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Abstract
For a subset A of an abelian group G, given its size |A|, its doubling κ = |A+A|/|A|, and a parameter s
which is small compared to |A|, we study the size of the largest sumset A+A′ that can be guaranteed for
a subset A′ of A of size at most s. We show that a subset A′ ⊆A of size at most s can be found so that
|A+A′| =�(min(κ1/3, s)|A|). Thus, a sumset significantly larger than the Cauchy–Davenport bound can
be guaranteed by a bounded size subset assuming that the doubling κ is large. Building up on the same
ideas, we resolve a conjecture of Bollobás, Leader and Tiba that for subsets A, B of Fp of size at most αp for
an appropriate constant α > 0, one only needs three elements b1, b2, b3 ∈ B to guarantee |A+ {b1, b2, b3}| ≥
|A| + |B| − 1. Allowing the use of larger subsets A′, we show that for sets A of bounded doubling, one
only needs a subset A′ with o(|A|) elements to guarantee that A+A′ =A+A. We also address another
conjecture and a question raised by Bollobás, Leader and Tiba on high-dimensional analogues and sets
whose sumset cannot be saturated by a bounded size subset.
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1. Introduction
For finite subsets A, B of an abelian group, their sumset is A+ B= {a+ b : a ∈A, b ∈ B}.
Estimating the sizes of sumsets is a classical topic extensively studied in additive combinatorics,
and has motivated the development of a wide variety of influential tools and techniques. One
of the most classical results in this area is the Cauchy–Davenport bound [7–9], which says that
for nonempty subsets A, B of Fp, |A+ B| ≥min(p, |A| + |B| − 1). This strengthens the simple
observation that for nonempty subsets A, B⊆Z, |A+ B| ≥ |A| + |B| − 1. The equality cases of
the Cauchy–Davenport bound were later characterized by Vosper [29], who showed that either
A, B must be arithmetic progressions of the same common difference, or min(|A|, |B|)= 1, or
|A| + |B| ≥ p− 1.

Recently, in a sequence of papers, Bollobás, Leader and Tiba [5, 6] studied several intriguing
strengthenings of classical sumset estimates, including the Cauchy–Davenport bound. In partic-
ular, they showed that for nonempty subsets A, B of integers with |A| ≥ |B|, it is enough to use
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three elements from B to achieve the sumset bound, that is, there exists a subset B(3) of B of size
at most three such that |A+ B(3)| ≥ |A| + |B| − 1. Similarly, they showed that for subsets A, B of
Fp with |A| ≥ |B| and |A| + |B| bounded away from p, there exists a subset B(C) of B of constant
size C for which |A+ B(C)| ≥min(p, |A| + |B| − 1). (Here and throughout the paper, we use the
notation A(s) and B(s) to denote subsets of A and B of size at most s.) The results were also later
shown in the ‘medium-sized’ regime in [6]: for subsets A, B of Fp with |A| = |B| = n, there exist
subsets A′ of A and B′ of B each of size at most C

√
n for which |A′| + |B′| ≥min(p, |A| + |B| − 1)

for some absolute constant C. Bollobás, Leader and Tiba [5, 6] pose several interesting conjectures
motivated from their work.

Sumset estimates beyond the Cauchy–Davenport bound have been extensively studied, where
the behaviour gets significantly more interesting. For example, while sets achieving the Cauchy–
Davenport bound have particularly simple structure, for sets A, B with |A| = |B| = n and |A+
B| ≤ λn for a constant λ> 2, the structure gets considerably more complex and there is no exact
characterization of A and B. Nevertheless, we know from Freiman’s Theorem [14, 15] that A and
B are dense subsets of generalized arithmetic progressions of bounded dimension. This central
result has been very influential in the further development of additive combinatorics and related
areas, see for example [24, 28]. Motivated by this theme, in this paper, we study sumset bounds
beyond the Cauchy–Davenport bound that can be achieved using small subsets. We prove several
positive results and present constructions which give information about the fundamental limits.

Lower bounds beyond the Cauchy–Davenport bound. Our first main result in the paper shows
that we can indeed achieve bounds much better than the Cauchy–Davenport bound using a
bounded number of elements, where the size of the sumset we can guarantee using the small subset
grows with the size of the sumset A+A. More generally, the result holds for nonabelian groups.
For subsets A, B of a group which is not necessarily abelian, we write AB= {ab : a ∈A, b ∈ B}.
Theorem 1.1. There exists c> 0 such that the following holds. Let G be a group. Let A⊆G be
nonempty and let κ = κ(A) := |AA|/|A|. Then for each s≥ 1, there exists A(s) ⊆A of size at most s
such that

max(|AA(s)|, |A(s)A|)≥ cmin(κ1/3, s)|A|.
Note that if G is an abelian group, then the conclusion of Theorem 1.1 can be simplified as

|A+A(s)| ≥ cmin(κ1/3, s)|A|. In general nonabelian group, it is necessary to consider both AA(s)
and A(s)A (see Proposition 2.3). Furthermore, it is clear that |AA(s)| ≤ s|A| and |AA(s)| ≤ κ|A|. In
fact, we give a construction (see Proposition 2.5) showing that a bound better than cκ1/1.29|A|
cannot hold even in the abelian case, so the bound in Theorem 1.1 is tight up to possibly replacing
κ1/3 by κC for some C ∈ [1/3, 1/1.29].

We also prove the following asymmetric version.

Theorem 1.2. There exists c> 0 such that the following holds. Let G be a group. Let A, B⊆G be
nonempty such that |A| = |B| and let κ = κ(A, B) := |AB|/|A|. Then for each s≥ 1, there exist
A(s) ⊆A and B(s) ⊆ B of size at most s such that

max(|AB(s)|, |A(s)B|)≥ cmin(κ1/3, s)|A|.
Unlike the result of [5] achieving the Cauchy–Davenport bound, in our case, it is neces-

sary to consider max(|AB(s)|, |BA(s)|) even when the group G is abelian (see Proposition 2.6). In
Proposition 2.4, we also derive an analogue of Theorem 1.1 for difference sets, in which the power
1/3 can be replaced by 1/2. We further extend these results to the medium-sized regime; however,
in this setting, we can only expect to improve over the Cauchy–Davenport bound in a lower order
term (see Theorem 2.8 and Proposition 2.9).

To illustrate the idea, we sketch our proof of Theorem 1.1. We first run a greedy procedure to
growAA(s) andA(s)A, and terminate when adding any additional element does not increase |AA(s)|
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or |A(s)A| by more than c|A|. When this happens, we show that for each element a ∈A \A(s), all
but a c fraction of elements a′a, a′ ∈A have to lie in AA(s), and all but a c fraction of elements
aa′, a′ ∈A have to lie in A(s)A. Using a path counting argument similar to the one employed in
the proof of the Balog–Szemerédi–Gowers theorem [1, 19], we can then upper bound |AA| by
Oc( max(|AA(s)|, |A(s)A|)3/n2), which yields the desired bound. The full proofs of Theorem 1.1
and Theorem 1.2 are contained in Section 2.

Application: The Cauchy–Davenport bound over Fp using three elements. The path count-
ing argument to bound |A+A| from the sum of A and a set of bounded size is useful for other
applications. In Section 3, we use this idea to resolve a conjecture of Bollobás, Leader and Tiba
(Conjecture 1 of [5]), showing that over Fp, it suffices to use three elements to achieve the
Cauchy–Davenport bound.

Theorem 1.3. There exists α > 0 such that the following holds. Let A, B be nonempty subsets of Fp
of size n≤ αp. Then there exists a subset B(3) of B of size at most three such that |A+ B(3)| ≥ 2n− 1.

The proof involves applying the path counting argument as in Section 2 in several iterations
to bound the size of A′ + B′ for appropriate subsets A′ of A and B′ of B. When dealing with sets
that have bounded sumset, one can apply appropriate rectification results to connect the problem
over Fp with a problem over Z. However, the main difficulty is that sumsets are not stable under
addition or removal of a small number of elements, and even controlling sums of subsets of A and
B that contain all but at most an ε fraction of elements does not yield similar control on the sum of
A and B. (We will later revisit this phenomenon when discussing Theorem 1.7 and Theorem 1.8.)
We then need a careful argument that works directly with appropriate rectifications of subsets of
A and B and adapts the argument inspired by the argument of [5] over Z appropriately.

High dimensional versions. Another setting where one can expect to go beyond the Cauchy–
Davenport bound is the high dimension setting, for example where we have a set A in Z

d which
is not close to a lower dimensional set in an appropriate sense. In particular, using the Freiman–
Bilu Theorem [3, 17], we can show that for every d and ε, there exists t> 0 such that if A⊆Z

d

and A cannot be covered by a union of t hyperplanes, then |A+A| ≥ (2d − ε)|A|. In Section 4,
we consider the analogue of the results of [5] over the high dimension setting and show that the
high-dimension analogue of the Cauchy–Davenport bound can be achieved using only a bounded
number of elements.

Theorem 1.4. Let ε > 0 and let d be a positive integer. There exists T sufficiently large in d and
ε such that the following holds. Let A be a subset of Zd such that A is not contained in the union
of any T parallel hyperplanes. Then there is a subset A′ of A of size Oε,d(1) for which |A+A′| ≥
(2d − ε)|A|.

In [6, Question 3], it was asked if a medium-sized version holds: for a subset A⊆Z
d that is not

contained in the union of any t parallel hyperplanes, does there exist A′ ⊆A with |A′| ≤ C
√|A|

and |A′ +A′| ≥ (2d − ε)|A|? It turns out that the answer to this question is negative, as shown in
Proposition 4.1. Nevertheless, the bounded size version of this, Theorem 1.4, holds.

Saturating the entire sumset from a subset. In the following parts, we will work with subsets of
general abelian groups. As discussed earlier, it is not possible to achieve a fixed positive fraction of
|A+A| using the sum ofA and a subsetAC ofA of sizeC depending only on the doubling constant
κ = |A+A|/|A| (see Theorem 1.8 and Proposition 2.5). Nevertheless, it is interesting to determine
how large a subset A′ of A is needed in order to guarantee |A+A′| ≥ (1− ε)|A+A|. It turns out
that if A has bounded doubling, κ ≤ λ=O(1), one can always guarantee the existence of a subset
A′ of A of size o(|A|) with A′ +A=A+A. Furthermore, the asymmetric version holds: for any
A and B with |A| = |B| and |A+ B| ≤ λ|A|, one can find subsets A′ of A and B′ of B each of size
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o(|A|) such that A+ B= (A′ + B)∪ (A+ B′). In the case where A, B are dense subsets of Fn
p , this

was earlier shown by Ellenberg [11] with efficient bounds building on the cap-set breakthrough.
In Section 5, we show that a much more general phenomenon holds for subsets of groups with
bounded doubling which are not necessarily dense.

