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A MODIFICATION OF THE RANDOM CUTTING MODEL

FABIAN BURGHART,∗ Uppsala University

Abstract

We propose a modification to the random destruction of graphs: given a finite network
with a distinguished set of sources and targets, remove (cut) vertices at random, dis-
carding components that do not contain a source node. We investigate the number of
cuts required until all targets are removed, and the size of the remaining graph. This
model interpolates between the random cutting model going back to Meir and Moon
(J. Austral. Math. Soc. 11, 1970) and site percolation. We prove several general results,
including that the size of the remaining graph is a tight family of random variables for
compatible sequences of expander-type graphs, and determine limiting distributions for
binary caterpillar trees and complete binary trees.
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1. Introduction

The behaviour of trees from which vertices are randomly removed was first investigated
by Meir and Moon in [23]. The process in question starts with a rooted tree, where at every
step a uniformly chosen vertex (or edge, but for the purposes of this paper we will focus on
vertex-removals) is deleted, and all remaining components that do not include the root vertex
are discarded. Since the process naturally stops once the root node has been cut (or isolated),
the question of interest is the random number of cuts needed to reach this state. In [23], the
expected value and the variance of this random variable for a random labelled tree is found.

Panholzer [25, 26] used generating functions to determine the asymptotic distribution of
the cutting number for non-crossing trees and for certain families of simply generated trees.
Janson [18] generalised these results, obtaining the asymptotic distribution for conditioned
Galton–Watson trees, by approximating the cutting number with a sum of independent random
variables (see also the alternative proof in [2]). Using a similar strategy, a limit law for complete
binary trees is proven in [17]. This work was later extended by Holmgren to binary search trees
[15] and split trees [16].

The random cutting model relates to both the record problem (as was observed in [18]) and
to fragmentation processes, where the genealogy of the procedure gives rise to the so-called
cut tree, which has become both a useful tool in obtaining results on the cutting number and
an object of independent interest. See e.g. [4], [8], or [5].
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In recent years, modifications of the original cutting model have been discussed: Kuba and
Panholzer regarded the case of isolating a leaf, a general node, or multiple nodes simultane-
ously (instead of isolating the root) in [19–21], and Cai et al. proposed and investigated the
k-cut model, where a node is only removed after it has been cut for the kth time, in [6, 9, 10].

In this paper we introduce a different modification of the cutting model, where, in addition
to one or several root vertices (which we will call sources), a second set of vertices (targets)
is given. This allows for defining a stopping time for the cutting procedure on the graph by
looking at the first moment when all of the targets have been removed (i.e. the sources have
been separated from the targets). We can then ask several natural questions, about the number
of cuts necessary to separate the two sets, about which vertex was the last to be removed, and
about the size of the remaining graph. The aim of the paper is to investigate how separation
interpolates between the cutting model and site percolation, how these questions relate to each
other, and what general properties hold for this modification of the cutting model. We also give
some examples.

Plan of the paper

In Section 2, we will fix some notation, define our model in both continuous- and discrete-
time settings, and present a first example.

Section 3 will contain several basic estimates, and we will formalise the imprecise notion
that separation interpolates between the cutting model and site percolation (Propositions 3
and 4). Since the latter is commonly defined on a locally finite infinite graph, this requires the
right definition (Definition 2) that enables us to approximate such a graph by finite graphs, all
while respecting the choice of sources and targets.

Section 4 begins by determining the probability that a fixed subgraph occurs at some point
in the cutting procedure, which is then used to obtain the probability that this subgraph is the
remaining part at separation. This leads to Theorem 1, which could be regarded as the main
result of the paper; it gives sufficient conditions for the size of the graph at separation to be a
tight sequence of random variables when the graph approximates a locally finite infinite graph
in the sense of Definition 2.

In Section 5, our scope will be limited to rooted trees, since their recursive nature can be
used to simplify many of the arguments and calculations. Here, we will investigate a relevant
polynomial that already came up (in a slightly different form) in the works of Devroye et al.
[11, 12].

Section 6 will contain three examples of rooted trees: binary caterpillars, star-shaped graphs,
and complete binary trees. These examples are selected to illustrate the techniques of the earlier
sections (and the limitations thereof). Finally, in Section 7 we will give a brief compilation of
further research questions.

2. Cutting procedures

Some notation

We will always use G = (V(G), E(G)) to denote a graph, consisting of its vertex and edge
set, but will shorten the notation to V = V(G) and E = E(G) if there is no ambiguity from the
context. If the graph in question is a tree, we prefer the symbol T over G. Further notation
for special graphs will be introduced as required. Since most subgraphs we will consider are
induced and therefore uniquely determined by their vertex set, we will not distinguish between
an induced subgraph and its vertex (sub-)set.
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If two vertices v, w are neighbours, we also use the notation v ∼ w. More generally, we
write dist (v, w) for the graph distance between vertices v, w. In the case where A, B ⊆ V(G)
are subsets, dist (A, B) is to be understood as min{dist (v, w):v ∈ A, w ∈ B}.

Given any set A ⊆ V(G) and a fixed set S of source nodes, we define the closure of A to be

closS (A) := A ∪ S ∪ {v ∈ V(G) : v ∼ w for some w ∈ A}.
The (exterior) boundary of A is defined as ∂SA := closS (A) \ A. In other words, the vertices in
∂SA are precisely the vertices not in A that are in S or neighbour some vertex in A. Note that
this implies e.g. ∂S∅ := S. (Attributing this special role to S in this definition turns out to be
useful throughout the paper).

We use the symbols � and B to denote the gamma and beta functions, respectively, and will
make use of the identities

B (x, y) :=
∫ 1

0
ux−1(1 − u)y−1 du = �(x)�(y)

�(x + y)

and

B (n + 1, m + 1) = 1

n + m + 1

(
n + m

n

)−1

= 1

n + 1

(
n + m + 1

n + 1

)−1

for x, y > 0 and n, m ∈N (where, in the last expression, the roles of n and m can be reversed
thanks to the symmetry of the beta function); cf. [1, Chapter 6].

Cutting and separation

Consider a finite simple connected graph G = (V, E) with a distinguished subset S ⊆ V
whose vertices are referred to as sources. Now, proceed as follows:

1. Choose a vertex v ∈ V uniformly at random, and remove it—together with all edges
incident to v—from the graph. This will potentially split the graph into connected
components, in which case we keep only the components containing sources.

2. Iterate Step 1, where the randomness in choosing the node is assumed to be independent
from everything that happened previously.

3. The process terminates once the graph contains no more vertices. Equivalently, this
happens as soon as the last source node has been removed.

This defines a finite random sequence of induced subgraphs

G =: G0 � G1 � . . .� Gr−1 � Gr = ∅, (1)

where, with a slight abuse of notation, we denote the empty subgraph consisting of no vertices
by ∅. Observe that therefore we can view the cutting procedure as a discrete-time stochastic
process on the state space consisting of subgraphs of G, and as such it is in fact a Markov
chain. We will denote this process by Cut(G).

Instead of describing the cutting procedure by the sequence of graphs we obtain, as in (1),
we can equivalently keep track of the removed vertices, v1, . . . , vr. We will use both styles of
bookkeeping interchangeably, depending on which one is more suitable for the task at hand.
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290 F. BURGHART

FIGURE 1. A graph G, with source nodes in black and target nodes in white. The number i at a vertex
indicates that this vertex was chosen by the ith cut. Note that cuts 2 and 3 each remove an additional
vertex. In this example, S(G) = 5, C(G) = 6, and GS is a path on three vertices, beginning with the
source labelled 6.

Introducing a second set of distinguished vertices, T , whose vertices we refer to as targets,
we can now consider the following functionals of the cutting process (see Figure 1 for an
example):

• The cutting number C(G). This is merely the number of cuts until the last source node is
cut, or equivalently, until the remaining graph is empty; i.e. C(G) = inf{i ≥ 0 : Gi = ∅}.
Note that this does not rely on T .

• The separation number S(G), defined to be the number of cuts until the remaining graph
contains no more target nodes (independently of how many sources are still present). In
other words, S(G) = inf{i ≥ 0:V(Gi) ∩ T = ∅}. We say that at this time, separation (of S
and T) occurs.

• The separation subgraph GS := GS(G), defined to be the random subgraph of G at
separation.

• The separation node vS, denoting the last node that was removed before separation
occurred.

