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Abstract

The variable stator vanes (VSV) are a set of typical spatial linkage mechanisms widely used in the variable cycle
engine compressor. Various factors influence the angle adjustment precision of the VSV, leading to the failure of the
mechanism. The reliability analysis of VSV is a complex task due to the involvement of multiple components, high
dimensionality input and computational inefficiency. Considering the hierarchical characteristics of VSV structure,
we propose a novel multi-layer Kriging surrogate (MLKG) for the reliability analysis of VSV. The MLKG com-
bines multiple Kriging surrogate models arranged in a hierarchical structure. By breaking the problem down into
more minor problems, MLKG works by presenting each small problem as a Kriging model and reducing the input
dimension of the sub-layer Kriging model. In this way, the MLKG can capture the complex interactions between
the inputs and outputs of the problem while maintaining a high degree of accuracy and efficiency. This study proves
the error propagation process of MLKG. To evaluate MLKG’s accuracy, we test it on two typical high-dimensional
non-linearity functions (Rosenbrock and Michalewicz function). We compared MLKG with some contemporary
KG surrogate modeling techniques using mean squared error (MSE) and R square (R?). Results show that MLKG
achieves an excellent level of accuracy for reliability analysis in high-dimensional problems with a small number
of sample points.

Nomenclature

Abbreviations

VSV variable stator vanes

MLKG multi-layer Kriging surrogate

KG Kriging model

MSE mean squared error

R R square

RAVSV reliability analysis of vane stator variables
KPLS Kriging surrogate with partial least squares
MIC maximal information coefficient

KMIC Kriging surrogate with maximal information coefficient

HDKM-PCDR  high-dimensional Kriging modeling method through principal component dimension reduction
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Symbols

x input data

¥ (x) the unknown function of interest
fx the regression models of KG

B the unknown parameters of KG

Z (x) the random variables in KG

o standard deviation of input samples
R (x;,x;)  the correlation models of KG

YO (x) the output response of p-th object

x® the input parameter of the p-th object
error;; the error of surrogate model

A the maximum fitting error of all samples
i constant number

Vary;, the variance of y! .

1.0 Introduction

The variable cycle engine is a new-generation aircraft engine that achieves different thermodynamic
cycles by altering specific engine components’ geometric shapes, dimensions or positions [1]. The vari-
able stator vanes (VSV) are a set of typical spatial linkage mechanisms widely used in the variable cycle
engine compressor (Fig. 1) [2]. Their role is to expand the compressor’s operating range and provide the
engine with a greater surge margin. The reliability of VSV directly affects the overall performance of
the aero-engines. For example, in the operating process of the VSV, the reciprocating motion of multiple
rocker arms frequently causes random high-frequency alternating stress and high cycle fatigue (HCF)
failure. It is worth highlighting that the HCF failure of multiple rocker arms has emerged as the pre-
dominant failure mode in aero-engines. Many scholars have researched VSV failures to improve the
engine’s reliability. Michael [3] studied the motion process of VSV in a homogeneous coordinate sys-
tem and derived the motion equation. Peng [4] studied the effect of the circumferential misalignment
angle of the VSV on the rotational stall of the engine. Zhang [5] conducted kinematic and dynamic
simulation analysis on the simplified VSV, considering the influence of factors such as rocker arm flexi-
bility, motion pair friction and load. Despite these efforts, research on VSV primarily focuses on motion
simulation under deterministic conditions, with limited attention to reliability under geometric and load
uncertainties. The reason is that the reliability analysis of VSV is a complex task due to the involve-
ment of multiple components (Fig. 2) and high dimensionality input [6]. These difficulties result in
time-consuming motion solving for VSV reliability.

Bai [7] studied the reliability of a simplified VSV by using surrogate model technique. Surrogate
model, which replaces motion solving, is a common approach for reliability analysis [8—10]. They can
greatly improve the design efficiency for high-fidelity but computationally expensive models [11-14].
However, surrogate models suffer from well-known drawbacks in multiple components and high-
dimension problems. The first drawback is that the covariance matrix of the surrogate model may
increase dramatically if the model requires a large number of sample points. As a result, inverting
the covariance matrix is computationally expensive. The second drawback is that optimising the sub-
problem involves estimating the hyperparameters for the covariance matrix [15, 16]. Unfortunately,
high-dimensional input is often unavoidable in the reliability analysis of vane stator variables [17, 18].