Corollary 1.5. Let G be an abelian group, and let S, T ⊆G be nonempty subsets of equal size such
that |S+ T| =O(|S|). Then there exist S′ ⊆ S and T′ ⊆ T with S+ T = (S′ + T)∪ (S+ T′) and
|S′| + |T′| = o(|S|).

Our proof also gives rise to the appropriate generalization over general groups.

Corollary 1.6. Let G be a group, and let S, T ⊆Gbe nonempty subsets of equal size such that |S2T| =
O(|S|). Then there exist S′ ⊆ S and T′ ⊆ T with ST = (S′T)∪ (ST′) and |S′| + |T′| = o(|S|).

Both corollaries follow from a more general result (Theorem 5.1) in Section 5, which is proved
using the graph theoretic triangle removal lemma. A reduction from an arithmetic removal lemma
to a graph removal lemma goes back to work of Král’, Serra and Vena [23], and our main technical
result builds on and extends their argument. As applications of the graph removal lemma, our
proofs of Corollaries 1.5 and 1.6 do not achieve strong quantitative bounds over general groups.
By using the bounds for the arithmetic removal lemma over Fn

p due to Fox and Lovász [13], we can
achieve a polynomial saving, replacing o(|S|) by an appropriate power |S|1−cm in the case where
G is an abelian group with bounded exponent m. Nevertheless, in the case G= F

n
p , the argument

of Ellenberg [11] gives a better (in fact sharp) exponent for Corollary 1.5. In Section 5, we also
give constructions in the cases G=Z and G= F

n
p suggesting fundamental limits on quantitative

bounds to the corollaries.

A construction of a non-saturating set. While it is not possible to achieve almost all of A+A
using a bounded number of elements, one of the key results in [5] says that this is possible upon
replacing A with a subset A′ consisting of almost all elements of A.

Theorem 1.7 ([5]). For λ, ε > 0, there exists C> 0 such that the following holds. Let A, B be
nonempty subsets of an abelian group G with |A| = |B|. Then there exist A′ ⊆A, B′ ⊆ B with
|A′| ≥ (1− ε)|A| and |B′| ≥ (1− ε)|B|, such that if B′′ consists of C randomly chosen elements of
B′, then

E[|A′ + B′′|]≥min((1− ε)|A′ + B′|, λ|A|, λ|B|).
In particular, if |A+ B| ≤ λ|A|, then there exists a subset B′′ of B′ of size at most C such that |A′ +
B′′| ≥ (1− ε)|A′ + B′|.

We remark that it is also straightforward to obtain the symmetric analogue of the above
theorem, where B=A and B′ =A′.

Much of the subtlety in obtaining sumset bounds growing with |A+A| is that, unlike the
Cauchy–Davenport bound which is stable under passing A to a subset A′ that contains almost all
elements of A, sumsets can generally behave unstably under addition or removal of few elements.
For example, consider A which is the union of a progression P of length n, and a small collection
of k arbitrary elements. Then |A+A| can be as large as kn, whereas upon removal of k elements,
the size of the sumset is only 2n− 1, matching the Cauchy–Davenport bound. This is the main
reason behind stopping at the Cauchy–Davenport bound in [5], and Theorem 1.7 suggests that
this is the only obstruction.

The example of a progression together with few additional elements mentioned above suggests
that it is impossible to replace |A′ + B′| with |A+ B| in Theorem 1.7. However, it is unclear if
we can replace only one of two sets with a subset. Considering that we are allowed to make our
selection of elements from B, it could be the case that we only need to replace A by a subset
A′ with better additive structure. Bollobás, Leader and Tiba (Question 5, [5]) ask this explicitly:
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Given constants ε > 0 and λ> 0, is there a constant c> 0 such that the following assertion holds?
IfA, B are subsets of Fp with |A| = |B| = n and |A+ B| ≤ λn, then there are setsA′ ⊆A and B′ ⊆ B
such that |A′| ≥ (1− ε)n and |B′| ≤ c and |A′ + B′| ≥ (1− ε)|A′ + B|.

It turns out that the answer to this question is negative. In Section 6, we give a construction
showing this in a strong sense: It is not possible to achieve a fixed positive fraction of the sumset
A′ +A using a bounded number of elements from A′ even when we are allowed to choose A′
which is a subset of A of size at least (1− ε)|A|.
Theorem 1.8. For any ν > 0, there exist λ> 1 and sufficiently small ε > 0 such that for all s> 0 and
p sufficiently large in s and ν, there exists a subset A of Fp of size�ν(p) such that |A+A| ≤ λ|A|, and
for all A′ ⊆A of size at least (1− ε)|A| and all A(s) ⊆A of size at most s, |A′ +A(s)| ≤ ν|A′ +A|.
Furthermore, the same result holds over Z and Fn

2 .

In fact, in our proof, we can even let s grow at some explicit rate together with the size of A.
Note that the existence of such a set A is nontrivial: Since we replace A with a subset A′ which
is ‘regular’ in an appropriate sense in terms of additive structure, if |A′ +A| is large, it cannot be
due to a small number of bad elements, and we may expect to be able to select many translates
of A′ that do not have significant overlap, leading to a large sumset. However, it turns out that
this intuitive picture is not correct. Our construction involves a niveau-like set A first constructed
over Fn

2, then adapted to the setting of appropriate cyclic groups and then to the integers and
prime cyclic groups.

Organization of the paper. In Section 2, we consider bounds beyond the Cauchy–Davenport
bound that are achievable using a bounded number of elements, and prove Theorems 1.1 and
1.2, as well as their medium-sized analogues. In Section 3, we prove Theorem 1.3, which veri-
fies the conjecture of Bollobás, Leader and Tiba that it suffices to use three elements to achieve
the Cauchy–Davenport bound over Fp. In Section 4, we consider the high-dimension setting
and prove Theorem 1.4. In Section 5, we study the number of elements needed to saturate the
entire sumset, and prove Corollaries 1.5 and 1.6. In Section 6, we give the construction proving
Theorem 1.8, that it is not possible to achieve a fixed positive fraction of A′ +A using a bounded-
sized subset of A′, even when we are allowed to choose A′ as a subset consisting of almost all
elements of A.

Notations and conventions. We use the following standard asymptotic notations. We denote
f =OP(g), f 
P g, or g =�P(f ) when there is a constant C> 0 depending on P so that f ≤ Cg,
and we denote f = oP(g) or g =ωP(f ) if f /g → 0 for fixed P. We omit floors and ceilings when they
are not essential. We denote [x]= {n ∈Z:1≤ n≤ x}. For a positive integer t and a set X (a subset
of an abelian group), we use tX = X + X + · · · + X = {x1 + · · · + xt :xi ∈ X, i ∈ [t]} to denote the
t-fold sumset. Throughout, unless otherwise stated, we use p to denote a prime number.

2. General lower bounds on product sets from small subsets
In this section, we mostly deal with general (and not necessarily abelian) groups. To signify the
difference, we write the group operation in the nonabelian case multiplicatively; as such the role
of the sumset is replaced by the product set AB. (The additive notation for the group operation is
reserved for the abelian case.) We will prove our results guaranteeing product sets with size sig-
nificantly larger than the Cauchy–Davenport bound using a small number of elements, assuming
that |AB| significantly exceeds the size of the setsA and B. In particular, we will prove Theorem 1.1
and Theorem 1.2, as well as their “medium-sized” analogues in Fp.

Throughout this and the following sections, we use a convenient path counting argument,
which we record here. A similar argument is used in Gowers’ proof of the Balog-Szemerédi-
Gowers theorem (see [19, 28]). Given a set C, let 	C be the bipartite graph on vertex sets A, B
such that a ∈A, b ∈ B are adjacent if and only if ab ∈ C.
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Lemma 2.1. Let k be an odd positive integer. Let A, B, C be subsets of a group. Suppose that for every
pair (a, b) ∈A× B there are at least w walks of length k in	C going from a to b. Then |AB| ≤ |C|k/w.
Proof. For each walk (a0, b1, a2, . . . , ak−1, bk) of length k with a0 = a and bk = b, we have ab=
(ab1)(a2b1)−1 · · · (ak−1b). Thus, for each x ∈AB, fixing (a, b) ∈A× B such that x= ab, we have at
least w different representations x= c1c−1

2 · · · c−1
k−1ck where c1, . . . , ck ∈ C. Since there are at most

|C|k choices of c1, . . . , ck, and each choice uniquely determines x ∈AB and the walk, we have that
|AB| ·w≤ |C|k, which rearranges to the desired inequality. �

We also have the following version of Lemma 2.1 for even values of k, which follows from
essentially the same proof. Note that we denote AB−1 = {ab−1 : a ∈A, b ∈ B}.
Lemma 2.2. Let k be an even positive integer. Let A, B, C be subsets of a group. Suppose that for
every pair (b, b′) ∈ B× B there are at least w walks of length k in 	C going from b to b′. Then
|BB−1| ≤ |C|k/w.

2.1. Large product sets from constant size subset
In this section, we prove Theorems 1.1 and 1.2. We recall their statements for convenience.

Theorem 1.1. There exists c> 0 such that the following holds. Let G be a group. Let A⊆G be
nonempty and let κ = κ(A) := |AA|/|A|. Then for each s≥ 1, there exists A(s) ⊆A of size at most s
such that

max(|AA(s)|, |A(s)A|)≥ cmin(κ1/3, s)|A|.
As we remarked before, ifG is abelian, the conclusion of the above theorem can be writtenmore

simply as |A+A(s)| ≥ cmin(κ1/3, s)|A|. We give a quick construction showing that for general
nonabelian groups, it is necessary to look at both AA(s) and A(s)A.

Proposition 2.3. Let n, t be integers with n≥ 4t. There exists a nonabelian group G and subset A
such that |A| = n, |AA| ≥ tn/2, and for any subset A(s) of A of size at most s, |AA(s)| ≤ 2n+ st.