The continuous-time model

As has previously been observed by [18] and since been brought to effective use, the above
cutting model is equivalent to a model where each node is equipped with a random alarm
clock whose alarm triggers after time Xv, v ∈ V . Whenever an alarm rings, if the corresponding
node is still in the graph at that time, then that node will be removed, together with any new
components that do not contain source nodes. Here, to ensure equivalence to the discrete-time
cutting model above, we assume that (Xv)v∈V is an independent and identically distributed
(i.i.d.) family of Exp(1)-distributed random variables—while any i.i.d. family of continuous
random variables would suffice, the memoryless property will be useful later.

This once again yields a monotone stochastic process of subgraphs of G, but now
parametrised by continuous time, (Gc

t )t∈[0,∞). We will denote this process by Cutc(G).
However, Gt will only attain finitely many different graphs, and we will still denote those
graphs by G0, G1, G2, . . . in order of occurrence, as before. Hence, we can denote by Gt− the
graph that was attained by Cutc(G) immediately before time t—so Gt− = Gt if and only if no
cut happened at time t.
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Note that there are two ways of generalising the random variables C and S to the
continuous-time setting: by default, C and S respectively denote the quantities

C= inf{i ∈N : Gi = ∅} and S= inf{i ∈N : V(Gi) ∩ T = ∅},
exactly as before, while Cc and Sc denote

Cc = inf{t ≥ 0 : Gt = ∅} and Sc = inf{t ≥ 0 : V(Gt) ∩ T = ∅},
respectively.

A first example

Denote by Pn for n ≥ 0 a path on 2n + 1 vertices. Let the middle vertex be the unique source
of Pn, and let T be the two leaves.

Proposition 1. Let X ∼ Poi( ln 2), and let P be the distribution of 1 + X conditioned on X being

at least 1. Then S[Pn]
D−→ P. In other words,

P[S[Pn] ≤ k] → P[X ≤ k − 1|X ≥ 1] =
k−1∑
j=1

( ln 2)j

j!

for all k ≥ 0.

Proof. Embed Pn, n ≥ 1, in [0,1] by mapping the 2n + 1 vertices to equidistant points pn,i =
i

2n for i = 0, 1, . . . , 2n such that neighbouring vertices have a distance of exactly 1
2n . Note that

independently of n, the root vertex will always be at 1/2 and the leaves at 0 and 1.
Given that a cut is chosen uniformly among the discrete vertices of the component con-

taining the source, the limit of the cut position as n tends to infinity will be uniformly drawn
from an interval containing 1/2 under the above embedding, which follows from Theorem 7.8
in [7]. Thus, in the limit, we can investigate a space-continuous cutting model: we begin with
the interval [0,1], then choose a point from the interval uniformly at random, and consider the
component containing 1/2. Now we repeat this procedure, where the randomness in every step
is only dependent on the current interval. In analogy to the discrete cutting number, we can
define S[0, 1] to be the time of the first cut where the remaining interval is of the form (a, b)

with 0 < a < b < 1. By this construction, we have S[Pn]
D−→S[0, 1].

In this continuous setting, S[0, 1] = k for k ≥ 2 means that the first k − 1 cuts all happened
on the same side of 1/2, i.e. in (1/2, 1] or in [0, 1/2), and the kth cut took place on the other
side. Since the entire setup is symmetric with respect to 1/2, assume without loss of generality
that the first cut happens inside [1/2, 1]. The probability for {S[0, 1] = k} to happen is thus
expressed by the following iterated integral, where c1, c2, . . . denote the first cut, the second
cut, etc.:

P[S[0, 1] = k] = 2
∫ 1

1/2

∫ c1

1/2
· · ·

∫ ck−2

1/2

1/2

ck−1
· dck−1

ck−2
· · · dc2

c1
dc1. (2)

Here, the innermost integrand 1/(2ck−1) is the probability of ck falling into the interval [0, 1/2]
given that the last cut was ck−1, or equivalently, given that the interval for ck to choose from
was [0, ck−1). The nested integrals in (2) then arise from repeatedly applying the law of total

probability and can be evaluated iteratively to yield ln (2)k−1

(k−1)! , as required. �
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This result is in stark contrast with C(Pn), for which it is known that

C(Pn) − 2 ln n√
2 ln n

D−→ N(0, 1)

as n → ∞ (cf. e.g. [18, Example 8.1] and references therein).

3. Monotonicity, cutting, and site percolation

The purpose of this section is to state and prove some basic properties concerning the
behaviour of the separation time when changes are made to the underlying graph or the
selection of source/target nodes. For this purpose, we will write S(G; S, T) instead of S(G)
whenever there is potential ambiguity over the choice of source and target nodes. The following
definition will prove useful.

Definition 1. Let G = (V, E) be a finite graph, and let S, T ⊆ V be distinguished sets of sources
and targets. A vertex v ∈ V is called essential if G contains a path sv1 . . . vkt containing v, such
that s and t are the unique vertices on this path that are contained in S and T , respectively. Call
a vertex non-essential if no such path exists.

Observe that it is possible both for source and target nodes to be non-essential—this is the
case precisely if every relevant path passes through another source or target node.

If two graphs G, G′ on a common vertex set with respective source and target vertices
S, T, S′, T ′ ⊆ V are given, and if they are such that any sequence of removed vertices v1, . . . , vr

that separates S from T in G also separates S′ from T ′ in G′, then S(G′; S′, T ′) ≤S(G; S, T)
and Sc(G′; S′, T ′) ≤Sc(G; S, T) by using the same randomness for the cutting model on G′ as
on G. This argument proves each claim in the next proposition.

Proposition 2. Let G = (V, E) be a finite connected graph, and let S, T ⊆ V be the sets of
source and target nodes, respectively. The following are true:

1. If G′ is a subgraph of G endowed with source and target nodes inherited from G, then
S(G′) ≤S(G).

2. If S and T are replaced by subsets S′ ⊆ S and T ′ ⊆ T respectively, then S(G; S′, T ′) ≤
S(G; S, T).

3. If T is replaced by a set T′ of essential vertices such that every path from S to T intersects
T′, then S(G; S, T) ≤S(G; S, T ′).

4. If S is replaced by a set S′ of essential vertices such that every path from S to T intersects
S′, then S(G; S, T) ≤S(G; S′, T).

All four claims remain correct if S is replaced by its continuous-time counterpart Sc.

Remark 1. It follows from (i) in Proposition 2 that one has the following chain of inequalities
for any connected graph G = (V, E) with S, T ⊆ V:

S(T ) ≤S(G) ≤S(KV ), (3)

where T is a spanning tree of G and KV is the complete graph on the vertex set V . Observe that
for some graphs, both the upper and lower estimates may hold with equality. Indeed, assume
KV has a single source denoted as s, and set T to be the spanning tree of KV that is a star graph
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centred on s. Running the cutting procedure on either KV or T will amount to removing one
vertex at a time until the last source vertex is removed, thus showing equality.

It should also be noted that the continuous-time separation time is much more stable under
changes to G, as demonstrated by the following lemma.

Lemma 1. Let G = (V, E) and S, T ⊆ V as above. Denote by G′ the graph obtained by
removing all non-essential vertices from G. Then Sc[G] =Sc[G′] deterministically.

Proof. Denote by G = G0, G1, G2, . . . and G′ = G′
0, G′

1, G′
2, . . . the continuous-time cut-

ting procedures on G and G′, respectively. As V(G′) ⊆ V(G), we can use the same randomness
for Xv in both graphs when v ∈ V(G′). Hence we certainly have Sc[G] ≥Sc[G′]. Now assume
that at time t ≥Sc[G′], there still is a path sv1 . . . vkt connecting S and T in Gt (thus necessar-
ily using non-essential nodes). This path must contain vertices vi, vj with i ≤ j such that vi ∈ S,
vj ∈ T , and none of the vertices on the path between vi and vj are in either S or T . However, by
definition all vertices vi, vi+1, . . . , vj are essential and thus in G′, contradicting the assumption
that separation in G′ has already occurred. �

The following proposition asserts that the additional freedom of choosing target nodes for
the separation number can be used to obtain the original cutting number. In other words, S(G)
can be understood as a generalisation of C(G).

Proposition 3. Let G = (V, E) be a finite connected graph, and let S, T ⊆ V be the sets of
source and target nodes, respectively. Then we have S(G) ≤ C(G) deterministically, with
equality if S ⊆ T. Conversely, if S(G) = C(G) in distribution, then S ⊆ T. Moreover, all of these
statements also hold true for Sc(G) and Cc(G) in the continuous-time model.

Proof. At time C(G), the remaining graph is empty, so separation must have occurred
already. Thus S(G) ≤ C(G).

If S ⊆ T , then separation will occur as soon as the last source node has been removed,
at which time the remaining graph will be empty. Thus S(G) = C(G). Conversely, if there
exists v ∈ S \ T , then GS contains v with some positive probability p0. If this happens, S(G) ≤
C(G) − 1, so E[C(G)] −E[S(G)] ≥ p0, and equality in distribution cannot hold.

