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In this study, we consider the viscous compressible Navier–Stokes–Poisson equations,
which consist of the balance laws for electron density and moment, and a Poisson
equation for the electrostatic potential. The limit of vanishing electron mass of this
system with both well/ill-prepared initial data on the whole space is rigorously
justified within the framework of local smooth solution. We first make use of the
symmetric hyperbolic–parabolic structure of the compressible Navier–Stokes–Poisson
equation to obtain uniform estimate in the short time, by which we show uniform
existence of local classical solution to the compressible Navier–Stokes–Poisson
equation in Rd(d � 1). Further, with uniform estimate of time derivatives, we show
the zero-electron-mass limit of the solutions for the compressible
Navier–Stokes–Poisson equation with well-prepared initial data in Rd(d � 1) by
using Aubin’s lemma. A detailed spectral analysis on the linearized system is done
so that we are able to prove the zero-electron-mass limit of the solutions with
ill-prepared initial data in Rd(d � 3), where the convergence occurs away from the
time t = 0. Finally, note that the dissipation mechanism for the linearized
compressible Navier–Stokes–Poisson system is different from that of the compressible
Euler equations in Grenier (Commun. Partial Diff. Eqns. 21 (1996), 363–394);
Grenier (Commun. Pure Appl. Math. 50 (1997), 821–865); Ukai (J. Math. Kyoto
Univ. 26 (1986), 323–331), or that of the compressible Euler–Poisson equations in
Ali and Chen (Nonlinearity 24 (2011), 2745–2761), since its eigenvalues are
somehow similar to that of heat equation, and the fundamental solution contains a
part behaving like the heat kernel, thus a big difficulty is the singularity of the heat
kernel at t = 0.
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1. Introduction

The compressible Navier–Stokes–Poisson equations are used to describe the motion
of charged particles (i.e. the electrons and the holes or, the electrons and the ions)
under the influence of the self-consistent electrostatic potential force arising from
semiconductors and plasmas. In this model, the heavy holes and ions are assumed
to be immobile and uniformly distributed in space, providing as a background of
positive charge. The light electrons are modelled as a charged compressible fluid
moving against the ionic forces. Neglecting magnetic effect and heat-conductive
effect, the governing dynamics of the electron fluid are given by the following viscous
isentropic compressible Navier–Stokes–Poisson equations (see [7, 21, 35]):⎧⎪⎪⎨

⎪⎪⎩
∂tn+ div(nu) = 0,

me[∂t(nu) + div(nu⊗ u)] + ∇p(n) = divS(u) + ρ∇φ,
λ2Δφ = n−N,

(1.1)

for (t, x) ∈ [0, ∞) × R
d(d � 1). The unknown variables n, u, φ are the electron

density, the velocity and the electrostatic potential, p(n) is the pressure function,
usually given by p(ρ) = Aργ with the constants A > 0 and γ � 1. In this work, we
assume that p(n) is smooth and strictly increasing. S(u) denotes the viscous stress
tensor with the form

divS(u) = μ′Δu+ ν′∇div u,

here μ′ and ν′ are viscosity coefficients satisfying μ′ > 0 and μ′ + ν′ > 0 for the sake
of simplicity. The constantme is the ratio of the electron/ions mass, and λ > 0 is the
Debye length. N stands for a given (constant) density of positively charged ions.
Moreover, we also mention that, without viscous terms, (1.1) becomes the com-
pressible isentropic Euler–Poisson system, which is another model describing the
motion of charged particles. Finally, if the electrostatic potential φ is neglected, the
compressible Navier–Stokes–Poisson equations (1.1) is then reduced to the classical
compressible Navier–Stokes equations.

Recently, some important progress has been made for the compressible
Navier–Stokes–Poisson system. Here we only refer to some results about the
isentropic compressible Navier–Stokes–Poisson system. The local and/or global
existence of renormalized weak solutions to the Cauchy problem of the multi-
dimensional compressible Navier–Stokes–Poisson system are proved in [14, 43].
The existence of non-trivial stationary solutions with compact support and their
stability related to a free-boundary value problem for the three-dimensional
Navier–Stokes–Poisson system are discussed in [15]. Some nonexistence result of
global weak solutions is obtained in [5]. Large-time behaviour of the spherically
symmetric Navier–Stokes–Poisson system with degenerate viscosity coefficients
and with vacuum in R

3 is shown in [42]. The global existence of spherically
symmetric weak solutions, and the regularity and long-time behaviour of global
solution for free boundary value problem to three-dimensional spherically symmet-
ric compressible Navier–Stokes–Poisson equations are shown in [25]. The linear and
nonlinear dynamical stability for the Lane–Emden solutions to the compressible
Navier–Stokes–Poisson system is studied in [20]. The global strong solutions of the
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initial value problem for the multi-dimensional compressible Navier–Stokes–Poisson
system with the strictly positive background profile in Besov spaces are investi-
gated in [19]. The global existence and L2-decay rate of the smooth solution of
the initial value problem for the compressible Navier–Stokes–Poisson system in R

3

are proved in [27]. The pointwise estimates of the smooth solutions for the three-
dimensional isentropic compressible Navier–Stokes–Poisson equation are obtained
in [38]. The asymptotic stability of the nonlinear wave such as the rarefaction wave,
the viscous shock wave and the stationary wave of the one-dimensional compressible
Navier–Stokes–Poisson equation is studied in [12, 13, 23, 28, 39].

Moreover, the zero-electron-mass limit me → 0 and the quasi-neutral limit λ→ 0
of the compressible Navier–Stokes–Poisson equations are the important problems
in the theory of the compressible fluid of semiconductors and plasmas. Li and
Liao [26] showed the existence and zero-electron-mass limit of strong solutions
to the stationary compressible Navier–Stokes–Poisson equation with large exter-
nal force. Donatelli et al. [10] discussed the vanishing electron-mass limit of weak
solution for the plasma hydrodynamics in three-dimensional unbounded domain.
Li et al. [29] investigated zero-electron-mass limit of the two-dimensional com-
pressible Navier–Stokes–Poisson equations over bounded domain. The quasineu-
tral limit of weak solution and smooth solutions of the compressible unipolar
Navier–Stokes–Poisson system was studied in [11, 22, 37]. We also mention that
many authors discussed the zero-electron-mass limit in the Euler–Poisson system for
both well- and ill-prepared initial data, and we can refer to [3, 4, 40, 41] and some
references therein. To our knowledge, there were no results on the zero-electron-
mass limit of the classical local solutions to compressible Navier–Stokes–Poisson
equations (1.1). The goal of this work is to fill in the void and study the zero-
electron-mass limit of the classical solutions to compressible Navier–Stokes–Poisson
equations (1.1) with well- and ill-prepared initial data in R

d(d � 1).
To study the zero-electron-mass limit of the Navier–Stokes–Poisson equa-

tions (1.1), we denote ε2 = me, and we assume μ′ = ε2μ, ν′ = ε2ν. Moreover,
let us introduce the electrostatic field E = ∇φ and define the enthalpy h =
h(n) by h′(n) = p′(n)/n and h(1) = 0. Then the viscous isentropic compressible
Navier–Stokes–Poisson system (1.1) can be written as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tn+ div(nu) = 0,

ε2(∂t + u · ∇)u+ ∇h(n) =
ε2

n
(μΔu+ ν∇div u) + E,

λ2E = ∇Δ−1(n−N) := K ∗ (n−N), K(x) =
1

dωd−1

x

|x|d ,

(1.2)

where ωd−1 is the volume of the unit ball in R
d. From the analysis of [3], the opera-

tor Δ−1 represents symbolically the fundamental solution of the Poisson equation,
and Δ−1f might not be well defined for not good enough functions f when the
problem is considered on the whole space. However, ∇Δ−1f is well defined for
f ∈ Hs(Rd) as long as s > 0. Since we will prove the zero-electron-mass limit
of the isentropic compressible Navier–Stokes–Poisson equations (1.2) with well-
and ill-prepared initial data, we now supply the system (1.2) with the following
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initial data:

(n, u)(·, 0) = (nε
I , u

ε
I). (1.3)

Moreover, for smooth solutions, the initial value problem (1.2)–(1.3) is equivalent
to the following hyperbolic–parabolic type system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∂t + u · ∇)h+ p′(n)div u = 0,

ε2(∂t + u · ∇)u+ ∇h =
ε2

n(h)
(μΔu+ ν∇div u) + E,

λ2E = K ∗ (n−N),

(1.4)

with initial conditions

(h, u)(·, 0) = (hε
I , u

ε
I), hε

I = h(nε
I). (1.5)

Here n(h) is a smooth reversible function of h(n), which can be assured by the
assumption of p(n).