Proof. Let m= n− t. Consider G= 〈x, y | xm = y2 = 1〉, which is isomorphic to the free product
Zm ∗Z2. Let A= 〈x〉 ∪ Ty for an arbitrary subset T of 〈x〉 of size t. Then |A| = n, and |AA| =
|〈x〉 ∪ 〈x〉y ∪ Ty〈x〉| ≥ (t − 1)(n− t − 1)≥ tn/2. On the other hand, for any subset A(s) of A of
size at most s, AAs ⊆ 〈x〉 ∪ 〈x〉y ∪ TyAs, which has size at most 2m+ st< 2n+ st. �
Theorem 1.2. There exists c> 0 such that the following holds. Let G be a group. Let A, B⊆G be
nonempty such that |A| = |B| and let κ = κ(A, B) := |AB|/|A|. Then for each s≥ 1, there exist
A(s) ⊆A and B(s) ⊆ B of size at most s such that

max(|AB(s)|, |A(s)B|)≥ cmin(κ1/3, s)|A|.
Theorem 1.1 is a special case of Theorem 1.2. Now we present the proof of Theorem 1.2.

Proof. Fix c= 1
14 . Let n= |A| = |B|. We proceed by induction on s to show that for every

s≥ 1 there exist choices of A(s) and B(s) such that |AB(s)| + |A(s)B| ≥ 2cmin(κ1/3, s)n. For s= 1,
we trivially have |AB(s)| + |A(s)B| ≥ |A| + |B| = 2sn≥ 2cmin(κ1/3, s)n since c≤ 1. Now suppose
the claim holds for s− 1, so there exist A(s−1) and B(s−1) such that |AB(s−1)| + |A(s−1)B| ≥
2cmin(κ1/3, s− 1)n. If |AB(s−1)| + |A(s−1)B| ≥ 2cκ1/3n, then we are done. So, we can assume
2c(s− 1)n≤ |AB(s−1)| + |A(s−1)B|< 2cκ1/3n.

If there is an element b ∈ B \ B(s−1) such that |(Ab) \ (AB(s−1))| ≥ 2cn, then letting A(s) =
A(s−1), B(s) = B(s−1) ∪ {b} yields |AB(s)| + |A(s)B| ≥ 2csn as desired. So we can assume that |(Ab) \
(AB(s−1))|< 2cn, and thus |(Ab)∩ (AB(s−1))|> (1− 2c)n, for all b ∈ B \ B(s−1). Similarly, we can
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assume |(aB)∩ (A(s−1)B)|> (1− 2c)n for all a ∈A \A(s−1). The same inequalities are clearly true
when a ∈A(s−1) or b ∈ B(s−1), so we in fact have

|(aB)∩ (A(s−1)B)|> (1− 2c)n ∀a ∈A, |(Ab)∩ (AB(s−1))|> (1− 2c)n ∀b ∈ B. (1)

Let C = (A(s−1)B)∪ (AB(s−1)), and consider the graph 	C defined as above. From (1) we know
that every vertex in A is adjacent to all but 2cn vertices of B, and vice versa. In particular, given
any pair (x, y) ∈A× B, there are at least (1− 2c)n choices of x′ and (1− 2c)n choices of y′ such
that (x, y′), (x′, y) ∈ 	C. For each such choice of x′, all but at most 2cn of the choices of y′ satisfy
(x′, y′) ∈ 	C. Thus, for every choice of (x, y) ∈A× B, there are at least (1− 2c)n(1− 4c)n≥ (1−
6c)n2 paths of length three from x to y in 	C. Applying Lemma 2.1 with k= 3, w= (1− 6c)n2
yields

|AB|(1− 6c)n2 ≤ |(A(s−1)B)∪ (AB(s−1))|3 < 8c3κn3.

Note that |AB| = κn. Simplifying the inequality above gives 8c3
1−6c > 1, which contradicts with

c= 1
14 . Thus (1) is false. This means that there exist A(s) and B(s) with |AB(s)| + |A(s)B| ≥

2cmin(κ1/3, s)n. By induction, this holds for all s≥ 1, andwe conclude thatmax(|AB(s)|, |A(s)B|)≥
cmin(κ1/3, s)n as desired. �

Theorem 1.1 follows immediately by taking B=A. We remark that in the case B=A−1 =
{a−1 : a ∈A}, a similar argument yields a better dependence on κ , as follows.

Proposition 2.4. There exists c> 0 such that the following holds. Given A⊆G such that |A| = n
and |AA−1| = κn. Then for each s≥ 1, there exists A(s) ⊆A of size at most s such that

max(|A(s)A−1|, |AA−1
(s) |)≥ cmin(κ1/2, s)|A|.

The change comes from using Lemma 2.2 and counting paths of length two in 	C instead of
using Lemma 2.1 and counting paths of length three. In particular, if G is an abelian group, then
given |A−A| = κ|A|, we can find A(s) of size at most s such that |A−A(s)| ≥ cmin(κ1/2, s)|A|.

On the other hand, the following construction (in the abelian setting) gives an upper bound on
how large of a sumset we can guarantee.

Proposition 2.5. There exists c> 0 for arbitrarily large κ > 0 for which the following holds: For all
positive integers d, there exist infinitely many positive integers n such that for some A⊂Z

d with
|A| = n and |A+A| = κn, for any s≤ nc/ log κ and any A(s) ⊆A of size at most s, we have

|A+A(s)| ≤min(κ1/1.29, s)|A|.
Proof. Note that |A+A(s)| ≤ s|A| trivially holds. Fix a small constant ε ∈ (0, 1). For a posi-
tive integer d, a perfect square m> 1, and a real number δ ∈ (2ε−1m−1/2, 1−m−1/2), consider
A= ([δm]∪ B)d, where B= {k√m : 0≤ k<

√
m} ∪ {m− k : 0≤ k<

√
m} is a set of size 2√m. In

particular, n= |A| ∈ [(δm+ √
m)d, (δm+ 2

√
m)d]. It is easy to check that form sufficiently large,

B+ B⊇ [m, 2m] and [δm]+ B⊇ [m]. Thus, we have the inclusion ([δm]∪ B)+ B⊇ [2m]. Since
0 ∈ B, we have ([δm]∪ B)+ ([δm]∪ B)⊇ [0, 2m]. On the other hand, [δm]∪ B⊆ [0,m], so we
conclude that ([δm]∪ B)+ ([δm]∪ B)= [0, 2m]. So,

|A+A| = (2m+1)d≥ (2m)d.
Hence,

κ ≥ (2/(δ+ 2m−1/2))d ≥ (2/((1+ ε)δ))d. (2)

On the other hand, for any elements a, b ∈A, we have a+ b ∈ [(1+ δ)m]d unless there is some
i ∈ [d] for which both a, b have their ith coordinate in B. Therefore, for any a ∈A,

|(A+ a) \ [(1+ δ)m]d| ≤ d|B||A|(d−1)/d = 2d
√
m|A|(d−1)/d≤ 2d

√
m|A|/(δm+√

m).
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Thus, for any s and any subsetA(s) ofA of size s, we have that |(A+A(s)) \ [(1+ δ)m]d| ≤ 2sd
√
m

δm+√
m ·

|A|≤ 2sd
δ
√
m |A| ≤ 2s√

m
( 1+δ
δ

)d |A|. Hence,

|A+A(s)| ≤ (1+ δ)dmd + 2s√
m

(
1+ δ

δ

)d
|A|.

Thus, for s≤ ε√m/2, we have

|A+A(s)|/|A| ≤ (1+ ε)((1+ δ)/δ)d. (3)

Note that
min
δ∈(0,1)

log((1+ δ)/δ)/ log(2/δ)< 1/1.29.

As such, there exists δ ∈ (0, 1) such that for ε sufficiently small, we have for all positive integers d
that

log
(
(1+ ε)

( 1+δ
δ

)d)
/ log

((
2

(1+ε)δ
)d)

< 1/1.29.

For m sufficiently large, we have δ ∈ (2ε−1m−1/2, 1−m−1/2). From (2) and (3), for s≤ ε√m/2,
we have

|A+A(s)|/|A| ≤ κ1/1.29.
Finally, recalling that n≤ (δm+ 2

√
m)d, κ ≥ (2/((1+ ε)δ))d, we have that

nc/ log κ ≤ exp
(
cd log(δm+ 2

√
m)

d log(2/((1+ ε)δ))

)
≤ (δm)2c/ log(2/δ) ≤ ε√m/2,

assuming that c> 0 is appropriately chosen. Hence, s≤ ε√m/2 whenever s≤ nc/ log κ . �
We remark that in Theorem 1.2, we cannot guarantee that there always exists B(s) ⊆ B such that

|AB(s)| is large, as shown by the following example in the abelian setting.

Proposition 2.6. Given positive integers s and k and ε ∈ (0, 1), for n sufficiently large, there exist
A, B⊆Z such that |A| = |B| = n, |A+ B|> kn, and for any subset B(s) of B of size at most s, |A+
B(s)| ≤ (2+ ε)n.

Proof. Let A= [n−k]∪ {n, 2n, . . . , kn} and B= [n]. We have |A+ B|> kn. For any subset B(s) of
B of size at most s, we have that |A+ B(s)| ≤ 2n+ sk≤ (2+ ε)n. �

2.2. Large sumsets frommedium-sized subsets
We now consider sumsets of medium-sized subsets, where we take subsets of both A and B while
keeping the product of their sizes small. Bollobás, Leader, and Tiba [6] proved the following result.

Theorem 2.7 ([6], Theorem 1). For all α, β > 0 there exists c> 0 such that the following holds.
Let A and B be non-empty subsets of Fp with α|B| ≤ |A| ≤ α−1|B| and |A| + |B| ≤ (1− β)p. Then,
for any integers 1≤ c1 ≤ |A| and 1≤ c2 ≤ |B| such that c1c2 ≥ cmax(|A|, |B|), there exist subsets
A′ ⊂A and B′ ⊂ B of sizes c1 and c2 such that |A′ + B′| ≥ |A| + |B| − 1.

In particular, when |A| = |B| = n, and we take c1 = c2 ≥ √
cn, this result again yields the Cauchy–

Davenport lower bound of 2n− 1 using only medium-sized subsets of A and B. We are interested
in going beyond this bound. However, in this case, unlike in the case of a constant-sized subset
of B plus all of A, it turns out that only a lower-order improvement over the Cauchy–Davenport
bound is possible in general.
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Theorem2.8. For all β there exists c′ > 0 such that the following holds. Let A, B be nonempty subsets
ofFp with |A| = |B| = n≤ 1−β

2 p and |A+ B| = κn. Then for all c ∈ (0,
√
n] there exist subsets A(s) ⊂

A and B(s) ⊂ B of size s≤ (c′ + c)
√
n such that

|A(s) + B(s)| ≥ 2n− 1+ cmin
(
1
4
n,

(
κ1/3/2− 2

) √
n
)
.

