice showed a robust Th1 256 

immunoresponse following rCagA and lipopolysaccharides (LPS) immunization, in contrast to 257 

the control group [90]. Paydarnia et al. also postulated that a CpG adjuvant containing H. pylori 258 

lipopolysaccharide and rCagA protein would generate a robust Th1-biased immunoresponse 259 

while also maintaining the recombinant protein's antigenicity throughout the experiment [91]. 260 

Research indicates that CagA strains positive have a greater ability to enhance the immune 261 

system's function by activating dendritic cells and promoting the production of IL-12, IL-17, and 262 

IL-23. Therefore, this molecule is proposed as a potential antigen for enhancing vaccinations 263 

[92–94]. In addition, clinical trials have also shown that CagA is an excellent candidate antigen 264 

for eliciting immune responses [30,51].  265 

Both CagW and CagL are proteins involved in the T4SS of H. pylori [95,96]. CagA is able to 266 

travel past the bacterial membrane barrier as a result of the interaction with CagW, which offers 267 

favorable circumstances [96]. The use of cagW as a DNA vaccine resulted in a significant 268 
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activation of both the mucosal and humoral immune responses in mice [44]. CagL attaches to 269 

receptors on host cells and initiates the activation of signaling pathways [97]. Mice that have 270 

been immunized with recombinant cagL can make IgA antibodies that specifically target cagL 271 

[80].  272 

VacA 273 

All strains of H. pylori have a single copy of the vacA gene on the chromosome, but only about 274 

half of these strains can make cytotoxin proteins [98]. VacA, which is associated with gastritis 275 

and peptic ulcers, induces cellular injury and the formation of pores in the plasma membrane 276 

[99]. H. pylori's lifelong colonization and pathogenesis are facilitated by VacA's effects on host 277 

cells, which include induction of apoptosis, autophagy, membrane depolarization, activation of 278 

mitogen-activated protein (MAP) kinases, inhibition of T cell function, interfering with MHC II 279 

antigen presentation, and mitochondrial dysfunction [98,100–105]. Guo et al. recently developed 280 

a vaccine called FVpE employing a polysaccharide adjuvant (PA) that contains Lycium 281 

barbarum polysaccharides (LBPs) and chitosan. This vaccine has Th1 immunoadjuvant NAP, 282 

VacA, CagA, and functional fragments of urease multiepitope peptides. When compared to the 283 

natural urease vaccine, FVpE is capable of eliciting elevated levels of antibodies that specifically 284 

target the antigen. Additionally, FVpE is able to significantly decrease the population of H. 285 

pylori in mice that are infected [48]. In phase II clinical research, a vaccination containing VacA, 286 

CagA, and HP-NAP along with aluminum hydroxide induced targeted antibody and T cell 287 

responses to all three antigens in healthy volunteers who were negative for H. pylori. Compared 288 

to the placebo group, this vaccine can boost the immune system's response to important H. pylori 289 

antigens. These antigens have been shown to be good candidates for vaccination because they 290 

contain vacuolating toxins [30]. 291 

Urease 292 

The production of urease by H. pylori is crucial for the bacterium's ability to colonize and 293 

survive, leading to gastric infection [57]. The H. pylori urease is composed of UreB and UreA 294 

heterodimers, which together form a polyenzyme. This enzyme makes up approximately 10–295 

15% of the total protein content in the bacteria [106]. The urease enzyme facilitates the 296 

transformation of urea into ammonia and carbon dioxide, which in turn elevates the acidic pH of 297 

the stomach to a neutral level. This process effectively neutralizes the acidic environment, 298 
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providing protection to H. pylori bacteria against its detrimental effects [107]. Carbon dioxide 299 

can shield bacteria from the poisonous effects of ONOO–, hence facilitating the growth and 300 

establishment of harmful microorganisms [108]. Ammonia has the ability to counteract excessive 301 

gastric acid, hinder the activity of neutrophils, facilitate the creation of harmful chemicals [109], 302 

and disrupt the integrity of connections between gastric epithelial cells [110]. Inhibiting urease 303 

activity plays a role in preventing and treating H. pylori by limiting its ability to colonize the 304 

stomach [111]. Urease has been predominantly employed as a possible antigen in most research 305 

studies [31,66,112–114]. In a mouse model that has been infected with H. pylori, the 306 

administration of the genetically engineered plasmid pcDNA3.1 (+)-ureA can induce an immune 307 

response [115]. The urease antigen is found in most immunizations that have progressed to the 308 

clinical trial stage [20,50,116–118]. 309 

Outer membrane proteins  310 

H. pylori outer membrane proteins (OMPs) maintain the outer membrane structure, transfer 311 

materials, and facilitate interaction with the host [119]. H. pylori OMPs are mostly lipoproteins, 312 

porins, iron-regulated proteins, efflux pump proteins, and adhesins [120]. These OMPs can cause 313 

disease in three ways: by adhering to surfaces as adhesins, by breaking down protective barriers, 314 

and by evading the immune system [121]. The adhesins of OMPs can activate the immunological 315 

response of the host cell and facilitate the intracellular transmission of signals in 316 

proinflammatory cells, thereby making OMPs suitable for use as an immunizing antigen [122]. 317 

H. pylori OipA is a key virulence component that helps bacteria adhere to host cells, resulting in 318 

the generation of proinflammatory cytokines and host adaptation [123,124]. The OipA gene can 319 

be "on/off" as well. OipA production usually produces positive CagA, indicating that these two 320 

proteins are linked [125]. Chen et al. demonstrated that oral therapeutic immunization with the 321 

