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Abstract

Bridge engineering design drawings basic elements contain a large amount of important infor-
mation such as structural dimensions andmaterial indexes. Basic element detection is seen as the
basis for digitizing drawings. Aiming at the problem of lowdetection accuracy of existing drawing
basic elements, an improved basic elements detection algorithm for bridge engineering design
drawings based on YOLOv5 is proposed. Firstly, coordinate attention is introduced into the
feature extraction network to enhance the feature extraction capability of the algorithm and
alleviate the problem of difficult recognition of texture features inside grayscale images. Then,
targeting objectives across different scales, the standard 3 × 3 convolution in the feature pyramid
network is replaced with switchable atrous convolution, and the atrous rate is adaptively selected
for convolution computation to expand the sensory field. Finally, experiments are conducted on
the bridge engineering design drawings basic elements detection dataset, and the experimental
results show that when the Intersection over Union is 0.5, the proposed algorithm achieves a
mean average precision of 93.6%, which is 3.4% higher compared to the original YOLOv5
algorithm, and it can satisfy the accuracy requirement of bridge engineering design drawings
basic elements detection.

Introduction

The widespread application of artificial intelligence in various industries is profoundly changing
our lives. In themedical field, AI can be used for medical image recognition and disease diagnosis,
thus helping doctors make better treatment decisions (Esteva et al., 2017). In the financial sector,
AI enables more accurate risk assessment and fraud detection, thereby improving the security of
financial services (Nabipour et al., 2020). In the field of e-commerce, AI can provide personalized
recommendations and inventory management, consequently improving sales efficiency and
increasing user experience (Zhang et al., 2019). Despite the significant progress of AI in many
fields, there are still some challenges in the application of AI in the field of bridge engineering
design, especially in the recognition of bridge engineering drawings. In bridge engineering design,
safety is crucial to the life and property security of the public. Bridges, as vital infrastructure, serve
an essential function in transportation, and any safety accidents could have serious repercussions
on society. Engineering drawings serve as the primary execution reference for construction
projects. Therefore, accurately identifying bridge engineering drawings is paramount to ensuring
the safety of bridge designs.

Bridge engineering drawings usually contain a large amount of technical details and complex
structural information, which poses difficulties in the recognition of drawings. Specifically, the
specific textual information contained in bridge engineering drawings only accounts for a small
part, while the majority is geometric graphics. Therefore, the existing text-based detection
methods are not applicable. Moreover, due to the lack of color semantic information in grayscale
bridge engineering design drawings, it is difficult to effectively distinguish basic elements through
texture features. Additionally, the text box is a long target, which differs greatly in size from other
basic elements, thus posing further difficulties in the detection of basic elements. AI models need
to have a high degree of recognition accuracy and comprehension in order to accurately interpret
the content of the drawings. Additionally, different designersmay have varied styles, so AImodels
must possess strong generalization and adaptability to handle various types of drawing recognition
tasks. Therefore, while artificial intelligence can save a significant amount of time and labor costs
compared to the traditionalmanual process of reviewing and analyzing drawings, further research
and technological breakthroughs are still needed to achieve more widespread applications.

As shown in Figure 1, bridge engineering design drawings are usually composed of basic
elements such as plane, elevation, side, table of quantities, annotation, and text boxes. Different
basic elements carry different design information. The plane, elevation, and side contain the size,
shape, and topological information of the bridge structure; the quantity table contains the
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material information of the current bridge members, implying
material indexes such as reinforcement rate and steel content; the
annotation contains the applicable conditions of the drawings and
specific requirements before and after the construction; and the text
box contains the name of the drawings, the drawing number, the
design unit, the designer, and other necessary information of the
drawings. In order to fully and comprehensively understand the
design information in each bridge engineering design drawing as a
whole, it is often necessary to understand the information in each
basic element of the drawing separately. To understand each basic
element, it is first necessary to localize and classify the basic
element. In this paper, we propose to investigate an automatic
classification and localization method for basic elements of bridge
engineering design drawings, i.e., basic elements target detection.