The zero-electron-mass limit ε→ 0 in the problem (1.2)–(1.3) or (1.4)–(1.5) is
reminiscent of the low Mach number (incompressible) limit of the compressible
fluid equation, which has been investigated in a number of recent studies, see the
monograph [6] and the survey papers [2, 16, 30, 32], and the references cited
therein. The objective of this paper is to perform the limit as ε→ 0 in (1.2). Then
as in [3, 8, 9, 30], we introduce the new variables:

(ñ, Ẽ) =
(
n−N

ε
,
E

ε

)
, h̃ =

h(n) − h0

ε
, h0 = h(N),

then systems (1.2) and (1.4) are rewritten as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tñ+
1
ε
div((N + εñ)u) = 0,

(∂t + u · ∇)u+
1
ε
h′(N + εñ)∇ñ =

1
N + εñ

(μΔu+ ν∇div u) +
1
ε
Ẽ,

λ2Ẽ = K ∗ ñ,

(1.6)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A(εh̃)(∂t + u · ∇)h̃+
1
ε
div u = 0,

(∂t + u · ∇)u+
1
ε
∇h̃ =

1
n(h0 + εh̃)

(μΔu+ ν∇div u) +
1
ε
Ẽ,

λ2Ẽ = K ∗ ñ,

(1.7)

respectively, where A(εh̃) = 1/p′(n(h0 + εh̃)). For smooth solutions, we use the
variable h̃ instead of ñ, because the system (1.7) with some symmetric part is
more convenient for standard energy estimates.

Notations. First, Lp(Rd) with 1 � p <∞ denotes the space of measurable func-
tions whose p-powers are integrable on R

d, with norm ‖ · ‖Lp = (
∫

Rd | · |pdx)1/p,
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and L∞(Rd) is the space of bounded measurable functions on R
d, with the norm

‖ · ‖L∞ = esssupx∈Rd | · |. Without confusion, we also denote the norm of L2(Rd) by
‖ · ‖ for brevity. Next, for a nonnegative integer k, Hk = Hk(Rd) denotes the usual
L2-type Sobolev space of order k. We also write ‖ · ‖k for the standard norm of
Hk(Rd). Moreover, we denote |||·|||s,T = sup0<t<T ‖ · ‖s for s � 0. In addition, we
denote by C([0, T ], X) (resp. L2([0, T ], X)) the space of continuous (resp. square
integrable) functions on [0, T ] with values in a Banach space X. Finally, the symbols
ci (i = 1, 2, . . .) or Cj (j = 0, 1, 2, . . .) are always used to denote generic positive
constants independent of ε, c(·) and C(·) denote some positive smooth functions
which may vary from line to line.

The first result in this paper is the following uniform local existence.

Theorem 1.1 (Uniform-in-ε local-in-time existence). Let d � 1, s > d/2 + 2 and
N > 0, assume that the initial data (nε

I , u
ε
I) satisfy

nε
I −N ∈ L1(Rd),

∥∥∥∥∥
(
nε

I −N

ε
, uε

I

)∥∥∥∥∥
s

� M0, (1.8)

where M0 a given constant independent of ε. Then there exist constants T0 > 0 and
M ′

0 > 0 independent of ε, and ε0(M0) > 0, such that, for all ε with 0 < ε < ε0(M0),
the problem (1.2)–(1.3) has a classical solution (nε, uε, Eε) in [0, T0] satisfying

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
nε −N

ε
, uε,

Eε

ε

)∣∣∣∣
∣∣∣∣
∣∣∣∣
s,T0

� M ′
0. (1.9)

Next, we have the following zero-electron-mass limit for the problem (1.2)–(1.3)
with well-prepared initial data, that is, the initial data is prepared to make the
‘initial time-derivatives’ uniformly bounded. Here the ‘initial time-derivative’ is
understood by compatibility condition using the differential equation that time-
derivative can be replaced by spatial-derivatives. The term ill-prepared initial data
refers to that is not well-prepared.

Theorem 1.2 (Limit for well-prepared initial data). Let the assumption of
theorem 1.1 be held. Assume that the initial data are well-prepared, that is, uε

I =
u0

I + εu1
I with ∇ · u0

I = 0, and

∥∥∥∥nε
I −N

ε2

∥∥∥∥
s

� M1, (1.10)

where M1 is a constant. Let (nε, uε, Eε) be a classical solution to (1.2)–(1.3) in
[0, T0] with T0 > 0 independent of ε as obtained in theorem 1.1. Then we have the
limit as ε→ 0 that

(nε, Eε) → (N, 0) strongly in L∞([0, T0];Hα(Rd)) ∩ C0,1([0, T0];L2(Rd)),
uε → u0, strongly in C0([0, T0];Hα(Rd)) for all α < s,
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where u0 is the unique classical solution of the incompressible Navier–Stokes
equations

∇ · u0 = 0, (∂t + u0 · ∇)u0 =
μ

N
Δu0 + ∇π for t > 0,

u0(·, 0) = u0
I ,

(1.11)

and π is the limit of

Eε −∇h(nε)
ε

⇀ ∇π weakly* in L∞([0, T0];L2(Rd)).

Finally, for the ill-prepared initial data of the problem (1.2)–(1.3), we have

Theorem 1.3 (Limit for ill-prepared initial data). Let the assumptions of theorem
1.1 hold and let d � 3, suppose that the initial data uε

I → u0
I in Hs(Rd) as ε→ 0,

and let (nε, uε, Eε) be a classical solution to (1.2)–(1.3) in [0, T0] with T0 > 0
independent of ε. Then, as ε→ 0,

(nε, Eε) → (N, 0) strongly in L∞([0, T0];Hs(Rd)),
uε ⇀ u0

∗ weakly* in L∞([0, T0];Hs(Rd)),
uε → u0

∗ strongly in C0
loc((0, T0] × R

d),

where u0
∗ ∈ L∞([0, T0];Hs(Rd)) is the solution of the incompressible Navier–Stokes

equations

∇ · u0
∗ = 0, (∂t + u0

∗ · ∇)u0
∗ =

μ

N
Δu0

∗ + ∇π for t > 0,

u0
∗(·, 0) = Pu0

I ,
(1.12)

for some π ∈ L∞([0, T0];Hs(Rd)), and P is the orthogonal projection of Hs onto
the subspace {v ∈ Hs : ∇ · v = 0}.

Remark 1.4. Theorem 1.3 holds only for d � 3, since the decay property of the
fundamental solution is essentially used in the spectral analysis. This is compatible
with the corresponding result in [3].

Remark 1.5. In the present work, we only discuss the zero-electron-mass limit
for the unipolar isentropic Navier–Stokes–Poisson equation with well-prepared and
ill-prepared initial data. It is also attractive for studying similar problems for the
unipolar non-isentropic and bipolar compressible Navier–Stokes–Poisson system.
These are expected to be done in the forthcoming papers.