For the continuous-time model, only the last argument requires modification: once again, if
v ∈ S \ T , then GS contains v with probability p0 > 0. In this case, Sc(G) < Xv ≤ Cc(G), and
we have

E[Cc(G)] −E[Sc(G)] ≥ p0E[Xv −Sc(G) | v ∈ V(GS)] = p0

since Xv ∼ Exp(1) is memoryless. �

Separation and site percolation

In this section, we show that in a certain sense, the continuous-time separation model on an
infinite graph G with infinite distance dist (S, T) contains the site percolation model on G.

More precisely, recall that for Bernoulli site percolation in an infinite graph G, every node
is independently kept with some probability p ∈ [0, 1] and otherwise rejected, thus giving a
random subgraph of G. We denote by percS (p) the probability that the Ber(p)-site percolation
on G exhibits an infinite cluster containing at least one vertex of S.

Definition 2. Let G be a locally finite infinite connected graph containing two subsets S, T ⊆
V(G). We say that the sequence (G(n))n≥1 of finite induced subgraphs of G exhausts G if the
following conditions are satisfied:
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1. The G(n) are connected subgraphs satisfying

G(1) ⊆ G(2) ⊆ . . . ⊆ G and
⋃
n≥1

V
(

G(n)
)

= V(G).

2. The set S is entirely contained in G(n) for all n (and understood to be the set of
source nodes of G(n)), and each subgraph G(n) is endowed with the target set T (n) :=(
T ∩ V

(
G(n)

))∪ ∂∅
(
G \ G(n)

)
.

Observe that the set of target nodes T (n) is indeed a subset of V
(
G(n)

)
and will be non-empty

even if T = ∅. Moreover, Condition 2 necessitates that S is finite.

Proposition 4. Let G be a locally finite infinite graph with a finite set of source nodes, S, and
let T = ∅. Assume that (G(n))n≥1 exhausts G.

Then
lim

n→∞ P
[
Sc

(
G(n))≥ x

]
= percS

(
e−x). (4)

Proof. Note first that if T = ∅, then (in the notation of Definition 2) dist
(
S, T (n)

)→ ∞ as
n → ∞. Indeed, there would otherwise be a bound C ∈N with dist

(
S, T (n)

)
< C. Consider the

neighbourhood BC(S) := {v ∈ V(G): dist (v, S) ≤ C} of S. Since BC(S) is finite, it will eventu-
ally be contained in all G(n), contradicting the notion that T (n) = ∂∅

(
G \ G(n)

)
contains vertices

in BC−1(S).
Recall next that independently removing each vertex v of G at a random time Xv ∼ Exp(1)

gives rise to the monotonous coupling of Bernoulli site percolation for all parameters p ∈ [0, 1]
(cf. [22, p. 138]). Indeed, at time x ∈ [0, ∞], the graph we observe in this way is a sample of
Ber

(
e−x

)
-site percolation on G. We can couple the process thus obtained to the continuous-

time cutting model by restricting our attention to the intersection of G(n) with those percolation
clusters that intersect S.

To show ≥ in (4), assume that Ber
(
e−x

)
-site percolation exhibits an infinite cluster which

intersects S; such a cluster necessarily intersects T (n) as well and hence, for each n, contains
a path connecting S with T (n). By the coupling indicated above, this path must then also be
present in the sample of the continuous-time cutting model on G(n) at time x. Therefore,
percS

(
e−x

)≤ P
[
Sc

(
G(n)

)≥ x
]
, and letting n tend to ∞ yields lim infn→∞ P

[
Sc

(
G(n)

)≥ x
]≥

percS

(
e−x

)
.

For the other inequality, suppose now that Ber
(
e−x

)
-site percolation does not exhibit an infi-

nite cluster intersecting S, so that the total mass of clusters intersecting S is bounded by some
finite integer, say k. By the second assumption, we have dist (S, T (n)) > k for all but finitely
many n. However, this implies that eventually, the clusters intersecting S cannot intersect T(n),
which, for the coupled cutting procedure, means that separation in G(n) must have occurred
before time x. So

P
[|V(Clusters intersecting S)| ≤ k

]≤ P
[
Sc

(
G(n))< x

]
.

Taking the limit superior for n → ∞ yields

lim sup
n→∞

P
[
Sc

(
G(n))≥ x

]
≤ 1 − P

[|V(Clusters intersecting S)| ≤ k
]
,

which implies the existence of the limit and ≤ in (4) after passing to the limit for k → ∞ as
well. �
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4. Visiting probability of subgraphs and size of the separation graph

Consider a finite simple connected graph G with S, T ⊆ V as usual. The aim of this section is
to determine the probability that at some time i ≥ 1, the cutting procedure Cut(G) will produce
a specific subgraph G∗.

Lemma 2. Fix an induced subgraph G∗ of G with every component of G∗ containing at least
one source node. Then, for all times t ≥ 0 in the continuous-time cutting model, we have

P [Gt ⊇ G∗] = e−|G∗|t (5)

and

P [Gt = G∗] = e−|G∗|t (1 − e−t)|∂SG∗| . (6)

Moreover, consider v∗ ∈ ∂SG∗. Then

P
[
GXv∗ = G∗ | Xv∗

]= e−|G∗|Xv∗
(
1 − e−Xv∗

)|∂SG∗|−1
. (7)

Proof. The random subgraph Gt contains G∗ if and only if at time t, none of the clocks Xv

for v ∈ V(G∗) have rung yet and every component is still attached to a source node. Hence, as
the Xv are independent Exp(1)-distributed random variables, we obtain

P [Gt ⊇ G∗] =
∏

v∈V(G∗)

P[Xv ≥ t] = e−|G∗|t.

Similarly, Gt = G∗ if and only if at time t, none of the clocks for v ∈ V(G∗), but all of the
clocks for v ∈ ∂SG∗ (this includes the nodes in S which are not in G∗, by the definition of ∂S in
Section 2), have rung, which yields (6).

For the final claim, note that at time Xv∗ , all nodes in G∗ must still be intact, whereas all
nodes in ∂SG∗ \ {v∗} must already have been cut. Now proceed as in the case for a deterministic
time. �

Of course, Equations (5) and (6) in the previous proposition are equivalent. One can eas-
ily obtain (5) from (6) by summing over all graphs that contain G∗. For the other direction,
applying the inclusion–exclusion principle suffices.

Corollary 1. Fix an induced subgraph G∗ of G with every component of G∗ containing at least
one source node. Let v∗ ∈ ∂SG∗. Denote the ith graph obtained in the cutting process by Gi and
the ith cut node by vi. Then

P [∃i ≥ 1 : Gi = G∗ and vi = v∗] = 1

|∂SG∗|
(|G∗| + |∂SG∗|

|∂SG∗|
)−1

(8)

and therefore

P [∃i ≥ 1 : Gi = G∗] =
(|G∗| + |∂SG∗|

|∂SG∗|
)−1

. (9)
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Proof. We prove the result by considering the continuous-time model instead. There, the
event B(v∗) := {∃i ≥ 1 : Gi = G∗ and vi = v∗} translates to the event {GXv∗ = G∗}. Hence, we
obtain the first result from integrating over Xv∗ ∼ Exp(1) in (7) by substituting e−x = u:

P[B(v∗)] =
∫ ∞

0

(
e−x)|G∗| (1 − e−x)|∂SG∗|−1 · e−x dx

=
∫ 1

0
u|G∗| (1 − u)|∂SG∗|−1 du

= B (|G∗| + 1, |∂SG∗|)

= 1

|∂SG∗|
(|G∗| + |∂SG∗|

|∂SG∗|
)−1

,

as required. Finally, the observation that

{∃i ≥ 1 : Gi = G∗} =
⊎

v∗∈∂G∗
B(v∗),

where the right-hand side denotes the disjoint union over the events B(v∗), lets us obtain (9)
from (8). �
Definition 3. Let G be a finite connected graph equipped with sources S and targets T �= ∅. An
induced subgraph G∗ is called admissible if the probability P[GS = G∗] is positive. We denote
by Am(G) the set of all admissible subgraphs G∗ of G of size |V(G∗)| = m.

Lemma 3. Assume T �= ∅. An induced subgraph G∗ ⊆ G is admissible if and only if G∗
contains no target nodes and every component of G∗ contains at least one source node.