Proof. Let c2 = 1
4 . By Theorem 2.7, for some c1 > 0, there exist subsets A′ ⊂A and B′ ⊂ B with

|A′| = |B′| ≤ c1
√
n such that |A′ + B′| ≥ 2n− 1. Fixing such a pair of subsets and letting S0 :=

A′ + B′, we iteratively perform the following procedure. Given Si−1 for 1≤ i≤ √
n, we form Si ⊆

A+ B by either taking an element a ∈A such that |(a+ B) \ Si−1| ≥ c2n and letting Si = Si−1 ∪
(a+ B), or taking an element b ∈ B such that |(b+A) \ Si−1| ≥ c2n and letting Si = Si−1 ∪ (b+A).
The procedure terminates when neither action is possible, or once Si is formed for some i≥ √

n.
Suppose the process terminates upon the formation of S�. Let A∗ and B∗ be the sets of elements
chosen from A and B, respectively, in the course of the procedure, so |A∗|, |B∗| ≤ � <√

n+ 1 and
S� = S0 ∪ (A∗ + B)∪ (B∗ +A).

If �≥ √
n, then we have |S�| ≥ |S0| + c2�n≥ |S0| + c2n3/2. Otherwise, assume � <

√
n. Then

by the termination condition, for all a ∈A and b ∈ B we have |(b+A) \ S�|, |(a+ B) \ S�|< c2n.
Then in the graph 	S� , every vertex has degree at least (1− c2)n, which as before means that
between every pair (x, y) ∈A× B there are at least (1− 3c2)n2 paths of length three. Applying
Lemma 2.1 with k= 3 and w= (1− 3c2)n2 then yields |A+ B| ≤ |S�|3

(1−3c2)n2
, which means that

|S�| ≥ ((1− 3c2)κ)1/3n in this case.
Choose subsets Ã⊂A and B̃⊂ B of size �c√n� uniformly at random. By construction, each ele-

ment ofA∗ + B appears inA∗ + B̃with probability at least |B̃|
B = cn−1/2, and likewise each element

of A+ B∗ appears in Ã+ B∗ with probability at least cn−1/2. Therefore, we have

EÃ,B̃[|(A′ ∪A∗ ∪ Ã)+ (B′ ∪ B∗ ∪ B̃)|]
≥ |A′ + B′| +E[|((A∗ ∪ Ã)+ (B∗ ∪ B̃)) \ (A′ + B′)|]
≥ |S0| +

∑
s∈((A∗+B)∪(A+B∗))\S0

Pr [s ∈ (A∗ ∪ Ã)+ (B∗ ∪ B̃)]

≥ |S0| + cn−1/2|S� \ S0|
≥ (1− cn−1/2)|S0| + cn−1/2 min(|S0| + c2n3/2, (1− 3c2)1/3κ1/3n)
≥ 2n− 1+ cmin(c2n, ((1− 3c2)1/3κ1/3 − 2)n1/2).

Fix choices of Ã, B̃ such that the size of this sumset is at least its expectation, and let
A(s) =A′ ∪A∗ ∪ Ã and B(s) = B′ ∪ B∗ ∪ B̃. Note that A(s), B(s) each has size at most s≤
c1

√
n+ (

√
n+ 1)+ �c√n� ≤ (c′ + c)

√
n, where c′ = c1 + 2. We then have |A(s) + B(s)| ≥ 2n−

1+ cmin(14n, (c
′′κ1/3 − 2)

√
n), where c′′ = (1− 3c2)1/3 ≥ 1

2 , as desired. �
The matching upper bound showing that Theorem 2.8 is best possible up to the power of κ

comes from taking s= C
√
n in the following construction.

Proposition 2.9. For all positive integers n, k with k≤ √
n, there exist a real number κ ∈ (k, k+ 1]

and a set A⊆Z such that |A| = n, |A+A| = κn, and for all subsets A(s), B(s) ⊂A of size s≤ n, we
have

|A(s) + B(s)| ≤ 2n+ 2κs.

Proof. Let n0 = n− k+ 1, and let A= [n0]∪ {2n0, 3n0, . . . , kn0}. Then |A| = n and |A+A| =
|([(k+ 1)n0] \ {1})∪ {(k+ 2)n0, . . . , 2kn0}| = (k+ 1)(n− k+ 1)+ k− 2, so indeed (k+ 1)n≥
|A+A| ≥ (k+ 1)(n− k+ 1)> (k+ 1)n− k2 ≥ kn.
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Fix arbitrary subsets A(s), B(s) ⊂A with |A(s)| = |B(s)| = s. Partition A(s) as A0 �A1 where
A0 =A(s) ∩ [n0], and partition B(s) = B0 � B1 similarly.We haveA0 + B0 ⊆ [2n0] whileA1 + B1 ⊆
{2n0, 3n0, . . . , 2kn0}, and |A1|, |B1| ≤ |{2n0, 3n0, . . . , kn0}| = k− 1. Then

|A(s) + B(s)| ≤ |A0 + B0| + |A0 + B1| + |A1 + B0| + |A1 + B1|
≤ 2n0 + |A0||B1| + |A1||B0| + (2k− 1)
≤ 2n+ 1+ 2(k− 1)s≤ 2n+ 2κs,

as desired. �

3. The Cauchy–Davenport bound in Fp from three elements
In this section, we prove Theorem 1.3, restated below, which resolves Conjecture 1 of [5].

Theorem 1.3. There exists α > 0 such that the following holds. Let A, B be nonempty subsets of Fp
of size n≤ αp. Then there exists a subset B(3) of B of size at most three such that |A+ B(3)| ≥ 2n− 1.

Our argument is based on an extension of the argument in Section 2, used to show that appro-
priate subsets of A and B have bounded doubling. We then use Freiman’s rectification principle
to relate appropriate subsets of Fp and subsets of Z.

We will make use of the analogue of the above theorem in the integer setting that was already
shown in [5].

Theorem 3.1 ([5], Theorem 1). Let A, B be subsets of Z of size n. Then there exists a subset B(3) of
B of size at most three such that |A+ B(3)| ≥ 2n− 1.

We will also make use of Freiman’s rectification principle [4, 14]. Recall that a Freiman
s-homomorphism φ :A→ B is a map such that

∑s
i=1 φ(ai)=

∑s
i=1 φ(a′

i) whenever
∑s

i=1 ai =∑s
i=1 a′

i, and it is called an s-isomorphism when φ−1 is also a Freiman s-homomorphism.

Theorem 3.2 ([4, 14]). Let A be a subset of Fp. For λ> 0 and s> 0, there exists c> 0 such that if
|A|< cp and |A+A| ≤ λ|A|, then there is a Freiman s-isomorphism between A and a subset of Z.

We use the following version of the Plünnecke-Ruzsa Inequality with different summands [27].

Lemma 3.3 (The Plünnecke-Ruzsa Inequality, [27]). Let X, Y1, . . . , Yk be subsets of an abelian
group G. Assume that |X + Yi| ≤ αi|X| for each i≤ k. Then |Y1 + · · · + Yk| ≤ α1 . . . αk|X|.
Using Theorem 3.2 and Lemma 3.3, we obtain the following corollary.

Corollary 3.4. For λ, s, t> 0, there exists c> 0 such that the following holds. Let A, B be subsets of
Fp with |B|/2≤ |A| ≤ |B|< cp. If |A+ B| ≤ λ|A|, then there is a Freiman s-isomorphism between
t(A∪ B) and a subset of Z.

Proof. One application of Lemma 3.3 with X =A, Y1 = Y2 = B gives |2B|≤ λ2|A|. Another
application of Lemma 3.3 with X = B and Y1 = · · · = Yk =A and Yk+1 = · · · = Yk+� = B gives
|kB+ �A| ≤ λ2k+l|B| and hence |t(A∪ B)| ≤ (t + 1)λ2t|B|< c(t + 1)λ2tp. In particular we have
|2t(A∪ B)| ≤ (2t + 1)λ4t|B| ≤ (2t + 1)λ4t|t(A∪ B)|, so provided that c is chosen sufficiently small
in terms of λ, s, t, Theorem 3.2 implies that t(A∪ B) is Freiman s-isomorphic to a subset
R⊆Z. �

The following simple lemma is a warm-up to the proof of Theorem 1.3, and suggests the general
intuition behind our approach.

Lemma 3.5. For every λ> 0, there is α > 0 such that the following holds. Let A, B be subsets of Fp
of size n≤ αp. Assume that |A+ B| ≤ λn. Then there exists a subset B(3) of B of size at most three
such that |A+ B(3)| ≥ 2n− 1.
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Proof. ByCorollary 3.4, for α sufficiently small, there is a Freiman 2-isomorphismψ from (A∪ B)
to a subset of Z. By Theorem 3.1, there exists a subset B(3) of B so that |ψ(A)+ψ(B(3))| ≥ 2n− 1.
Noting that since ψ is a Freiman 2-isomorphism, ψ(a)+ψ(b)=ψ(a′)+ψ(b′) if and only if a+
b= a′ + b′, this then implies |A+ B(3)| = |ψ(A)+ψ(B(3))| ≥ 2n− 1. �

The full proof of Theorem 1.3 is much more involved, due to the fact that we cannot reduce to
the case |A+ B| 
 |A|, but can only find suitable dense subsets Ã ofAwith |Ã+ B| 
 |A|. Making
the choice of elements b1, b2, b3 greedily, we can find a subsetA′ ofA of size at least |A|/2 and a set
C with |C| 
 |A| such that for each a ∈A′, at least a positive fraction of b ∈ B satisfies a′ + b ∈ C.
From this we obtain the bound |A′ + B| 
 |A|. We then bootstrap this subset to a slightly larger
subset A′′ consisting of all a′′ ∈A with a′′ + b ∈ (A′ + B)∪A∪ (A+ x) for a positive fraction of
b ∈ B. At this point, we need to employ another argument (inspired by the argument in the integer
case) in order to handle the elements of A that are not contained in A′′. To proceed with the proof
in full detail, we first state two useful auxiliary results.

Lemma 3.6 (Theorem 27, [5]). There is c> 0 such that the following holds. Let A, B be subsets of
Fp of size n≤ cp, where B is contained in an interval of length at most n(1+ c). Then there exists a
subset B(3) of B of size at most three such that |A+ B(3)| ≥ 2n− 1.