The ideas and outlines of proving theorems 1.1, 1.2 and 1.3 are as follows. As a
first step, we will get the uniform-in-ε estimate in short time using a similar idea
as in [1, 3, 4]. Then applying the local existence of [24] and standard continuation
argument, we can show theorem 1.1. To get the uniform estimate, we need to
treat the singular terms with 1

ε . Note that the terms 1
εdiv u and 1

ε∇h̃ in (1.6) are
symmetric, the key ingredient of the uniform local estimate is the control of the
term 1

ε Ẽ in (1.6), which can be similarly estimated as in [3]. Then, after obtaining
the estimate of time derivatives with a similar argument as the one used in [3, 4],
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the zero-electron-mass limit for the well-prepared initial data on R
d(d � 1) can be

achieved by using Aubin’s lemma. We will prove theorem 1.2 in § 4.
For the proof of theorem 1.3, we still follow the approach of [17, 18, 36], which

was used in [3]. That is, we first consider the linearized Navier–Stokes–Poisson
equations, and next study the properties of the semigroup Lε(t) generated by the
linear operator. Then we can decompose the solution (ñ, u) = (0, u1) + (ñ, u2)
with u1 being the divergence free part. Finally, by further use of the properties
of Lε(t), it is possible to get estimates for ∂tu1, which help the discussion of the
convergence away from t = 0. Therefore, we can prove the limit for ill-prepared
initial data in § 5. It is worth noting that the eigenvalues of the linear compressible
Navier–Stokes–Poisson equations are different from that of the linear compressible
Euler equations in [17, 18, 36] and that of the linear compressible Euler–Poisson
equations in [3]. The solution of the linearized equation in [17, 18, 36] has an
algebra decay rate, and the solution of the linearized equation in [3] has an expo-
nential decay rate due to the damping. However, the dissipation mechanism for the
linear compressible Navier–Stokes–Poisson system is different here, which can be
seen from its eigenvalues

λ∗ = μ|ξ|2, (d− 1 multiple)

λ±=
μ+ ν

2
|ξ|2 ± i

2ε

√
4(1 + a|ξ|2) − (μ+ ν)2|ξ|4ε2,

this is somehow similar to that of heat equation, and the fundamental solution
contains some part like the heat kernel, and a big difficulty is the singularity of the
heat kernel at t = 0. Next, we have the characteristic decomposition of the solution
operator in the form (5.3), with each mode corresponding to an eigenvalue, and
then analyse carefully the uniform-in-ε estimates of each mode. See lemma 5.1 for
details. Due to the singularity of the heat kernel at t = 0 and good decay away from
t = 0, we need to have more precise local in time estimate of the solution operator
such that the result is integrable in time. Thus we need two sets of estimates: t < δ
and t � δ, for any given positive constant δ. Without loss of generality, we consider
δ = 1, that is, we derive the estimate (5.6) for t < 1, and, estimate (5.7) for t � 1.
The solution of the full linearized problem (5.1) can be represented by Duhamel’s
principle using the solution operator of the linear part, which essentially relies on the
time integrability of the estimate near t = 0. See also remark 5.2. Another difficulty
in the analysis is due to the complicated structure of the eigenvalues λ±. More
specifically, the term inside the square-root in λ±, F (|ξ|2) := 4(1 + a|ξ|2) − (μ+
ν)2|ξ|4ε2, is not monotone with respect to |ξ|2, unlike F̃ (|ξ|2) = 4(1 + a|ξ|2) − ε2

for the Euler–Poisson case which was strictly increasing, will bring difficulty to our
analysis. To deal with this problem, we properly decompose the solution operator
with respect to frequencies, say, the low, medium and high frequency parts, and
estimate each part respectively. See (5.13) and subsequent computations for details.

This paper is organized as follows. In the next section we state some useful lem-
mas which will be used later, then we give the uniform local estimate of the terms
involving the term 1

ε Ẽ. We will prove the uniform local existence of the compress-
ible Navier–Stokes–Poisson equation in § 3. Finally, the limit for the solutions of
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the compressible Navier–Stokes–Poisson equation with well- and ill-prepared initial
data will be considered in § 4 and § 5, respectively.

2. Preliminary

We make some preliminaries in this section, by first giving some useful lemmas
which will be used later, then showing the uniform local estimate of the term
involving the term 1

ε Ẽ. To begin with, we list the following classical differential
inequalities in Sobolev spaces [31].

Lemma 2.1. (i) Let f, g ∈ Hs(Rd) for s � d
2 + 1. Then, for all multi-indices α with

|α| � s, it holds that ∂α
x (fg) ∈ L2(Rd) and

‖∂α
x (fg)‖ � C‖f‖s‖g‖s.

(ii) Let f ∈ Hs(Rd) and g ∈ Hs−1(Rd) for s � d
2 + 2. Then for all multi-indices α

with |α| � s, it holds that the commutator [∂α
x , f ]g ∈ L2(Rd) and

‖[∂α
x , f ]g‖ � C‖∇f‖s−1‖g‖s−1.

(iii) Assume g(u) is a smooth function on G, u(x) is a continuous function with
u(x) ∈ G1, Ḡ1 ⊂⊂ G, and u(x) ∈ L∞ ∩Hs(Rd). Then for s � 1,

‖Dsg(u)‖ � C|∂g
∂u

|s−1,Ḡ1
‖u‖s−1

L∞ ‖Dsu‖.

Here | · |r,Ḡ1
is the Cr-norm on the set Ḡ1 and Cs is a generic constant depending

only on s.

Next, we recall the following Aubin’s lemma in [33, 34].

Lemma 2.2. Assume X ⊂ E ⊂ Y are Banach spaces and X ↪→↪→ Y . Then the
following imbeddings are compact:

(i)
{
ϕ : ϕ ∈ Lq(0, T ;X), ∂ϕ

∂t ∈ L1(0, T ;Y )
}
↪→↪→ Lq(0, T ;E), if 1 � q � ∞;

(ii)
{
ϕ : ϕ ∈ L∞(0, T ;X), ∂ϕ

∂t ∈ Lγ(0, T ;Y )
}
↪→↪→ C(0, T ;E), if 1 < γ � ∞.

To end this section, we give the following estimates of the terms involving the
term such as 1

ε Ẽ.

Lemma 2.3. Under the assumptions of theorem 1.1, let (h̃, u, Ẽ) be the solution of
the Cauchy problem for (1.7) with (1.5) in [0, T ∗] for some T ∗ > 0 (may depend
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on ε), and (3.1) hold. Then we have

∫
Rd

1
ε
Ẽ · u dx � − 1

2N
d
dt

∫
Rd

|Ẽ|2 dx+ c(M)(‖Ẽ‖2 + ‖u‖2) + c(M), (2.1)

and

1
ε

∫
Rd

Ẽt · ut dx � − 1
2N

d
dt

∫
Rd

|Ẽt|2 dx+ c(M)(‖Ẽt‖2 + ‖h̃t‖2 + ‖ut‖2). (2.2)

Furthermore, for any multi-index α with 1 � |α| � s, denote

hα = ∂αh̃, uα = ∂αu, Eα = ∂αẼ,

we also have

∫
Rd

1
ε
Eα · uα dx � −1

2
d
dt

∫
Rd

A(εh̃)
n′(h0 + εh̃)

|Eα|2 dx

+ c(M)(‖h‖2
s + ‖u‖2

s + ‖Ẽ‖2
s) + c(M).

(2.3)

The proof is similar to that in [3], thus is omitted here.

3. Uniform local existence

In this section, we mainly show uniform-in-ε local existence of smooth solution for
(1.2)–(1.3). That is, we prove theorem 1.1. Applying the local existence of [24]
and standard continuation argument, we only need the following uniform a priori
estimate.