Proof. That the stated conditions for G∗ are necessary for G∗ to be admissible is evident
from the definitions of the cutting procedure and the separation time. To show that they are
also sufficient, label the vertices in ∂SG∗ by v1, . . . , vr in such a way that after the removal
of v1, . . . , vr−1 from G, the remaining graph still contains a path connecting S and T (such
a boundary vertex exists since there must be at least one such path in G, and it cannot be
contained entirely in G∗ by assumption). Then one way of realising the event {GS = G∗} is by
removing the vertices v1, . . . , vr in this order. Hence, assuming |V(G)| = n, we have

P[GS = G∗] ≥
r∏

i=1

1

n + 1 − i
> 0,

thus concluding the proof. �
Using similar methods as in the proofs of Lemma 2 and Corollary 1, we can establish the

following connection between the graph GS at separation and the continuous-time separation
number Sc.

Proposition 5. Let G∗ be an admissible subgraph of G. Then

P[GS = G∗] =
∑

v∗∈∂SG∗

∫ 1

0
u|G∗|−1(1 − u)|∂SG∗|−1P [Sc(H[v∗]) ≥ − ln u] du, (10)
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where H[v∗] denotes the graph obtained from G in the following way: remove all vertices in
G∗ and in ∂SG∗ \ {v∗} from G, and from what remains, let H[v∗] be the connected component
containing v∗. We endow H[v∗] with source node v∗ and target nodes T ∩ V(H[v∗]).

Proof. Fix a vertex v∗ ∈ ∂SG∗, and assume that this is the last node to be removed for
separation to occur. We observe first that by definition of the separation number, any graphs
obtained by Cut(G) before separation must have contained a path from v∗ to T . In particular,
the last graph before separation occurred contained such a path, which additionally did not
pass through any other nodes in G∗ or ∂SG∗ and must have therefore been contained in H[v∗].
The existence of such a path means, however, that the graph H[v∗] is not yet separated. Thus,
by transitioning from the discrete- to the continuous-time model, we obtain

P[GS = G∗, vS = v∗ | Xv∗]

= P
[
GXv∗ = G∗ and v∗ connects to T in GX−

v∗ | Xv∗
]

= P
[
GXv∗ = G∗ | Xv∗

]
P
[
Sc(H[v∗]) ≥ Xv∗ | Xv∗

]
, (11)

where conditional independence holds true because

{GXv∗ = G∗} and {Sc(H[v∗]) ≥ Xv∗}
are events on vertex sets which only share v∗. Conditioned on Xv∗ being x, the event
{Sc(H[v∗]) ≥ Xv∗} amounts to the existence of a path from v∗ to the set of target nodes in
H[v∗], none of whose clocks have rung yet at time Xv∗ . On the other hand, without the condi-
tioning, the same event is equivalent to the existence of a path from a neighbour of v∗ to the
set of target nodes in H[v∗]. Hence,

P
[
Sc(H[v∗]) ≥ Xv∗ | Xv∗ = x

]= P [Sc(H[v∗]) ≥ x]

e−x
.

In light of (7) from Lemma 2, we can now rewrite Equation (11) as

P[GS = G∗, vS = v∗ | Xv∗ = x]

= e−|G∗|x (1 − e−x)|∂SG∗|−1 P [Sc(H[v∗]) ≥ x]

e−x
. (12)

Finally, observe that, with μX denoting the distribution of Xv∗ ,

P[GS = G∗] =
∑

v∗∈∂SG∗

∫ ∞

0
P[GS = G∗, vS = v∗ | Xv∗ = x] dμX(x),

so that, after plugging in the expression from (12) and using Xv∗ ∼ Exp(1), we obtain

P[GS = G∗]

=
∑

v∗∈∂SG∗

∫ ∞

0

(
e−x)|G∗| (1 − e−x)|∂SG∗|−1 P [Sc(H[v∗]) ≥ x]

e−x
· e−x dx,

which only differs from (10) by the substitution e−x = u. �
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Remark 2. The (unconditioned) probability P[Sc(H[v∗]) ≥ Xv∗ ] has a number of equivalent
versions. Indeed, if we consider any G with S = {v∗} and arbitrary T , then we have the
following equalities:

P[Sc(G) ≥ Xv∗ ] = P[Sc(G) ≥ Cc(G)] = P[S(G) ≥ C(G)]

= P[GS = ∅] = P[|GS| = 0].

Moreover, in the first three formulations, the strict inequality ‘>’ is impossible, so one could
just as well write ‘=’ there.

Additionally, since Sc(H[v∗]) ≤ Xv∗ , we have the estimate

P [Sc(H[v∗]) ≥ − ln u] ≤ P
[
Xv∗ ≥ − ln u

]= u ∀u ∈ [0, 1]. (13)

Proposition 5 enables us to make the upper bound S(KV ) from (3) more explicit.

Corollary 2. Let KV be a complete graph on a vertex set V of cardinality |V| = n with sources
S and targets T. Then

P
[∣∣KV,S

∣∣= m
]= |T|

m + 1

(
n

m + 1

)−1 [(n − |T|
m

)
−
(

n − |S ∪ T|
m

)]
, (14)

for m = 1, . . . , n. Furthermore, for times t = 1, . . . , n − 1,

P[S(KV ) = t] = 1

n − t + 1

(
n

n − t + 1

)−1

·
[
|T|

(
n − |T|
n − t

)
+ |S|

(
n − |S|
n − t

)
− |S ∪ T|

(
n − |S ∪ T|

n − t

)]
. (15)

Proof. According to Proposition 5, we have

P[|KV,S| = m]

=
∑

G∗∈Am(KV )

∑
v∗∈∂SG∗

∫ 1

0
um−1(1 − u)|∂SG∗|−1P[Sc(H[v∗]) ≥ − ln u] du,

where Am(KV ) denotes the set of admissible subgraphs of KV on m vertices, as in Definition 3.
For m ≥ 1, this can be evaluated: ∂SG∗ always consists of all the vertices not in G∗, so |∂SG∗| =
n − m, and since the graphs H[v∗] only contain the vertex v∗, we obtain

P[Sc(H[v∗]) ≥ − ln u] =
⎧⎨
⎩

0 if v∗ /∈ T,

u if v∗ ∈ T .

Since at separation all targets must have been removed, this yields

P[|KV,S| = m] =
∑

G∗∈Am(KV )

|T|
∫ 1

0
um(1 − u)n−m−1 du

= |Am(KV )| · |T| · B(m + 1, n − m).
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Finally, by Lemma 3, the graphs in Am(KV ) consist of m vertices, none of which are targets,
unless the m vertices are chosen from V \ (S ∪ T). Hence

|Am(KV )| =
(

n − |T|
m

)
−
(

n − |S ∪ T|
m

)

and (14) follows.
For the second part, we first show that

P[S(KV ) = t] = P[|KV,S| = n − t] + g

n − t + 1

(
n

t − 1

)−1

(16)

for some explicit constant g. Observe that separation at time t must occur after the cutting of t
vertices, either leaving behind some non-empty graph KV,S (in which case |KV,S| = n − t, as
the vertices are removed one at a time on KV—this case is thus covered by the first summand
on the right-hand side of (16)), or leaving behind an empty graph KV,S. This second case
occurs if and only if KV,t−1 contains exactly one source (which will then have to be cut at time
t) and at least one target. For the sake of this proof, denote the set of these subgraphs by Gt.
Hence

P[S(KV ) = t, KV,S = ∅] =
∑

G∗∈Gt

P[KV,t−1 = G∗]

|G∗| .

Observe that all G∗ ∈ Gt have exactly n − t + 1 vertices, and that if such a graph is obtained
in the cutting procedure, it has to happen at time t − 1. Thus, invoking Equation (9) from
Corollary 1, we obtain

P[KV,t−1 = G∗] = P[∃i : KV,i = G∗] =
(

n

t − 1

)−1

and therefore

P[S(KV ) = t, KV,S = ∅] = |Gt|
n − t + 1

(
n

t − 1

)−1

.

This accounts for the second summand in (16), with g = |Gt|. To obtain Equation (15), we note
that to build an element of Gt, one needs to choose one source vertex and n − t non-source
vertices, unless neither of these vertices is a target. Hence,

|Gt| = |S|
(

n − |S|
n − t

)
− |S \ T|

(
n − |S ∪ T|

n − t

)
. (17)

Now, plugging Equations (14) and (17) into Equation (16) yields (15) after some minor
simplifications. �

Recall that a family of real-valued random variables Xi, i ∈ I, is tight if for all ε > 0, there
exists a constant M such that P[|Xi| ≥ M] < ε for all i ∈ I; cf. [7, p. 37]. We conclude this
section by showing the following tightness result for the size of GS.