To deal with the above problems, this paper proposes an
improved basic elements detection algorithm for bridge engineer-
ing design drawings based on YOLOv5 to realize the detection of
four types of basic elements in bridge engineering design drawings,
namely, Figures, Forms, Annotations, and Text boxes. In terms of
algorithmic improvement, Coordinate Attention (CA) is first intro-
duced to enhance the feature extraction capability of the algorithm
and alleviate the problem of difficulty in recognizing internal
texture features in grayscale images. Then, Switchable Atrous Con-
volution (SAC) is introduced to adaptively expand the sensory field
and capture multi-scale contextual information. Taking the bridge

design drawings as an example, the dataset containing four types of
basic elements, namely, Figures, Forms, Annotations, and Text
boxes, is self-developed. The experimental results show that the
mean Average Precision (mAP) of the improved YOLOv5 algo-
rithm is significantly improved, which realizes the detection of basic
elements of bridge engineering design drawings and provides a
basis for the digital management of drawings.

Following are the main contributions of our work:

1. To address the limitations of traditional methods in dealing
with the detection of image elements of bridge engineering
design drawings, such as low recognition accuracy and poor
adaptability to complex scenes, this study innovatively applies
deep learning methods to this field, which provides valuable
experience and references for the subsequent image recogni-
tion research.

2. Aiming at the challenges of missing color information and
multi-scale targets in drawing detection, this study innova-
tively integrates the Coordinate Attention mechanism and
SAC in the YOLOv5 framework, which significantly improves
the detection accuracy through fine design and optimization
and opens up a new path for research in related fields.

3. In order to verify the effectiveness of the algorithm, we con-
structed a bridge engineering design drawings dataset, which
contains 3000 samples covering four key elements: figures,

Figure 1. Example of bridge engineering design drawings.
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tables, annotations, and text boxes. We conducted sufficient
experiments on this dataset, and the results show that our
algorithm has good accuracy and can meet the practical needs.

Related work

So far, researchers have proposed a variety of methods to extract
textual information from drawings, and the research on character
recognition of engineering design drawings has been perfected, but
there are few reports on the research on the detection of basic
elements of engineering design drawings.

Engineering design drawing character recognition

Fan and Guan (2012) proposed a pre-segmentation algorithm
based on the knowledge of engineering design drawings to realize
the recognition of strings in the form of tables as well as element
labeling information in drawings. Yang et al. used a template
matching algorithm to obtain a template as a criterion for recog-
nizing characters by extracting and selecting the features of the
image, calculating the similarity between the template and the
character to be recognized, and then judging whether it is the same
character as the corresponding template based on the results.
Brock et al. (2017) proposed an object detection framework based

on convolutional neural networks to achieve the localization and
classification of various optical characters in engineering design
drawings. Song et al. used the form of sliced table cells to locate
and analyze the key information and realized the extraction of title
bar information with the help of a convolutional neural network.
Jiang et al. proposed an improved character detection method for
drawing image characters characterized by the presence of a high
number of interference, such as labeling lines, workpiece graphics,
and indication symbols, which extracts a series of desired target
text lines using a concatenated domain aggregation-based
approach. Elyan et al. (2020) proposed a bounding box detection
method for symbol localization and recognition in engineering
drawings and improved the classification of symbols in engineer-
ing drawings by targeting the class imbalance problem using deep
generative adversarial neural networks. Jamieson et al. (2020)
used a deep learning approach to recognize text in engineering
design drawings, such as piping and instrumentation drawings,
and detected 90% of the text, including vertical text strings. Dong
et al. (2023a) used the VGG model for feature extraction of grid
engineering drawings, output the proposed candidate frames by
the region candidate algorithm, achieved the unity of candidate
frame size by the pooling layer of the region of interest, and
achieved the character recognition of grid engineering drawings
by the Faster R-CNN algorithm.