To address high-dimensional difficulties in the reliability analysis of VSV, dimensionality reduction
methods have to be used prior to surrogate models [19, 20]. The common dimensionality reduction [16,
21-25] techniques rank the input variables with their contribution to the model response and remove
those input variables with less contribution. A popular branch of dimensionality reduction called global
sensitivity analysis focuses on contributing to the output from the entire input range [26, 27]. Calculating
the global sensitivity analysis requires the evaluation of multi-dimensional integrals over the input space
of the simulator. Even if the dimensionality reduction method is adopted, many design parameters still
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Figure 1. The vane stator variables.
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Figure 2. VSV contains more than 30 objects and 64 random variables.

need to be considered in VSV [28]. Due to the above shortcomings, the common surrogate model can
hardly be applied to VSV reliability [21, 22]. Besides, VSV is a typical hierarchical structure, where
motion is influenced by the lower-level structure. Existing surrogate models only focus on the relation-
ship between inputs and final outputs, lacking a description of the connections between intermediate
structures. For structures with such hierarchical relationships, the prediction accuracy of existing sur-
rogate models is insufficient, making them unsuitable for reliability calculations of VSV mechanisms.
This is a significant reason for the limited research on the reliability of VSV mechanisms. Hence, there’s
an urgent need to develop precise and efficient reliability analysis methodologies tailored for VSV.

In this case, to improve the computing accuracy and efficiency of VSV reliability, a multi-layer
Kriging surrogate (MLKG) is proposed in this paper. The MLKG is a combination of multiple Kriging
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(KG) surrogate models that are arranged in a hierarchical structure, where each layer represents a dif-
ferent level of abstraction. By breaking the reliability analysis of VSV down into smaller problems,
MLKG decomposes the large surrogate model and reduces the input dimension of sub-layer Kriging
model. In this way, the MLKG can capture the complex interactions between the inputs and outputs of
the problem, while maintaining a high degree of accuracy and efficiency. For some complex assemblies,
there may be a lot of layers that can be decomposed, and may lead to a sharp increase in fitting errors.
This study theoretically proves the error propagation process of MLKG and shows that by introducing
the sub-layer KG model and hierarchical structure will reduce the error. To evaluate MLKG’s accuracy,
we test it on two typical high-dimensional non-linearity functions namely the Rosenbrock function and
Michalewicz function. We compared MLKG with contemporary KG surrogate using by mean squared
error (MSE) and R?. Finally, the approach applies the MLKG approach to the reliability analysis of vane
stator variables (RAVSV).

This article is organised as follow: Section 2 introduces original KG and summarises the reasons
why original KG are not applicable to high-dimensional problems as large sample demand and internal
parameter calculation. Section 3 introduces the basic process of MLKG and decomposes the error of
MLKG into fitting error and the transfer error, which are caused by multi-layer structure. This paper
proves the applicability of MLKG to high-dimensional, expensive (computationally) and black-box
functions. Section 4 mainly verifies the accuracy of MLKG through high-dimensional nonlinear math-
ematical functions. In Section 5, we use the RAVSV as an example to verify the correctness of the
proposed surrogate model.

2.0 Difficulties in high-dimensional problems for kg surrogate

Original KG is a popular surrogate model technique that uses a Gaussian process to model the unknown
function of interest. However, original KG has limitations when it comes to high-dimensional problems,
such as large sample demand and internal parameter calculation. This subsection will highlight the
challenges of original KG in high-dimensional problems such as the reliability analysis of VSV and
introduce some of the contemporary KG surrogate model technique.

2.1 The original Kriging surrogate (KG)
Kriging surrogate postulates a combination of a global model plus departures:

JO =f®'B+Z® (M
Where y (x) is the unknown function of interest, f (x) = [ﬁ @), L@, .Sy (x)]T are known func-
tions (usually polynomial). 8 = [, B, . . . , By]are the unknown parameters. Z (x) is assumed to be a

realisation of a stochastic process. Several choices for these components are listed in Tables 1 and 2.
Based on the selection of the regression component f(x)", there are several variants of KG, such as
simple KG and universal KG. Simple KG assumes the term f(x)" to be a constant, and universal KG
assumes any other prespecified function x. Universal KG, f(x)” usually takes the form of a lower order
polynomial regression. The one-order and second-order polynomials are used as the universal KG in
this research and compared to simple KG.