Lemma3.7 ([20]). There is c> 0 such that the following holds. Let B be a subset ofFp with |B− B|<
(2+ c)|B|< 4cp. Then B is contained in an interval of length at most (1+ c)|B|.
Proof of Theorem 1.3. By Lemma 3.6, in the remaining part of the proof, we can assume that B
is not contained in an interval of length at most (1+ c)n, and hence, by Lemma 3.7, |B− B| ≥
(2+ c)n.
Step 1. We first show that we can assume that there exists B(2) ⊆ B of size at most two where
|A+ B(2)| ≥ (3/2+ c1)n for an appropriate constant c1 > 0.

If not, then for any two elements b1, b2 ∈ B, we have that |(A+ b2 − b1)∩A|> (1/2− c1)n. By
our assumption, we have that for any b ∈ B− B, we can write b= a1 − a2 in at least n(1/2− c1)
ways. Since the number of pairs (a1, a2) is n2, we conclude that |B− B| ≤ n2/(n(1/2− c1)). For c1
sufficiently small in c, we then have |B− B|< (2+ c)n, a contradiction.
Step 2. Assume that for all B(3) ⊆ B of size at most three, |A+ B(3)| ≤ (2+ c1/2)n. From Step 1,
there exists B(2) ⊆ B of size at most two with |A+ B(2)| ≥ (3/2+ c1)n. Then for all b ∈ B, we have
|(A+ b) \ (A+ B(2))| ≤ (1/2+ c1/2− c1)n= (1/2− c1/2)n.

Recall the construction from Section 2 of a bipartite graph 	C on vertex sets A, B where a ∈A
and b ∈ B are connected if and only if a+ b ∈ C. Let C =A+ B(2). Clearly |C| ≤ 2n. Each b ∈ B is
adjacent in 	C to at least (1/2+ c1/2)n vertices a ∈A. Thus, every b, b′ ∈ B are connected by at
least c1n walks of length two in the graph. By Lemma 2.2, this implies that |B− B| 
c1 n.

Let A′ be the set of a ∈A with degree at least c1n/4 in the graph. The number of edges in the
graph is at most |A′|n+ (n− |A′|)c1n/4 and at least (1/2+ c1/2)n|B| = (1/2+ c1/2)n2. Hence,

|A′| ≥ (1/2+ c1/4)n.

Furthermore, for any a ∈A′ and b ∈ B, there exist at least c21n2/4 walks of length three between a
and b. By Lemma 2.1, this implies |A′ + B| 
c1 n.

Let s be a sufficiently large constant to be chosen later. By Corollary 3.4, provided that α is
sufficiently small in terms of s and c1, we have a Freiman (s+ 1)-isomorphism φ between A′ ∪ B
and a subset R of Z. By translation, without loss of generality, we can assume that 0 ∈A′ ∪ B
and 0 ∈ R, R⊂Z≥0, and φ(0)= 0. Let m=max(φ(B)), and let x= φ−1(m) ∈ B. Note that there
is no solution to r2 − r1 = tm for r1, r2 ∈ φ(B) \ {m} and |t| ≥ 1. Since φ is a Freiman (s+ 1)-
isomorphism on A′ ∪ B, there is no solution to b2 − b1 = tx= t(x− 0) for b1, b2 ∈ B \ {x} and
1≤ |t| ≤ s, since such a solution would yield a solution to φ(b2)− φ(b1)= t(m− 0).

Let S= (A′ + B)∪A∪ (A+ x), and consider the graph 	S defined as before. Let c2 be a small
constant (depending only on c1) to be chosen later. Let A′′ be the set of a ∈A with degree in 	S at
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least c2n. We have that |A′′| ≥ |A′| ≥ (1/2+ c1/4)n provided that c2 ≤ c1/4. Note that all b, b′ ∈ B
are connected by at least |A′| ≥ n/2 walks of length two in 	S, and each a ∈A′′ is adjacent to
at least c2n vertices in B in 	S. Thus, for all a ∈A′′ and b ∈ B, there are at least c2n2/2 paths of
length three in 	S between a and b. As before, noting that |S| 
c1 n, we can apply Lemma 2.1
to show that |A′′ + B| 
c1,c2 n (note that the implicit constant does not depend on s). Let k′ be
the maximum number of elements of A′′ contained in a progression of common difference x
and length at most s. For any set Ã which is the intersection of A′′ and a progression of common
difference x and length at most s, we have |Ã+ (B \ {x})| = |Ã| · (|B| − 1) since there is no solution
to tx= b1 − b2 for b1, b2 ∈ B \ {x}, 0< t ≤ s. On the other hand, we have |Ã+ B| 
c1,c2 n. Hence,
k′ =max |Ã| ≤ |Ã+B|

|B|−1 
c1,c2 1.
Using linearity of expectation, note that

Eb∈B,b�=x[|A+ {0, x, b}|]= |A+ {0, x}| +Eb∈B,b�=x[|(b+A) \ (A+ {0, x})|]
= |A+ {0, x}| +

∑
a∈A

|(a+ (B \ {x})) \ (A+ {0, x})|
|B| − 1

. (4)

Let ñ be the minimum number of progressions of common difference x that A can be partitioned
into. Then |A∪ (A+ x)| = n+ ñ. Let B′ = B \ {x}. By the definition of A′′, we have |(a+ B′)∩
(A∪ (A+ x))| ≤ c2n for a /∈A′′. For a ∈A′′, we will need the following claim to bound |(a+ B′)∩
(A∪ (A+ x))|.
Claim 3.8. If a ∈A′′, we have |(a+ B′)∩ (A∪ (A+ x))| ≤ ñ+ 4(n− |A′′|)/s.
Proof. Consider a fixed translate of B′ by a ∈A and consider its intersection with a progression
P with common difference x in A∪ (A+ x). If a+ b1 = p1, a+ b2 = p2 are in the intersection of
a+ B′ and P, then p2 − p1 = b2 − b1. Since there is no solution to b2 − b1 = tx for 1≤ |t| ≤ s and
b1, b2 ∈ B′, it must be the case that p2 − p1 = �x where either �= 0 or |�|> s. In particular, in
every subprogression of P of length s, there can be at most one intersection with a+ B′. Hence,
if there are r ≥ 2 intersections of a+ B′ and the progression P, then |P| ≥ (r − 1)s. Furthermore,
for s chosen sufficiently large, recall that there are at most k′ =Oc1,c2 (1)< s/1000 elements in the
intersection of A′′ with any progression of length s with common difference x. Similarly, there are
at most s/1000 elements in A′′ + x in a progression of common difference x of length s. Thus, P
must contain at least |P|(1− s

500
1
s )≥ (r − 1)s/2 elements from (A \A′′)∪ ((A \A′′)+ x). Hence,

we obtain that
|(a+ B′)∩ P| = r ≤ 1+ 2(|P ∩ (A \A′′)| + |P ∩ ((A \A′′)+ x)|)/s.

Summing over P, we obtain |(a+ B′)∩ (A∪ (A+ x))| ≤ ñ+ 4(n− |A′′|)/s. �
Hence, if ñ≥ 3c2(n− 1), we have from (4) and Claim 3.9 that for s≥ 16/c2,

Eb∈B,b�=x[|A+ {0, x, b}|]≥ n+ ñ+
(
1− c2

n
n− 1

)
(n− |A′′|)+ |A′′|

n− 1
(n− 1− ñ− 4(n− |A′′|)/s)

= 2n− ñ
n− 1

+ (n− |A′′|)
(

ñ
n− 1

− 1+ 1− c2
n

n− 1
− 4|A′′|

(n− 1)s

)
> 2n− 2.

This implies the existence of b ∈ B such that |A+ {0, x, b}| ≥ 2n− 1.
Next, consider the case ñ< 3c2(n− 1). We have the following claim.

Claim 3.9. For a ∈A and b ∈ B, we have |(a+ B)∩ (A∪ (A+ b))| ≤ 2ñ+ 2n/s+ 1.

Proof. Note that for any fixed b ∈ B, A∪ (A+ b) can be written as a union of at most 2ñ
progressions of common difference x with total size at most 2n. The argument in our proof
of Claim 3.9 shows that for any progression P of common difference x and any a ∈A,
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|(a+ B′)∩ P| ≤ 1+ |P|/s. Hence, summing over a partition of A∪ (A+ b) into at most 2ñ
progressions, we obtain

|(a+ B)∩ (A∪ (A+ b))| ≤ 2ñ+ 2n/s+ 1. �
We now have
Eb,b′∈B[|A+ {0, b, b′}|]= |A| +Eb,b′∈B[|(b+A) \A| + |(b′ +A) \ (A∪ (A+ b))]

= n+
∑
a

|(a+ B) \A|
|B| +Eb∈B

[∑
a

|(a+ B) \ (A∪ (A+ b))|
|B|

]

≥ n+ 2
|A|
|B| (n− 1− 2ñ− 2n/s) > 2n,

assuming that s is sufficiently large and c2 is sufficiently small. Here, we use linearity of expectation
in the second equality, and Claim 3.10 in the first inequality. �

4. Higher-dimensional versions
In this section, we consider bounds that can be shown in high dimension. In particular, we will
show a negative answer to [6, Question 3], in that we cannot expect a much better bound than the
Cauchy–Davenport bound in the medium-size regime even in high dimension.

Proposition 4.1. For all positive integers d, t, and n, there exists a subset A of size at least n in Z
d

such that A cannot be covered by a union of t parallel hyperplanes, and for any s≤ n and any subset
A′ ⊆A of size s, |A′ +A′| ≤ 2|A| +Od,t(s).

Nevertheless, Theorem 1.4, restated below, shows that if, instead of the medium-sized version,
one asks for a subset A′ of A of bounded size with |A′ +A| ≥ (2d − ε)|A|, then such A′ always
exists.

Theorem 1.4. Let ε > 0 and let d be a positive integer. There exists T sufficiently large in d and
ε such that the following holds. Let A be a subset of Zd such that A is not contained in the union
of any T parallel hyperplanes. Then there is a subset A′ of A of size Oε,d(1) for which |A+A′| ≥
(2d − ε)|A|.

Let P(A; t, k, d) denote the property that A is not contained in the union of any t parallel trans-
lates of a subspace of dimension k< d in R

d. The proof of both results above will make use of the
following lemma.