Figure 2. Improved model structure.
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Engineering design drawing basic elements detection

Song et al. (2011) stored the topological relationships and geometric
constraints information between basic graph elements obtained
after the vectorization process in the structure of the graph as a
knowledge representation of such graphical objects and used the
knowledge representation of graphical objects stored in the struc-
ture of the graph for comparison and recognition when recognizing
engineering drawings. Liu et al. (2019) proposed a convolutional
neural network-based detection architecture to realize the classifi-
cation of three categories of engineering drawings: electrical engin-
eering drawings, mechanical engineering drawings, and textual
drawings. Zhao et al. (2021) used Faster R-CNN to recognize and
classify columns and beams in frame maps and proposed an
information matching method to enrich the attribute and location
information of targets. Zhao et al. (2022) introduced the classical
Hough transform technique into deep learning representations and
proposed an end-to-end learning framework for line detection,
which performs the Hough transform by parametrizing lines with
slopes and deviations, transforms the deep representation into the
parameter domain, and performs line detection in the parameter
domain. Yang et al. (2022) proposed to use the improved Cascade
RCNN algorithm combined with digital image processing technol-
ogy to recognize duct plan drawings, extracting equipment categor-
ies and location information in the images, with a recognition
accuracy of 80.8%, which provides a data foundation for recon-
structing BIM. These previously proposed methods have low rec-
ognition accuracy, which makes it difficult to meet practical needs
and deal with a single type of graphical element with weak gener-
alization capabilities.

Methodology

Overview of the proposed method

As shown in Figure 2, YOLOv5 consists of four parts: Input,
Backbone, Neck, and Head. Input preprocesses the image using
Mosaic data enhancement, adaptive initial anchor frame calcula-
tion, and image scaling; Backbone uses Focus downsampling,
improved Cross Stage Partial network (C.-Y. Wang et al., 2020),
and Spatial Pyramid Pooling (He et al., 2015) to extract image
feature information;Neck uses Feature Pyramid Network (Lin
et al., 2017) and Path Aggregation Network (Liu et al., 2018) to
realize the transfer of feature information between targets of dif-
ferent sizes; Head uses Binary Cross Entropy Loss (Zheng et al.,
2020) and Complete IoU Loss to compute the classification, local-
ization, and confidence losses, and improve the accuracy of net-
work prediction by Non-Maximum Suppression.

Although YOLOv5 has achieved some research results in
general-purpose target detection (J.Wang et al., 2023 ), its detection
accuracy needs to be improved in bridge engineering design draw-
ing basic elements detection scenes. In this paper, two improve-
ments are made on the basis of YOLOv5: firstly, the CA is
introduced into the feature extraction network to enhance the
feature extraction capability of the algorithm and alleviate the
problem of difficult identification of texture features inside gray-
scale images; secondly, targeting objectives across different scales,
the standard 3 × 3 convolution in the feature pyramid network is
replaced with SAC, which adaptively enlarges the sensory field to
capture multi-scale contextual information and improve the
anchor frame.

Algorithm Improved Basic Elements Detection Algorithm for
Bridge Engineering Design Drawings based on YOLOv5.

Input: Images (I); Labels (L); Learning Rate (η); Number of Iter-
ations (T).
Output: Trained Model Weights (W).
1: Preprocess/to obtain normalized and augmented images I0.
2: Build the improved YOLOv5 network model by inserting the CA
module and the SAC module.

3: Define the loss function by weighted summation of the bounding
box regression loss Lbbox, category loss Lcls, and object loss Lobj to
obtain the total loss Ltotal .

4: for t ∈ [1, T] do.
5: Forward Propagation: Compute predictions bb, bγ, bpby passing

I0b through the network.
6: Compute Loss: Evaluate Ltotal using Lb, bb, bγ, bp.
7: Back Propagation: Compute gradients ∇Ltotal and update W

using an optimizer.
8: Weight Update.
9: end for.

Coordinate attention

The core idea of the attention mechanism is to focus on the
information that is more critical to the task at hand among the
many inputs, ignoring other irrelevant information, and thus
acquiring more details relevant to the goal and improving the
accuracy of task processing. As shown in Figure 3, in the field of
computer vision, depending on the attention focus domain, it can
be categorized into channel attention mechanisms represented by
Squeeze-and-Excitation Networks (SENet) (Hu et al., 2018), spatial
attention mechanism represented by Spatial Transformation
Neural Networks (STNs) (Jaderberg et al., 2015), and hybrid atten-
tion mechanism represented by the Convolutional Attention Mod-
ule (CBAM) (Woo et al., 2018).

