Inverse tangent series via telescoping sums
RUSSELL A. GORDON

When first learning about infinite series, students typically are shown
some examples for which the partial sums can be simplified by taking
advantage of telescoping sums. In this paper, we present many examples of
such series, all involving the inverse tangent function and most of which
involve the Fibonacci and Lucas numbers. Most of the series presented here
have appeared in various papers (see the references), but the authors are
usually working in an abstract setting which makes it difficult for students to
follow the basic ideas. We seek to make these results accessible to a wider

audience.
u+v)
1—wl

The first identity is valid for all positive numbers # and v, while the second
one is valid for all positive numbers u and v that satisfy uv < 1. The
following result is a simple consequence of the first identity and properties
of telescoping sums.

All of our results stem from the basic trigonometric identities

v
) and arctanu + arctany = arctan(

u
arctanu — arctany = arctan(
+ uy

Theorem 1: Let {a;} be an unbounded, strictly increasing sequence of
positive numbers. Then

d 1
2 arctan = arctan|—|.
- a

Proof: Using the inverse tangent identity for differences, we find that

n

Gr+1 — G .

2 arctan lim 2 (arctan a1 — arctan ak)
+akak+1 n—e -]

Gk+1 — Gy
1 + aray .

lim (arctan a,,i — arctan al)
n— oo

7 1
— — arctang; = arctan —.
2 a
This completes the proof.

To illustrate Theorem 1, we begin with three simple examples.

Example 1: (see [1]) Letting @, = 2k — 1, we find that

= ((2k+1)—(2k—1) = 1 1 =
z arctan = arctan — = arctan — = —.
- 1+ Qk-1DEk+1)) = 2k 1 4
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Example 2: (see [1]) Letting @, = 2k, we find that

= ( Qk +2) - 2k 2 1
Z arctan | ————————— | = arctan ———— = arctan —;
~ 1+ 2k2k +2)) A~ Qk + 1) 2

1M

S

- 2
2 arctan —— =
2k — 1)?

k=1
] 1 b4 .
Note the use of the basic fact that arctanx + arctan— = ) for positive
X

numbers x.

Example 3: Letting b > 1 be a fixed number and gq;, = b1, we find that

1 T
2 arctan b2k N Z arctan A = arctanl = r

It is interesting to note that the sums of these series are independent of the
value of b.

Many of our series results involve the sequence {f,} of Fibonacci
numbers and the sequence {/, } of Lucas numbers, where

(oo =0,1,1,2,3,58,13,21, ... and {£,}0 = 2,1,3,4,7,11,18,29.47, ....

To establish some common notation for these numbers, let a = ¢ and
B = —é, where ¢ is the golden ratio. Recall that a and f are the two
solutions to the equation x> = x + 1 and thus satisfy the equations
af = —-1,a + B = 1 and a — B = /5. By the Binet formulas for these
numbers, it is known that £, = @ + " and \/5f, = a" — " for all integers

n 2> 0. There are many relationships between these numbers, such as

fee1 + fic1 = Uk and Crs1 + Loy = Sy
We assume the reader is familiar with the basic properties of these numbers,
but we include details for some of the less familiar identities when they are
needed.

Example 4: (see [2, 3, 4]) Using the identity
1
L+ foufusa = g(5+ (a2k— )( w2 ﬁ2k+2))

_ é(s b oM ,82 TSN ﬁ4k+2)

T et 2k + 1\2 2
—(a ’ - B +) = for+1s

_ l(a4k+2 + 04 ﬁ4k+2) _
5 5

and letting a; = fo, we find that
A1 — @ fuso2 = Sfu fusr 1

1 + aray .1 I+ fufoen o f2k+1'
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It follows that

- 7 @
z rctan = arctan— =— and thus Z arctan
k= 2k+1 f2 4 2k+1 2
Example 5: (see [3, 4]) Letting ¢, = a*~!, we have
Ap+1 — a2kl B a— o o a+ B 1
1 + away 1, 1 + a* B+ a* a? + B* U
It follows that
s 1 1
2 arctan — = arctan —.
4 a
Making note of the fact that
1 a -1 a+p
arctan a — arctan — = arctan = arctan = arctan —,
a 1 2
we see that
- 1 1 1
2 arctan — = arctan — + arctan — = arctan a.
- Lok 2 a
Example 6: (see [5]) Letting @, = a* =2, we have
pe1 — Gk _(12]"—(12]"‘2_ -a-f a+pf o1
1+ @y, 1 +a%-2 — gA-T_ k-1 g2-1_glh-1 = (5, °