The random variables Z (x) in KG are assumed to be correlated according to a correlation model.
The covariance matrix is given as:

Conv [Z (x',x')] =0’R (x',x') 2)
Here,o is standard deviation of input samples and R (x’ , X ) is the correlation function between sam-
pled data points x’and x/. Correlation models consider that the correlation effect decreases as the distance

between two distinct samples increases. KG is a local approximation method and require substantial
computational time when the sample dataset is dominated by costly internal parameter optimisation
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Table 1. Regression models of KG

Type Function
Simple Constant
One-order =LA =x,....[, ®)=x,

fl (x) = 1’f2 (x) =X ... ’f;z (x) = Xn
f;l+2 (x) in e 7.f;1 (x) :-x,zl
f2n+2 (x) ZX; ... 7f3n = XXy

— 42
s flarymy X) =X,

Second-order

Table 2. Correlation models of KG

Type Function
exp exp (_9./' ‘d/D
guss  oxp (~6)
linear max {0, 1, —6; |d/|}
spherical 1 — 1.5& +0.5¢7,& =min {1,6, |d,|}
cubic 1 —3g 4287, & =min {1,6, ||}
1 —155+4305',0<& <02
spline 125(1-g)", 02<g=<1
0, 1<§

[17]. Additionally, the correlation matrix of KG becomes singular if multiple sample points are located
closely. Furthermore, with a plethora of regression and correlation models available in the literature,
choosing the appropriate KG model can be challenging. As a result, the original KG method is not
suitable for high-dimensional input problems.

2.2 Some of the contemporary KG surrogate

The KG surrogate has become increasingly popular due to its flexibility in accurately imitating the
dynamics of computationally expensive simulations and its ability to estimate the error of the predic-
tor. Some recent works have addressed these drawbacks of original Kriging surrogate. Bouhlel [23]
present a new method that combines the Kriging surrogate with the partial least squares (KPLS) tech-
nique to obtain a fast predictor. The partial least squares technique reduces dimension and reveals
how inputs depend on outputs. The combination of Kriging and partial least squares allows to build
a fast-Kriging model because it requires fewer hyper-parameters in its covariance function. Zhao [29]
proposes a method hat tcombines Kriging surrogate with maximal information coefficient (MIC), termed
as KMIC. MIC is used to estimate the relative magnitude of the optimised hyper-parameters because
both the optimised hyper-parameters and MIC can be used for global sensitivity analysis. To reduce the
number of parameters that need to be optimised when estimating hyper-parameters, the maximum like-
lihood estimation problem is reformulated by adding a set of equality constraints. A high-dimensional
Kriging method through principal component dimension reduction (HDKM-PCDR) is proposed in
Ref. (16). HDKM-PCDR can convert high-dimensional correlation parameters in the KG model into
low-dimensional ones, which are used to reconstruct new correlation functions. The process of estab-
lishing correlation functions such as these can reduce the time consumption of correlation parameter
optimisation and correlation function matrix construction in the modeling process.
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In conclusion, this article compares MLKG with KMIC, KPLS and HDKM-PCDR by MSE and R*.
Results show that MLKG can achieve an excellent level of accuracy in the reliability analysis of vane
stator variables with a small number of sample points.

3.0 A multi-layer kriging surrogate (mlkg) for high-dimensional and computationally expensive
problems

In this section, the MLKG is proposed to improve the computing accuracy and efficiency for the relia-
bility analysis of VSV. In practical industrial design applications, if all input variables are independent,
each parameter can be designed individually. Therefore, the interest function can be easily decomposed
into a combination of sub-models. This idea is also named ‘distributed collaboration’ or ‘decompose’.
Bai [9, 10] first proposed the concept of distributed collaboration and structured the mathematical model
of distributed collaborative response surface method (DCRSM) for mechanical dynamic assembly relia-
bility design. Through Bai’s work, the results show that the DCRSM cannot only overcome the complex
issues that are difficult to address by the traditional methods but also significantly save computation time
while preserving computational accuracy. However, Bai used the polynomial regression [19] and support
vector machine (SVM) [18] as sub-surrogate models to construct DCRSM. The polynomial regression
has the drawbacks of poor nonlinearity, and SVM requires a large number of labeled samples as input
dimension increases [20]. It is a challenge to use DCRSM in the reliability analysis of VSVs. Therefore,
we propose a novel MLKG to address these issues.