Salmonella-delivered codon-optimized oipA construct (SL7207/poipA-opt) effectively 322 

eradicated H. pylori colonization in the stomach in mice. Furthermore, protection was associated 323 

with a robust Th1/Th2 immune response [126]. In another study, Soudi et al. demonstrated that 324 

recombinant OipA, when administered orally or intravenously, can stimulate Th1 325 

immunoresponse and generate IFN-γ production in mice [127]. 326 

Blood-group antigen-binding adhesin (BabA) and sialic acid-binding adhesin (SabA) are the 327 

main types of adhesins that are needed for infection and colonization. The BabA protein binds to 328 
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fucosylated H-type 1 and Lewis B glycans, and the SabA protein recognizes sialyl-Lewis A and 329 

X glycans [128]. Positive BabA in H. pylori strains is linked to duodenal ulcers and gastric 330 

adenocarcinoma progression, aiding in vaccine development [129]. SabA-expressing strains can 331 

cause gastric illnesses, excessive neutrophil infiltration, and gastric atrophy after infection and 332 

have a high colonization capacity [130]. Bugaytsova et al. found that administering the BabA 333 

vaccine to humans and rhesus macaques produced blocking antibodies, which reduced 334 

inflammation in the gastric mucosa, maintained gastric juice acidity, and provided complete 335 

protection against H. pylori-induced gastric cancer in a mouse model [131].  336 

H. pylori adhesion A (HpaA) is a conserved lipoprotein that binds to glycosylated components 337 

on gastric epithelial cells, allowing H. pylori to attach to the mucosa [132,133]. It also plays a 338 

role in dendritic cell development and antigen presentation [133]. The activation of TLR2 by 339 

HpaA depends on its N-terminal lipid component [134]. Tobias et al. found that administering 340 

formaldehyde-inactivated Vibrio cholerae expressing HpaA to mice increased serum antibody 341 

responses against HpaA, especially when co-expressed with fimbrial Enterotoxigenic 342 

Escherichia coli colonization factors on the bacterial surface [135]. 343 

Catalase 344 

Catalase (CAT) breaks down hydrogen peroxide into water and oxygen, protecting the body 345 

from gastric acidity [94]. Its selection for anti-H. pylori vaccines is based on its significant 346 

expression rates (1% of the total protein of H. pylori) during pathogenic infection and its 347 

presence in various bacterial cell locations [136]. CAT protects bacteria from reactive oxygen 348 

species [137] and macrophage engulfment [138], acting as a defense mechanism against harmful 349 

effects from the host. Recently, CAT's immunodominant Th1 epitopes were fully identified. 350 

Seven unique CAT epitopes promote a significant Th1 response via IFN-γ expression [139]. 351 

Miyashita et al. proved that immunization with pcDNA3.1-kat by intranasal and intracutaneous 352 

routes can elicit substantial production of IgG antibodies, diminishing the severity of gastritis 353 

and effectively shielding mice from H. pylori colonization [140]. 354 

NAP 355 

H. pylori neutrophil activating protein (NAP) is an adhesion and is present in almost all H. pylori 356 

isolates. NAP preferentially attaches to high-molecular-weight mucins to help bind to host cells. 357 

NAP's proinflammatory and immunomodulatory capabilities contribute to H. pylori-related 358 
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diseases [141,142]. Recent advances have been made in NAP's potential as a vaccine candidate 359 

[28,48,51,143,144]. Scientists used a brand-new type of salmonella vaccine called PIESV to 360 

deliver and activate several H. pylori antigen genes. These genes are HpaA, Hp-NAP, UreA, and 361 

UreB. In 70% of mice, this method completely prevented H. pylori SS1 infection. More IgG1, 362 

IgG2c, total IgG, and stomach IgA antibodies were found in immunized mice than in control 363 

mice, and the immunized mice also had unique cellular memory responses [145]. In another 364 

study, mice administered with a multivalent subunit vaccine containing NAP, UreA, UreB, and 365 

double-mutant heat-labile toxin (dmLT) as an adjuvant exhibited a notable immune response 366 

characterized by Th1/Th17 cell activation and the production of antigen-specific antibodies 367 

[144,146]. 368 

HspA 369 

The heat shock protein A (HspA), which is found in both the cytoplasm and on the cell surface 370 

[61], has been identified as a suitable antigenic option for developing vaccines against H. pylori. 371 

HspA plays a crucial role in sequestering nickel for urease activity. Intranasal immunization of 372 

mice with HspA resulted in decreased bacterial colonization in the stomach. The protection was 373 

achieved through a robust immune response, both at the systemic and localized levels, involving 374 

the production of antibodies and a well-regulated balance of Th1/Th2 cytokines [147]. Zhang et 375 

al. discovered two immunogenic, highly conserved HspA B-cell epitopes [148]. 376 

Lpp20 377 

Lipoprotein 20 (Lpp20), a membrane-associated conserved lipoprotein, is only detected in H. 378 

pylori. Nearly all H. pylori strains have Lpp20. Numerous studies have identified it as a 379 

promising H. pylori vaccine candidate due to its immunogenicity [26,149–151]. Sun et al. 380 

successfully developed Lpp20 in Lactococcus lactis recombinants. This vaccine increased blood 381 

IgG and decreased gastric urease activity in mice when orally administered [151]. An H. pylori 382 

vaccine, based on a baculovirus, was administered through different routes. The Thp1 transgene 383 

in this vaccine codes for nine H. pylori epitopes. These are carbonic anhydrase, urease B subunit, 384 

gamma-glutamyl transpeptidase, Lpp20, Cag7, and CagL. The results showed a robust IgG-385 

antibody response in the serum of mice, which was not dependent on the use of an adjuvant 386 

[152]. 387 
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GGT 388 

γ-Glutamyl-transpeptidase (GGT) converts glutamine to glutamate and ammonia, and 389 

glutathione to glutamate and cysteinyl glycine [153]. GGT functions in immune system 390 

activation by suppressing dendritic cell maturation, increasing Treg responses, and altering the 391 