It follows that

z . ¢ 1 T
arctan ——— = arctan — = —.

\[ka—l al 4
3

This result is the partlcular case of b = a® in Example

Example 7: (see [6]) Using the identity
14l ilogay = 1+ (a1 +ﬁ2k—l)( 2% +1 ﬁ2k+1)

1+a4k—ﬁ2—a2+,84k

R N R Uy )

and letting a; = (o _1, we find that

1 — Gk _ Uoks1 = U1 _ ok
1 + avay . 1+ lop—1lok 41 5%
It follows that
- 1 7T
z rctanf = arctan — = —.
- ,/l 4
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Example 8: (see [6]) Referring to the identity in Example 4, we see that

L + Sforforsr = a¥r? -

2 4+ ﬂ4k+2 _ (a2k+1 + 182k+1)2 _

= (o1
Letting @y = V/5fa, we find that
at! - d _ \/§f2k+z - \/ngk _ \/§f2k+l
I + ogag 4 I+ Sfufors2 T
and thus obtain the following two series results
o 5 1 o
arctan M = arctan — and 2 arctan ——— \/—ka L
k=1 4 %k +1 \/5

2k 1 2 ’
Example 9: (see [6]) Referring to the identity in Example 7, we see that

4k k )
3+ lulusr = «a +ﬁ4 = ly.
. Lo -
Letting a;, = k-1

=5 we find that

3ay 1 — 3a _ \/§ﬂ2k+1 - \/§£2k—1 \/§[/2k
3 + 3aag 1 3+ Lop—1lop s Ca
It follows that

2 arctan 2 = arctan\/3 = =
- 4k
Example 10: (see [6]) Using the identity

9 4 L slues = 9 + (a4k—3 +ﬁ4k—3)(a4k+l + ﬂ4k+1)

_ 9+a8k—2_ﬂ4_a4+ﬂ8k—2

8k -2 8k - 2 -1 Ak - 1 2
= a +2+p =(a -p ) = Sfa-1
and letting @, = /4 1, we find that

ars1—9ar  3las1 = 3lu-3

_ -3 _ 3luct+la—n)  1far 3
9+ 9mars1 9+ La—3lagsr -1 Ni-1 faa
It follows that
2 arctan = arctan 3.

4k1

The reader is encouraged to find the related series result corresponding to
Ay = %/} 4k ~
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Example 11: (see [6]) Using the identity
9 4 5fu ofssin = 9 + (a4k—2 _ ﬁ4k—2)(a4k+2 _ ﬁ4k+2)
=9+a8k_ﬂ4_a4+ﬁ8k
2
e (@ Y - A
and letting a; = %f;;k _», we find that
9ay..1 — 9ay _ 3\/§f4k+2 - 3\/§f4k—2 _ 3\/§(f4k+1 +fak-1) _ 3\/§ﬂ4k _ &3
9 + 9ayay.,.1 9+ 5far—of ak+2 N I Cay
It follows that

Z arctan \f arctani
\/3.

We next present a slightly modified version of Theorem 1 that can be
used to find further sums.

Theorem 2: Let {a;};-o be an unbounded, strictly increasing sequence of
non-negative numbers. Then

Ai+1 — dg-1
Z arctan| ——— | = & — arctana, — arctana;
oy + Qp - 10k + 1
k+1 +1 — Ar—1
z arctan[——— | = arctanq; — arctan ay.
- I+ @ 1G5 41

Proof: Using the inverse tangent identity for differences, we find that

2 ( K+l — ak—l)
arctan

+ - 10k + 1
n

lim z (arctan a, .1 — arctan ak,l)
noe p]

lim ((arctana, + arctana,, ) — (arctanq, + arctana ))

n—>oo

= JT — arctana, — arctana.
This establishes the first series result. For the second one, we have

- k+1 Ai+1 — dr-1

2 (-1 *!arctan ——

— + g 10k +1
n

lim 2 ((—l)k+l arctana; | — (—l)k

n—> -1

-1

arctan ay — 1)

lim ((—1)” (arctan a, — arctana, , 1) - (arctan ap — arctan al))
n— oo

arctan a; — arctan q.
This completes the proof.
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The next examples present series for which Theorem 2 easily
determines the sums.

