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Abstract
Interacting particle systems (IPSs) are a very important class of dynamical systems, arising in different domains like
biology, physics, sociology and engineering. In many applications, these systems can be very large, making their
simulation and control, as well as related numerical tasks, very challenging. Kernel methods, a powerful tool in
machine learning, offer promising approaches for analyzing and managing IPS. This paper provides a comprehen-
sive study of applying kernel methods to IPS, including the development of numerical schemes and the exploration
of mean-field limits. We present novel applications and numerical experiments demonstrating the effectiveness of
kernel methods for surrogate modelling and state-dependent feature learning in IPS. Our findings highlight the
potential of these methods for advancing the study and control of large-scale IPS.

1. Introduction

Interacting particle systems (IPSs), or synonymously multiagent systems (MASs), are dynamical sys-
tems that model the interaction of a group of homogenous particles or agents. These system classes
have attracted an enormous amount of attention in the mathematical community, primarily because they
exhibit emergent phenomena like flocking, swarming or consensus. For an overview and introduction to
the vast literature on this subject, we refer to refs. [1, 7–9, 37, 38]. IPSs arise in a wide range of domains,
from physical processes like gas dynamics [20], to biology, sociology and very recently even data sci-
ence [21, 22, 26, 39, 43, 57, 59, 69]. In many applications of IPS, one has to work with a large number
of particles, for example, in gas dynamics, the modelling of large animal populations, human crowds or
large-scale traffic models. Analytical investigations (especially of emergent phenomena) and numerical
methods (like simulation, optimisation and control) become very challenging or even impossible for
such large-scale IPS.

Recently, a fruitful exchange between the fields of IPS and machine learning has gained momen-
tum. On the one hand, theory and methods from IPS – in particular, large-scale IPS and mean-field
limits – have been used to analyse and design methods in machine learning, for example, in the con-
text of clustering problems [43], deep neural networks [44, 56] or ensemble-based optimisation methods
[10, 19, 35, 45, 46, 61]. On the other hand, machine learning methods are increasingly used to investigate
IPS, and enhance or even replace modelling with learning-based methods. In particular, while physical
processes like gas dynamics have been very successfully treated using first-principles modelling [20],
complex phenomena like animal motion, crowd dynamics or traffic flow are much more challenging to
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model. For example, due to the increased availability of large data sets and computational resources, it
is natural to try to learn the interaction rules of IPS from data. This question has received considerable
attention lately, both from a theoretical as well as practical perspective, cf. [12, 53–55]. A particularly
important class of machine learning approaches consists of kernel methods [65], which encompass, for
example, Gaussian processes (GPs) [71] and support vector machines [68]. Kernel methods allow the
systematic modelling of domain knowledge [66], are supported by a well-developed theory [48, 68] and
lead to efficient and reliable numerical algorithms [65], capable of scaling up to very large data sets [51,
52]. All of this makes kernel methods natural candidates for machine learning on IPS. In this work, we
consider two novel developments in this context.

First, surrogate models are a common approach to tackle large-scale and expensive modelling, simu-
lation and optimisation tasks in scientific computing, statistics and machine learning [40, 63]. The basic
idea is to approximate a computationally expensive function by a surrogate model that is cheap to evalu-
ate. Kernel-based methods are also here a standard tool, in particular, GPs. We provide initial numerical
investigations on this approach in the context of IPS by considering two prototypical tasks, for which
we use a kernel method for the approximation.

Second, in kinetic theory, transitioning from microscopic to mesoscopic levels (considering distri-
butions of particles rather than individual particles) is a common approach to managing the complexity
of IPS. The mean-field limit, which involves the number of particles approaching infinity, is a well-
established method for this transition. Extensive studies on mean-field limits have provided rigorous
analytical frameworks for understanding the emergent behaviour in IPS [13, 14, 16, 18, 23, 24, 34, 41].

Building on these advances, recent theoretical work has explored the application of kernel methods in
the mean-field limit [31, 33]. These methods enable learning state-dependent features of IPS from data,
facilitating the analysis of large-scale systems. The primary motivation is to infer maps that measure
or estimate specific aspects of the system’s state, such as reaction to stimuli in swarming or suscep-
tibility in opinion dynamics. In this work, we provide the first numerical experiments evaluating this
approach.

We now provide an outline of the remaining paper. In Section 2, we introduce the necessary notation
and provide background on reproducing kernel Hilbert spaces (RKHSs) and their application to inter-
polation and approximation problems. Section 3 delves into IPS models and their numerical treatments,
highlighting well-known examples and the corresponding mean-field limits. In Section 4, we investi-
gate the use of kernel methods in the context of IPS, starting with surrogate models in Section 4.1.
In Section 4.2, we provide a self-contained exposition of mean-field limit of kernels and kernel meth-
ods, tailored to our needs. These developments are illustrated with a concrete class of kernels having a
mean-field limit, which then forms the foundation of the numerical investigations. The paper concludes
in Section 5, offering also an outlook on possible future applications.