CD4+ T cell cycle, making it a viable vaccine target [154]. GGT-containing vaccinations block 392 

GGT rather than neutralizing H. pylori, unlike other immune stimulants. This inhibition prevents 393 

T cell repression by increasing activated T cells and protecting against H. pylori infections [155]. 394 

Intranasal GGT and HspA immunization reduced stomach bacterial colonization in mice. Strong 395 

antibodies and a finely balanced Th1/Th2 cytokine response provided protection [147]. 396 

Flagellin 397 

Flagella, essential for bacterial motility, is required for H. pylori infection and colonization. FlaA 398 

and FlaB components are crucial for gastric mucosal damage and could be potential antigens for 399 

vaccine development [156]. Mice were given a DNA vaccine, and the pBudCE4.1-flaA construct 400 

successfully expressed flaA in cells and raised levels of cytokines and immunoglobulins in their 401 

blood [43]. Yan et al. constructed the recombinant plasmid pET32a-flaB and showed that rFlaB 402 

has satisfactory immunoreactivity and antigenicity in mice [157].  403 

Multivalent and/or multiepitope vaccine 404 

Individual subunit vaccines have limitations, including not providing immunity against all H. 405 

pylori antigens, not stimulating protective immune responses against different strains, and 406 

potentially causing adverse reactions such as allergic reactions or autoimmune diseases 407 

[14,29,158,159]. In addition, existing H. pylori vaccines struggle due to the bacteria's genetic 408 

variability. Also, H. pylori can adapt and evade the host's immune response, making it difficult to 409 

develop a monovalent universal vaccination that targets all strains. The persistence of H. pylori 410 

infection requires a prolonged immune response, which is difficult to achieve with conventional 411 

vaccines [160,161]. These issues highlight the need for novel vaccines that can overcome H. 412 

pylori's genetic diversity. Creating a multivalent and/or multiepitope vaccination that targets 413 

multiple bacterium strains may increase the likelihood of immunity [28,48,162].  414 

As shown in Figure 2, the immunodominant antigens of H. pylori that elicit an immune response 415 

have been utilized in several forms of vaccines, including whole-cell vaccines [163], DNA 416 
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vaccines [41,44,115,126], subunit vaccines [89,131], vector vaccines [80,143,150], and epitope-417 

based vaccinations [26,28,152].  418 

Genetic diversity  419 

H. pylori's high mutation and recombination rates create a diverse and ever-changing population 420 

within hosts, making vaccine development difficult [164]. This population's genetic diversity can 421 

lead to specialized adaptations and strong natural selection, underscoring the necessity for a 422 

vaccination that targets this varied group [164,165]. Immunogen virulence factors, including 423 

VacA and CagA, are generally targeted for H. pylori vaccination. However, these traits show 424 

genetic variability, complicating vaccine development [166]. To address this issue, a vaccination 425 

based on conserved epitopes that target many H. pylori proteins could be cost-effective and 426 

cover the bacteria's genetic heterogeneity [165]. Innovative vaccination research uses 427 

immunoinformatics to locate T- and B-cell epitopes [165–168]. The development of a 428 

multivalent epitope-based vaccine aims to capture the genetic diversity of the bacterial 429 

population, resulting in long-lasting and efficient immune protection [165]. 430 

Choice of vaccine adjuvant  431 

H. pylori proteins have limited immune response capabilities, making it difficult to eradicate the 432 

infection. Therefore, immunological adjuvants are essential during H. pylori vaccination. 433 

Adjuvants enhance the immune response's potency and duration, alter the immunological 434 

response's nature, and reduce vaccine production costs by reducing the amount of immunogen 435 

used [37]. Also, Adjuvants increase antigen immunity by enhancing inflammation and 436 

phagocytic penetration (Figure 3). The challenge lies in designing an adjuvant system for H. 437 

pylori vaccination, as existing efficacy in mice doesn't translate to humans, necessitating further 438 

experimentation and study to determine their suitability for human use. 439 
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 440 

Figure 3. Overview of the function of vaccines and adjuvants. Antigenic proteins in vaccines, called 441 

pathogen-related molecular patterns (PAMPs), are presented to antigen-presenting cells (APCs) and are identified by 442 

their pattern recognition receptors (PRRs), such as TLRs, at their surface. Adjuvants often act as PAMPs, which are 443 

identified by the PRR of the innate immune system. In the absence of adjuvants, mucosal delivery of vaccine 444 

antigens may result in T and B cell tolerance rather than effective immunization. Once identified, they are processed 445 

and placed on the major histocompatibility complex proteins (MHC-I or MHC-II) and are delivered to T cells Native  446 

CD4+ that stimulate cellular and humoral immune responses. This stimulation leads to the production of antibodies 447 

in the humoral immune system and cytokines in the cellular immune system. 448 

 449 

Mutants of CTB and LTB 450 

E. coli (ETEC) produces heat-labile enterotoxin (LT), a diarrhea-inducing toxin linked to cholera 451 

toxin (CT) [169]. Many studies have tried to make recombinants or mutants of CT or LT to 452 

lower their toxicity, even though they are very harmful to the intestines and cause severe side 453 

effects  [170–172]. CT complexly regulates lymphokine generation, T cell proliferation, antigen 454 

presentation, IgA synthesis, and B cell isotype differentiation. Its non-toxic binding subunit 455 

fraction (CTB) boosts mucosal immune responses to linked foreign antigens or epitopes 456 