Lemma 3.1 (Uniform-in-ε a priori estimates). Under the assumptions of
theorem 1.1, let (h̃, u, Ẽ) be the solution of the Cauchy problem for (1.7) with (1.5)
in [0, T ∗] for some T ∗ > 0 (may depend on ε), and

|‖h̃‖|s,T∗ + |‖u‖|s,T∗ � M (3.1)

for some positive constant M independent of ε. Then there exist ε0 = ε0(M) and
c(M) > 0 such that for all 0 < ε < ε0, it holds that

∣∣∣∣∣∣∣∣∣(h̃, u, Ẽ)
∣∣∣∣∣∣∣∣∣

s,T∗
+ ‖∇u‖L2([0,T∗];Hs(Rd)) � ec(M)T∗

(M0 + c(M)T ∗). (3.2)

Before the proof of lemma 3.1, we give some necessary preliminaries. First,
from (3.1) and Sobolev inequalities, it is easy to see that, there exists a constant
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C(M) > 0, such that, for |α| � 2,

sup
t∈[0,T∗]

‖∂α
x (h̃, u)‖L∞ � C(M) (3.3)

and

0 < C0(M) � A(εh̃), n(h0 + εh̃) � C1(M) (3.4)

for sufficiently small ε. Furthermore, since

∇A(εh̃) = εA′(εh̃)∇h̃, ∇n(h0 + εh̃) = εn′(h0 + εh̃)∇h̃,
we also have

sup
t∈[0,T∗]

‖∇A(εh̃)‖L∞ � εC(M), sup
t∈[0,T∗]

‖∇A(εh̃)‖L∞ � εC(M). (3.5)

Moreover, using (1.7)1, we have

∂tA(εh̃) = −A′(εh̃)
(
εu · ∇h̃+

1
A(εh̃)

div u
)

and

∂tA
−1(εh̃) =

A′(εh̃)
A2(εh̃)

(
εu · ∇h̃+

1
A(εh̃)

div u
)
,

which together with (3.3)–(3.4) imply

sup
t∈[0,T∗]

‖∂tA(εh̃)‖L∞ � C(M) and sup
t∈[0,T∗]

‖∂tA
−1(εh̃)‖L∞ � C(M). (3.6)

Proof. Multiply (1.7)1 and (1.7)2 by h̃ and u, respectively, take the summation and
integrate over R

d, then we have

1
2

d
dt

∫
Rd

(A(εh̃)|h̃|2 + |u|2) dx+
∫

Rd

1
n(h0 + εh̃)

(μ|∇u|2 + ν|div u|2) dx

=
1
2

∫
Rd

∂t(A(εh̃)h̃2 + ∇ · (A(εh̃)u)h̃2 + div u |u|2) dx

+
∫

Rd

n′(h0 + εh̃)ε
n2(h0 + εh̃)

(μ(∇h̃ · ∇)u · u+ ν(u · ∇h̃) div u) dx+
∫

Rd

1
ε
Ẽ · u dx

=: H1 +H2 +H3.
(3.7)

First, utilizing (3.3), (3.5) and (3.6), it is trivial that

H1 � C(M)(‖h̃‖2 + ‖u‖2). (3.8)

Next, by using Cauchy’s inequality and (3.3), we have

H2 � 1
2

∫
Rd

1
n(h0 + εh̃)

(μ|∇u|2 + ν|div u|2) dx+ c(M)‖u‖2. (3.9)
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Finally, from (2.1) in lemma 2.3, we have

H3 � − 1
2N

d
dt

∫
Rd

|Ẽ|2 dx+ c(M)(‖Ẽ‖2 + ‖u‖2) + c(M). (3.10)

Hence, putting the estimates (3.8)–(3.10) into (3.7), using (3.3) and (3.4), we get

d
dt

∫
Rd

(|h̃|2 + |u|2 + |Ẽ|2) dx+ ‖∇u‖2 + ‖div u‖2

� c(M)(‖h̃‖2 + ‖u‖2 + ‖Ẽ‖2) + C(M).
(3.11)

Next, we derive the estimates of derivatives of (h̃, u, Ẽ). Let α be a multi-index
with 1 � |α| � s, denote hα = Dαh̃, uα = Dαu, Eα = DαẼ, and define |D|α|u| :=
supα |Dαu|. Then applying the operator Dα to (1.7), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(εh̃)(∂t + u · ∇)hα +
1
ε
div uα = Fα,

(∂t + u · ∇)uα +
1
ε
∇hα =

1
n(h0 + εh̃)

(μΔuα + ν∇div uα)

+
∑

β<α,|α−β|=1

Dα−β

(
1

n(h0 + εh̃)

)
(μΔuβ + ν∇div uβ) +

1
ε
Eα +Gα,

(3.12)
where

Fα = A(εh̃)[u·, Dα]∇h̃+
1
ε
A(εh̃)[A−1(εh̃), Dα]div u,

Gα = [u·, Dα]∇u−
∑

β<α,|α−β|=1

[
Dβ ,Dα−β

(
1

n(h0 + εh̃)

)]
(μΔu+ ν∇div u).

In fact |β| = |α| − 1 here. Now multiply (3.12)1 and (3.12)2 by hα and uα, respec-
tively, and integrate the resultant equations over R

d, then the summation of the
two equations yields

1
2

d
dt

∫
Rd

(A(εh̃)|hα|2 + |uα|2) dx+
∫

Rd

1
n(h0 + εh̃)

(μ|∇uα|2 + ν|div uα|2) dx

=
1
2

∫
Rd

(
∂tA(εh̃)h2

α + ∇ · (A(εh̃)u)h2
α + div u |uα|2

)
dx

+
∫

Rd

n′(h0 + εh̃)ε
n2(h0 + εh̃)

(
μ(∇h̃ · ∇)uα · uα + ν(uα · ∇h̃) div uα

)
dx

+
∑

β<α,|α−β|=1

∫
Rd

Dα−β

(
1

n(h0 + εh̃)

)
(μΔuβ + ν∇div uβ) · uα dx

+
∫

Rd

1
ε
Eα · uα dx+

∫
Rd

Fα · hα dx+
∫

Rd

Gα · uα dx

=: I1 + I2 + I3 + I4 + I5 + I6.
(3.13)
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First, using (3.3) and (3.6), it is easy to find that

I1 � C(M)(‖h̃α‖2 + ‖uα‖2). (3.14)

Second, by using Cauchy’s inequality and (3.3), we have

I2 � 1
4

∫
Rd

1
n(h0 + εh̃)

(μ|∇uα|2 + ν|div uα|2) dx+ c(M)‖uα‖2. (3.15)

and similarly,

I3 � 1
4

∫
Rd

1
n(h0 + εh̃)

(μ|Δuβ |2 + ν|∇div uβ |2) dx+ c(M)‖uα‖2

� 1
4

∫
Rd

1
n(h0 + εh̃)

(μ|∇uα|2 + ν|div uα|2) dx+ c(M)‖uα‖2.

(3.16)

Next, from (2.3) in lemma 2.3, we have

I4 � −1
2

d
dt

∫
Rd

A(εh̃)
n′(h0 + εh̃)

|Eα|2 dx+ c(M)(‖h̃‖2
s + ‖u‖2

s + ‖Ẽ‖2
s) + c(M). (3.17)

Finally, from lemma 2.1 and (3.4), we have

‖Fα‖ � ‖A(εh̃)‖∞‖∇u‖s−1‖h̃‖s +
1
ε
‖A(εh̃)‖∞‖∇A−1(εh̃)‖s−1‖div u‖s

� C(M)(‖h̃‖2
s + ‖u‖2

s + 1),

and similarly, we have

‖Gα‖ � C(M)(‖h̃‖2
s + ‖u‖2

s + 1),

thus, by using Cauchy–Schwarz’s inequality, we obtain

I5 + I6 � C(M)(‖h̃‖2
s + ‖u‖2

s + 1), (3.18)

Putting the estimates (3.14)–(3.18) into (3.13), using again (3.3) and (3.4), we
readily have

d
dt

(‖hα‖2
s + ‖uα‖2

s + ‖Eα‖2
s) + ‖∇uα‖2

s + ‖div uα‖2
s

� C(M)(‖h̃‖2
s + ‖u‖2

s + ‖Ẽ‖2
s) + C(M),

(3.19)

Finally, taking summation (3.11) and (3.19) for 1 � α| � s, we have

d
dt

(‖h̃‖2
s + ‖u‖2

s + ‖Ẽ‖2
s) + ‖∇u‖2

s + ‖div u‖2
s

� C(M)(‖h̃‖2
s + ‖u‖2

s + ‖Ẽ‖2
s) + C(M),

(3.20)

which together with Gronwall’s inequality imply (3.2), this completes the proof of
lemma 3.1. �
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4. Limit for well-prepared initial data

In this section, we consider the zero-electron-mass limit of the isentropic compress-
ible Navier–Stokes–Poisson equation with well-prepared initial data, that is, we
shall prove theorem 1.2. Similar to that in [3, 4], we need the following uniform
estimates of the time derivatives.