Theorem 1. Let (G(n))n≥1 be a sequence of finite induced subgraphs exhausting the locally
finite infinite graph G equipped with subsets S, T ⊆ V(G). Define am,n =∑

A∈Am(G(n)) |∂SA|
and let am := limn→∞ am,n. Assume that there are constants b > 0 and L ≥ 0 such that
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(i) |∂SA| ≥ bm + 1 for all A ∈ Am(G(n)) and all m ≥ L, and

(ii) the function f (x) =∑∞
m=L amxm has radius of convergence at least bb

(b+1)b+1 and satisfies

∫ 1

0
f
(
x(1 − x)b) dx < ∞. (18)

Then the sizes of the separation graphs,
∣∣G(n)

S

∣∣, form a tight family of random variables.

Observe that, since

c := max
x∈[0,1]

x(1 − x)b = bb

(b + 1)(b+1)
,

the assumption (ii) requires that the radius of convergence, r, of the power series f is at least
c. In the case r > c, this condition is trivially satisfied as the integrand is bounded. However, in
the case of equality r = c, f has a singularity at c by virtue of Pringsheim’s theorem (cf. [13,
Theorem IV.6]), and (18) is a non-trivial requirement. We also remark that the assumption (i)
above is a variant of the notion of expander graphs, which play a crucial role in the theory of
percolation; see e.g. [3].

Proof. We first show that for fixed m, the sequence am,n is non-decreasing and eventually
constant. Recall from Definition 2 that the sets T (n) consist of two parts, namely T ∩ V

(
G(n)

)
and vertices that are incident to edges leaving G(n). By copying the respective argument from
the proof of Proposition 4, we can show again that dist

(
S, T (n) \ T

)→ ∞ as n → ∞. Hence,
for n sufficiently large, the closed neighbourhood of S of radius m will become independent
of n, and so will am,n. Moreover, since the G(n) are monotonically growing, any admissible
subgraph in G(n) will also be admissible in G(n+1) and the number of boundary vertices will not
decrease when changing from G(n) to G(n+1). Hence am,n is non-decreasing in n. In particular,
the limit am exists, is finite, and is an upper bound to am,n for all n.

Let M ≥ L. We now apply Proposition 5, where we set pv∗(x) := P[Sc(H[v∗]) ≥ − ln x]
(note that this still depends on GS as well!) for brevity. Summing over all m ≥ M and all
A ∈ Am(G(n)) yields

P
[∣∣G(n)

S

∣∣≥ M
]
=

∞∑
m=M

∑
A∈Am(G(n))

∫ 1

0
xm−1(1 − x)|∂SA|−1

∑
v∗∈∂SA

pv∗(x) dx

≤
∞∑

m=M

∑
A∈Am(G(n))

|∂SA|
∫ 1

0
xm(1 − x)|∂SA|−1 dx,

where we have applied the estimate (13). Using the assumption (i), we get

P
[∣∣G(n)

S

∣∣≥ M
]
≤

∞∑
m=M

∑
A∈Am(G(n))

|∂SA|
∫ 1

0

(
x(1 − x)b)m dx

=
∞∑

m=M

∫ 1

0
am,n

(
x(1 − x)b)m dx.
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Then, by the above argument on the monotonicity of am,n, we obtain

P
[∣∣G(n)

S

∣∣≥ M
]
≤

∞∑
m=M

∫ 1

0
am

(
x(1 − x)b)m dx.

By monotone convergence, we moreover obtain for all M ≥ L that

∞∑
m=M

∫ 1

0
am

(
x(1 − x)b)m dx =

∫ 1

0

∞∑
m=M

am
(
x(1 − x)b)m dx

≤
∫ 1

0

∞∑
m=L

am
(
x(1 − x)b)m dx =

∫ 1

0
f
(
x(1 − x)b) dx,

which is finite by the assumption (ii). Hence the tail of the series on the left-hand side converges

to zero, and therefore P
[∣∣G(n)

S

∣∣≥ M
]
→ 0 uniformly in n as M → ∞ as well. �

Remark 3. Tightness of the sizes of the separation graphs
∣∣∣G(n)

S

∣∣∣ is a helpful property for trans-

lating limit laws from the cutting times C
(
G(n)

)
to the separation times S

(
G(n)

)
. Assume that

there exist sequences αn and βn > 0 such that

C
(
G(n)

)− αn

βn

D−→ X as n → ∞

for a random variable X with positive variance. If βn → ∞ and
∣∣∣G(n)

S

∣∣∣ forms a tight family of

random variables, then the deterministic estimate

S
(

G(n)
)

≤ C
(

G(n)
)

≤S
(

G(n)
)

+
∣∣∣G(n)

S

∣∣∣
implies

∣∣∣∣∣C
(
G(n)

)− αn

βn
− S

(
G(n)

)− αn

βn

∣∣∣∣∣≤
∣∣∣G(n)

S

∣∣∣
βn

→ 0

in probability, and hence

S
(
G(n)

)− αn

βn

D−→ X as n → ∞.

5. Separating trees

As we saw in Lemma 2, the expressions for probabilities of events occurring in Cutc happen
to be polynomial expressions in e−x. This is not surprising: if the event E is dependent only on
the subgraph at a time x ≥ 0, then

P[E] =
∑

G∗∈E

P[Gx = G∗],
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where the summation ranges over all subgraphs G∗ ⊆ G in E, and from Equation (6), this is
polynomial in e−x. As it turns out, this is especially useful for rooted trees, where the recursive
structure of the tree translates to a recursion for said polynomial expression.

Hence, in this section, let G = T be a rooted tree, where we will always interpret the root
node as the (unique) source vertex, and the leaves as targets.

To each node w ∈ V(T ), we assign a polynomial p[w] from Z[x] recursively as follows: if
w is a leaf, define p[w](x) = x. Otherwise, denote the children of w by w1, . . . , wr for r ≥ 1.
Then define

p[w](x) := x

(
1 −

r∏
i=1

(1 − p[wi](x))

)
. (19)

Observe that in the case where w has only a single child w1, this simplifies to p[w](x) =
xp[w1](x). Furthermore, if T∗ is the fringe subtree of T rooted at w (i.e. the subtree con-
sisting of w together with all its descendants), we also write p[T∗] := p[w]. In particular,
p[T ] := p[root].

Proposition 6. For the continuous-time cutting model on a rooted tree T , we have

P[Sc(T ) ≥ x] = p[T ]
(
e−x) (20)

for all x ≥ 0. Equivalently, one can interpret p[T ](q) for q ∈ [0, 1] as the probability that
Ber(q)-site percolation on T contains a path from the root to a leaf.

Proof. For Sc(T ) to be larger than x, there must exist a path from the root node to a leaf
which is still intact at time x. Now, use induction over the height of T , as follows.

If T consists of a single node, then P[Sc(T ) ≥ x] = e−x = p[T ]
(
e−x

)
. Now assume that (20)

holds true for all trees up to a certain height h ≥ 1, and let T be a rooted tree of height h + 1.
Denote the children of the root in T by w1, . . . , wr for some r ≥ 1. Removing the root node
creates r trees T1, . . . , Tr, which we endow with the new root nodes w1, . . . , wr, respectively.
As the height of T1, . . . , Tr is at most h, applying the induction hypothesis yields

P[Sc(Ti) ≥ x] = p[Ti]
(
e−x), for i = 1, . . . , r.

The existence of a desired path in T is equivalent to the root node not yet having been cut,
intersected with the event that not all of the subtrees Ti have yet been separated. Hence,

P[Sc(T ) ≥ x] = e−x

(
1 −

r∏
i=1

P[Sc(Ti) < x]

)

= e−x

(
1 −

r∏
i=1

(
1 − p[Ti]

(
e−x)))= p[T ]

(
e−x)

by (19), which concludes the proof. �
A transversal in a rooted tree T is defined to be a subset of vertices that intersects every

path from the root to a leaf. It then follows from the proof of Proposition 6 that 1 − p[T ](1 − q)
yields the probability that a random set of vertices, containing each vertex independently with
probability q, is a transversal of T . It is this expression that was investigated in [11, 12].
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FIGURE 2. A faithful (left) and a trimmed (right) subtree of the same underlying rooted tree T . The
root is shown in black, with vertices belong to the subtrees being coloured grey. Dotted edges and white
vertices belong to T , but not to the subgraph.

Remark 4. There are some straightforward conclusions to be drawn from the previous propo-
sition: the polynomials p[T ](x) map the interval [0,1] to itself, with p[T ](0) = 0 and p[T ](1) =
1. Furthermore, they are monotonically increasing on this interval, and by (19), p[T ](x) ≤ x for
x ∈ [0, 1].