SENet only considers encoded inter-channel information,
ignoring positional information that is critical for capturing the
target structure. CBAM attempts to exploit positional information
by reducing the channel dimension of the input tensor and then
computing spatial attention using convolution, which can only
capture local relationships and cannot model the remote depend-
encies necessary for visual tasks. CA (Hou et al., 2021) is a new
attention mechanism module proposed after SENet and CBAM,
which embeds position information into channel attention to cap-
ture not only cross-channel information but also orientation-aware
and position-sensitive information, which helps the model to more
accurately localize and identify objects of interest.

The key of CA lies in generating two attention maps, one
emphasizing the horizontal direction and the other emphasizing
the vertical direction. These two attention maps are typically gen-
erated through global average pooling and convolution operations.
Subsequently, these two attention maps are multiplied with the
original feature map to produce a new weighted feature map. The
output of CA can be expressed as:

Xnew ¼X �σ Conv GAPh Xð Þð Þð Þ⊗ σ Conv GAPh Xð Þð Þð Þ (1)

In this context, Xnew represents the new feature map after being
processed by the CA module, while X is the original feature map.
The symbol � denotes the element-wise multiplication operation,
which is used tomultiply the attentionmapswith the original feature
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map element by element. The symbol ⊗ stands for the tensor
multiplication operation, which combines the attention maps in
the horizontal and vertical directions. The σ represents the activation
function, typically using the Sigmoid function to map the values of
the attention maps to a range between 0 and 1. Conv indicates the
convolution operation, which further processes the results after
global average pooling to generate the final attention maps.
GAPh Xð Þ and GAPv Xð Þ refer to the global average pooling oper-
ations applied to the feature map X in the horizontal and vertical
directions, respectively, to obtain global statistical information.

In network improvements, we place the CAmodule between the
Conv and Upsample operations, that is, before the feature map is

upsampled and fused. Through this approach, CA is able to directly
recalibrate the original feature map, enabling the model to focus
more on the positional information crucial to the detection task.
For the bridge engineering drawing detection task, as the basic
elements in drawings usually have clear positions and directional-
ity, CA can significantly enhance the model’s attention to these key
areas, thereby improving the accuracy of detection.

Switchable atrous convolution

Atrous convolution refers to the process of expanding the convo-
lution kernel by adding some zeros between the elements of the

Figure 4. Atrous convolution.
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Figure 3. Attention mechanisms.
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convolution kernel, which is mainly used to expand the sensory
field so that the output of each convolution contains a larger range
of information. Meanwhile, atrous convolution suffers from two
shortcomings: on the one hand, there is the Gridding Effect, which
means that when stacking multiple 3 × 3 convolution kernels with
an atrous rate of 2, the convolution kernels are not continuous and
not all input pixels are computed; on the other hand, it is effective
for large targets, but not so effective for small targets.

As shown in Figure 4, it was found that researchers have made
many improvements to the atrous convolution based on the above
two shortcomings: Depth Separable Convolution, which mainly
replaces the traditional convolution with channel-by-channel and
point-by-point convolution, is not applicable to grayscale bridge
engineering design drawings that lack colorful semantic informa-
tion representations; Parallel Atrous Convolution, by artificially
defining three branches with different atrous rates, so that the
branch with a small sensory field trains a small-scale target and
the branch with a large sensory field trains a large-scale target (Son
et al., 2021); SAC, which is capable of obtaining different values of
the switching function S(x) according to the inputs and positions
and adaptively choosing whether the atrous rate is 1 or 3 according
to the value of S(x) (Qiao et al., 2021).

The core of SAC lies in its adaptive atrous rate switching
function, which allows the network to select an appropriate atrous

rate based on the characteristics of the input data. Through global
average pooling and convolution operations, corresponding feature
maps are generated. Subsequently, these feature maps are inte-
grated through a fusion mechanism to form the final feature
representation. The output of SAC can be expressed as:

Conv x,w,1ð Þ! S xð Þ �Conv x,w,1ð Þ+ 1�S xð Þð Þ �Conv x,w +Δw,rð Þ
(2)

In this context, x is the input, w is the weight, SðÞ is the
switching function, Δw denotes a weight with trainable weights,
and r is the atrous rate.

