
AN ALGORITHM FOR DETERMINING DEFINING
RELATIONS OF A SUBGROUP

by D. H. McLAIN

(Received 18 July, 1975)

1. Introduction. Suppose that G is a finitely presented group, and that we are given a
set of generators for a subgroup H of finite index in G. In this paper we describe an algorithm
by which a set of defining relations may be found for H in these generators.

The algorithm is suitable for programming on a digital computer. It appears to have
significant computational advantages over the method of Mendelsohn [8] (which is based
on the Schreier-Reidemeister results, see for example [4, pp. 91-95]) in those cases where the
generators of H are given as other than the familiar Schreier-Reidemeister generators.

Both the algorithm and the proof of its sufficiency are based on the Todd-Coxeter coset
enumeration process [9].

2. The algorithm. Suppose that G is a group generated by glt ...,gn, with defining
relations J?, = . . . = Rr = 1. Suppose that H is a subgroup of finite index in G, with
generators hu ..., hm. We may assume, without loss of generality, that the generators of H
are among the generators of G, labelled so that

h, = g,,..., hm = gm, with n ^ m. (1)

For, suppose that one of the generators of H, say hu is given as a word w(g) in the
generators of G and their inverses, of length greater than 1. Then we may add hL to the list
of generators of G and add the relation w(g)hll = 1 to the list of defining relations. This
inclusion of the generators of H among those of G is an essential step of our algorithm;
Mendelsohn [8] quotes an example to show that the relations SJ?(h) = 1, defined below,
are not sufficient to define H if this step is not taken.

Now suppose that the Todd-Coxeter-Benson-Mendelsohn procedure [1] is performed
to determine the cosets of H in G. This procedure is an extension of the Todd-Coxeter coset
enumeration process [9]. The Benson-Mendelsohn extension not only enumerates the
cosets Hxk but also, at the same time, calculates the coset representatives xx as words in
gx, ...,gn and, for each coset representative xk and each generator gt or its inverse g~l,
tabulates the product xxg] in the form

XiS't = H>(/0V (2)

where e denotes + 1 , w(li) represents a word in the generators hu ..., hm of H and x^ is the
representative of another (or possibly the same) coset. We shall refer to the formulae (2)
as the T-C-B-M table.

For completeness, the procedure is summarised in the next paragraph, in a somewhat
simplified form compared with the description in [1].

Glasgow Math. J. 18 (1977) 51-56.

https://doi.org/10.1017/S0017089500003025 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003025


52 D. H. McLAIN

Starting from the table entries

Xi = l, x1h\ = h\xu i = l, . . . , m , e = ± l , (3)

which determine xl as the identity, we create, for any incomplete table entry xxg\ = ?, a new
coset representative *„ = xxg\ and we insert in the T-C-B-M table the two entries xxg

e
t = lxl,

and xtlg^B = lxx. When we have enough such equations (2), we may calculate, by repeated
application (as many times as the length of the word R), the product xxRt = w(A)xM; this
differs from the original Todd-Coxeter process, which merely determines the coset jx, in that
w(h) is simultaneously formed by concatenating the appropriate //-words in the T-C-B-M
table. If X # n then, as in the standard process, we must proceed to identify the two cosets,
i.e. to force X = /J. The Benson-Mendelsohn extension requires us also to adjust the corre-
sponding //-words in the table in the obvious way. Thus, for example, we must replace each
occurrence of *„ on the right-hand side of the table by w(li)~1xx, by postmultiplying all the
appropriate //-words by w(ti)~l, or alternatively replace each occurrence of xx by w(K)xr

If, during this process of identifying the cosets ft and X, the products xxg\ and x^gi have both
been defined in the table, then we may have further identifications to make, again with the appro-
priate adjustments in the //-words in the table. The procedure is finished when every relation
Rj has been applied to every coset X to ensure that

if xxRj = w^Xp then X = p. (4)

Mendelsohn [6], [7] shows that the procedure does finish if | G : H\ is finite.
There are many possible modifications to the above, as to the basic Todd-Coxeter

procedure, e.g. Leech [2], [3]. Although these are very useful in practice, to reduce the pro-
liferation of cosets, they are not necessary for an understanding of the algorithm.