[26,28,173]. Recently, Guo et al. constructed a multivalent epitope vaccine called FVpE, which 457 

includes the NAP, fragments from CagA and VacA, and a urease epitope. This vaccine was 458 
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found to enhance the protective effect of an oral vaccine by exacerbating mucosal inflammatory 459 

injury and inducing mixed CD4+ T cell responses [48]. There is strong evidence that vaccines 460 

with LTB as an immunoadjuvant can boost immunity [133,174,175]. LTB has some side effects 461 

but is used as an immunoadjuvant in most H. pylori vaccination clinical trials [20,41,112,118]. In 462 

a clinical trial, Banerjee et al. demonstrated that low-dose LTB maintains immunogenicity and 463 

decreases toxicity [116]. 464 

Cytokines 465 

Interleukins are used as immune adjuvants in H. pylori vaccine development due to their ability 466 

to provide immunomodulatory effects at low doses through high-affinity specific receptors. 467 

Many studies have demonstrated that the DNA vaccination can preferentially elicit Th1 468 

immunoresponse, including IL-2, IL-1, IL-6, IL-15, and IL-12, when combined with a cytokine 469 

gene-encoding plasmid [45,47,176]. IL-18, IL-17A, and IL-22 modulate the immune response 470 

and enhance the efficacy of DNA vaccines. The co-administration of the OipA gene and IL-17A 471 

has been demonstrated to induce sterile immunity in mice challenged with H. pylori [45]. 472 

Another study inoculated mice mucosally with recombinant Lactobacillus lactis-expressing 473 

UreB-IL-2 chimeric protein. This vaccine produced anti-UreB antibodies, lowered the bacterial 474 

load, and elevated IFN-, IL-4, and IL-1 [176]. 475 

Chitosan 476 

The utilization of chitosan, a natural polysaccharide derived from D-glucosamine and chitin, as 477 

an adjuvant in a H. pylori vaccine has been investigated in the studies conducted by Gong YF et 478 

al. and Xie Y et al. Chitosan, characterized by its non-toxicity, non-irritability, non-allergenicity, 479 

biodegradability, biocompatibility, and bioadhesiveness, has shown promising results in these 480 

studies. Gong YF et al. reported that a chitosan-adjuvanted H. pylori vaccine elicited higher 481 

levels of H. pylori-specific antibodies and cytokines, including IFN-γ, IL-10, IL-2, and IL-12, 482 

and achieved a superior H. pylori elimination rate of 58.33%, compared to a cholera toxin-483 

adjuvanted vaccine with an elimination rate of 45.45% [39]. Furthermore, Xie Y et al. found that 484 

the chitosan-adjuvanted vaccination generated both Th1 and Th2 immune responses and gave 485 

immunoprotection in 60% of the tested mice, a substantially greater rate than that observed in the 486 

H. pylori antigen-only group. [42]. These findings underscore the potential of chitosan as an 487 

efficacious adjuvant in H. pylori vaccination. 488 
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cGAMP 489 

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) is a signaling molecule 490 

that regulates the body's immune responses and enhances antigen-specific responses, particularly 491 

the Th1 response [177]. It is created when DNA ligands stimulate cyclase, activating the STING 492 

receptor protein and producing cytokines [178]. STING agonists like cGAMP are promising 493 

immunoadjuvants [179]Chen et al. found that intranasal and subcutaneous vaccinations with 494 

recombinant H. pylori UreA, UreB, and NAP adjuvanted with cGAMP reduced stomach 495 

mucosal colonization in mice. Antigen-specific serum IgG and mucosal IgA responses increased 496 

considerably in all challenged immunized animals. Only intranasally infected mice produced IL-497 

17 responses, which were connected to antigen-specific Th1 and Th17 responses and vaccine-498 

induced protection [180]. 499 

CpG ODNs 500 

The toll-like receptor 9 can recognize CpG oligodeoxynucleotides (CpG ODNs), which turn on 501 

immune cells and are added to vaccines to protect against cancer, allergies, and infections [181–502 

183]. Studies have shown their effectiveness in eliciting immune responses against H. pylori in 503 

mice, with intranasal administration of CpG ODNs with whole cell antigens significantly 504 

increasing specific IgG, IgA, and IFN-γ responses and enhancing protection against infection 505 

[40,184]. Furthermore, the combination of the rCagA protein with CpG not only maintains the 506 

antigenicity of the recombinant protein but also stimulates a strong immune response, 507 

specifically targeting Th1 cells [91]. These findings underscore the potential of CpG ODNs as 508 

effective mucosal adjuvants for H. pylori vaccines.  509 

α-GalCer 510 

α-Galactosylceramide (α-GalCer) is a glycolipid obtained from a marine sponge that triggers 511 

both humoral and cellular immune responses [185]. It activates iNKT cells through CD1d, 512 

resulting in the release of Th1 and Th2 cytokines [186,187]. The impact of the α-GalCer 513 

adjuvant closely resembles that of conventional CTB [21]. α-GalCer as an adjuvant can enhance 514 

immune responses to various pathogens, including H. pylori, the herpes simplex virus, and 515 

enterotoxin-producing E. coli [21,188,189]. In the case of H. pylori, relying on the signaling of 516 

CD1d, IL-1R, and IL-17R, intragastric immunization against H. pylori using whole-cell 517 

inactivated antigen and α-GalCer produced strong Th1 cellular immune responses and antigen-518 
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specific antibody responses in both mucosal and systemic regions [21]. Overall, α-GalCer shows 519 

promise as an adjuvant for oral vaccinations targeting H. pylori infection, as it enhances immune 520 

responses and promotes protective mucosal immunity. 521 

PPSs 522 

Plant polysaccharides (PPSs) such as Astragalus polysaccharides, Epimedium polysaccharides, 523 

chitosan, and LBPs are biologically active compounds that possess distinctive properties and 524 

minimal toxicity [190]. Studies have demonstrated that polysaccharide adjuvants are efficacious 525 

vaccination adjuvants that enhance both cellular and humoral immunity [191–193]. For instance, 526 

the addition of chitosan and polysaccharide mucosal adjuvant in LBPs has been found to 527 

improve the efficacy of the protective effect of a multivalent epitope (CagA, VacA, and NAP) 528 

vaccination [48]. Similarly, the Astragalus polysaccharides and rUreB can stimulate a combined 529 