3.1 Overview of MLKG

This paper solves the difficulties of the reliability analysis of VSVs through the idea of decomposition.
The MLKG works by using the output of one KG model as the input to the next. In this way, the MLKG
can capture the complex interactions between the inputs and outputs of the problem, while maintaining
a high degree of accuracy and efficiency.

3.2 Mathematical model of MLKG

This sub-section establishes the mathematical model of MLKG. When y (x) and x =[x}, x5, ..., X,]
are output response and random variables, respectively. Assuming that the interest function involves
m objects and each object refers to n (n € Z*)subjects, the interest function can be divided into multi-
ple single-objects. If x® is the input parameter of the p-th object and y* is the output response, their
relationship is denoted by:

37 @) =f(x") B+2Z (x7) 3)

This relationship is called single-object Kriging surrogate (SKG). Similarly, the output responses
{ y(m} of all single objects are taken as the random input variables x of the whole MLKG by:

~ A\T A~
y=f(®) B+Z () )
This relationship is called a collaborative Kriging surrogate (CKG). As shown by the above analysis,
the complex function of the system is decomposed into multiple sub-systems. SKG and CKG consist
of regression components and correlation components. This paper compares different regression and
correlation model combinations to ensure that the MLKG has excellent accuracy.

3.3 The error propagation of MLKG

MLKG has good generality for the reliability analysis of VSVs. We assume the response of the problem
isf,...,x,...,xy).x; (€ 1,2,...,N)isthei-th design variable. According to the basic principle of
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MLKG, the response function f (xy, . .., X, ..., Xxy) is decomposed into m layers and each layer contains
n, sub-models. The total error of MLKG is determined by the error of each sub model. To calculate the
total error, we first prove the source of error for sub model in MLKG. The error of the j-th (j € 1,2, ..., k)
sub model in /-th (/ € 1, 2, . . ., m) layer satisfies the following formula:
p=ns
error,,_z ‘y,p—ym (@)

Where )A);’p is surrogate modeling response of the p-th samples and yj’.’p is the real response. The error;;
is mainly composed of two parts. The first part is the error generated by the surrogate modeling, which is
called fitting error. The other part is the error caused by incorrect input (usually cause by other sub-layer
models), which is called transfer error. Therefore, we split the error;; into fitting error and transfer error
by the following formula:

p=ns

erroriJ—Z|y]]7 ]l’

p=1
p=ns

= Z |)A)J[1p _)‘}Jllp +5}/1'.p -

p=1

| 2

p=ng p=ny

= Z WP - yjl',p ’ + Z ‘yjlp - y.;,p|2 (6)
p=1

p=1
¥;, indicates the real response of the sub-model when the input is correct. R* is often used to evaluate
for fitting error (see Section 4.2.1). Vary]l.qp is the variance of yjl,‘p.

= 2
1 P=ns | ol !
F 2 B vl
RIZI 1 I; J:P P

var (y;,)
The accuracy of the surrogate model needs to meet the requirements, which can be given by the
following formula:

)

R,-ZJ 2 Cij 3
Where ¢;; (often > 0.9) is a constant number. Therefore, it is not difficult to obtain from the two
formulas.
1 p=ns )
.l ! * )
5 Z |yj.11 - yj,p} = (1 - C"J') Var (yj-P) €))

p=1

Take the maximum fitting error of all samples as A, and A meet the following formula:

A=max [y}, —) (10)
Therefore, by selecting the constant ¢, it is not difficult to obtain
1
EmA2 < (1 — c,-‘,) *x Var (y_ﬁyp) (11D
2% (1 —c¢;.)* Var (y!
A e J (1 = ex) # Var (3},) -
nI

From the above derivation, it can be found that the fitting error is mainly controlled by Vary_fp (c;; and
n, are generally set constants). Therefore, reducing the variance of yjl.yp can improve the fitting error.
MLKG reduces the input dimension of each sub model compare with the whole model. Therefore,
MLKG reduces Varyj’.’p for fitting error.
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Unlike the fitting error, the transfer error is mainly affected by the multi-layer structure. The transfer
error can be regarded as the combination of all response from the (I-1) th layer. The transfer error is

p=ng p=ns o=n;—1 Al

Z |y117 —y,,,} = Z 3y1/p1 A[D = _1)

p=1 p=1 o=l

p=ng o=n—1

=L 2

o=1

8y1 i |G, =37 3)

5% | is the derivative of the j-th surrogate model in /-th layer with the input of (I-1)-th layer,

<1, the

transfer error become smaller by multiple layer structures. So the transfer error does not 1ncrease with
MLKG. Therefore, through the above proof, it is verified that MLKG decomposes the structure and
establishes different sub surrogate models is theoretically universal.

|98 — } is the transfer error from (I-1) layer. It is not difficult to find that as long as ‘

4.0 Performance of numerical test

We compared MLKG with the some of the contemporary KG surrogate modeling technique by mean
squared error and R*. Two explicit mathematical functions are selected as the test cases for testing the
highly nonlinear optimisation algorithms. Results show that MLKG can achieve an excellent level of
accuracy for reliability analysis in high-dimensional problems with a small number of sample points.