The method for finding the defining relations of H is as follows. The complete T-C-B-M
table for the cosets of H in G allows us to express the product of a coset representative xx

and any word w(g) e G in the form

xMg) = W(h)Xll, (5)

where W(h) is a word in hu ...,hm. This is done by repeated applications of (2), one for
each element g\ in the word w(g). In particular, we carry out this multiplication for every
coset xx and every relation Rj, obtaining, in view of (4),

xxRj = SJX(h)xx (6)

for some word SjX(h) in hu ..., hm.
It is clear that in the group H the relations SjX(h) = 1 must hold. Conversely we shall

show that these relations in the m generators hlt ...,hm are sufficient to define H inde-
pendently.

3. Example. Let G be the symmetric group on 3 objects generated by h, g subject to
relations Rt = g3, R2 = hghg, R3 = hg2hg2, Ry = R2 = R3 = 1 and let H be the group
Gp{/z}. Then the T-C-B-M table is as follows.

https://doi.org/10.1017/S0017089500003025 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003025


DEFINING RELATIONS OF A SUBGROUP 53

Coset
representative

x, = l

Xl=g

X3=^2

Generator or Inverse of Generator

h

hx,

A"1*,

/r'x2

*-*

h~1xl

hx3

hx2

g

lx2

lx3

lx,

g-1

1X3

lXx

lx2

From this table we see that x2R3 = h 2x2 and x3R2 = h 2x3 and that the remaining
seven combinations of X,j all give xxRj ~ xx. Thus the algorithm returns the one denning
relation h~2 = 1 for the group H, which shows that H has order 2.

4. Proof of the algorithm.

THEOREM. Let G be a group defined by the generators hx = glt..., hm = gm, gm+,,..., gn

and the relations Rt = ... = Rr = 1. Let H be a subgroup of finite index, generated by
hu...,hm, and let the Todd-Coxeter-Benson-Mendelsohn algorithm be performed on the
cosets xx of H in G. If repeated use of the entries (2) in the T-C-B-M table enables each
product xxRj to be expressed in the form

*xRj = SJX(h)xx, (6)

for some word SJX(h) in hu ..., then H may be independently defined by the generators
hu ...,hm and the relations SjX(h) =\,for all relations Rj and cosets xx.

Proof. The proof consists, essentially, of a demonstration that no information is lost by
adapting the Todd-Coxeter enumeration of the cosets of 1 in G (i.e. the elements of G) to
make use only of the m generators of H, the relations SJX(h) = 1 and the information in the
T-C-B-M ta,ble for G : H.

To give a rigorous proof, we distinguish between H, the subgroup of G, and the group
defined by m generators and the relations SJX = 1 by calling the latter K. The generators of K
will be ku ..., km and if w(h) is a word in h\,..., hm then w(k) will denote the corresponding
word in ku...,km. We shall show that the mapping w(h) -> w(k) is an isomorphism of
H onto K.

Suppose first that G is finite, and consider the Todd-Coxeter process to enumerate the
cosets of 1 in G. At each stage we have a set T of " cosets " a , / ? , . . . , which will end up as
elements of G. We create a m a p / o f T into the set of all pairs

(k, x^keK, l£fi^\G:H\,

as follows. Start with/(I) = (1, xt). Whenever a new coset /? is created from an existing one
a by multiplying by g], then /(/?) is defined to satisfy the condition:

if/(a) = (w^k), *„), ag • = j? and if the T-C-B-M table for

G : H gives Xltg\ = w2(h)xx, then /(jS) = (w^w^k), xx). (1)

https://doi.org/10.1017/S0017089500003025 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003025


54 D. H. McLATN

We now prove that throughout the Todd-Coxeter process on G: 1 the mapping remains
well-defined and that (7) holds for every table entry a.g\ = /?. The next Todd-Coxeter step
may be either (a) the creation of a new coset, (b) the identification of two cosets a, /? when
we find (xRj = /?, or (c) the identification of two cosets a, /? from a previously identified pair
y = S with a = yg% ft = 5g\. We consider these separately.