2. Background on kernel methods

We now present necessary background material. First, in Section 2.1 we concisely give the main
definitions and results on kernels and reproducing KHSs, since these function spaces will be used
as candidate spaces for the interpolation and approximation problems considered later on. Next, in
Section 2.2, we outline the standard approach to function interpolation in RKHSs. Finally, in Section 2.3,
we recall some concepts and results related to learning and approximation with optimisation problems
in RKHSs.

2.1. Kernels and RKHSs

In the following, we provide a concise overview of the necessary background on kernels and their repro-
ducing RKHSs, following [68, Chapter 4]. We will work primarily with Hilbert spaces of functions of
the following type.
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Definition 2.1. Let X �= ∅ be a non-empty set, H ⊆R
X a Hilbert space of functions, and k : X ×X →

R some bivariate map. k is called a reproducing kernel for a Hilbert space H ⊆R
X of real-valued

functions if

1. k(·, x) ∈ H ∀x ∈X
2. f (x) = 〈f , k(·, x)〉H ∀f ∈ H, x ∈X .

To effectively work with these function spaces, we need also the following concept.

Definition 2.2. Let X �= ∅ be a non-empty set. A map k : X ×X →R is called positive semidefinite if
for all x, x′ ∈X we have k(x, x′) = k(x′, x), and for all N ∈N+, x1, . . . , xN ∈X , α1, . . . , αN ∈R we have∑N

i,j=1 αiαjk(xj, xi) ≥ 0. If in the case of pairwise distinct inputs x1, . . . , xN , equality in this latter condition
holds only if α1 = . . . = αN = 0, we call k positive definite. In the following, we call a positive semidefinite
(or positive definite) map k a kernel (on X ).

Remark 2.3.

1. A map k : X ×X →R is symmetric and positive (semi)definite if and only if all matrices
(k(xj, xi))i,j=1,...,N are symmetric and positive (semi)definite, for all N ∈N+ and x1, . . . , xN ∈X . This
motivates the terminology of symmetric and positive (semi)definite.

2. Unfortunately, the terminology regarding kernels is highly non-uniform in the literature. What we
call symmetric and positive semidefinite is often called of positive type or positive definite, and what
we call symmetric and positive definite is often called strictly positive definite. Furthermore, the
terminology kernel is often used for Mercer kernels, which are symmetric and positive semidefinite
continuous bivariate functions, often on a compact metric space.

A Hilbert space of functions has at most one reproducing kernel, and such a reproducing kernel is a
kernel (i.e., symmetric and positive semidefinite), cf. [68, Lemma 4.19, Theorem 4.20]. Furthermore,
a map k is a reproducing kernel for some Hilbert space of functions if and only if k is a kernel, and in
this case this Hilbert space of functions is unique [68, Theorem 4.21]. We call this Hilbert space the
reproducing kernel Hilbert space (RKHS) corresponding or associated to k, and denote it by (Hk, 〈·, ·〉k)
with correspondent induced norm ‖ · ‖k. Finally, if k is a kernel, the linear space

Hpre
k =

{
N∑

n=1

αnk(·, xn) | x1, . . . , xN ∈X , α1, . . . , αN ∈R, N ∈N

}

is dense in Hk and is called the pre-RKHS associated with k.

Remark 2.4. We tailored the exposition of kernels and RKHSs to our needs. In the machine learning
literature, slightly different, but equivalent definitions are used.

1. A map k : X ×X →R is called a kernel if there exists a Hilbert space H (called feature space) and
a map � : X →H (called feature map) such that

k(x, x′) = 〈
�(x′), �(x)

〉
H ∀x, x′ ∈X .

The motivation for this definition comes from the kernel trick, which allows to use linear algorithms
on inputs lifted (usually by a nonlinear map) to a high-dimensional (even infinite-dimensional) new
space, as long as inner products of the transformed inputs can be efficiently computed. This is exactly
the situation described in the preceding definition. It turns out that this definition is equivalent to
our definition of a kernel, cf. [69, Theorem 4.16] for more details.

2. A Hilbert space of functions H ⊆R
X is called a reproducing kernel Hilbert space (RKHS) if δx : H →

R, δx(f ) = f (x) is continuous for all x ∈X . This property holds if and only if H has a reproducing
kernel [69, Lemma 4.19, Theorem 4.20], so this is again equivalent to our definition.
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Two features make kernels and their RKHSs particularly interesting in the context of function interpola-
tion and approximation, as well as learning. On the one hand, they allow efficient algorithmic solutions of
such problems, often amounting to solving a linear equation system or solving a finite-dimensional con-
vex optimisation problem, cf. the next two sections. On the other hand, since a RKHS is generated from
its associated reproducing kernel, the latter determines the properties of the functions from the RKHS. In
particular, by designing appropriate kernels, one can systematically construct function spaces containing
only functions with desirable properties. For example, if X is a topological space, then a bounded and
continuous kernel k enforces that Hk contains only bounded and continuous functions [68, Lemma 4.28].
Similarly, if X is a metric space, then a Lipschitz- or more generally Hölder-continuous kernel enforces
corresponding continuity properties for its RKHS functions, cf. [30] for an in-depth discussion. Another
relevant property is invariance w.r.t. specified transformations of the input, as described in the following
result. Please refer to Appendix A for the proof of Lemma 2.5.