Lemma 4.2. For any integers t ≥ 1 and k ∈ [0, d − 1], there exist constants C = C(t, k, d) and
T = T(t, k, d) such that any set A⊆R

d satisfying P(A; T, k, d) has a subset A(C) of size at most
C satisfying P(A(C); t, k, d).

Proof. We prove the result by induction on k. When k= 0, the result is immediate (with
T(t, k, d)= t and C(t, k, d)= t + 1). Now assume the claim holds for all k< k0 and consider the
case k= k0 ∈ [1, d − 1]. Since A satisfies P(A; T, k, d), it satisfies P(A; T′, k− 1, d) for any T′ ≤ T,
so by choosing T(t, k, d) appropriately we can assume thatA satisfies P(A; T(t2, k− 1, d), k− 1, d).
By the inductive hypothesis, we can select a subset X of A of size at most C(t2, k− 1, d) such that
X satisfies P(X; t2, k− 1, d).

Suppose there are distinct subspaces H1,H2 of dimension k such that X is contained in both a
union of t translates ofH1 and a union of t translates ofH2. In this case, X is contained in a union
of at most t2 translates ofH1 ∩H2, which has dimension at most k− 1, violating P(X; t2, k− 1, d).
Hence, there is at most one subspace H of dimension k such that X is contained in a union of
t translates of H. If no such H exists, then X satisfies P(X; t, k, d). Otherwise, since A satisfies
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P(A; T, k, d) with T ≥ t, we can find a set of t + 1 points in A, each in a different translate of H.
Taking the union of X with this set of t + 1 points, we obtain a set X̄ satisfying P(X̄; t, k, d) with
|X̄| ≤ C(t2, k− 1, d)+ t + 1. Thus the claim holds for k= k0 as well with C(t, k, d)= C(t2, k−
1, d)+ t + 1 and T(t, k, d)= T(t2, k− 1, d), and hence by induction for all k≤ d − 1. �

Using Lemma 4.2, the proofs of Proposition 4.1 and that of Theorem 1.4 directly follow.

Proof of Proposition 4.1. By Lemma 4.3 with A=Z
d, there exists a finite subset A(C) ⊂Z

d of
size Ot,d(1) that cannot be covered by a union of t parallel translates of a hyperplane. Let A be the
union of A(C) and an arithmetic progression P of length n− |A(C)|. For any subset A′ ⊆A of size
s, A′ +A′ is contained in (2P)∪ (A(C) +A′), so |A′ +A′| ≤ 2|P| + |A(C)||A′| ≤ 2|A| +Od,t(s), as
claimed. �
Proof of Theorem 1.4. Let δ be sufficiently small in ε. By Theorem 1.7 and the following remark,
there exists C′ depending on d and δ such that the following holds. We can find a subset Â⊆A
of size at least (1− δ)|A| such that upon choosing a random subset Ã⊂ Â of size C′, one has
E[|Ã+ Â|]≥min(22d|Â|, (1− δ)|Â+ Â|). In particular, there exists a subset Ã of Â of size C′ for
which |Ã+ Â| ≥min(22d|Â|, (1− δ)|Â+ Â|). If (1− δ)|Â+ Â| ≥ 22d|Â| ≥ 22d(1− δ)|A|, then we
are done; hence, we can assume that |Ã+ Â| ≥ (1− δ)|Â+ Â|.

Letm be the smallest integer for which |Â+ Â|< (2m − δ)|Â|, and supposem≤ d. Then by the
Freiman–Bilu Theorem ( [3, 17]), Â is contained in a union of at most K(d) translates of a GAP in
Z
d of dimension at most m− 1 and thus in a union of at most K(d) translates of a subspace Q of

dimension at mostm− 1≤ d − 1.
Choose t sufficiently large in K(d). By Lemma 4.2, for some T = T(t, d), assuming that A sat-

isfies P(A; T, d − 1, d), we can select a subset A(C) of A of size at most C = C(t, d) which satisfies
P(A(C); t, d − 1, d). Let A′ = Ã∪A(C). We have A′ +A⊇ (Ã+ Â)∪ (A(C) + Â). Note that if two
translates a+ Â and a′ + Â intersect, then a′ − a ∈ Â− Â, which is contained in a set E which
is the union of at most K(d)2 translates of Q. We claim that A(C) contains a subset S such that
(S− S)∩ E= {0} and |S| ≥ (t −K(d)3)/(2K(d)2). Indeed, for a maximal subset S of A(C) with
S− S disjoint from E \ {0}, we have thatA(C) ⊆ (S+ E)∪ (S− E), which can be covered by 2sK(d)2
translates of Q. Since A(C) satisfies P(A(C); t, d − 1, d), we must have s≥ t/(2K(d)2). As such,

|Â+A(C)| ≥ t|Â|/(2K(d)2).
Hence for t sufficiently large, we obtain that |A′ +A|> 2d|A|, as desired.

It remains to consider the case whenm> d, i.e. |Â+ Â| ≥ (2d − δ)|Â|. In this case we have

|A′ +A| ≥ |Ã+ Â| ≥ (1− δ)(2d − δ)(1− δ)|A| ≥ (2d − ε)|A|. �

5. Saturating the entire sumset from a subset
In this section, we study the following question. Given a finite set A contained in an abelian group
with |A+A| =O(|A|), how large do we need A′ to be so that A+A′ =A+A? We also consider
the asymmetric version: Given finite sets A, B contained in an abelian group with |A| = |B| and
|A+ B| =O(|A|), how large do we need A′ ⊆A, B′ ⊆ B to be so that (B+A′)∪ (A+ B′)=A+ B?
We begin first with general upper bounds that hold for arbitrary groups.

5.1. Upper bound
The following theorem will be our main technical result.

Theorem 5.1. Let G be a group, let S, T, X be subsets of G, and let Z = XST. Then there exist subsets
S′ of S and T′ of T with |S′|, |T′| = o(|Z|2/|X|), and (S′T)∪ (ST′)= ST.

https://doi.org/10.1017/S0963548324000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000014


Combinatorics, Probability and Computing 425

We will use the graph-theoretic triangle removal lemma in the proof of Theorem 5.1. The idea
of using the triangle removal lemma to prove an arithmetic removal lemma in general groups goes
back to work of Král’, Serra and Vena [23]. Here we build on and generalize their proof idea to
prove a result that is potentially meaningful for sparse subsets of a group.We have stated below the
triangle removal lemma, which follows from Szemerédi’s regularity lemma. The best quantitative
bound known for the triangle removal lemma is by Fox [12], where 1/ε(δ) can be taken as the
inverse function of an exponential tower of height O( log δ−1).

Lemma 5.2 (Triangle Removal Lemma [12]). There exists ε :R+ →R+ such that ε(δ)→ 0 when
δ→ 0 and the following holds. If 	 is a graph with at most δ|V(	)|3 triangles, then one can remove
at most ε(δ)|V(	)|2 edges from 	 and obtain a triangle free graph.

Proof of Theorem 5.1. Let τ > 0 be a threshold to be chosen later. We consider a greedy pro-
cedure to define a subset S∗ of S. Start with S∗ = ∅. Whenever there exists s ∈ S \ S∗ such that
|(sT) \ (S∗T)|> τ , we update S∗ to be S∗ ∪ {s}. The procedure terminates with a set S∗ satisfying
the condition that for all s ∈ S \ S∗, |(sT) \ (S∗T)| ≤ τ . Note that

|S∗| ≤ |ST|/τ ≤ |XST|/τ .
LetY = XS and recall that Z = XST. Consider a tripartite graph	 with vertex setsX, Y , Z where

x ∈ X, y ∈ Y are connected if y= xs for s ∈ S \ S∗; y ∈ Y , z ∈ Z are connected if z = yt for t ∈ T;
and z ∈ Z, x ∈ X are connected if z = xu for u ∈ (ST) \ (S∗T). Each triangle in 	 corresponds to
a triple (x, xs, xst) where s ∈ S \ S∗, t ∈ T and st ∈ (ST) \ (S∗T). For each x ∈ X and s ∈ S \ S∗, the
number of t forming such a triple is at most τ by our choice of S∗. Hence, 	 has at most τ |X||S| ≤
(τ/|Z|)|V(	)|3 triangles. By the triangle removal lemma, one can remove ε(τ/|Z|)|V(	)|2 edges
from 	 and ensure that no triangle remains. Let Ŝ be the set of elements s ∈ S \ S∗ for which at
least |X|/3 edges (x, xs) of 	 are removed. Let T̂ be the set of elements t ∈ T for which at least
|X|/3 edges (y, yt) of 	 are removed. Let Û be the set of elements u ∈ ST \ (S∗T) for which at least
|X|/3 edges (xu, x) are removed. For each s ∈ S \ S∗ and t ∈ T with st ∈ (ST) \ (S∗T), there are |X|
triangles (x, xs, xst) in 	. Hence, in order for all such triangles to be removed, we must have that
either s ∈ Ŝ, t ∈ T̂, or st ∈ Û. For each u ∈ Û, we choose an arbitrary representation u= sutu for
su ∈ S, tu ∈ T. Then we have ST = (S′T)∪ (ST′) for T′ = T̂ and S′ = S∗ ∪ Ŝ∪ {su:u ∈ Û}. We also
have the bound

|Ŝ| + |T̂| + |Û| ≤ ε(τ/|Z|)(3|Z|)2/(|X|/3).
Thus,

|S′| + |T′| ≤ |Z|/τ + 27ε(τ/|Z|)|Z|2/|X|.
By choosing τ such that τ = o(|Z|) and τ =ω(1), we obtain the desired bound |S′| + |T′| =
o(|Z|2/|X|), noting that |Z| ≥ |X|. �

Applying Theorem 5.1 with X =G, we obtain the following corollary.

Corollary 5.3. Let G be a group, and let S, T ⊆G. Then there exist S′ ⊆ S and T′ ⊆ T with ST =
(S′T)∪ (ST′) and |S′| + |T′| = o(|G|).

Combining with the Plünnecke-Ruzsa Inequality (Lemma 3.3), we can prove Corollary 1.5,
restated here, which is a local version of Corollary 5.3 in abelian groups.

Corollary 1.5. Let G be an abelian group, and let S, T ⊆G be nonempty subsets of equal size such
that |S+ T| =O(|S|). Then there exist S′ ⊆ S and T′ ⊆ T with S+ T = (S′ + T)∪ (S+ T′) and
|S′| + |T′| = o(|S|).
Proof. Let X = S, Y = 2S and Z = 2S+ T. By Lemma 3.3, |X|, |Y|, |Z| =�(|S|). The result then
follows from Theorem 5.1. �
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Corollary 1.6, the nonabelian analogue of Corollary 1.5, also immediately follows from
Theorem 5.1 by taking X = S.