(a) When a new coset /? is created from a then the definition of /(/?) implies (7) for the
entry ag] =/?. It also holds for the only other entry made at that time pg' = a because of
the duality of the T-C-B-M table: x,,#£ = w(li)xx if xxg~c =w(h)~1xft.

(b) Suppose the Todd-Coxeter process finds aRj = /?. Let / (a ) =(w(k), xx) and
Rj = 9\\ • • • 9%- Because the p table entries <xg][, (agtygil,... must be complete at this stage,
by p-fo\d application of (7) and the definition (6) of Sjx(h), we conclude that

f(P) = (w(k)SJX(k),xx).

Because in the group K, SJX(k) = 1, we see that/(a) =f(Jf); so the mapping/ remains well-
defined after the identification a =p.

(c) Suppose that in r , a = yg\, /? = dg\, and that y and 6 have been successfully identified,
so that/(y) =/(<5) =(ii!i(Ar), xx). Then (7) applies to both table entries yg], dg], so that

where w2(h) and x^ are given in the T-C-B-M table for xxg
E

t. The identification a = (i is
thus consistent with/.

A simple induction argument on the number of steps in the Todd-Coxeter process shows
that the relation (7) is true when, at the end of the process, the cosets a, / ? , . . . have become
the elements of the group G.

Now, repeated application of (7) shows that the set of elements of G whose /-images
have the second component x^ is just the coset Hxu. In particular, the set with second com-
ponent *! forms H. If we identify the pair (k, *,) with the element k of if,/gives a mapping
of H into K. Because the generators h; of H are among the elements gt for which (7) holds,
we have, for each generator /;,-

and for each element /; of H

It follows, by induction on the word length of elements of H, tha t / i s both a homomorphism
of H into K and the natural mapping f(w(h)) =w(k). Since the generators of K are in f(H),
the homomorphism is onto K.

Further, as we have already remarked, the relations SJX(h) = 1 hold in H. Because
these are the defining relations of K, the homomorphism / must be an isomorphism. This
completes the proof of the theorem for finite G.

If G is infinite then the Todd-Coxeter process to enumerate the cosets a, /?, . . . of 1 in C
will not, of course, terminate. However it can still be used as a tool in proving the theorem.
We first show that the infinite Todd-Coxeter process can be a meaningful process. We must

https://doi.org/10.1017/S0017089500003025 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003025


DEFINING RELATIONS OF A SUBGROUP 55

ensure that for each coset a, and each generator and generator-inverse g* there will be a finite
stage at which the coset ag] will be created, and also that, for each relation Rp there will be
a finite stage at which the condition aRj = a, will be imposed. We must also ensure that when
two cosets are identified a = jS, then it is the later one, /? if jS >oc, which will be deleted .from
the table. If the steps of the process are ordered to satisfy the above, then for any number N
there will be a stage after which the entries for the first N cosets will never change. For
suppose this holds for the first N— 1 cosets. If we repeatedly identify the N-th coset with an
earlier one, this would imply that all cosets ever created are among the first N-1 and hence
that | G : 11 ^N— 1. Thus at some stage the iV-th coset a is never identified with earlier ones
(although, of course, we may never know when we have reached such a stage!); from then
on the entries ag\ can only decrease, and must eventually remain unchanged. The assertion
follows by induction on N. By letting N tend to infinity we see that a limit exists, which may
be taken as the result of the infinite Todd-Coxeter process.

The proof that this limit represents the multiplication table for the cosets of 1 in G is
the same as for the finite case. The details are omitted, except for the remark that two words
w(g), w*(g) belong to the same coset of 1 in G if and only if there is a finite identity

With this interpretation of the infinite Todd-Coxeter procedure, the proof of the theorem
for finite G extends immediately to the case where G is infinite.