Lemma 4.1. Under the assumptions of theorem 1.2 and lemma 3.1, there exists
ε1 ∈ (0, ε0) such that for all 0 < ε < ε1, it holds that

sup
t∈[0,T∗]

‖(h̃t, ut, Ẽt)‖2 +
∫ T∗

0

‖∇ut‖2 + ‖div ut‖2 � c(M,M0,M1, T
∗). (4.1)

Proof. Take time derivative to (1.7), we have
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(εh̃)(∂t + u · ∇)h̃t +
1
ε
div ut = Ft,

(∂t + u · ∇)ut +
1
ε
∇h̃t =

1
n(h0 + εh̃)

(μΔut + ν∇div ut) +
1
ε
Ẽt +Gt,

λ2Ẽt = K ∗ ñt,

(4.2)

where

Ft = A(εh̃)(u · ∇h̃t − ∂t(u · ∇h̃)) +
1
ε
(∇ · ut −A(εh̃)∂t(A−1(εh̃)∇ · u)),

Gt = −ut · ∇u+ εh̃t
n′(h0 + εh̃)
n2(h0 + εh̃)

(μΔu+ ν∇div u).

Multiply (4.2)1 and (4.2)2 by h̃t and ut, respectively, then integrate over R
d and

take the summation, we get

1
2

d
dt

∫
Rd

A(εh̃)|h̃t|2 + |ut|2 dx+
∫

Rd

1
n(h0 + εh̃)

(μ|∇ut|2 + ν|div ut|2) dx

=
1
2

∫
Rd

(
∂tA(εh̃)h̃2

t + ∇ · (A(εh̃)u)h̃2
t + div u |ut|2

)
dx

+
∫

Rd

n′(h0 + εh̃)ε
n2(h0 + εh̃)

(
μ(∇h̃ · ∇)ut · ut + ν(ut · ∇h̃) div ut

)
dx

+
∫

Rd

1
ε
Ẽt · ut dx+

∫
Rd

Ft h̃t + Gt · ut dx

=: J1 + J2 + J3 + J4.

(4.3)

Similar to (3.8) and (3.14), one has

J1 � C(M)(‖h̃t‖2 + ‖ut‖2). (4.4)
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Next, similar to (3.9) and (3.15), one has

J2 � 1
2

∫
Rd

1
n(h0 + εh̃)

(μ|∇ut|2 + ν|div ut|2) dx+ c(M)‖ut‖2. (4.5)

For J3, by using lemma 2.3, we have

J3 � − 1
2N

d
dt

∫
Rd

|Ẽt|2 dx+ c(M)(‖Ẽt‖2 + ‖h̃t‖2 + ‖ut‖2) + c(M). (4.6)

Finally, by using Cauchy inequality, (3.3) and (3.4), we have

J4 � c(M)(‖h̃t‖2 + ‖ut‖2). (4.7)

Now, put (4.4)–(4.7) into (4.3), and noting (3.4), we have

d
dt

(‖h̃t‖2 + ‖ut‖2 + ‖Ẽt‖2) + ‖∇ut‖2 + ‖div ut‖2

� C(M)(‖h̃t‖2 + ‖ut‖2 + ‖Ẽt‖2).
(4.8)

Moreover, from (1.7)1 and uε
I = u0

I + εu1
I with ∇ · u0

I = 0, we know

‖h̃t(·, 0)‖ � C(M0)(‖∇(hε
I − h0)‖ + ‖∇ · u1

I‖) � C(M0). (4.9)

Similarly, with the condition (1.10), we also have

‖ut(·, 0)‖, ‖Ẽt(·, 0)‖ � C(M0). (4.10)

Then, apply Gronwall’s inequality to (4.8), by noting (4.9)–(4.10), we readily have
(4.1). This completes the proof. �

Now we show the proof of theorem 1.2.

Proof of theorem 1.2. From (3.2) and (4.1), we have

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
hε − h0

ε
, uε,

Eε

ε

)∣∣∣∣
∣∣∣∣
∣∣∣∣
s,T0

� M,

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
hε

t

ε
, ut,

Eε

ε

)∣∣∣∣
∣∣∣∣
∣∣∣∣
0,T∗

� M,

thus, as ε→ 0,

(hε, Eε) → (h0, 0) strongly in L∞([0, T0];Hs(Rd)) ∩ C0,1([0, T0];L2(Rd)),

and further by lemma 2.2, there exist a subsequence, still denoted by uε, such that
as ε→ 0,

uε → u0, strongly in C0([0, T0];Hα(Rd)) for all α < s.
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It remains to show (1.11). In fact, it holds for all χ(t) ∈ C∞[0, T0] and ψ(x) ∈
C∞

0 (Rd; Rd) such that ∇ · ψ = 0,∫ T0

0

∫
Rd

(
(∂t + u · ∇)u− 1

n(h0 + εh̃)
(μΔu+ ν∇div u)

)
χψdxdt

=
∫ T0

0

∫
Rd

1
ε
(Ẽ −∇h̃)χψdxdt

=
∫ T0

0

∫
Rd

1
ε

(∇(−Δ)−1ñ−∇h̃)χψdxdt

=
∫ T0

0

∫
Rd

1
ε

(
(−Δ)−1ñ− h̃

)
χ∇ · ψdxdt = 0.

Then passing the limit as ε→ 0 in above equation to get∫ T0

0

∫
Rd

u0ψ∂tχdxdt

=
∫ T0

0

∫
Rd

(
(∂t + u0 · ∇)u0 − 1

N
(μΔu0 + ν∇div u0)

)
χψdxdt.

By the definition of weak time derivative of u0, we conclude that

∂tu
0 = −P

(
u0 · ∇u0 − 1

N
(μΔu0 + ν∇div u0)

)
.

where P is the standard projection on the set of divergence-free vector fields. Since
we already have

u0 ∈ C0([0, T0];C1(Rd)) ∩ L∞([0, T0];Hs(Rd)),

which implies that

u0 · ∇u0 − 1
N

(μΔu0 + ν∇div u0) ∈ C0([0, T0];C0(Rd)) ∩ L∞([0, T0];Hs−2(Rd)),

we infer

u0
t ∈ C0([0, T0] × (Rd)) ∩ L∞([0, T0];Hs−2(Rd)).

Thus, u0 ∈ C1([0, T0] × (Rd)) is a classical solution to

∇ · u0 = 0, P (∂t + u0 · ∇)u0 = P
μ

N
Δu0, u0(·, 0) = u0

I , for x ∈ R
d, t > 0,

The second equation and the regularity of ∂tu
0 + u0 · ∇u0 − (μ/N)Δu0 show that

there exists a function π ∈ L∞([0, T0];Hs(Rd)) such that

∇ · u0 = 0, ∂tu
0 + u0 · ∇u0 =

μ

N
Δu0 + ∇π.

Further, taking into account the equation satisfied by uε and

uε
t + uε · ∇uε − μ

N
Δuε ⇀ u0

t + u0 · ∇u0 − μ

N
Δu0 = ∇π
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weakly* in L∞([0, T ];L2(Rd)), we get

Eε −∇h(nε)
ε

⇀ ∇π weakly* in L∞([0, T0];L2(Rd)).

Finally, the uniqueness of smooth solutions to the incompressible Navier–Stokes
equation implies the convergence of the whole sequence. This completes the proof.