Corollary 1.6. Let G be a group, and let S, T ⊆Gbe nonempty subsets of equal size such that |S2T| =
O(|S|). Then there exist S′ ⊆ S and T′ ⊆ T with ST = (S′T)∪ (ST′) and |S′| + |T′| = o(|S|).

Due to the use of the triangle removal lemma, Theorem 5.1 does not come with good quantita-
tive bounds. While we do not have strong quantitative bounds for the arithmetic removal lemma
(the arithmetic analogue of the triangle removal lemma) for general groups, we do have them over
F
n
p (or more generally, groups with bounded exponent). In particular, Fox and Lovász [13] showed

an arithmetic removal lemma with polynomial dependency over Fn
p , stated below. Let cp be a

positive constant given by p1−cp = inf0<x<1 x−(p−1)/3(1+ x+ · · · + xp−1), and let Cp = 1+ 1/cp.

Theorem 5.4 ([13]). Let X, Y , Z ⊆ F
n
p be such that there are at most δp2n solutions to x+ y= z

for x ∈ X, y ∈ Y , z ∈ Z. Then we can remove εpn elements from X, Y , Z and remove all solutions to
x+ y= z, where ε = δ1/Cp−o(1).

In fact, the dependency of δ on ε in Theorem 5.4 is tight up to the o(1) term in the exponent.
Note that in the proof of Theorem 5.1 in the case G= X = Y = Z, denoting by εG(δ) the bound

we have for the arithmetic removal lemma over G, we obtain a bound

|S′| + |T′| ≤ inf
τ≥1

(|G|/τ + 27ε(τ/|G|)|G|) .
If ε(δ) depends polynomially in δ, so that ε(δ)≤ δc for some c> 0, then we can optimize τ to
obtain |S′| + |T′| ≤ |G|1−c′ for some c′ > 0 depending on c. In particular, in the case G= F

n
p , we

can use the arithmetic removal lemma of Fox and Lovász to obtain

|S′| + |T′| ≤ |G|1−1/(1+Cp)+o(1) = |G|1−1/(2+1/cp)+o(1).

A similar result also holds more generally over abelian groups with bounded exponent.
For S, T ⊆G of equal size with |S+ T| ≤ λ|S|, by a result of Green and Ruzsa [16], we can

guarantee that S and T are subsets of a coset progression of size Oλ(|S|). When G= F
n
p , one can

then guarantee that S, T are subsets of subgroups of G of size Oλ,p(|S|). Hence, we also obtain the
same result where we can guarantee |S′| + |T′| ≤Oλ,p(|S|1−1/(2+1/cp)+o(1)). Furthermore, a power-
saving bound holds in the same setting over abelian groups with bounded exponent.

In [11], by adapting directly the linear-algebraic method behind the cap-set result, Ellenberg
obtained a power-saving bound with tight exponent for the special case G= F

n
p . Combining this

result with the above argument, one obtains the following corollary.

Corollary 5.5. Let G= F
n
p. For S, T ⊆G of equal size with |S+ T| =O(|S|), there exist S′ ⊆ S and

T′ ⊆ T with S+ T = (S′ + T)∪ (S+ T′) and |S′| + |T′| =O(|S|1−cp).

5.2. Lower bound construction
In this section, we study constructions of sets S, T for which |S+ T| 
 |S| = |T|, and any choice
of S′ ⊆ S, T′ ⊆ T such that S+ T = (S′ + T)∪ (S+ T′) must necessarily have |S′| + |T′| large. In
fact, we will only need to focus on the symmetric case where S= T =A.

First, we will show that one cannot expect a power-saving upper bound for |S′| + |T′| over Z.
We will make use of a construction of Behrend for progression-free sets [2, 10, 18].

Proposition 5.6. For any positive integer t, the set Xr,n(t) := {(x1, . . . , xn):1≤ xi ≤ r ∀ 1≤ i≤
n,

∑n
i=1 x2i = t} is progression-free in Z

n
m when m≥ 2r.
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Proof. Suppose that three distinct elements x, y, z ∈ Xr,n(t) form a 3-term progression in Z
n
m.

For each i, we know that 2yi ≡ xi + zi (mod m). Moreover, because 1≤ xi, yi, zi ≤ r, we know
that 2≤ 2yi ≤ 2r ≤m and 2≤ xi + zi ≤ 2r ≤m. Therefore, 2yi = xi + zi, and hence we have

0= 2t + 2t − 4t =
n∑
i=1

2x2i + 2z2i − 4y2i =
n∑
i=1

2x2i + 2z2i − (xi + zi)2 =
n∑
i=1

(xi − zi)2.

This is only possible when x= z. Since 2y= x+ z, we have y= (x+ z)/2= x, which contradicts
the assumption of distinctness. Therefore we conclude that Xr,n(t) is progression-free in Z

n
m. �

Proposition 5.7 (Construction in Z). For any sufficiently large positive integer N, there exists a
finite set A⊂Z such that |A| ≤N, |A+A| ≤ 6|A|, and for any subset A′ ⊆A with A′ +A=A+A,
we have |A′| ≥Ne−c

√
logN for some absolute constant c> 0.

Proof. Let r, n be determined later. We would like to use Proposition 5.6. By the Pigeonhole
Principle, since

∑n
i=1 x2i is in [n, nr2] when (x1, . . . , xn) is taken from {1, . . . , r}n, there exists t

such that Xr,n(t) contains at least rn
nr2 elements. Fix such a t. Let φ :Zn

2r → {0, . . . , (2r)n − 1} be a
bijective map that induces a Freiman 2-isomorphism from {1, . . . , r}n to its image. Since Xr,n(t)
is a progression-free set in Z

n
2r , the set A0 := φ(Xr,n(t)) is a progression-free set in Z. Thus, if

2a= a1 + a2 for a, a1, a2 ∈A0, then a1 = a2 = a.
For simplicity we denote T = (2r)n. Let A1 = [− 2T,−T − 1]∩Z and let A=A0 ∪A1. Clearly

T = |A1| ≤ |A| = |A0| + |A1| ≤ 2T. On the other hand, we haveA+A⊆ [− 4T, 2T), so |A+A| ≤
6|A|. Suppose A′ ⊆A satisfies that A′ +A=A+A. For any a ∈A0, we know that 2a ∈A+A. If
2a= a1 + a2 for some a1, a2 ∈A, then since a1 + a2 = 2a> 0, neither a1 nor a2 is in A1, implying
that a1, a2 ∈A0. From our construction of A0, we must have a1 = a2 = a. Hence if 2a ∈A′ +A
for some subset A′ ⊆A, then we must have a ∈A′. Hence, A+A′ =A+A implies that A0 ⊆A′.
Now if we optimize by choosing N = 2T, n= √

logN and r = e
√

logN/4, then |A| ≤N and |A′| ≥
|A0| ≥ rn

nr2 ≥Ne−c
√

logN for some positive constant c. �
As we saw in the previous subsection, the behaviour over Fn

p is different, and we can show a
power-saving upper bound on |S′| + |T′|. For the construction over Fn

p , we will use the result of
Kleinberg, Sawin and Speyer [22] (combined with a conjecture later resolved by Pebody [26] and
Norin [25]) on tricoloured sum-free sets.

Theorem 5.8 ([22, 25, 26]). Given a collection of ordered triples {(xi, yi, zi)}mi=1 in Fn
p such that xi +

yj + zk = 0 holds if and only if i= j= k, the size of the collection satisfies the bound m≤ p(1−cp)n.
Furthermore, there exists such a collection with m≥ p(1−cp)n−o(n).

Proposition 5.9 (Construction in F
n
p). For positive integers n, there exists A⊆ F

n
p such that |A+

A| ≤ 6|A|, and for any subset A′ ⊆A with A′ +A=A+A, we have |A′| ≥ p(1−cp)n−o(n).

Proof. By Theorem 5.8, there exist m≥ p(1−cp)n−o(n) and {(xi, yi, zi)}mi=1, where xi, yi, zi ∈ F
n−2
p

for each 1≤ i≤m, such that xi + yj + zk = 0 if and only if i= j= k. By this condition, if xi = xj,
then as xj + yi + zi = 0, we have i= j. Thus the xi’s are distinct, so X = {xi:1≤ i≤m} is of sizem.
Similarly we have that Y = {yi:1≤ i≤m} is of sizem.

For simplicity, for a, b ∈ Fp and x ∈ F
n−2
p , we write (a, b, x)= (a, b, x1, . . . , xn−2) to denote an

element in F
n
p . Then we shall take A= ({(0, 0)} × X)∪ ({(0, 1)} × Y)∪ ({(1, 0)} × F

n−2
p ). Clearly

A⊃ {(1, 0)} × F
n−2
p while A+A⊆ {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)} × F

n−2
p , so |A+A| ≤

6|A|.
We now show that for A′ ⊆A, if A′ +A=A+A, then |A′| ≥m. Note that (0, 1,−zi)=

(0, 0, xi)+ (0, 1, yi) ∈A+A. We show that (0, 1,−zi) can only be represented in this way as
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a sum of two elements in A. Suppose that u+ v= (0, 1,−zi), where u, v ∈A. If both of u, v
are in {(1, 0)} × F

n−2
p , then the second coordinate is 0, which is different from 1 in (0, 1,−zi).

If exactly one of u, v is in {(1, 0)} × F
n−2
p , then u+ v must have the first coordinate 1, which

is different from 0 in (0, 1,−zi). Finally, the only possibility remaining is that u, v are both
from ({(0, 0)} × X)∪ ({(0, 1)} × Y). By considering the second coordinate in u+ v= (0, 1,−zi),
the only possible combination is that one of u, v is from {(0, 0)} × X and the other one from
{(0, 1)} × Y . Without loss of generality, say that u= (0, 0, xj) and v= (0, 1, yk). Then this implies
that xj + yk = −zi, which is only possible when i= j= k. Hence (0, 1,−zi)= (0, 0, xi)+ (0, 1, yi)
is the only representation (up to permutation of the summands). Therefore, for each 1≤ i≤m,
either (0, 0, xi) or (0, 1, yi) is in A′ if A′ +A � (0, 1,−zi). Hence |A′| ≥m as desired. �

6. Non-saturating sets
In this section, we give the construction proving Theorem 1.8, restated below for convenience.

Theorem 1.8. For any ν > 0, there exist λ> 1 and sufficiently small ε > 0 such that for all s> 0 and
p sufficiently large in s and ν, there exists a subset A of Fp of size�ν(p) such that |A+A| ≤ λ|A|, and
for all A′ ⊆A of size at least (1− ε)|A| and all A(s) ⊆A of size at most s, |A′ +A(s)| ≤ ν|A′ +A|.
Furthermore, the same result holds over Z and Fn

2 .