In network improvement, we replaced the first two C3 modules
in the Neck section with SACmodules. This allows SAC to dynam-
ically adjust the atrous rate based on task requirements, expanding
the receptive field of the convolutional layer. This means that each
convolutional kernel can cover a wider input region, capturing
more contextual information. At the same time, the combination
of SAC with FPN and PANet in the YOLOv5 network further
promotes the fusion of multiscale features. Bridge engineering
drawings usually have clear structures, explicit contextual informa-
tion, and different scales. The flexibility of SAC enables it to adjust
the atrous rate based on different target scales, thus achieving
effective detection of multi-scale targets.

Figure 5. Example of a sample data set.
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Experiments

Experimental environment

The operating system for the experiments in this paper is 64-bit
Ubuntu 20.04 LTS, the graphics card is NVIDIA GeForce RTX
3090, the deep learning framework is Pytorch 1.11.0, and the
programming language is Python 3.8.

Data sets

There is a lack of publicly available datasets in the field of bridge
engineering design drawing recognition due to intellectual property
rights restrictions. To solve this problem, this paper creates a self-
developed bridge engineering design drawing basic elements detec-
tion dataset. The data mainly comes from the scanned documents
of Anhui Provincial General Research Institute of Transportation
Planning and Design, covering images of different design scenes,

different design styles, and different resolutions, and data enhance-
ment is performed by adding noise, and a total of 3,000 images are
finally obtained. The collected data was labeled using LabelImg in
YOLO format for four categories: Figure, Form, Annotation, and
Text box. The dataset is divided into the training set and test set in a
9:1 ratio. The sample dataset is shown in Figure 5.

Network training

In the YOLOv5 model training, the smaller the loss function loss
value of the model structure, the better, with an expected value of
0. To achieve the best performance of the model, the initial learning
rate was set to 0.01, the momentum to 0.937, the weight decay
coefficient to 0.0005, the number of iterations to 100, and the batch
size to 8. After 80 iterations, the loss values stabilize, and the model
reaches the optimal state. The training loss variation is shown in
Figure 6.

Figure 6. Convergence of improved YOLOv5 training loss.

Table 1. Comparison of results of multiple detection algorithms

Algorithm

P R

mAP0.5 mAP0.5:0.9figure ann textbox form all figure ann textbox form all

Faster R-CNN 0.726 0.68 0.686 0.804 0.747 0.693 0.654 0.728 0.74 0.711 0.75 0.691

SSD 0.743 0.722 0.648 0.782 0.735 0.673 0.665 0.641 0.719 0.667 0.75 0.649

YOLOv5 0.853 0.92 0.929 0.925 0.909 0.876 0.95 0.95 0.94 0.926 0.902 0.812

Ours 0.863 0.87 0.94 0.925 0.894 0.933 0.88 0.95 0.995 0.939 0.936 0.823
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Evaluation indicators

In this paper, Precision (P), Recall (R), andmean Average Precision
(mAP) are used as evaluation metrics. The calculation formula is as
follows:

P¼ TP
TP + FP

(3)

R¼ TP
TP + FN

(4)

AP¼ 1
M

X
P Rð Þ (5)

mAP¼ 1
M

X
APi (6)

where TP denotes the number of detection frames that are correctly
predicted, FP denotes the number of detection frames that are
incorrectly predicted, FN denotes the number of detection frames
that are missed, AP denotes the average precision, M denotes the
number of categories, P(R) denotes the accuracy P corresponding
to a different recall rate R, and APi denotes the average precision of
the ith iteration. mAP0.5 denotes the mAP when the IoU threshold

is set to 0.5, andmAP0.5:0.9 denotes the averagemAPover different
IoU thresholds from 0.5 to 0.9 in steps of 0.05.

Results and discussion

In order to verify that the algorithm proposed in this paper has
better results, it is experimentally compared with classical target
detection algorithms such as Faster R-CNN, SSD, and YOLOv5
under the same configuration conditions. The specific experimental
results are shown in Table 1.