5. Computer implementation. The main difficulty in computer implementation of the
Todd-Coxeter-Benson-Mendelsohn process and the present algorithm to determine defining
relations of a subgroup is that some of the ii/-words in the T-C-B-M table can become
rather long and rapidly fill the computer's store. Because of the large variance in the lengths
of these words, the use of a language, such as Algol 68, [10], allowing variable array bounds
may seem attractive. However the author has found it advantageous to handle a longer word
as a list of other words, or their inverses. Thus the multiplication of two words (or in comput-
ing terms the concatenation of two strings) can be achieved by a subroutine which merely
sets pointers to the two components, or, if one of them is the identity element, to the other
component. Similarly the inverse of a word can be formed by setting a different pointer (e.g.
negative) to the original word. If this approach is adopted, a " garbage collection " mechanism
as implemented in most LISP compilers, e.g. [5], is desirable to determine which of the
//-words are not components of others, and need not be retained. The whole process can
readily be programmed in the common computer languages like Fortran which do not include
pointers among their built-in facilities, since the subroutines which handle the pointers
represent only a small proportion of the total.

In practical applications, where we may wish to repeat the algorithm on subgroups of
subgroups, etc., it is necessary to follow the algorithm by another to prune at least most of
the redundant relations. For example one might wish to use it, either in a single computer
program or by calling a sequence of routines interactively from a terminal, to determine
whether a finite group G is soluble; in theory the computer needs only to run the present
method to determine a set of generators and relations for the derived group G', repeating

https://doi.org/10.1017/S0017089500003025 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003025


56 D. H. McLAIN

until the index of G' is equal to 1, and then to run the standard Todd-Coxeter process to find
whether | G: 11 = 1. Unfortunately there appears to be no practicable algorithm (i.e. a
method guaranteed to find an optimal answer) to reduce a set of relations to a minimum set,
so that heuristic techniques (i.e. ad hoc methods which perform reasonably well in most
situations) are indicated. This is a further reason why the list method for word manipulation
is advantageous, since an important constituent of such heuristic methods must be the search
for frequently used common subexpressions.

REFERENCES

1. C. T. Benson and N. S. Mendelsohn, A calculus for a certain class of word problems, / .
Combinatorial Theory 1 (1966), 202-208.

2. J. Leech, Coset enumeration on digital computers, Proc. Cambridge Philos. Soc. 59 (1963),
257-267.

3. J. Leech (ed.), Computational problems in abstract algebra (Pergamon, 1970).
4. W. Magnus, A. Karrass and D. Solitar, Combinational group theory (Interscience, 1966).
5. J. McCarthy, Lisp 1.5 programmer's manual (MIT Press, 1968).
6. N. S. Mendelsohn, An algorithmic solution for a word problem in group theory, Canad. J.

Math. 16 (1964), 509-516.
7. N. S. Mendelsohn, Correction to: an algorithmic solution for a word problem in group

theory, Canad. J. Math. 17 (1965), 505.
8. N. S. Mendelsohn, Defining relations for subgroups of finite index of groups with a finite

presentation, in reference [3] above, 43-44.
9. J. A. Todd and H. S. M. Coxeter, A practical method for enumerating cosets of a finite

abstract group, Proc. Edinburgh Math. Soc. (2) 5 (1936), 26-34.
10. A. Van Wijngaarden, B. J. Mailloux, J. E. L. Peck and C. H. A. Koster, Report on the

algorithmic language Algol 68, Numer. Math. 14 (1969), 79-218.

COMPUTING CENTRE

UNIVERSITY OF SHEFFIELD

SHEFFIELD

PRINTED IN GREAT BRITAIN BY ROBERT MAOLEHOSE AND CO. LTD
PRINTERS TO THE UNIVERSITY OF GLASGOW

https://doi.org/10.1017/S0017089500003025 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003025