�

5. Limit for ill-prepared initial data

In this section, we study the zero-electron-mass limit of the initial value problem
(1.2)–(1.3) with ill-prepared initial data. To begin with, we rewrite (1.6) into the
following linearized form:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tñ+
N

ε
div u = Gε

1,

∂tu+ h′(N)
∇ñ
ε

− 1
ε
Ẽ − 1

N
(μΔu+ ν∇div u) = Gε

2,

λ2Ẽ = K ∗ ñ,

(5.1)

where⎧⎨
⎩
Gε

1 := −div(ñu),

Gε
2 := −u · ∇u+

h′(N) − h′(N + εñ)
ε

∇ñ+
(

1
N + εñ

− 1
N

)
(μΔu+ ν∇div u).

Further, we set N = 1 without loss of generality, and denote a = h′(N). Let us
consider the Cauchy problem of the linear part of (5.1):

Ut + LU = 0, U(x, 0) = UI(x), (5.2)

where the linear operator

L =
(

0 1
ε∇·

1
ε (a+ (−Δ)−1)∇ μΔ · Id + ν∇∇·

)
.

Let Lε(t) be the semigroup generated by L, then U(x, t) = Lε(t)UI(x) solves
Cauchy problem (5.2). We have

Lemma 5.1. Assume UI ∈ L1 ∩Hs. The solution of (5.2) can be decomposed as

U(x, t) = Lε(t)UI := Lε
∗(t)UI + Lε

+(t)UI + Lε
−(t)UI , (5.3)

in which (i)

Lε
∗(t)UI =

(
0

G ∗ PuI

)
for UI =

(
nI

uI

)
, (5.4)

where G(x, t) = (1/(4πμt))d/2 exp(−(|x|2/4μt)) is the heat kernel, P is the orthog-
onal projection of Hs onto the subspace {v ∈ Hs : ∇ · v = 0}, and

‖G ∗ PuI‖s � ‖uI‖s. (5.5)
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(ii) For t < 1 and θ ∈ (0, 1
d ),

|Lε
±(t)UI | �

[
ε

t
C

(
e−((μ+ν)/2)(t/ε)2θt

(
t

ε

)θ(d−1)

+
(
t

ε

)θd
)

+ e−((μ+ν)/2)(t/ε)2θt + e−(at/((μ+ν)ε2))

]
‖UI‖L1 .

(5.6)

(iii) For t � 1,

|Lε
±(t)UI | �

[
ε

t
C

(
e−(at/(2(μ+ν)ε2)) 1

εd−1
+

1
td/2

)
+ e−(at/(2(μ+ν)ε2))

]
‖UI‖L1 .

(5.7)
(iv) Furthermore, for any fixed τ > 0,

sup
t�τ

|Lε
±(t)UI | → 0 as ε→ 0. (5.8)

Remark 5.2. Note that (5.6), the local-in-time behaviour of the solution, is essen-
tial for the estimate of the full nonlinear system when we apply Duhamel’s principle,
since the singularity at t = 0 in (5.6) is integrable. The three terms on the right
hand side of (5.6) correspond to low, medium and high frequency part, respectively.
On the other hand, if the solution exist for longer time, the behaviour of the solution
is controlled by (5.7).

Proof. (i) Taking the Fourier transform of system (5.2), we get

Ût +B(ε, ξ)Û = 0, Û(0) = ÛI , (5.9)

where Û(t) = Û(ξ, t) = FU(ξ, t), B(ε, ξ) is defined as

B(ε, ξ) =

⎛
⎜⎝ 0

i

ε
ξT

i

ε
(a+

1
|ξ|2 )ξ μ|ξ|2Id + νξξT

⎞
⎟⎠ .

Further, the eigenvalues of the matrix B are computed from the determinant

det(B(ε, ξ) − λI) = (μ|ξ|2 − λ)d−1

(
λ2 − |ξ|2(μ+ ν)λ+

1 + a|ξ|2
ε2

)
= 0.

That is,

λ∗ = μ|ξ|2, d− 1(multiple)

λ± =
μ+ ν

2
|ξ|2 ± i

2ε

√
4(1 + a|ξ|2) − (μ+ ν)2|ξ|4ε2.

(5.10)

The corresponding eigenvectors of B are

ei(ξ) =
(

0
ẽi(ξ)

)
, i = 1, . . . , d− 1, e±(ξ) =

1
e(|ξ|)

(
θ±(|ξ|)
ξ/|ξ|

)
,
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where

ẽi(ξ) (i = 1, . . . , d− 1) is the orthonormal basis vector of {η ∈ Rd| η · ξ = 0},
θ±(|ξ|) =

i|ξ|
ελ±(|ξ|) ,

e(|ξ|) =
√

|θ±(|ξ|)|2 + 1 =

√
|ξ|2

1 + a|ξ|2 + 1 such that |e±(ξ)| = 1.

Then the solution of (5.9) can be represented by

Û(ξ, t) = e−B(ε,ξ)tÛI(ξ) =
∑

j

e−λjt(ej(ξ), ÛI(ξ))ej(ξ),

and the inverse Fourier transform

U(x, t) = Lε(t)UI = F−1(e−tB(ε,ξ)ÛI(ξ))

:= Lε
∗(t)UI + Lε

+(t)UI + Lε
−(t)UI

(5.11)

gives the solution to (5.2), where

Lε
∗(t)UI = F−1

⎛
⎝d−1∑

j=1

e−λ∗t(ej(ξ), ÛI(ξ))ej(ξ)

⎞
⎠ ,

Lε
±(t)UI = F−1

(
e−λ±t(e±(ξ), ÛI(ξ))e±(ξ)

)
.

(5.12)

Now let us estimate each part of the above decomposition. First, by definition,
we compute

Lε
∗(t)UI = F−1

⎛
⎝e−μ|ξ|2t

d−1∑
j=1

(ej(ξ), ÛI(ξ))ej(ξ)

⎞
⎠

= G ∗ F−1

⎛
⎝d−1∑

j=1

(ej(ξ), ÛI(ξ))ej(ξ)

⎞
⎠ ,

where G(x, t) = (1/4πμt)d/2 exp(−(|x|2/4μt)) is the heat kernel. Since ej(ξ) =
(0, ẽj(ξ)T )T , we get

Lε
∗(t)UI =

(
0

G ∗ PuI

)
for UI =

(
n0

uI

)
,

in which

PuI = F−1

⎛
⎝d−1∑

j=1

(ẽj(ξ), ûI(ξ))ẽj(ξ)

⎞
⎠ ,

that is, P is the orthogonal projection ofHs onto the subspace {v ∈ Hs : ∇ · v = 0}.
Furthermore, (5.5) is proved by using Hausdorff–Young inequality for convolution.
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Figure 1. Frequency decomposition.

Next, to estimate Lε
± for given ε, we recall that

λ±=
μ+ ν

2
|ξ|2 ± i

2ε

√
F (|ξ|2), F (|ξ|2) = 4(1 + a|ξ|2) − (μ+ ν)2|ξ|4ε2.

Due to the singularity of the heat kernel at t = 0 and good decay away from t = 0,
we need to have more precise local in time estimate of the solution operator such
that the result is integrable in time. Thus we need two sets of estimates: t < δ and
t � δ, for any given positive constant δ. Without loss of generality, we take δ = 1,
then derive the estimate for t < 1 and t � 1, respectively. (ii) For t < 1, let

A =
(
t

ε

)2θ

, θ ∈
(

0,
1
d

)
, B =

2a+ 2
√
a2 + (μ+ ν)2ε2

(μ+ ν)2ε2
,

the frequency is decomposed into three parts: |ξ|2 ∈ [0, A], [A, B], [B, ∞). Note
that t < 1, the above selection of A implies A < C := 2a/((μ+ ν)2ε2) for ε small,
thus F is strictly increasing in the low frequency part. See figure 1.