Th1 and Th17 immune response, potentially enhancing the mice's ability to defend against H. 530 

pylori infection [194]. 531 

Propolis  532 

Propolis is a resinous compound collected by honeybees from flowers and has 533 

immunostimulatory and immunomodulatory properties [195]. In a study, the use of propolis as 534 

an adjuvant with an inactivated vaccine against swine herpesvirus type 1 (SuHV-1) resulted in 535 

increased cellular and humoral immune responses compared to a control vaccine [196].  Another 536 

study found that propolis as an adjuvant increased the level of IFN-γ by increasing the mRNA 537 

synthesis of IFN-γ and enhanced the intensity of the cellular immune response in mice 538 

vaccinated with an H. pylori OipA protein vaccine [127]. This suggests that propolis, as an 539 

adjuvant, can contribute to the effectiveness of vaccines. 540 

Melittin 541 

Melittin, the primary constituent of bee venom, is composed of 26 amino acids and possesses 542 

immunomodulatory properties that augment the production of IFN-γ and thus boost the 543 

functionality of Th1 cells. This brief peptide also has the capacity to decrease IL-10 and enhance 544 

IL-1β in the equilibrium of cytokines. Melittin can serve as an adjuvant for the H. pylori 545 

vaccination. Jafari et al. designed, produced, and isolated a multi-epitope vaccine comprising 546 

CD4⁺ T cell epitopes of UreB, HpaA, and NapA antigens, with an emphasis on IFN-γ production 547 
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targeting H. pylori, utilizing melittin as an adjuvant. However, the efficacy of using melittin as 548 

an adjuvant in the H. pylori vaccine has not been documented. 549 

Vaccine-Delivery systems 550 

Developing a safe and effective vaccine against H. pylori is crucial for eradicating the bacterium 551 

on a large scale. However, the complexity of the mucosal immune environment has made this 552 

challenging [23]. These systems aim to enhance the immune response by delivering antigens in a 553 

targeted and efficient manner. The choice of delivery system depends on factors such as the 554 

target antigen, desired immune response, and specific vaccine application [197]. Each system has 555 

its own advantages and can contribute to the development of safe and effective H. pylori 556 

vaccines. Despite the development of various adjuvants and delivery modalities for 557 

immunization, there is currently no licensed inactivated whole cell vaccination for H. pylori. 558 

Enhancing the immunogenicity and ensuring the safety of vaccines continue to be challenges 559 

[36].  560 

OMVs 561 

OMVs, which contain proteins, poisons, and lipids, play a significant role in bacterial-host 562 

interactions [198]. They have shown promise as a delivery mechanism for antigens with the 563 

successful transportation of heterologous proteins to vesicles [199]. Two articles discuss the 564 

potential of OMVs as delivery systems to promote protective efficacy against H. pylori infection 565 

in mice. Song et al. found that orally-administered OMVs from H. pylori 7.13 showed protective 566 

activity without significant toxicity. OMVs triggered Th2-based immune responses, reducing the 567 

bacterial load after H. pylori Sydney strain 1 assault. Liu et al. demonstrated that OMVs reduced 568 

H. pylori infection via Th2-biased immune responses [200]. Moreover, OMVs are recognized as 569 

a promising adjuvant because of their minimal toxicity and capacity to elicit a comprehensive 570 

immune response [201]. 571 

Vaccine vectors  572 

The research articles offer useful insights on the prospective utilization of bacterial, yeast, and 573 

viral vectors for the advancement of vaccines against H. pylori infection [36]. The attenuated 574 

vector can display H. pylori immunogens to cells those present antigens, activating host immune 575 
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responses. Hence, vector vaccines mimic natural infection, causing a lasting immune response 576 

[33,145].  577 

Bacteria  578 

The mucosal delivery of lactic acid bacteria (LAB) target proteins can trigger systemic humoral 579 

and cellular immunoresponses [202]. Gou et al. created LL-plSAM-FVpE, an L. lactis surface 580 

display method targeting M cells. plSAM can increase M cell phagocytosis and transport of 581 

antigens in the gastrointestinal tract and elicit a protective immunoresponse [32]. In another 582 

study, high mucosal SIgA antibody levels and enhanced mouse protection against H. pylori 583 

infection can be achieved with recombinant L. acidophilus expressing Hp0410 [203]. A L. lactis 584 

strain was used to express HpaA and Omp22, and orally vaccinated mice had a strong systemic 585 

humoral immune response compared to PBS controls [204]. Aliramaei et al. created a L. lactis 586 

MG1363-carrying CagL vaccine, and the levels of specific IgA, IL-17, and IFN-γ dramatically 587 

increased in mice [80]. L. lactis-delivering Lpp20 effectively reduces the bacterial load in H. 588 

pylori-challenged mice. The serum IgG levels and lowered urease activity in the stomach 589 

following H. pylori challenges demonstrated its potential for mucosal immunization against H. 590 

pylori [151]. 591 

Live immunization with attenuated Salmonella can induce an immune response against 592 

Salmonella and stimulate mucosal, humoral, and cellular immunity to transport antigens after 593 

immunization [205]. Nasal immunization of mice with Salmonella typhimurium phoPc 594 

expressing H. pylori urease A and B subunits made 60% of mice resistant. This shows that the 595 

vaccine can induce Th1- and Th2-type responses, protecting against H. pylori [206]. Chen et al. 596 

developed an attenuated Salmonella typhimurium bacterial ghost (SL7207-BG) vaccination to 597 

deliver an H. pylori OipA gene DNA vaccine. This immunization reduced bacterial colonization 598 

in C57BL/6 mice challenged with H. pylori strain SS1 and elicited a mixed Th1/Th2 immune 599 

response [207]. T cell reactivity against H. pylori antigens was linked with the elimination or 600 

considerable reduction of H. pylori burden in volunteers who were orally inoculated with 601 