Definition 4. Let T be a rooted tree.

1. A subtree T∗ is called faithful if it contains the root of T as its own root and if every leaf
of T∗ is a leaf of T (cf. Figure 2, left). We denote the set of all faithful subtrees of T by
F(T ), and the set of all faithful subtrees on n vertices by Fn(T ).

2. Equivalently, a faithful subtree T∗ ⊆ T can be seen as choosing a number of paths from
the root to the leaves of T . We hence denote the set of all faithful subtrees of T with
exactly � leaves by P�(T ).

3. A subtree T∗ is called trimmed if it contains the root of T as its own root and if
degT∗ (v) = degT (v) for all non-leaves v of T∗ (cf. Figure 2, right).

The following proposition gives an alternative, combinatorial characterisation of p[T ]
which might be of independent interest.

Proposition 7. Write p[T ](x) =∑n
j=0 ajxj with aj ∈Z for j = 0, 1, . . . , n. Denote by L(T∗) the

set of leaves of T∗. Then

aj =
∑

T∗∈Fj(T )

(−1)|L(T∗)|+1 (21)

=
∑
�≥1

(−1)�+1
∣∣Fj(T ) ∩ P�(T )

∣∣ . (22)

In particular, deg (p[T ]) = |T | and aj = 0 for j ≤ dist (root, L(T )).

Proof. First note that Equation (21) implies the other statements: every subtree of T con-
tains at most |T | vertices, and the only subtree with exactly |T | vertices is T itself. Hence
aj = 0 for j > |T | and a|T | = ±1. On the other hand, any faithful subtree must contain at least
one path from the root to L(T ), and such a path requires at least dist (root, L(T )) + 1 vertices.

To show (21), we employ p[T ]
(
e−x

)= P[Sc(T ) ≥ x] from Proposition 6 and express the
probability on the right-hand side in a different manner. To this end, write Tx for the tree
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obtained after time x. As observed already, {Sc(T ) ≥ x} is the same as asking that Tx contain at
least one path from the root to the leaves. Therefore, applying the inclusion–exclusion principle
yields

P[Sc(T ) ≥ x] = P

⎡
⎣ ⋃
T∗∈P1(T )

{T∗ ⊆ Tx}
⎤
⎦=

∑
�≥1

(−1)�+1
∑

T∗∈P�(T )

P[T∗ ⊆ Tx].

Moreover, P[T∗ ⊆ Tx] = (
e−x

)|V(T∗)|; hence

p[T ]
(
e−x)= P[Sc(T ) ≥ x] =

∑
�≥1

(−1)�+1
∑

T∗∈P�(T )

(
e−x)|V(T∗)|.

Substituting u for e−x and rearranging the sums on the right-hand side, we obtain the desired
expressions for the coefficients of p[T ]. �
Corollary 3. We have

P[GS = ∅] =
∫ 1

0

p[T ](u)

u
du. (23)

Moreover, for any subtree T∗ ⊆ T containing the root node but none of the leaves, we have

P[GS = T∗] =
∑

v∗∈∂T∗

∫ 1

0
u|T∗|−1(1 − u)|∂T∗|−1p[v∗](u) du. (24)

Proof. Both statements follow immediately from Propositions 5 and 6. �
Lemma 4. Let T be a rooted tree.

1. If T∗ ⊆ T is a faithful subtree then p[T∗](x) ≤ p[T ](x) for all x ∈ [0, 1].

2. If T∗ ⊆ T is a trimmed subtree then p[T∗](x) ≥ p[T ](x) for all x ∈ [0, 1].

Proof. Assume T∗ ⊆ T is faithful. If, at time − ln x, there exists an uncut path in T∗ con-
necting the root to L(T∗), then this same path also exists in T and connects the root to L(T ).
Hence we obtain from Proposition 6

p[T∗](x) = P[Sc(T∗) ≥ − ln x] ≤ P[Sc(T ) ≥ − ln x] = p[T ](x).

Assume now that T∗ ⊆ T is trimmed. If there is a path in T connecting the root to L(T ) at time
− ln x, then this path also connects the root to L(T∗). Thus,

p[T∗](x) = P[Sc(T∗) ≥ − ln x] ≥ P[Sc(T ) ≥ − ln x] = p[T ](x),

analogously to the first case. �
We conclude this section by looking at a version of the tree polynomial for two variables

that turns out to be useful for modifying trees at a fringe node. For a fixed leaf v∗, initialise
pv∗ [v∗](x, y) = y and all other leaves by x as before. Then recursively define pv∗[w] as in (19),
replacing all terms p[ · ](x) by pv∗ [ · ](x, y). Whereas in the original construction we introduced
one variable x for every vertex, we now introduce one variable x for every vertex bar v∗, which
gets a y-variable. If the choice of v∗ is fixed or irrelevant for the purpose of the argument, we
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will drop the index and simply write p[w](x, y). Analogously to before, we extend the notation
to allow polynomials to be assigned to fringe subtrees.

Lemma 5. In the setting just introduced, p[T ](x, y) = a1(x)y + a2(x) for a1, a2 ∈Z[x].
Moreover, the map A:C[0, 1] → C[0, 1] sending f to a1(x)f (x) + a2(x) is a (strict) contrac-
tion with respect to the maximum norm, unless T is a path with the root positioned on an end
vertex.

Proof. From the construction of the polynomial, p[T ](x, x) = p[T ](x). Consider the max-
imal faithful subtree of T not containing the leaf v∗ to which y was assigned, and denote it
by T\y. It follows from Proposition 7 that p[T\y](x) is the part of p[T ](x) that accounts for all
those y-avoiding subtrees; thus a2(x) = p[T\y](x). (We set p[∅](x) = 0 for the empty tree, to
cover the case where T had only one leaf to begin with.) Consequently, p[T ] − p[T\y] is the
polynomial corresponding to all faithful subtrees containing the y-leaf. However, we still need
to exchange one x-variable for a y-variable; thus a1(x) = 1

x

(
p[T ](x) − p[T\y](x)

)
. Observe that

this is indeed a polynomial, as every one-variate tree polynomial is divisible by x.
To show that the operator A is a contraction, it suffices to verify that ‖a1‖C[0,1] < 1, since

‖Af − Ag‖C[0,1] = ‖a1(f − g)‖C[0,1] ≤ ‖a1‖C[0,1] · ‖f − g‖C[0,1], (25)

as desired. To this end, recall that by Proposition 6, the polynomial p[T\y](x) can be interpreted
as the probability that T\y contains any path from the root to a leaf of T different from v∗, when
nodes are deleted independently with probability 1 − x ∈ [0, 1], and kept otherwise. Since the
analogous statement is also true for p[T ](x), this gives the following probabilistic interpretation
of a1(x) = 1

x

(
p[T ](x) − p[T\y](x)

)
: the event that the only path from the root to a leaf in T is the

path to v∗, conditioned on the node v∗ being present, has probability a1(x). From this, it follows
immediately that 0 ≤ a1(x) < 1 for x ∈ [0, 1] unless v∗ is the unique leaf of T . The inequality
‖a1‖C[0,1] < 1 now follows from the fact that a1 is a polynomial and therefore continuous. �

Let (Tn)n∈N be a family of finite sets of rooted trees, say

Tn = {
Tn,1, . . . , Tn,kn

}
for integers k1, k2, . . . . Given any rooted tree T and any positive integer n, we denote by
Mn(T ) the rooted tree which, upon removal of its root node, decomposes into one copy of
T , Tn,1, . . . , Tn,kn each, with the roots of these trees being the children of the root in Mn(T ).
We can think of Mn(·) for fixed n as being a map from the set of rooted trees to itself.
Accordingly, those maps can be composed, and we use the shorthand notation

Mn�,...,n1 (·) = Mn�
◦ · · · ◦ Mn1 (·)

for any finite sequence n1, . . . , n� of positive integers.

Theorem 2. Let • be the rooted tree consisting of one vertex, and let T∗ be a fixed rooted tree.
Consider a family (Tn)n∈N of finite sets of rooted trees, as above. If there is a constant c < 1
such that ∥∥∥∥∥x

kn∏
j=1

(
1 − p[Tn,j](x)

)∥∥∥∥∥
C[0,1]

≤ c for all n ∈N, (26)

then ∥∥p
[
Mn,...,1(T∗)

]
(x) − p

[
Mn,...,1( • )

]
(x)

∥∥
C[0,1] → 0

as n → ∞.
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Proof. Let m ∈N, and let T be any rooted tree. By virtue of (19), we have

p[Mm(T )](x) = x − x
km∏
j=1

(
1 − p[Tm,j](x)

)+ xp[T ](x)
km∏
j=1

(
1 − p[Tm,j](x)

)
.