Then we have

Lε
±(t)UI = I±+J±+K±, (5.13)

where

I± :=
∫
|ξ|2�A

e−λ±teix·ξ(e±(ξ), ÛI(ξ))e±(ξ) dξ,

J± :=
∫

A�|ξ|2�B

e−λ±teix·ξ(e±(ξ), ÛI(ξ))e±(ξ) dξ,

K± :=
∫
|ξ|2�B

e−λ±teix·ξ(e±(ξ), ÛI(ξ))e±(ξ) dξ.
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In the following we will give the estimates of I±, J± and K±, respectively. First, it
is easy to compute

I±(x, t) =
∫
|ξ|2�A

e−((μ+ν)/2)|ξ|2te∓
it
2ε

√
F (r2)eix·ξ(e±(ξ), ÛI(ξ))e±(ξ) dξ

=
∫ √

A

0

e−((μ+ν)/2)r2te∓
it
2ε

√
F (r2) r

d−1

e2(r)

∫
Sd−1

∫
Rd

y

eir(x−y)·ω

· (θ±(r)h0(y) + ω · v0(y))
(
θ±(r)
ω

)
dydωdr :=

(
I1
±(x, t)
I2
±(x, t)

)
.

Setting

ζ(r) = e−((μ+ν)/2)r2t rd−1

e2(r)
(√

F (r2)
)′

= e−((μ+ν)/2)r2trd−2

√
4(1 + ar2) − (μ+ ν)2r4ε2

2a− ε2(μ+ ν)2r2
1 + ar2

1 + (1 + a)r2
,

α(r, x− y) =
∫

Sd−1
eir(x−y)·ωdω,

β(r, x− y) =
∫

Sd−1
ω eir(x−y)·ωdω,

g±,1(r, x) = ζ(r)

(
θ±(r)2

∫
Rd

y

α(r, x− y)h0(y)dy + θ±(r)
∫

Rd
y

β(r, x− y)v0(y)dy

)
,

g±,2(r, x) = ζ(r)

(
θ±(r)

∫
Rd

y

β(r, x− y)h0(y)dy + ωd−1

∫
Rd

y

α(r, x− y)v0(y)dy

)
,

then for k = 1, 2, we have

Ik
±(x, t) =

∫ √
A

0

e∓
it
2ε

√
F (r2)

(√
F (r2)

)′
g±,k(r, x)dr

= ∓2ε
it

(
e∓

it
2ε

√
F (r2)g±,k(r, x)

∣∣∣
√

A

0
−
∫ √

A

0

e∓
it
2ε

√
F (r2) ∂g±,k(r, x)

∂r
dr

)
.

Note g±,k(0, x) = 0, we have

Ik
±(x, t) = ∓2ε

it

(
e∓

it
2ε

√
F (A)g±,k(

√
A, x) −

∫ √
A

0

e∓
it
2ε

√
F (r2) ∂g±,k(r, x)

∂r
dr

)
,

thus

|Ik
±(x, t)| � 2ε

t

(
|g±,k(

√
A, x)| +

∫ √
A

0

∣∣∣∂g±,k(r, x)
∂r

∣∣∣dr
)
. (5.14)
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Recall A = ( t
ε )2θ. Direct computation shows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|ζ(
√
A)| � Ce−((μ+ν)/2)(t/ε)2θt

(
t

ε

)θ(d−1)

,

θ±(|ξ|) =
i|ξ|

ελ±(|ξ|) , |θ±(|ξ|)| =
|ξ|2

1 + a|ξ|2 � 1
a
,

|α(r, x− y)|, |β(r, x− y)| � Cr−l|x− y|−l for 0 � l � (d− 1)/2,

(5.15)

thus the first term in the right hand side of (5.14) can be controlled by

|g±,k(
√
A, x)| � Ce−((μ+ν)/2)(t/ε)2θt

(
t

ε

)θ(d−1)

‖UI‖L1 . (5.16)

Moreover, we compute

∂g±,1(r, x)
∂r

= ζ ′(r)

(
θ±(r)2

∫
Rd

y

α(r, x− y)h0(y)dy + θ±(r)
∫

Rd
y

β(r, x− y)v0(y)dy

)

+ ζ(r)θ′±(r)

(
2θ±(r)

∫
Rd

y

α(r, x− y)h0(y)dy +
∫

Rd
y

β(r, x− y)v0(y)dy

)

+ ζ(r)

(
θ±(r)2

∫
Rd

y

α′(r, x− y)h0(y)dy + θ±(r)
∫

Rd
y

β′(r, x− y)v0(y)dy

)
.

Recall that for d � 3, one has (see [3, P2756]),

|α′(r, x− y)|, |β′(r, x− y)| � C

r
,

and noting also that ζ(r) and ζ ′(r) will both have a factor e−((μ+ν)/2)r2t, after
tedious calculation, with the estimates in (5.15), we find∣∣∣∣∂g±,1(r, x)

∂r

∣∣∣∣ � Ce−((μ+ν)/2)r2trd−1‖UI‖L1 .

Similar estimate holds for g±,2(r, x). Thus for k = 1, 2,

∫ √
A

0

∣∣∣∂g±,k(r, x)
∂r

∣∣∣dr � C

∫ √
A

0

rd−1dr ‖UI‖L1 � C

(
t

ε

)θd

‖UI‖L1 . (5.17)

Plugging (5.16) and (5.17) into (5.14), we have

|Ik
±(x, t)| � ε

t
C

(
e−((μ+ν)/2)(t/ε)2θt

(
t

ε

)θ(d−1)

+
(
t

ε

)θd
)
‖UI‖L1 . (5.18)
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Next, since

J± =
∫

A�|ξ|2�B

e−((μ+ν)/2)|ξ|2te∓(i/2ε)
√

4(1+a|ξ|2)−(μ+ν)2|ξ|4ε2 t

× eix·ξ(e±(ξ), ÛI(ξ))e±(ξ) dξ,

we have

|J±| �
∫

A�|ξ|2�B

e−((μ+ν)/2)|ξ|2t|(e±(ξ), ÛI(ξ))e±(ξ)|dξ

� e−((μ+ν)/2)At‖UI‖L1 = e−((μ+ν)/2)(t/ε)2θt‖UI‖L1 .

(5.19)

Finally, noting that F is negative for |ξ|2 � B, then λ± are real numbers:

λ±=
μ+ ν

2
|ξ|2 ± 1

2

√
(μ+ ν)2|ξ|4 − 4(1 + a|ξ|2)

ε2
=
μ+ ν

2
|ξ|2(1 ±√

1 − δ),

where 0 < δ = ((4(1 + a|ξ|2))/((μ+ ν)2|ξ|4ε2)) � 1 in the case of high frequency.
Moreover, since δ ∈ (0, 1],

1 +
√

1 − δ � 1 >
1
2
δ, 1 −√

1 − δ � 1
2
δ,

then

λ±�μ+ ν

2
|ξ|2 · 1

2
δ =

1 + a|ξ|2
(μ+ ν)|ξ|2ε2 � a

(μ+ ν)ε2
. (5.20)

Hence we have

|K±| =

∣∣∣∣∣
∫
|ξ|2�B

e−λ±teix·ξ(e−(ξ), ÛI(ξ))e−(ξ) dξ

∣∣∣∣∣
� e−(a t/((μ+ν)ε2))

∫
|ξ|2�B

|(e+(ξ), ÛI(ξ))e+(ξ)|dξ

� e−(a t/((μ+ν)ε2))‖UI‖L1 .

(5.21)

Combine (5.18), (5.19), (5.21) and (5.13), we conclude (5.6). (iii) Next, we prove
(5.7) for the case t � 1. Indeed, we will use different frequency decomposition.
That is, taking Ã = C/2 = a/((μ+ ν)2ε2), the three parts of the frequency are
now |ξ|2 ∈ [0, Ã], [Ã, B], [B, ∞). The estimate (5.16) is modified to

|g±,k(
√
Ã, x)| � Ce−

at
2(μ+ν)ε2 1

εd−1
‖UI‖L1 ,

the estimate (5.17) is modified to

∫ √
Ã

0

∣∣∣∂g±,k(r, x)
∂r

∣∣∣dr � C

∫ √
Ã

0

e−((μ+ν)/2)r2trd−1dr‖UI‖L1 � C
1
td/2

‖UI‖L1 ,
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thus, instead of (5.18), we have

|Ik
±(x, t)| � ε

t
C

(
e−((μ+ν)/2)( t

ε )2θt

(
t

ε

)θ(d−1)

+
(
t

ε

)θd
)
‖UI‖L1 . (5.22)

Next, for the medium frequency part, the estimate (5.19) is modified to

|J±| �
∫

Ã�|ξ|2�B

e−((μ+ν)/2)|ξ|2t|(e±(ξ), ÛI(ξ))e±(ξ)|dξ.