The construction is first done over F
n
2, and is then used to derive a construction over

appropriate cyclic groups ZN , then over the integers Z and prime cyclic groups Fp.

Construction over F
n
2 . Let θ be a sufficiently large constant, and θ/4< δ < θ/3. Let p,m be

sufficiently large integers so that ν2p > 100 andm> 2p, and let n= p+m.
For x ∈ F

m
2 , let |x|1 denote the number of coordinates of x that are equal to 1. Consider

A0 ⊆ F
m
2 given by A0 = {x : |x|1 ≤m/2− θ

√
m}. By the Central Limit Theorem, we have |A0| ≥

exp(−Cθ2) · 2m for some absolute constant C (provided θ is large), so A0 is a dense subset of
F
m
2 . Consider B0 = {x : |x|1 ≤ θ√m}. For x, y ∈ F

m
2 , let x⊗ y= (x1y1, . . . , xmym). For any x with

|x|1 ≤ θ√m, note that (A0 + x)∩ {y : |y|1 ∈ [m/2− δ
√
m,m/2]} ⊆ {y : |y⊗ x|1 ≥ (θ − δ)

√
m}.

Claim 6.1. There is an absolute constant c> 0 such that the following holds. For any fixed x with
|x|1 ≤ θ√m, the number of y ∈ {y : |y|1 ∈ [m/2− δ

√
m,m/2]} with |y⊗ x|1 ≥ (θ − δ)

√
m is at

most 2−cθ
√
m · 2m.

Proof. Fix x with |x|1 ≤ θ√m. Consider y chosen uniformly at random from {0, 1}m. Then
|y⊗ x|1 is a binomial random variable with mean at most θ

√
m/2. By the Chernoff bound, the

probability that |y⊗ x|1 ≥ (θ − δ)
√
m is at most 2−cθ

√
m for some absolute constant c (assuming

θ is sufficiently large and δ ∈ (θ/4, θ/3)). Thus, the number of y with |y⊗ x|1 ≥ (θ − δ)
√
m is at

most 2m−cθ
√
m. �

By the claim, for any subset B′ of B0,

|(A0 + B′)∩ {y : |y|1 ∈ [m/2− δ
√
m,m/2]}| ≤ |B′|2m−cθ

√
m. (5)

Thus, noting that B0 + B0 ⊆ {y : |y|1 ≤m/2− δ
√
m} and A0 + B′ ⊂ {y : |y|1 ≤m/2}, we have

|(B0 + B0)∪ (A0 + B′)| (6)
≤ |{y : |y|1 ≤m/2− δ

√
m}| + |(A0 + B′)∩ {y : |y|1 ∈ [m/2− δ

√
m,m/2]}|

≤ 2m(|B′|2−cθ
√
m + exp(−c2δ2)), (7)
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for some constant c2 > 0. For each x ∈ F
n
2 , write x= (x1, x2) where x1 ∈ F

p
2 and x2 ∈ F

m
2 . Consider

A⊆ F
n
2 given by

A((x1, x2))= I(x1 = 0)A0(x2)+ (1− I(x1 = 0))B0(x2).

Here I denotes the indicator function, and for a set S, S(x) := I[x ∈ S]. Noting that |A| ≥
|A0| ≥ exp(−Cθ2) · 2m, the doubling constant of A is λ= |A+A|/|A| ≤ 2n/(2m exp(−Cθ2))≤
2p exp(Cθ2).

By our choice of m> 2p, if m is sufficiently large in terms of ε, then we have ε|A0| ≥ (2p −
1)|B0|. Then for any subset A′ of A of size at least (1− ε)|A|, we have that A′

0 := {x2 : (0, x2) ∈A′}
has size at least (1− 2ε)|A|. Let 	+ = 	1+(A) denote the set of points y differing in at most
one coordinate from some x ∈A, and define 	k+1+ (A)= 	+(	k+(A)). Observe that A′

0 + B0 =
	
θ
√
m

+ (A′
0). Recall the following vertex isoperimetry inequality of Harper [21].

Theorem 6.2 ([21]). Let A⊆ {0, 1}m have |A| ≥ ∑q
j=0

(m
j
)
. Then |	+(A)| ≥ ∑q+1

j=0
(m
j
)
.

Note that

|A′
0| ≥ (1− 2ε)|A0| = (1− 2ε)

m/2−θ√m∑
j=0

(
m
j

)
≥

m/2−(θ+η)√m∑
j=0

(
m
j

)
,

where η→ 0 as ε→ 0. By Theorem 6.2,

|	θ
√
m

+ (A′
0)| ≥

m/2−η√m∑
j=0

(
m
j

)
≥ 2m−1 exp(−Cη).

Since A′ +A contains 2p disjoint translates of A′
0 + B0 = 	

θ
√
m

+ (A′
0), we have for sufficiently small

ε that

|A′ +A| ≥ 2p+m−1 exp(−Cη)≥ 2p+m−2.

On the other hand, for any such A′ and any subset A(s) of A of size at most s, let B′
0 =

{x2 : (x1, x2) ∈A(s)}. Then A′ +A(s) is contained in {x : x1 = 0} ∪ (Fp
2 × ((B0 + B′

0)∪(B0 + B0)∪
(A′

0 + B′
0))). By (6) and the fact that |B′

0| ≤ |A(s)| ≤ s, we have that |A′ +A(s)| is bounded above by

|A′ +A(s)| ≤ 2m + 2p+m( exp(−c2δ2)+ s21−cθ
√
m).

We thus have that

|A′ +A(s)|/|A′ +A|< 4(2−p + exp(−c2δ2)+ s21−cθ
√
m).

Recall that we chose p such that 2pν > 100. By choosing θ (and hence δ) sufficiently large such
that exp(−c2δ2)< ν/25, as long as m is sufficiently large such that s< ν2cθ

√
m−5, we conclude

that |A′ +A(s)|/|A′ +A|< ν as desired.
Construction over ZN . Let q be a prime so that qν > 100, θ > 0 sufficiently large, and θ/4<
δ < θ/3. Consider primes p1, . . . , pm > q. Let N = p1 . . . pm. For each i≤m, let Ai = {2k+ 1:k≤
pi/2} ⊆Zpi . For each x ∈ ∏

i Zpi , let π(x) ∈ {0, 1}m be defined by π(x)i =Ai(xi). Define A0 =
{x : |π(x)|1 ≤m/2− θ

√
m}, where again |π(x)|1 is the number of ones in π(x). Again |A0| =

N exp(−cθ2). Let B0 = {x ∈ {0, 1}m:|π(x)|1 ≤ θ√m}. As before, for any subset B(s) of B0 of size
s,

|(A0 + B(s))∩ {y : |π(y)|1 ∈ [m/2− δ
√
m,m/2]}| ≤Ns2−cθ

√
m.
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Consider the groupG=Zq × ∏
i Zpi , and denote each element z ∈G by z = (x′, x) with x′ ∈Zq

and x ∈ ∏
i Zpi . Define A⊆Zq × ∏

i Zpi by

A((x′, x))= I(x′ = 0)A0(x)+ (1− I(x′ = 0))B0(x).

Then A+A⊆Zq × {x : |π(x)|1 ≤m/2} ∪ {z : x′ = 0}. For any subset A′ of A of size at least
(1− ε)|A|, as in the proof of the construction over FN

2 , we have |A′ +A| ≥Nq/4. For any such
A′ and any subset A(s) of A of size s, we can bound

|A′ +A(s)| ≤ |A+A(s)| ≤ qN(q−1 + exp(−cδ2)+ s21−cθ
√
m)< νqN/4≤ ν|A′ +A|.

Construction over Z and Fp. Let A be the set in the construction over ZN and note that upon
choosing q depending only on ν, we can guarantee that |A| �ν N. Let Â be the set of representa-
tives of A in [N − 1]. Observe that Â+ Â⊆ [2(N − 1)]. We have |Â+ Â| ≤ 2|A+A| ≤ 2λ|A|. For
any Â′ ⊆ Â of size (1− ε)|Â| and any Â(s) of size s, we have that∣∣∣Â′ + Â

∣∣∣ ≥
∣∣∣Â′ + Â ( mod N)

∣∣∣ ≥ 1
ν

∣∣∣Â′ + Â(s) ( mod N)
∣∣∣ ≥ 1

2ν

∣∣∣Â′ + Â(s)

∣∣∣ .
For any prime p> 2N with p
ν N, the same set Â (mod p) gives a construction of a subset of Fp
with density�ν(1) satisfying the required properties in Theorem 1.8.

7. Concluding remarks
We believe that the following question is interesting.

Question 7.1. Let λ, ε > 0 be positive constants. Let A be a subset of an abelian group G with |A+
A| ≤ λ|A|. How large does a subset A′ of A need to be to guarantee |A′ +A| ≥ (1− ε)|A+A|?

As we saw in Section 5, even if ε = 0, we have that |A′| = o(|A|) suffices (with explicit power-
saving bounds over abelian groups with bounded exponent, while Behrend’s construction shows
that one cannot have power-saving bounds over Z or Fp). On the other hand, for some fixed
positive ε, considering A= [δn]∪ {√n, 2

√
n, . . . , n− √

n} ∪ [n− √
n, n] (cf. Proposition 2.5)

shows that one needs |A′| =�(
√|A|). It would be interesting to determine for ε > 0 if one needs

|A′| ≥ |A|1−o(1) when G=Z or G= Fp.
Another interesting question is to determine the optimal exponent on the doubling constant

in Theorem 1.1.

Question 7.2. What is the largest C such that the following holds? For some constant c> 0, if A is a
nonempty subset of an abelian group G and κ = |A+A|/|A|, then for each s≤ κC−o(1), there exists
A(s) ⊆A of size at most s such that |A+A(s)| ≥ cs|A|.

As discussed previously, from Theorem 1.1 and Proposition 2.5 we know that C ∈ [ 13 ,
1

1.29 ],
while for the setting of difference sets A−A we have the better lower bound C ≥ 1

2 .
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