4.1 Test function

(a) A 100-D Rosenbrock function with low non-order linearity
d—1
Y@ =Y 100(xs —2) + ( — 1)° (14)
i=1

The Rosenbrock function, the Valley or Banana function, is a famous test problem for gradient-based
optimisation algorithms. The function is unimodal, and the global minimum lies in a narrow, parabolic
valley (Fig. 3). However, even though this valley is easy to find, convergence to the minimum is difficult.
The recommended value of d is 100 in this article.

In the Rosenbrock function example, the function is decomposed into 99 parts listed in Equation
(15). Next, 99 single-object SKGsare constructed to replace equation. Using the output of the SKGs
from equation as inputs and the output of equation as the result, a collaborative SKG of Rosenbrock
function is constructed.

Y @) =100(xisy — )" + (5 — 1)° (15)
Then, sample y; (x) and construct CKG as follows:

d—1
f@=) "y (16)
i=1
(b) A 100-D Michalewicz function with high-order nonlinearity
The Michalewicz function has d! local minima, and it is multimodal. The function’s two-dimensional
form is shown in Fig. 4. The parameter m defines the steepness of the valleys and ridges; a larger m
leads to a more difficult search. This article’s recommended values of d and m are 100 and 10. The
Michalewicz function is decomposed into 100 parts, which are as follows:

) ix?
i (x) = sin (x;) (;) (17
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Figure 3. Rosenbrock function’s two-dimensional form.
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Figure 4. Michalewicz function’s two-dimensional form.

Then, 100 single-object SKGs are constructed to replace equation (17). Using the output of the SKGs

from equation (17) as inputs and the output of equation (18) as the result, a collaborative SKG of the
Michalewicz function is constructed.

f@= Zy, x) (18)
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Table 3. DOEs

Function Type Sample points Analysis points
Michalewicz function LHS 50i (i=5, 6,.,12) 1,000
Rosenbrock function 50i (i=5, 6,.,12) 1,000

4.2 The evaluation method of test function

For accuracy, the goodness of fit obtained from sample points is insufficient to assess newly predicted
points’ accuracy. Thus, additional error analysis points are employed to verify the accuracy of all the
surrogate models; this paper uses two metrics: R square (R?) and MSE.

(a) R square

R square is a widely used assessment metric for surrogate models, which is used in the study to make a
quantitative assessment of the fitting performance of a surrogate model. The definitions of R* are listed:

3y () =5 )’
R=1-2 19)
; 5 () =y (x))?

Where m is the total number of error analysis points, y (x;) is the corresponding predicted value for
the observed value y (x;), ¥ (x;) is the mean of the experimental values. The larger the value of R?, the
more accurate the surrogate model.

(b) Mean squared error (MSE)

m

1 . 2
MSE=—3 " (v (x) =5 () (20)
1
Where y (x;) is the prediction value obtained by the surrogate model, and y (x;) is the real response
values. The smaller the MSE is, the higher the fitting accuracy of the surrogate model will be.

4.3 Design of experiments (DOEs)

When constructing a surrogate model, it is important to select the sample points for the accuracy of
the surrogate model. Generally, it is required that the selected sample points can evenly cover the entire
design space, and the number of sample points should be as few as possible. Considering these two
requirements, this article uses the Latin hypercube sampling (LHS) for sampling. The minimum number
of sample points for the original KG surrogate should be more than 2d + 1. Because the test function
dimension in this paper is 100, the number of sample points needs to be more than 201, so the number of
sample points starts from 250. We compare the accuracy of the original KG and some new KG surrogate
by R?> and MSE. The sample points are listed in Table 3.