� e−((μ+ν)/2)Ãt‖UI‖L1 = e−(at/(2(μ+ν)ε2))‖UI‖L1 .

(5.23)

The high frequency part estimate is unchanged. Combining (5.21)–(5.23), we have
the estimate (5.7) for t > 1. (iv) The estimate (5.8) is directly derived from
(5.5)–(5.7). The proof of the lemma is finished. �

Moreover, from Hölder’s inequality, lemma 2.1 and the uniform estimates in
theorem 1.1, we also have

Lemma 5.3. Under the assumptions of theorem 1.1, there exists a constant C > 0
independent of ε such that for any τ ∈ [0, T0], k = 1, 2,

‖Gε
k‖L1 + ‖Gε

k‖s−2 � C.

The proof of lemma 5.3 is same as that of lemma 7 in [3], and we can omit the
details here.

Now let us consider the zero-electron-mass limit of the initial value problem
(1.2)–(1.3) in the ill-prepared initial data case. First, by the Duhamel’s principle,
the solution of system (5.1) can be given as

Uε(t) :=
(
ñ(t)
u(t)

)
= Lε(t)UI +

∫ t

0

Lε(t− τ)Gε(τ)dτ, (5.24)

where Lε(t) is the solution operator studied in previous subsection, and

UI =
(
ñI

uI

)
, Gε(τ) =

(
Gε

1(τ)
Gε

2(τ)

)
.

Note the decomposition (5.3), we rewrite

Uε(t) = Uε
∗ (t) + Uε

+(t) + Uε
−(t), (5.25)

where

Uε
∗ (t) = Lε

∗(t)UI +
∫ t

0

Lε
∗(t− τ)Gε(τ)dτ,

Uε
±(t) = Lε

±(t)UI +
∫ t

0

Lε
±(t− τ)Gε(τ)dτ.

By the definition of Lε
∗(t) and (5.4)–(5.5), we have

Uε
∗ =
(

0
uε
∗

)
, uε

∗ = G ∗ PuI +
∫ t

0

G(t− τ) ∗ PGε
2(τ)dτ. (5.26)
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Note (5.5) and the heat kernel G is smooth, then, with use of lemma 5.1 and lemma
5.3, we have

Lemma 5.4. Under the assumptions of theorem 1.3, there exists a constant C
independent of ε such that

‖uε
∗‖s + ‖∂tu

ε
∗‖s−2 � C.

Proof. By the orthogonal projection, we firstly have

‖uε
∗‖s � ‖uε‖s � C

from the uniform estimate (1.9). Secondly, the solution uε
∗ defined in (5.26) satisfies{

∂tu
ε
∗ − Δuε

∗ = PGε
2,

uε
∗(0) = PuI ,

thus

‖∂tu
ε
∗‖s−2 � ‖Δuε

∗‖s−2 + ‖PGε
2‖ � C

by using (1.9), lemma 5.1 and lemma 5.3. The proof is completed. �

Lemma 5.5. Assume UI ∈ L1 ∩Hs. For any fixed s > 0, it holds that

sup
t�s

‖Uε
±(t)‖∞ → 0 as ε→ 0. (5.27)

Proof. Without loss of generality, we assume t > 1 and decompose the integral

Uε
±(t) = Lε

±(t)UI +
(∫ t−1

0

+
∫ t

t−1

)
Lε
±(t− τ)Gε(τ)dτ.

By using (5.8), we find

|Lε
±(t)UI | → 0 as ε→ 0. (5.28)

For τ ∈ [0, t− 1], that is, t− τ � 1, then using the estimate of Lε
± in (5.7) and

lemma 5.1, we compute∣∣∣∣∣
∫ t−1

0

Lε
±(t− τ)Gε(τ)dτ

∣∣∣∣∣
�
∫ t−1

0

[ ε

t− τ
C

(
e−((a(t−τ))/(2(μ+ν)ε2)) 1

εd−1
+

1
(t− τ)d/2

)

+ e−((a(t−τ))/(2(μ+ν)ε2))
]
‖Gε(τ)‖L1dτ

thus we have ∣∣∣∣∣
∫ t−1

0

Lε
±(t− τ)Gε(τ)dτ

∣∣∣∣∣→ 0 as ε→ 0. (5.29)
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Similarly, for τ ∈ (t− 1, t], that is, 0 � t− τ < 1, then use the estimate of Lε
± in

(5.6) and lemma 5.1, we compute∣∣∣∣∣
∫ t

t−1

Lε
±(t− τ)Gε(τ)dτ

∣∣∣∣∣
�
∫ t

t−1

[
ε

t− τ
C

(
e−((μ+ν)/2)((t−τ)/ε)2θ(t−τ)

(
t− τ

ε

)θ(d−1)

+
(
t− τ

ε

)θd
)

+ e−((μ+ν)/2)((t−τ)/ε)2θ(t−τ) + e−((a(t−τ))/((μ+ν)ε2))

]
‖Gε(τ)‖L1dτ,

thus ∣∣∣∣∣
∫ t

t−1

Lε
±(t− τ)Gε(τ)dτ

∣∣∣∣∣→ 0 as ε→ 0. (5.30)

Combining (5.28)–(5.30), we have (5.27). This completes the proof. �

Now we are ready to prove the zero-electron-mass limit of (1.2)–(1.3) for ill-
prepared initial data.

Proof of theorem 1.3. Let (nε, uε, Eε) be a classical solution defined in theorem
1.1 to (1.2)–(1.3) in [0, T0], with T0 > 0 independent of ε. From (1.9), we have

(nε, Eε) → (N, 0) strongly in L∞([0, T0];Hs(Rd)),
uε → u0

∗ weakly* in L∞([0, T0];Hs(Rd)).

Recall (5.24)–(5.25), we write

(ñε, uε)T = Uε = Uε
∗ + Uε

++Uε
−.

For the first part Uε
∗ = (0, uε

∗)
T , by lemma 5.4, there exists a subsequence of uε

∗ (still
denoted by itself), and u0

∗ ∈ C0([0, T0] × R
d) ∩ L∞([0, T0];Hs(Rd)), such that

uε
∗ → u0

∗ strongly in C0
loc([0, T0] × R

d).

Further use lemma 5.5, we have

(ñε, uε)T = Uε
∗ + Uε

++Uε
− → (0, u0

∗)
T strongly in C0

loc((0, T0] × R
d).

By the orthogonal decomposition of Uε, we have Puε
∗ = uε

∗. Passing to the limit as
ε→ 0 gives

Pu0
∗ = u0

∗, that is ∇ · u0
∗ = 0.

Next, recall the uniform estimates in theorem 1.1, we have the weak-∗ convergence
of (ñε, uε) in L∞([0, T0];Hs(Rd)), thus

Gε
2 → −u0

∗ · ∇u0
∗ weakly* in L∞([0, T0];Hs−1(Rd)).
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Now pass to the limit as ε→ 0 in (5.26), we get

u0
∗ = G ∗ PuI −

∫ t

0

G(t− τ) ∗ P [u0
∗ · ∇u0

∗(τ)]dτ,

thus u0
∗ satisfies the equation

∂tu
0
∗ − μΔu0

∗ = −P [u0
∗ · ∇u0

∗], u0
∗(x, 0) = Pu0

I ,

thus the proof of theorem 1.3 is complete. �
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