As is shown in Table 1, the algorithm in this paper reduces the
accuracy by 1.5% and improves the recall by 1.3% over the original
YOLOv5 algorithm, improves the mean average precision by 3.4%
when the threshold is set to 0.5, and improves themAP0.5:0.9 by 1.1%.
In particular, for the category of text boxes with long dimensions, the
accuracy is improved by 1.1%, and for the categories of figures and
tables, where internal texture features are difficult to distinguish, the
recall is improved by 5.7% and 5.5%, respectively. The evaluation
indexes of the detection results of this paper’s algorithm are much
higher than those of Faster R-CNN and SSD, which indicates that the
performance and reliability of the algorithmproposed in this paper are
stronger and can meet the accuracy requirements for the detection of
basic elements of bridge engineering design drawings.

Figure 7. Comparison of the results of different detection algorithms. Red represents the detection result, and blue represents the ground truth.
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To more intuitively see the detection differences between differ-
ent algorithms, some of the detected images are selected for dem-
onstration, and the results are shown in Figure 7. Figure 7(a) shows
the detection using the Faster R-CNN algorithm, and it is observed
that the text box at the bottomof the drawing, which contains a lot of
design information, is not detected, and leakage occurs; Figure 7

(b) shows the detection using the SSD algorithm, and it is observed
that a graph in the upper right of the drawing is missed; Figure 7
(c) shows the detection using the YOLOv5 algorithm, and it is
observed that two different detection results are obtained for an
annotation detection target, and misdetection occurs, which is due
to the fact that compared to the RGB three-channel color image, the
bridge engineering design drawings are missing an effective repre-
sentation of the semantic information of color between the channels,
which results in a less obvious differentiation between the external
contour of the graphic and the internal texture and a lower detection
accuracy. At the same time, the YOLOv5 algorithm for the text box
also only recognizes a part of the text box and does not recognize the
whole, this is due to the core idea of YOLOv5 is to divide the whole
image into a number of grids and use a number of anchor frames
within the grids for prediction, and the text box is a long target that
spans across a number of grids, which makes the selection of the
anchor frames and the overall recognition of the image difficult; and
Figure 7(d) shows the detection using the algorithmproposed in this
paper, and it is observed that for figures, forms, annotations, and text
boxes are accurately recognized, and the detection results are closest
to the real labels. Similarly, Figure 8(a) shows the detection using the
Faster R-CNN algorithm, whichmisses the text box at the bottom of
the drawing; Figure 8(b) shows the detection using the SSD algo-
rithm, which mistakenly detects the category of annotations;
Figure 8(c) shows the detection using the YOLOv5 algorithm,which

Figure 8. Comparison of the results of different detection algorithms. Red represents the detection result, and blue represents the ground truth.

Table 2. Comparison of detection results of multiple attention mechanisms

Algorithm P R mAP0.5 mAP0.5:0.9

YOLOv5 0.909 0.926 0.902 0.812

YOLOv5 + SENet 0.885 0.914 0.902 0.721

YOLOv5 + CBAM 0.912 0.926 0.941 0.793

YOLOv5 + CA 0.928 0.96 0.921 0.818

Table 3. YOLOv5 ablation experiment results

YOLOv5 CA SAC P R mAP0.5 mAP0.5:0.9

√ 0.909 0.926 0.902 0.812

√ √ 0.928 0.96 0.921 0.818

√ √ √ 0.894 0.939 0.936 0.823
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does not accurately detect the figure and suffers from information
loss; and Figure 8(d) shows the detection using the improved
algorithm of the present paper, which is most closely aligned with
the real label. From the above comparison of the detection results of
different algorithms, it can be seen that the improved YOLOv5
algorithm proposed in this paper has a better detection effect in
the detection scenario of basic elements of bridge engineering design
drawings.

In addition, in order to verify that the CA has a better effect than
the channel attention mechanism and the hybrid attention mech-
anism, a comparison experiment was conducted under the same
configuration conditions. The specific experimental results are
shown in Table 2.