Salmonella enterica serovar Typhi Ty21a, producing H. pylori urease [50]. Oral administration 602 

of a live, attenuated Salmonella enterica serovar Typhi vaccine generated mucosa-homing CD4+ 603 

and CD8+ T lymphocytes. These immune-enhancing cells may target H. pylori's habitat [208]. 604 

These studies collectively suggest that Salmonella-based vaccines can induce protective 605 
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immunity against H. pylori infection, potentially offering a promising strategy for controlling 606 

this common bacterial infection. 607 

Researchers used Bacillus subtilis spores to deliver H. pylori urease B, using the spore coat 608 

protein CotC as a fusion partner. The result showed significant levels of urease B-specific IgA 609 

and IgG in feces and serum, indicating an immune response. Spore-carrying CotC-UreB was 610 

administered orally to a mouse model, resulting in an 84% reduction in H. pylori-positive mice 611 

[209]. Recently, a vaccine based on spores of B. subtilis and H. pylori protective antigens UreA 612 

and UreB has shown potential for further development and clinical trials. Mice were orally 613 

inoculated and challenged with H. pylori to assess immunological responses and colonization. 614 

Antigen-specific mucosal responses (fecal sIgA), seroconversion (serum IgG), and up to 1-log 615 

less H. pylori load, indicating the development of protective immunity [210]. 616 

The Shigella 2aT32-based vaccination tested the UreB-HspA fusion antigen for H. pylori 617 

protection in mice. Oral administration with or without a parenteral boost produced specific 618 

antigen immune responses and dramatically reduced H. pylori colonization after challenge, 619 

suggesting the vaccine's ability to prevent H. pylori infection [211].  620 

The optimized attenuated Listeria monocytogenes carrying a multi-epitope chimeric antigen 621 

(MECU) can significantly reduce the colonization of H. pylori and induce a high level of anti-H. 622 

pylori antibodies after intragastric and intravenous immunization [33].  623 

Yeasts 624 

Cen et al. developed a Saccharomyces cerevisiae-based oral vaccine, producing recombinant 625 

UreB and VacA. The vaccine demonstrated significant humoral and mucosal immunoresponses 626 

and significantly reduced the H. pylori load in mice [212]. 627 

Viruses 628 

It may be possible to improve long-lasting immunity against H. pylori by the use of viral vectors 629 

[36]. Clinical trials have demonstrated that the measles virus (MV) may offer a novel and 630 

flexible approach to the treatment of infectious diseases and cancer [213]. In a study, mice 631 

received a baculovirus containing a Thp1 transgene encoding nine H. pylori epitopes 632 

intramuscularly, intragastrically, and intranasally. H. pylori-specific IgG and IgA antibodies 633 

were found in serum samples 125 days and feces samples 82 days after immunization, 634 
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respectively [152]. A recombinant MV Edmonston vaccination strain expressing the H. pylori 635 

HspA antigen was created by Iankov et al. The outcomes demonstrated the recombinant MV-636 

HspA strain's potent immunogenicity to the H. pylori HspA antigen as well as its potent 637 

anticancer activity. To improve these viruses' efficacy, safety, and administration, more research 638 

is needed [214]. 639 

Nanotechnology  640 

Nanotechnology has the potential to boost H. pylori vaccine efficacy by limiting degradation and 641 

improving delivery. With current H. pylori treatment methods failing, developing a vaccine that 642 

can be distributed effectively could be a cost-effective solution to manage H. pylori epidemics 643 

[215].  644 

Zhang et al. developed a self-assembling nanoparticle with hydrophilic and slightly negative 645 

surface properties containing UreB demonstrated enhanced systemic and mucosal immune 646 

responses in mice, suggesting their potential as oral vaccines against H. pylori [216]. The 647 

researchers synthesized protein nanocapsules using the A subunit of H. pylori urease (UreA) and 648 

tested their efficacy in a mouse model. The study found that mice vaccinated with the 649 

nanocapsules, combined with an adjuvant, showed significantly reduced H. pylori colonization 650 

[217]. Liu et al. designed HP55/poly (n-butylcyanoacrylate) (PBCA) nanoparticles to carry the 651 

H. pylori subunit vaccine, CCF. The nanoparticles promoted the production of serum antigen-652 

specific antibodies, mucosal secretory IgA, and pro-inflammatory cytokines. In mice vaccinated 653 

with HP55/PBCA-CCF NP, stomach tissue showed an enhanced Th1/Th17 immune response 654 

and lymphocyte activity, possibly limiting H. pylori colonization [218]. Additionally, Yang et al. 655 

developed an intranasal vaccine nanoemulsion containing a dominant HpaA epitope peptide. The 656 

system's delayed antigen release elicited a significant Th1 immune response. The nanoemulsion 657 

prolonged the epitope peptide in the nasal cavity and boosted its absorption into cells, boosting 658 

vaccination-induced Th1 immune responses and reducing bacterial colonization. Mixing the 659 

vaccine with a CpG adjuvant increased protection [219]. However, although nanoemulsions are 660 

widely used for combating bacterial growth and are easy to produce and preserve, there are very 661 

few studies on the eradication of H. pylori using them [220]. Therefore, the applicability of 662 

nanoemulsions as effective alternatives for H. pylori therapy requires further investigation. In 663 
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summary, these studies highlight the potential of nanoparticle-based vaccines for combating H. 664 

pylori infection. 665 

Vaccine route administration  666 

H. pylori vaccine administration routes struggle to produce a significant and protective immune 667 

response. Vaccine administration method affects immune response type and magnitude. Oral, 668 

nasal, parenteral, rectal, subcutaneous, and intramuscular administration routes have all been 669 

investigated for the H. pylori vaccine. Kleanthous et al. studied UreA-LTB administration via 670 

oral, nasal, and rectal routes in mice. All routes of administration prevented H. pylori infection 671 

and dramatically reduced stomach urease activity relative to the sham-immunized control group. 672 