Simultaneously, fixing the leaf • in Mk( • ) and assigning to it the variable y, we obtain the
bivariate polynomial

p•[Mm( • )](x, y) = x − x
km∏
j=1

(
1 − p[Tm,j](x)

)+ xy
km∏
j=1

(
1 − p[Tm,j](x)

)
.

In particular,

p[Mm(T )](x) = p•[Mm( • )](x, p[T ](x)).

Hence the operator Am:p[T ](x) �→ p[Mm(T )](x) has the form described in Lemma 5 and is
therefore a strict contraction with an operator norm bounded by

∥∥∥∥∥x
km∏
j=1

(
1 − p[Tm,j](x)

)∥∥∥∥∥
C[0,1]

,

according to the estimate (25). Therefore, iterating (25) yields∥∥p
[
Mn,...,1(T∗)

]
(x) − p

[
Mn,...,1( • )

]
(x)

∥∥
C[0,1]

≤
n∏

i=1

∥∥∥∥∥x
ki∏

j=1

(
1 − p[Ti,j](x)

)∥∥∥∥∥
C[0,1]

· ∥∥p[T∗](x) − p[ • ](x)
∥∥

C[0,1]

≤ cn
∥∥p[T∗](x) − p[ • ](x)

∥∥
C[0,1] → 0

as n → ∞. �
The general message of Theorem 2 is thus that two trees that differ only in a fringe

tree which is rooted far away from the root node will have approximately the same polyno-
mial function p[ · ] over [0,1], provided the condition (26) holds. We will apply this idea in
Proposition 8 below.

6. Examples: caterpillar trees, stars, and complete binary trees

Example 1. Let CPn denote the binary caterpillar tree on 2n + 1 nodes, that is, a rooted binary
tree where every node either is a leaf, or has at least one child which is a leaf (cf. Figure 3,
left). The associated polynomials then satisfy the recurrence relation

p[CPn+1](x) = x(1 − (1 − x)(1 − p[CPn](x)))

= x2 + xp[CPn](x) − x2p[CPn](x)
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FIGURE 3. The trees CP4, ST5,2, and CBT4, from left to right, with the root shown in black.

with p[CP0](x) = x. By the Banach fixed point theorem in C[0,1], this recurrence converges to
the unique solution of the associated fixed point equation f = x2 + xf − x2f , which is f (x) =

x2

x2−x+1
. Finally, since all functions involved are bounded on the interval [0,1], we obtain

P[S(CPn) = C(CPn)] −→
∫ 1

0

x

1 − x + x2
dx = π

3
√

3
≈ 0.6046

as n → ∞ by applying the dominated convergence theorem to Corollary 3.
Moreover, we can use these very same tools to compute the limiting distribution of |CPn,S|.

Indeed, every admissible graph must be a path of some length, say m ≥ 0, which then has m
leaves as boundary plus one further node that induces a subtree isomorphic to CPn−m. Hence,
by Corollary 3, we have for all m ≥ 0 as n → ∞

P[|CPn,S| = m] =
∫ 1

0
xm−1(1 − x)m(mx + p[CPn−m](x)) dx

−→ m B (m + 1, m + 1) +
∫ 1

0
xm(1 − x)m x

1 − x + x2
dx. (27)

To evaluate this limit, we note first that

xm+1(1 − x)m

x2 − x + 1
= x

x2 − x + 1
−

m−1∑
j=0

xj+1(1 − x)j,

so that the integral in (27) equals

∫ 1

0

xm+1(1 − x)m

1 − x + x2
dx =

∫ 1

0

x

x2 − x + 1
dx −

m−1∑
j=0

B (j + 2, j + 1)

= π

3
√

3
−

m−1∑
j=0

1

j + 1

(
2j + 2

j + 1

)−1

.
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Using these results, we obtain for the limit in (27)

lim
n→∞ P[|CPn,S| = m] =

∫ 1

0

(
m
(
x − x2)m + x

(
x − x2

)m

1 − x + x2

)
dx (28)

= π

3
√

3
+ m

(m + 1)
(2m+1

m

) −
m−1∑
j=0

1

(j + 1)
(2j+2

j+1

) . (29)

These limiting expressions indeed form a probability distribution on the non-negative integers,
as can be comfortably shown using Theorem 1: in the notation of this theorem, we have |∂SA| =
m + 1 for all admissible graphs A on m vertices, so b = 1, and the radius of convergence of

∞∑
m=0

amxm =
∞∑

m=0

(m + 1)xm = 1

(1 − x)2

equals 1 > 1/4. Hence, the random variables |CPn,S| form a tight, vaguely converging
sequence, which must thus also converge in distribution.

Remark 5. It is also possible to verify directly that (28) defines a random variable. To see
this, observe that the integrand in (28) is non-negative. We thus obtain from the monotone
convergence theorem that

∞∑
m=0

lim
n→∞P[|CPn,S| = m]

=
∫ 1

0

( ∞∑
m=0

m
(
x − x2)m + x

1 − x + x2

∞∑
m=0

(
x − x2)m

)
dx

=
∫ 1

0

2x − x2

(1 − x + x2)2
dx = 1, (30)

as required.

Furthermore, the estimate

m
(
x − x2)m + x

(
x − x2

)m

1 − x + x2
≤ m + 1

4m
, x ∈ [0, 1],

implies that a random variable X having the probability distribution defined by (28) has expo-
nential tails. In particular, all its moments exist, and they can be computed in a similar fashion
to (30). Omitting the details, we obtain

E[X] = 1

54

(
9 + 4

√
3π

)≈ 0.5697,

V[X] = 1

972

(
783 + 16

√
3π − 16π2)≈ 0.7327.

Example 2. Let STr,n denote the rooted tree on rn + 1 vertices which, upon removal of the
root node, splits into r copies of a path on n vertices (cf. Figure 3, middle). Hence, the tree
polynomial of STr,n is given by

p[STr,n](x) = x(1 − (1 − xn)r), (31)
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and the probability of separating the tree by cutting the root node is therefore given by

P[S(STr,n) = C(STr,n)] =
∫ 1

0
1 − (1 − xn)r dx

= 1 − 1

n

∫ 1

0
y

1
n −1(1 − y)r dy = 1 − 1

n
B

(
1

n
, r + 1

)
(32)

after substituting y = xn, according to Corollary 3. Letting the size of the tree grow to infinity,
we obtain different asymptotic behaviours of this probability, depending on the relationship
between r and n. To see this, let ρ ∈ (0, 1) and set r = r(n) = (1 − ρ)−n − 1. In the interest of
brevity, write z := (1 − ρ)−n = r(n) + 1. Then, using Stirling’s approximation for the gamma
function, we obtain

1

n
B

(
1

n
, r(n) + 1

)
= �

(
1 + 1

n

)
�(z)

�
(

z − ln (1−ρ)
ln z

)

∼
√

z − ln (1−ρ)
ln z

z
· ez− ln (1−ρ)

ln z

ez
· zz(

z − ln (1−ρ)
ln z

)z− ln (1−ρ)
ln z

−→ 1 − ρ

as n (and therefore z) tends to infinity. Hence, in light of (32), and by employing monotonicity
properties with respect to r and n, we get the following results:

1. If the number r of rays grows subexponentially with n, then we have P[S(STr,n) =
C(STr,n)] → 0. In particular, this covers the intuitively obvious case when the number
of rays is bounded.

2. If r ∼ (1 − ρ)−n, then by the above, P[S(STr,n) = C(STr,n)] → ρ.

3. If r grows superexponentially with n (in particular, if n is bounded), then P[S(STr,n) =
C(STr,n)] → 1.

Example 3. Denote by CBTn the full complete rooted binary tree on 2n − 1 vertices, this being
the rooted binary tree having 2h vertices at every height h = 0, . . . , n − 1 (cf. Figure 3, right).
Observe that thus CBT1 is the tree consisting of only the root node, and that CBTn+1 splits into
two copies of CBTn upon removal of the root node. Thus, the associated polynomials satisfy
the recurrence equation

p[CBTn+1](x) = x
(
1 − (1 − p[CBTn](x))2)

= 2xp[CBTn](x) − xp[CBTn](x)2

with p[CBT1](x) = x. The fixed point equation f = 2xf − xf 2 admits two solutions, f ≡ 0 and

f (x) = 2 − 1
x . For convenience, let ϕ(x) := max

{
0, 2 − 1

x

}
. Direct verification reveals that if a

function g satisfies g(x) ≥ ϕ(x) for all x, then 2xg(x) − xg(x)2 ≥ ϕ(x) as well. Furthermore, the
sequence of polynomials p[CBTn] decreases monotonically pointwise by Lemma 4, and hence
converges pointwise to ϕ(x).