Example 12: (see [1, 7, 8]) Letting a;, = k, we have
Gor =@y _ (k+ D - (k-1 _ 2

l+ @ e 1+Gk=-Dk(k+1D K

It follows that

- 2 37
2 arctan — = 7 — arctanQ — arctanl = —;
- k 4

2
Z (-t arctanﬁ = arctan1 — arctan0 = —
k=1

The reader may note that these sums also follow from the series in Examples
1 and 2.

k
Example 13: (see [8]) Letting a; = —=, we have

V3
3ai1 =341 V3k+ 1) -3k -1  2V3
3 4+ 3a,_1a, 41 3+ (k + 1)(k -1 k2 + 2
It follows that
3 1 S
2 arctan = ;1 — arctan( — arctan — = —;
= +2 V36
- : 2V3 1
2 (—1)"+1 arctan — V3 = arctan — — arctan(0 = ﬁ‘
= K+ 2 V3 6
Example 14: (see [8]) Letting b > 1 be a fixed number and g; = v, we
find that
—pk! - b-b"!
arctan ———— arctan ——— = ot — arctan 1 — arctanb
2 b2k ]; bk + b—k

b+1
b-1

s

1
= arctan1 + arctang = arctan

b-b"' -
Z( 1)"+1 arctan ——— = arctanb — arctan 1 = arctan
br+ b7t b+1

Lettmg b = ¢" and using the hyperbolic trigonometric functions, these two
results can be written as

- sinh r 37 .
2 arctan = — — arctane’;
= coshrk 4
— sinh r 7T
2 (-1)**! arctan = arctane’ — —.
coshrk 4
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Example 15: (see [5, 6]) Letting ¢, = a**, we have
Aot — a1 PRI Y B T @ - p NG
1 + ap_1a; 41 1 + a% ﬁ2k + o2k a2 + ﬁZk [’}Zk.

It follows that

. 5 2 2
Z arctan-— = g7 —arctan 1 — arctana” = arctan 1 + arctan3
k=1 2k

2

1+p
arctan > = arctan
1-8

g = arctan/5;

a -1
2

c V5
2 (—l)k+1 arctan — arctan o’ — arctan 1 = arctan
k=1 Uk 1+ a

a+ B 1
arctan —— = arctan —.

a-p V5

Note that these results follow from Example 14 with b = o>

Example 16: (see [8]) Using the identity
1+ logoologrn = 1+ (@72 + B (™2 + p477)
1+a4k+ﬁ4+a4+ﬁ4k

lap + 8

and letting @, = (5, we have

R T U O e o S S N 2 S B 1)

I + ar1ap 41 1+ lop—ologs2 lay + 8 Ly + 8
It follows that

= 5 1 1
2 arctan ﬁ = gt — arctan2 — arctan3 = arctan — + arctan —
i Lo +
T
=arctanl = —;
4
- 5f 1
Z (—1)1‘+1 arctan I = arctan3 — arctan2 = arctan —.
&= Lo+ 8 7

Example 17: (see [8]) Using the identity in Example 16 and letting
a, = %y, we have

dag,y —dar_1 2000 =200 > _ 2(Logsr + Log-1) _ 10f

4+4ak_1ak+1 B 4+ﬁ72k—2[}2k+2 /ﬁ74k+ 11 //74k+ 11
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It follows that

1072

Z arctan ———— =
k=1 £4k+ 11

S 102

2‘(—1)]‘)rl arctan

il Lo+
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3 1
= arctani —arctanl = arctang.

3 2
st —arctan1 — arctanz = arctan1 + arctang = arctan5;

It is possible to find the sums of more complicated inverse tangent
series using telescoping sums. The next theorem lays the groundwork for a
few such results. The equalities listed in the theorem are presented in more

general form in [5].