4.4 Numerical test result

(a) Rosenbrock function

It is not difficult to see from the R square (Fig. 5) that both the original KG and MLKG can realise the
fitting of the Rosenbrock function. Still, when the number of sample points is small (sample points less
than 300), the original KG performance is very poor (R? < 0.1). With the increase of points, its accuracy
improves, but even when the number of sample points reaches 600, the accuracy of the original KG is
only 0.6. Different from the original KG, MLKG still maintains high accuracy (R*> > 0.99) even when
the number of samples is minimal.
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Numbers of sample points

Figure 5. R’ for Rosenbrock function.

KMIC KPLSI KPLS2 KPLS3 MLKG

Different Kriging surrogate models

Figure 6. Compared with several new high-dimensional KG models.

In order to further verify the accuracy of MLKG, this article compared several new high-dimensional
KG models. In view of the above shortcomings of the traditional KG, many scholars used several
methods to improve the traditional Kriging model, such as Partial Least Squares dimension reduction
(KMIC,KPL) [8, 26]. The results are shown in Fig. 6. Compared to these latest high-dimensional KG
models, MLKG accuracy (R* > 0.99) is highest than others KG models (R* < 0.8). It is because MLKG
reduces the decoupling between the final output and random variables by adding a sub surrogate model
layer.

(b) Michalewicz function

Compared with the Rosenbrock function, the original KG surrogate and MLKG are much harder to fit
the Michalewicz function. As mentioned before, the larger the R square, the more accurate the surrogate
model is; however, for MSE, a smaller value indicates better accuracy. From Fig. 7, it is evident that when
the number of sample points is increasing, the accuracy of the original KG is relatively poor (R* <0.1),
while the MLKG surrogate model obtains a good level of accuracy. It can be found from Fig. 7 that the
accuracy of the original KG surrogate on the high-dimensional nonlinear function is not feasible, which
is similar to the conclusion of the article [8].

It can be found that with the increase of sample points, the MSE of MLKG gradually decreases
(Fig. 8). However, the original KG surrogate has no obvious downward trend, which means that for
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Figure 7. R? for Michalewicz function.
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Figure 8. MSE for Michalewicz function.

typical high-dimensional nonlinear functions such as the Michalewicz function, it is difficult to improve
the accuracy by increasing the number of samples. The high-dimensional Michalewicz and Rosenbrock
function shows that MLKG is suitable for fitting high-dimensional and high-nonlinearity functions. The
accuracy remains stable when there are few sample points.

In order to further verify the accuracy of MLKG, this article compared several new high-dimensional
KG models (HDKM-PCDR, KPLS). The results are shown in Fig. 9.

In summary, MLKG is a novel approach for solving RAVSV problems, by decomposing the inter-
est function into multiple sub-models and using collaborative Kriging surrogate models to analyse the
responses of each sub-model. Compared to traditional KG and other new high-dimensional KG models,
MLKG shows superior accuracy and generality.

5.0 Application

In this section, we will utilise the RAVSV in an aero-engine as an example to demonstrate the accuracy
of the proposed surrogate model. The VSVs (Fig. 1) are responsible for blade angle adjustments and are
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Figure 9. Compared with several new high-dimensional KG models by MSE.

an indispensable component that significantly affects the aero-engine’s efficiency and reliability. The
VSV contains more than 30 objects (Fig. 2) and 64 random variables (Table 4).

5.1 The RAVSVs

The RAVSV process includes the five steps shownin Fig. 10. Firstly, the VSV is decomposed into sev-
eral individual parts as shown in Fig. 2. FE simulation is then performed to obtain displacement and
deflection angle of all the single parts. Thirdly, we investigate the sensitivity of the blade deflection
angle and select important parts with variables sensitivity greater than 2%. For these selected parts, we
establish a single object Kriging surrogate model. The single-object KG is then sampled to construct
the collaborative Kriging surrogate model of blade angle. Finally, the MCS will be performed based on
the MLKG to obtain reliability analysis results of VSV.

5.2 Random variable selection

VSV is a highly complex system comprising more than 30 components, such as blades, actuators, outer
rings, inner rings and so on. The sources of uncertainties mainly arise from geometric, frictional and
material factors. For completeness, the RAVSV process considers geometric, young’s modulus and
friction coefficient uncertainties, as shown in Table 4. These parameters are assumed to be mutually
independent and object to a uniform distribution. Based on the primary thought of MLKG, VSV is
divided into several deflection degree analyses of double rocker (Fig. 11), outer ring (Fig. 12), actuator
(Fig. 13), pins, rods and other structures.