All mouse immunization strategies reduced H. pylori by 97%. Before the H. pylori challenge, 673 

rectal immunization produced the most gastric ant-iurease IgA [221]. Another study investigated 674 

the protective effect of a multicomponent (UreB, HspA, and HpaA) vaccine with two different 675 

adjuvants (Al (OH)3, LT (R72DITH) ) in administration either intragastrically or intramuscularly 676 

to Mongolian gerbils against H. pylori infection. The triple-antigen vaccine combined with the 677 

LT (R72DITH) adjuvant showed an average protection rate of 86.3%, which was significantly 678 

higher than the vaccine combined with the Al (OH)3 adjuvant (average 53.4%) both 679 

intragastrically and intramuscularly. The intragastric route induced higher levels of gastric anti-680 

H. pylori IgA, IgG, and lower levels of gastric inflammation and ulceration compared with the 681 

intramuscular route [222].  682 

For H. pylori, mucosal immunity is particularly important, as the infection occurs in the gastric 683 

mucosa. Oral vaccines are attractive because they can directly target the mucosal immune system 684 

and are more convenient and acceptable, especially in low- and middle-income countries 685 

(LMICs) where the burden of H. pylori-related diseases is highest [223]. Oral vaccines are a 686 

promising approach due to their direct action on mucosal immunity, but they must be designed to 687 

withstand the harsh gastrointestinal environment. The development of mucosal vaccines for H. 688 

pylori infection has faced several challenges, including the complexity of the host immune 689 

response, the lack of safe mucosal adjuvants, and the inconsistent results obtained from different 690 

mucosal routes of vaccination, such as sublingual, rectal, and intranasal [21,30,224,225]. Also, 691 

the barrier provided by mucosal surfaces to prevent antigen delivery and immune response is the 692 

constant exposure of mucosal surfaces to commensals and innocuous foreign substances, which 693 
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may lead to tolerogenic responses [226–228]. Moreover, the dose of mucosal vaccine that 694 

actually enters the body cannot be accurately measured due to the labor-intensive and technically 695 

challenging recovery and functional testing of mucosal T cells [223]. As a result, only a few 696 

mucosal vaccines have been approved for human use, and they were not specifically designed for 697 

mucosal application. Despite these challenges, some studies have shown promising results in 698 

using various adjuvants and antigens to induce protective immune responses [21,229]. For 699 

example, an oral alpha-galactosylceramide adjuvanted H. pylori vaccine has been found to 700 

induce protective IL-1R- and IL-17R-dependent Th1 responses [21]. However, more research is 701 

needed to overcome the barriers associated with mucosal vaccination and to develop an effective 702 

H. pylori vaccine. 703 

Intramuscular vaccines with adjuvants have shown efficacy in animal models, but more research 704 

is needed to optimize these vaccines for human use. Challenges associated with these routes of 705 

immunization include the need to overcome the immune-modulating capacity of H. pylori, the 706 

development of resistance to treatment, and the host's propensity to downregulate the immune 707 

response following infection [30]. Some studies have explored the use of different adjuvants, 708 

such as aluminum hydroxide, to enhance the immune response to H. pylori antigens [30,224]. 709 

However, no study has reported protective immunity with intramuscular vaccines [230]. 710 

However, the most promising route of administration for H. pylori vaccines in humans is yet to 711 

be conclusively determined and requires further research and development, as challenges such as 712 

the need to induce sterilizing immunity and the selection of the right adjuvant for human use 713 

remain.  714 

Selection of animal models for vaccine evaluation 715 

To test H. pylori preventive and therapeutic vaccinations, animal models must be colonized and 716 

given pathophysiological conditions that mimic human gastrointestinal illnesses [231]. Finding 717 

an acceptable model is challenging due to chronic stomach colonization and unknown infection 718 

patterns [16]. The intricate interaction between H. pylori and the stomach epithelium over 719 

decades produces gastric cancer. Thus, animal models of H. pylori infection and immune 720 

response are being sought [232,233]. H. pylori may infect dogs, cats, pigs, monkeys, mice, 721 

Mongolian gerbils, and guinea pigs [16]. Below, we delve into the top animal models. 722 
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H. pylori Sydney strain 1 causes gastric cancer and CG in mice, but wild-type models like 723 

BALB/c and C57BL/6 cause moderate gastritis or slowly progressing diseases [234–236]. These 724 

models provide limited insights into H. pylori pathogenicity, as the mouse stomach's structural 725 

makeup differs from the human stomach and may include microorganisms affecting infection 726 

[237,238]. To study H. pylori, several mouse models, including insulin-gastrin, IFN-γ, TNF-α, 727 

IL-1β, and IL-10 knockouts, Fas antigen transgenic, p27-deficient, and CagA-transgenic mice, 728 

are used [231].  729 

The most common animal model for H. pylori infection is Mongolian gerbils. Mongolian gerbils 730 

mimic human H. pylori-induced stomach colonization, inflammation, ulceration, and 731 

carcinogenesis [239,240]. Several further studies have demonstrated that Mongolian gerbils 732 

exposed to H. pylori develop stomach, duodenal, and intestinal metaplasia (IM) [241–243]. H. 733 

pylori colonization of the stomach mucosa causes a varied lamina propria inflammatory 734 

infiltrate, similar to human diseases. This infiltration contains neutrophils and mononuclear 735 

leukocytes [244,245]. Hence, they are effective and affordable rodent models.  736 

Guinea pigs are lab animals with human-like stomachs. It can create an inflammatory response 737 

from stomach epithelial cell IL-8 release. Like the mouse model, guinea pig models show how 738 

easy animal care is due to their small size. The guinea pig stomach also has a cylindrical 739 

epithelium, maintains sterility, produces IL-8, and lacks a non-glandular area [246,247].  740 