Theorem 3: The following equalities are valid for all positive integers k:

1 1-2k ~1-2k
arctan — = arctan a + arctan a ;
2%k
1 3-2k -1-2k,
arctan = arctan a — arctan a )
2%k -1
1 1 -2k —1-2k
arctan — = arctan a — arctana ;
Lok
1-2k
arctan = 2 arctan a ;
U1
3-2k -1-2k
arctan — = arctan a + arctan a .
2%k -1
Proof: Noting that (using the relevant equation numbers)
al = 4 g% a+ ot a—-pf 1
1 — o % a2k — g2k a2k — g o
ok - 2 _
B3k _ ogl2% o — a2 az_ﬁz 1
1 + 2-% a2k-1 4 gl-2 a1 — gk far
al ~% — g% a— ot a+ B 1
1 + a2 a2k + o2 a2k + g Lo
2al 2% 2 2 2
1 — o2-% qk-1 — gl-2 a2k-1 4 -2 (o1
a2 ¢ gl at + a? a’ + ﬁz 3
1 — 2-% Q-1 — gl-2 a1 4 k-1 (o1

1)

()

3

“4)

)

(1)

()

3

“4)

®)

for all positive integers k, each of the equalities in the Theorem follows from
the appropriate inverse tangent identity.
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To simplify the notation in the examples that follow, we let
ty = arctana' = for every integer k. We also interpret arctan § as %; this
makes equation (1) in Theorem 3 valid for k = 0.

Example 18: (see [5]) Using (1) and (2) from Theorem 3, we find that the
partial sum

n
1 1
2 arctan (arctan— + arctan

iz 2%-1 2% fo-2
is equal to
n n
Z(fk—l =t )+ tean) + (teoy + 1)) = Z((ti_l —ti) + 2t (g — tisn))
k=1 k=1

= Y ((tror + 1 = (e + 11:1))
k=1

2 2
=(t0+t1) _(tn+tn+l) .
The sum of the corresponding series is thus

2 2
. b4
lim ((to + 1‘1)2 —(t, + t,,+1)2) = (to+ tl)2 = (arctana + arctan—) =—.
n—> 0 a 4

Splitting the following sum into its even and odd terms, we find that

- 1 1
z arctan — arctan ——
k=1 k k+1

— 1 1 - 1
Y arctan arctan + ) arctan arctan —
= for-2 fu-1 (T for-1 S

=~

d 1 1 1 T
= Z arctan arctan — + arctan + ==
2% % -2 4 4

k=2 2k -1
_ T zg+q v _a
4 4\4 2] 16 8
This is a rather interesting result and gives the unexpected equality
— 1 1 — 1
2 arctan — arctan = 5
k=1 fk fk+1 k:l(2k_ 1)

Example 19: (see [5]) Using (1) and (3) from Theorem 3, we find that
- 1 1 -
2 arctan — arctan — lim 2 (tk + ty 1) (tk — trs 1)
k=1 2k 2k n—eo j_1
lim Y, (6 = i)
noee p]
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lim (6] = 17.1)
n— oo
2 ( 1 )2 (arctan 2)2
t7 = |arctan—| = .
a 2
(See the end of Example 5 for a hint to prove of the last equality.)

Example 20: (see [5]) Using (2) and (4) from Theorem 3, we find that

Z arctan ! arctan 2 = lim Z(tk_l — tie1) (2t0)
k=1

4
2%k -1 Lo -1 n—eo g1

lim 2 2 (te—1ty — titesr)

noe f=l

= 2 lim (tot; — tutns1)

n—>oco

1
2tot; = 2 arctan a arctan —
a

arctan a arctan 2.

Example 21: (see [5]) Using (2) and (5) from Theorem 3, we find that

n

< 1
z arctan arctan — 3 = lim Z (tk,l - tkﬂ)(tk,l + tk”)
k=1 2k

-1 [/Zk—l n—eo p_1

n
= lim Z(l‘i_l - tl%+1)
noee g
= 1lim (R +4-2-72,)
n— oo

=+ 6

2
(arctan (1)2 + (arctan —) .
a

We present one final example, omitting the simple proofs of the needed
identities.

Example 22: (see [4,7, 9, 10]) Noting that

e feen
fisr  foo _ fi-fisdfeer _ DD D
|4l f(feor + fion) fil fa
fkfk+1
we find that
z’(—l)k+l arctani = lim z arctan fe _ arctanjh
k=1 f2k n—eo 1 k+1 k
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. f n f 0
= lim |arctan — arctan—
n— e n+1 1
1
= arctan —.
a

We hope that the examples provided here spark the reader's curiosity for
these types of series. The references listed below include many more such
series, along with various generalisations. We end the paper with an exercise
and an open question.

2

- 2 T o
Exercise: Show that z arctan k—lz = pm — 1 for each positive integer p.
k=1

Open question: Find a simple expression for the sum of the series

2 arctan i
k=1 f 2k
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