5.3 Finite element simulation

The VSV system is designed with a bush on the casing and inner ring, as well as contact constraints
between the bush and the blade shaft. The actuator piston moves S0mm along the axial direction, while
a pneumatic torque of 840N e mm is applied to the blade shaft in the same direction as the blade rotation.
The rocker arm and linkage ring are considered flexible parts in the simulation. All parts are made of
Ti-6AL-4V(TC4) material. All FE simulations are automated in the RAVSV process, and the output is
the deflection degree of the blade. As shown in Fig. 14, the time of movement is 0.0008s, the rotation
angle of the blade is about 34.75° and the movement of the blade is complex and non-linear. The whole
FE simulation process takes 2h. Thus, relying on the finite element method to evaluate the reliability of
VSV is very time-consuming.
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Table 4. The total 64 random variables in 34 objects

Part name Type Value(mm)
Double rocker Al Angle (134.99,135.01)
D1 Diameter (8.49,8.51)
D2 Diameter (7.49,7.51)
L1 Length (45.99,46.01)
L2 Length (10.99,11.01)
Outer ring D3 Diameter (7.49,7.51)
D4 Diameter (14.99,15.01)
D5 Diameter (299.99,300.01)
D6 Diameter (5.09,5.11)
L3 Length (19.99,20.01)
L4 Length (4.99,5.01)
u friction (0.27,0.33)
Pin D7 Diameter (5.94,6.06)

Step1:Split Complex machinery
into several single-objects

Complex machinery
CAD model

Single-object
CAD models

|

Step2:FEM simulations for
single-objects and Complex
machinery

Design of
experiments(DOEs)

Single-object
FEM simulations

Complex machinery
FEM simulation

Step4:Collaborative Kriging
surrogate

Distributed single-object
KGs
Input |
Collaborative KG for
complex machinery

Step3:Distributed Kriging
surrogates for single-objects

Choose regression model

l

Choose correlation model

Compare different type KG
surrogates

Step5:Relibility analysis

Monte Carlo Simulation

|

Failure probability

Figure 10. The reliability analysis of the vane stator variables.

Figure 11. Geometric parameter of double rocker.
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Figure 12. Geometric parameter of the outer ring.
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Figure 13. Geometric parameter of the actuator.
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Figure 14. FE simulation of blade degree.
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Table 5. Sensitivity of VSV based on Morris

method

Variables Sensitivity percentage
Young’s modulus 6.84%
Double rocker L1 5.28%
Outer ring u 5.04%
Outer ring L4 4.87%
Double rocker 1.2 4.46%
Outer ring L3 3.26%
Double rocker L1 3.00%
Pin D7 2.88%
Double rocker Al 2.79%
Outer ring DS 2.37%

According to the Morris global sensitivity analysis method [30], we analysed the output sensitivity of
the blade deflection angle with each random variables (Table 5). The purpose of using sensitivity analysis
here is not to select the random variables that have the greatest impact on the results, but to identify
the parts that have the greatest impact on the final results. For these important parts, we established a
single-object Kriging surrogate model. The other factors affecting the blade adjustment accuracy have
a minor impact, with sensitivity analysis results below 1% and are not listed in the table. Among the
various components, the elastic modulus of the TC4 material has the most significant impact on blade
adjustment accuracy, followed by the variables of rocker arms, linkage rings and double rocker arms.
From the results, it is evident that the linkage ring, pin and rocker have the most significant impact on the
blade deflection angle, along with the material parameters. Hence, we establish a single-object surrogate
model for these three parts.

5.4 Single-object Kriging surrogate model

The deflection angle of blades in VSV is mainly affected by the randomness of the linkage ring, pin and
rocker. The reliability of VSV is gained by the limit state function as:

Y=f, (), Y (x),Ya (x) B
+Z (Y, (x), Ye (x0), Yy (xg)) =8 @

Where f (Y, (x,), Y. (x.),Y,;(x;)) are the regression models of SKG, and rocker and
Z (Y, (xp), Y. (x),Y,(x4)) correlation models of SKG. § represents a random variable associ-
ated with the linkage ring, pin, and rocker, which defines the desired deflection angle. As we all know,
Y <0 denotes the failure of the VSV. As the idea of decomposition, we established the SKG as:

Y, (x) =f(xb)Tﬂ +Z (%)
Yo (x) =f(x)" B +Z (x)
Yy ) =f )" B+Z (x) (22)