H. pylori strains can infect macaques [248]. Macaques may acquire H. pylori from humans or be 741 

a natural reservoir for the pathogen. Rhesus macaques offer many advantages over tiny animal 742 

models. Socially housed rhesus macaques are naturally infected with H. pylori and resemble 743 

humans physiologically and morphologically [249]. Additionally, all infected macaques will 744 

develop chronic gastritis (CG), and a fraction may develop gastric atrophy, a histological 745 

characteristic that precedes gastric cancer [250]. However, studies on non-human primates are 746 

time-consuming, laborious, and expensive, making it impossible to assess H. pylori 747 

pathogenicity. H. pylori typically infects the human stomach mucosa; however, few captivity-748 

raised macaques were spontaneously infected [251].  749 

Finding an animal model that accurately replicates all features of H. pylori infection in humans is 750 

challenging. While mouse models provide limited insights into H. pylori pathogenicity, 751 

Mongolian gerbils are effective and affordable rodent models that mimic human H. pylori-752 
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induced stomach colonization, inflammation, ulceration, and carcinogenesis. Guinea pigs, with 753 

their human-like stomachs, can also create an inflammatory response similar to that of humans. 754 

Macaques offer advantages as they are naturally infected with H. pylori and resemble humans 755 

physiologically and morphologically, but studying them is time-consuming, laborious, and 756 

expensive. Overall, based on our present understanding of virulence factors and their interactions 757 

with the immune system, it may be required to select an animal model based on certain optimum 758 

conditions. Factors such as the utilization of antigens that activate cellular or humoral immunity, 759 

recruiting various cells of the immune system, and categorizing the vaccine as therapeutic, 760 

prophylactic, and anti-disease rather than anti-pathogen might play a crucial role in selecting the 761 

appropriate animal model. Thus, given the present circumstances, it may be unattainable to 762 

accomplish all required objectives with a solitary animal model. 763 

Conclusions and prospects  764 

An optimal H. pylori vaccination for human use should possess not only efficacy and safety but 765 

also necessitate high patient adherence and provide durable protection over an extended period 766 

of time. Despite the efforts, an effective vaccine against H. pylori infection has not yet been 767 

developed [37]. The key challenges in designing vaccines against H. pylori include: (1) the 768 

considerable genetic diversity and molecular mimicry exhibited by H. pylori; (2) the immune 769 

evasion strategies employed by H. pylori; (3) the constraints in choosing suitable animal models; 770 

and (4) the identification of an appropriate vaccine delivery system to overcome the various 771 

obstacles in the stomach. This review adds to the existing knowledge by summarizing the 772 

advances in H. pylori vaccine research, including host immune interaction, candidate antigens, 773 

adjuvants, animal models, and delivery systems.  774 

Several vaccine candidates have been explored, including recombinant subunit vaccines using 775 

UreB, VacA, CagA, NapA, HpaA, and so on as the vaccine antigen, which have shown good 776 

prophylactic effects . Multiple investigations have shown single-antigen immunity against H. 777 

pylori is insufficient. Immunity to H. pylori is typically provided by administering a cocktail of 778 

antigen subunits or combining epitopes from several antigens [165,167]. Thus, many research 779 

institutions create H. pylori vaccines using various antigens. Epitope-based vaccines are cheaper 780 

than mixed proteins and can target more protein targets. Thus, multiepitope vaccinations are 781 
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gaining interest [19,29,48,252]. In this scenario, advanced contemporary immunoinformatic 782 

techniques can also be employed in the development of multiepitope vaccines [253–255]. 783 

An effective H. pylori vaccine could substantially reduce the burden of bacterial load, gastric 784 

cancer, and other H. pylori-related diseases, particularly in developing countries. Nevertheless, 785 

several endeavors have been made in preclinical and clinical trials to attain sterile immunity 786 

following prophylactic or therapeutic vaccination against H. pylori. Perhaps it is now opportune 787 

to shift our perspective towards an anti-disease approach rather than an anti-bacterial one. Also, 788 

not everyone who is infected with H. pylori develops these diseases, and some studies suggest 789 

that H. pylori may also have some beneficial effects, such as protecting against asthma and 790 

inflammatory bowel disease [256,257]. Therefore, some researchers are exploring the possibility 791 

of developing a vaccine that does not aim to eliminate H. pylori from the stomach but rather to 792 

modulate the immune response and reduce the harmful inflammation that it triggers [258]. Such 793 

a vaccine would target the specific molecular pathways that are involved in the inflammatory 794 

process and could potentially prevent or treat the diseases associated with H. pylori infection 795 

while preserving its possible benefits. 796 

Future research could concentrate on: (1) identifying immune responses related to protection in 797 

experimental models; (2) developing a better understanding of the protective mechanisms and 798 

identifying a cocktail of strong protective antigens or recombinant bacterial strains expressing 799 

such antigens; (3) investigating novel vaccine delivery methods and adjuvants to improve the 800 

effectiveness of H. pylori vaccines; (4) using mRNA vaccines capable of encoding many 801 

antigens and inducing both humoral and cellular protection; (5) creating multivalent vaccines 802 

that can target different strains and variants of H. pylori, as well as different stages of infection 803 

and disease progression; and (6) testing alternative immunization routes that can elicit both 804 

systemic and mucosal immunity, such as intranasal, oral, or sublingual administration.  805 

Despite significant progress in H. pylori vaccine research, there is still a need for further 806 

advancements to develop an effective vaccine against this prevalent pathogen. Addressing the 807 

challenges and limitations associated with vaccine development, as well as fostering 808 

collaboration with industrial partners, could pave the way for the successful development of an 809 

H. pylori vaccine. 810 
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