As is shown in Table 2, after the introduction of SENet, the
evaluation indexes of drawing recognition not only did not improve
but also declined, which is due to the characteristics of bridge
engineering design drawings belonging to the grayscale image,
the color of which is dominated by black and white, and a lack of
inter-channel color semantic information, and the channel atten-
tion mechanism only considers the encoding of inter-channel
information, which leads to a reduction in the detection accuracy.
The introduction of CBAM resulted in a 3.9% improvement in
mAP0.5, which is related to the ability of CBAM to capture local-
ized positional information. After the introduction of CA, all
evaluation indexes are significantly improved, especially for the
recall rate, which is significantly improved by 3.4%, thanks to the
fact that CA can capture the characteristics of direction perception
and location information. This shows that CA is more suitable for
the detection of drawing basic elements than the channel attention
mechanism and the hybrid attention mechanism.

In order to verify the improvement effect of YOLOv5 in this
paper, CA and SAC are added sequentially to the original YOLOv5,
respectively, while keeping the same experimental configuration to
judge the effectiveness of each improvement point, and the specific
experimental results are shown in Table 3.

As is shown in Table 3, after the introduction of CA, the overall
evaluation indexes are improved, especially the P and R, which are
improved by 1.9% and 3.4%, respectively, indicating that the atten-
tion mechanism improves the feature extraction capability. After
the introduction of SAC, the P and R decrease, and the mAP0.5
obtains a further improvement of 1.5%, indicating that the SAC
strengthens the multi-scale detection capability.

To have a more intuitive understanding of how much attention
the model pays to different targets and to judge whether the
network learns the right features or information, the feature map
is visualized as GradCAM (Gradient-weighted Class Activation

Mapping) (Selvaraju et al., 2017), and the results are shown in
Figure 9. Figure 8(a) shows the original image entered at the time
of prediction, which contains four figures, one form, and one text
box; Figure 8(b) shows the heatmap drawn after the introduction of
CA, where blue represents low attention and red represents high
attention, and the darker the color, the greater the degree of
correlation, it is reasonable to observe that the model mainly relies
on the features of the two figures in the upper left to determine the
detection target as a figure; and Figure 8(c) shows the heat map of
the model after the introduction of SAC, and it is observed that the
model determines the detection target to be a figure based on
the features of all figures, the feature range is expanded, and the
attention is more accurate and focused. This shows that the model
training is able to learn the correct features, and the introduction of
CA and SAC can improve the feature extraction capability.

However, this study also has certain limitations. Firstly, the
calculation speed of the model needs to be improved, for example,
by drawing on the parallel processing capabilities of neuromorphic
computing (Ji et al., 2022; Ji et al., 2023; Dong et al., 2023b) to design
deep learning models that can more efficiently utilize multi-core,
GPU, and other hardware resources, thereby accelerating the pro-
cessing speed of object detection tasks. Additionally, the general-
ization ability of the model needs to be enhanced, which may
require expanding a larger dataset to meet the requirements of
recognizing engineering drawings with diverse design styles.

Conclusion

This paper proposes an improved algorithm for detecting basic
elements in bridge engineering design drawings based on the
YOLOv5 framework. The core of this method lies in the introduc-
tion of CA, which significantly enhances the algorithm’s feature
extraction capabilities. Additionally, by incorporating SAC, the
receptive field is adaptively expanded, enabling the capture of
crucial multi-scale contextual information for precise detection.

To validate the effectiveness of our proposed method, extensive
experiments were conducted on a self-constructed dataset containing
3,000 bridge engineering design drawings. The experimental results
are particularlynoteworthy, demonstrating substantial improvements.
Specifically, our improved algorithm achieves a mAP of 93.6% when
the IoU threshold is set to 0.5, representing a 3.4% improvement
compared to the baseline YOLOv5 algorithm. This significant per-
formance enhancement not only highlights ourmethod’s advantage in
accurately detecting basic elements but also reveals its broad applica-
tion potential in the field of engineering design.

Figure 9. Feature map visualization.
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This research not only provides more efficient, accurate, and
innovative methods for bridge design and construction but also
demonstrates the immense potential and broad prospects of artifi-
cial intelligence in engineering design. We firmly believe that this
study represents a significant step forward for artificial intelligence
in engineering design, opening new directions and possibilities for
future research and applications.
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