Figure 15 shows the comparison between MLKG and original KG model by MSE with same regres-
sion models and correlation models for RAVSV. It is not difficult to find out from the results that MLKG
is more accurate than the original KG, and the original KG cannot predict the reliability problem with
high-dimensional input. For further discussion, Fig. 16 shows the MSE and R*with different regression
models and correlation models for MLKG in RAVSV. Zero-exp represents the combination of constant
regression and exp correlation. One-exp represents the combination of one-order regression and exp
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Figure 15. MSE comparison between the original KG and MLKG.
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Figure 16. Different MLKGs in RAVSV.

correlation. It is not difficult to see from the results that the accuracy is the highest when the regression
function is of a one-order function, and the correlation function is an exp function.

After choosing the regression model and correlation models, the SKG is established. According to the
Equations (21), we established the SKG for the linkage ring, pin and rocker. Then SKG were simulated
10° times. The results of SKG are listed in Figs. 17, 18 and 19. From results, it can be observed that the
angles of the linkage ring, pin and double rocker are all normally distributed (Table 6). The mean and
variance of the linkage ring are 4.47 and 0.02. The mean and variance of the pin are 34.75 and 0.50.
The mean and variance of the double rocker angle are 42.30 and 0.23.

5.5 The deflection degree distribution of blades

Based on the sensitivity analysis results, it has been determined that the pin, linkage ring and double rock-
ers are the primary components that affect the blade rotation. Finite element simulations were conducted
to obtain the rotation angles of these parts under various random variables, and single-object SKGs were
established for each component. The SKGs were then sampled to build a collaborative Kriging surrogate
model for blade deflection angle (Fig. 20). The surrogate model for blade deflection angle was extracted
10° times, and the results are depicted in Fig. 20.

The results show that the mean value is 34.57°, the distribution is normal distribution, the variance
is 0.18°0.18° and the maximum value of deflection angle is 37.05°. The minimum value of deflection
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Table 6. Sample the SKG for building the surrogate model of blade
deflection angle

Part name Distribution Mean variance
Double rocker Normal 42.30 0.23
Pin Normal 34.75 0.50
Linkage ring Normal 4.47 0.02
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Figure 20. Result for RAVSV.

angle is 32.25°. According to the requirements of high reliability of aero-engine, the desired deflection
degree of blade requires more than 34.03° when the reliability of VSV reaches 99.74%.

6.0 Conclusion

This article aims at solving the difficulties from the reliability analysis of VSVs. We propose a novel
multi-layer MLKG. The MLKG is a combination of multiple Kriging surrogate models that are arranged
in a hierarchical structure, where each layer represents a different level of abstraction. By breaking the
reliability analysis of VSVs down into smaller problems, MLKG decomposes the large surrogate model
and reduces the input dimension of sub-layer KG model. In this way, the MLKG can capture the complex
interactions between the inputs and outputs of the problem, while maintaining a high degree of accuracy
and efficiency. Some in conclusion are listed as follow:

(1) This paper focuses on the reliability analysis of VSVs and proposes a novel surrogate model based
on KG and decomposition. Our approach is to decompose the VSVs into several low-dimensional
sub-models and establish some single-object SKG models. After establishing SKGs, we construct
the general collaborative KG surrogate for reliability analysis.

(2) To verify the accuracy of the proposed method, this paper tests two typical high-dimensional
non-linearity functions (Michalewicz function and Rosenbrock function). It is evident that when
the number of sample points is increasing, the accuracy of the original KG is relatively poor
(R? <0.6), while the MLKG surrogate model obtains a good level of accuracy (R > 0.9).

(3) This study theoretically proves the error propagation process of the proposed method and shows
that by introducing the sub-layer Kriging model and hierarchical structure will reduce the error.
We compared MLKG with contemporary Kriging surrogate using by mean squared error (MSE)
and R*.
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(4) The approach is represented by the RAVSV. The results show that the mean value of blade deflec-
tion angle of VSV is 34.57°, the distribution is normal distribution, the variance is 0.18°0.18°, the
maximum value of deflection angle is 37.05°. The minimum value of deflection angle is 32.25°.
According to the requirements of high reliability of aero-engine, the desired deflection degree
of blade requires more than 34.03° when the reliability of VSV reaches 99.74%.

Funding. This study was supported by the National Science and Technology Major Project of China (J2019-1-0008-0008 and
J2019-1V-0002-0069).
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