In light of Proposition 4, this result should not be surprising: the sequence of rooted trees
CBTn satisfies all the conditions, and the function ϕ(x) indeed equals the probability that the
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root node is contained in an infinite cluster of Ber(x)-site percolation, as can be verified inde-
pendently. For example, in [14, p. 256], a similar recursive argument is used to determine that
the probability of the root being contained in an infinite cluster of Ber(p)-bond percolation
is ϕ(p)/p. While they are not the same, one can define a bijection between the edges and the
non-root vertices in a rooted tree by mapping any edge to the endpoint farther away from the
root. This allows us to translate between site and bond percolation and explains Grimmett’s
additional factor of p−1.

Continuing with our analysis, the probability of the remaining tree at separation being
empty now follows handily from Corollary 3:

lim
n→∞ P[|CBTn,S| = 0] =

∫ 1

0

ϕ(x)

x
dx = ln 4 − 1 ≈ 0.3863.

In a similar fashion, we can continue to determine the limiting probability of separation
graphs of any size m ≥ 0: since there are Cm = 1

m+1

(2m
m

)
subtrees (the Cm are, of course, the

Catalan numbers, [24, A000108]) of the infinite rooted binary tree on m vertices, and each of
those has m + 1 boundary vertices, we claim that

lim
n→∞ P[|CBTn,S| = m] =

(
2m

m

) ∫ 1

0
xm−1(1 − x)mϕ(x) dx. (33)

This can be derived analogously to Equation (27), where the exchange of the limit and integral
can be motivated by recalling the estimate p[CBTn](x) ≤ x, so that the integrand is bounded by
xm(1 − x)m. Hence, by the dominated convergence theorem, we arrive at (33).

Observe that, in the notation of Theorem 1, the sequence am = (2m
m

)
has generating func-

tion 1√
1−4x

(cf. [24, A000984]), thus violating the integrability condition (18) for the proper
constant b = 1. However, we can check by hand that (33) defines a probability distribution with
the following computation, again relying on the generating function of

(2m
m

)
:

∞∑
m=0

(
2m

m

) ∫ 1

0
xm−1(1 − x)mϕ(x) dx

=
∫ 1

1/2

( ∞∑
m=0

(
2m

m

)(
x − x2)m

)
· 2x − 1

x2
dx

=
∫ 1

1/2

1√
1 − 4x + 4x2

· 2x − 1

x2
dx

=
∫ 1

1/2

1

x2
dx = 1. (34)

Note also that a random variable X having the probability distribution defined by (33) does not
have a finite first moment: imitating the approach of (34) leads to

E[X] =
∞∑

m=0

m

(
2m

m

) ∫ 1

0
xm−1(1 − x)mϕ(x) dx =

∫ 1

1/2

2(1 − x)

x(2x − 1)2
dx,

where the integral on the right-hand side diverges.
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FIGURE 4. The vertices vi and wi from the proof of Proposition 8 in T10.

Finally, we can use Lemmas 4 and 5 to verify that the same limiting distribution also holds
if we consider the sequence of complete binary trees on n vertices (of which the full complete
binary trees are merely a subsequence).

Denote by Tn the complete binary tree on n vertices, this being the binary tree having 2k

vertices at height k for 0 ≤ k < �lg n� =: m, with the remaining n − 2m + 1 vertices at height
m in their leftmost positions.

Proposition 8. With ϕ(x) = max
{

0, 2 − 1
x

}
as above, we have p[Tn](x) → ϕ(x) uniformly over

[0,1], as n → ∞.
Consequently, the limiting distribution of

∣∣Tn,S

∣∣ coincides with that of
∣∣CBTn,S

∣∣ and is
given by Equation (33).

Proof. If n is odd, then the number of vertices at height m + 1 is even, so we have
CBTm−1 ⊆ Tn ⊆ CBTm, where, in both inclusions, the smaller tree is a trimmed subtree of
the larger according to Definition 4. Accordingly, we obtain from Lemma 4 that

p[CBTm−1](x) ≥ p[Tn](x) ≥ p[CBTm](x)

for all x ∈ [0, 1]. Hence p[Tn](x) → ϕ(x) pointwise (and uniformly) for odd n → ∞.
For even n, observe that Tn and Tn−1 differ only in a fringe subtree of height 2. Indeed, let

root, vm−1, . . . , v1 be the path from the root to the parent of the unique leaf � without a sibling
vertex in Tn. Each of the vertices vi is also in Tn−1, and in both trees they have a unique sibling,
wi, for 1 ≤ i < m (see Figure 4). Writing T (v)

n for the fringe subtree of Tn rooted at a vertex v,

and setting Tj :=
{
T (wj)

n

}
, we observe that the condition (26) is satisfied: since every T (wj)

n is

a non-empty full complete binary tree, we have

ϕ(x) ≤ p
[
T (wj)

n

]
(x) ≤ x

for x ∈ [0, 1] by the results of Example 3. Accordingly,∥∥∥x
(

1 − p
[
T (wj)

n

]
(x)

)∥∥∥
C[0,1]

≤ ‖x(1 − ϕ(x))‖C[0,1] = 1

2

for all j. Therefore, ∥∥p[Tn] − p[Tn−1]
∥∥

C[0,1] → 0
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as m → ∞ for even n by Theorem 2, yielding the desired convergence. (In fact, repeating the
estimates from the proof of Theorem 2 reveals the more concise estimate

∥∥p[Tn] − p[Tn−1]
∥∥≤

21−m).
The second claim concerning the limiting distribution of the size of the separation graph

follows in the same way as when it was first derived in Example 3. �
Observe that by this proposition and by (34), the random variables

∣∣Tn,S

∣∣ converge in
distribution and are therefore tight. By Remark 3 this means that the limit law obtained by
Janson in [17, Theorem 1.1] for C(Tn) holds also for S(Tn). More explicitly, if we denote by
{x} := x − �x� the fractional part of x ∈R, then we obtain the following.

Corollary 4. Let n → ∞ such that {lg n − lg lg n} → γ ∈ [0, 1]. Write f (γ ) := 2γ − 1 − γ .
Let Wγ be a random variable with an infinitely divisible distribution with characteristic
function

E
[
eitWγ

]= exp

(
if (γ )t +

∫ ∞

0

(
eitx − 1 − itx1{x<1}

)
dνγ (x)

)
,

with the Lévy measure νγ being supported on [0, ∞) with dνγ = 2{lg x+γ }x−2 dx. Then

lg2 n

n

(
S(Tn) − n

lg n
− n lg lg n

lg2 n

)
D−→ −Wγ .

7. Further questions

We use this final section to present several (deliberately broad) questions and remarks that
could lead to interesting future research.

1. Determine the asymptotic distributions of S(G(n)) and
∣∣∣G(n)

S

∣∣∣ for other families of deter-

ministic and random trees, in continuation of the wide variety of work done on the
cutting number of trees. The author hopes to answer this for conditioned Galton–Watson
trees in a follow-up paper.

2. What happens if the roles of S and T are exchanged? This promises to be non-trivial
already for rooted trees and their leaves. Moreover, for which graphs and which choices
of S, T are the random variables S(G; S, T) and S(G; T, S) equal in distribution?

3. How can one evaluate the asymptotic distribution of S directly, without relying on
previous knowledge of C as in Corollary 4?

4. On trees, the difference between edge-cutting and vertex-cutting is usually negligible
because there is a bijection between edges and non-root vertices, assigning the endpoint
farther away from the root to each edge. For general graphs, no such bijection exists.
However, it is easy to see that the edge-cutting process on a graph G is exactly the vertex-
cutting process on the line graph of G. This therefore raises the following question: how
is the separation time on G related to the separation time on the line graph of G?

5. For which sequences of graphs G(n) exhausting a locally finite infinite G (with fixed

sources and targets) are the random variables
∣∣∣G(n)

S

∣∣∣ not tight? In this case, what can be

said about the structure of the remaining graph?
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6. By definition, the separation number is the number of cuts required to separate two
subsets S, T ⊆ V from each other. Starting in a graph with high connectivity (say, by
having k ≥ 2 vertex-disjoint paths from S to T in G), we can ask for the number of
cuts required to reduce the connectivity to some j ≤ k. The case j = 0 specialises to the
separation number as we defined it. However, since the notion of a boundary that we
used to prove the results in Section 4 is no longer relevant if j > 0, the question is what
kind of statements can be obtained for the more general case.
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