Lemma 2.5. Let X �= ∅ be a set, k : X ×X →R a kernel on X , and T : X →X some map. The
following two statements are equivalent.

1. k(T(x), x′) = k(x, x′) for all x, x′ ∈X .
2. f (T(x)) = f (x) for all x ∈X and f ∈ Hk.

Finally, a wide variety of kernels as well as construction techniques for kernels are available, see [68,
Chapter 4], [66] and [62, Chapter 4]. For simplicity, we will use in the following one of the most popular
choices, the Gaussian or Squared-Exponential (SE) kernel on R

d, defined by

k(x, x′) = kγ (x, x′) = exp

(
−‖x − x′‖2

2γ 2

)
, (2.1)

where γ ∈R>0 is called the length scale of the kernel. The corresponding RKHS Hk contains very
smooth functions, in particular, Hk ⊆ C∞(Rd, R), cf. [68, Section 4.4] for more details.

2.2. Kernel interpolation

Let us recall the basic setting of function interpolation with finite data. Consider two sets X , Y �= ∅
(the input and output space), a collection F ⊆YX of functions from X to Y (the space of candidate
functions), and (x1, y1), . . . , (xN , yN) ∈X ×Y (the data). We say that a function f ∈F interpolates the
data if f (xn) = yn for all n = 1, . . . , N, and the interpolation problem consists in finding (if it exists) such
a function f , potentially with additional properties. Consider now the case Y =R and F = Hk, where k
is a kernel on X . The resulting problem is usually called kernel interpolation, which is well-understood,
cf. [60, Chapter 3]. The following result summarises the elements of the corresponding theory, which
will be relevant for us.

Proposition 2.6. Let X �= ∅ be some set, k a kernel on X , and (x1, y1), . . . , (xN , yN) ∈X ×R. The kernel
interpolation problem of finding f ∈ Hk with f (xn) = yn is solvable if and only if �y ∈ im(K), where we
defined

�y =

⎛
⎜⎜⎝

y1

...

yN

⎞
⎟⎟⎠ , K =

⎛
⎜⎜⎝

k(x1, x1) · · · k(x1, xN)
...

...

k(xN , x1) · · · k(xN , xN)

⎞
⎟⎟⎠ .

Furthermore, if the interpolation problem is solvable, then f =∑N
n=1 αnk(·, xn) is the unique solution to

the optimization problem

min
f ∈Hk

f (xn)=yn ∀n

‖f ‖k

where �α ∈R
N is such that �y = K�α.
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In particular, if k is positive definite, then any interpolation problem with pairwise distinct x1, . . . , xN

is solvable, and the coefficients �α of the minimum norm interpolating function are given by �α = K−1�y.

Note that the matrix K defined above is usually called kernel matrix or Gram matrix. For the proof of
Proposition 2.6, see [61, Theorem 3.4, Corollary 3.5]. This result states that the search for an interpolat-
ing function in the (in general infinite-dimensional) space Hk boils down to solving a finite-dimensional
linear equation system, where the problem matrix is even positive semidefinite. Furthermore, we even
get the minimum norm interpolating functions, i.e., the solution in closed form of a (in general infinite-
dimensional) optimization problem over the function space Hk. Finally, if a kernel is positive definite,
then any interpolation problem (with pairwise distinct input points) can be solved in the corresponding
RKHS. This explains also the importance of positive definite kernels.

2.3. Approximation with kernels: kernel machines and kernel ridge regression

Next, we turn to function approximation with kernels, as motivated by supervised machine learning
problems. Consider some unknown function f∗ : X →R, which is only accessible through noisy samples
yn = f∗(xn) + ηn, n = 1, . . . , N, where the model additive noises η1, . . . , ηN are, for example, independent
centred random variables with finite variances. The goal is to find a good approximation �f of f∗ from
the data (x1, y1), . . . , (xN , yN). To do so, we first have to fix a space of candidate functions, for which we
choose here an RKHS, so the goal is to search for a good approximation �f ∈ Hk. One standard approach
from machine learning is regularised empirical risk minimisation (on RKHSs), which amounts to the
optimisation problem

min
f ∈Hk

1

N

N∑
n=1

� (xn, yn, f (xn)) + λ‖f ‖2
k , (2.2)

where � : X ×R×R→R≥0 is called loss function, and λ ∈R>0 regularisation parameter. Intuitively,
if at input x ∈X the “true” output is y ∈R and our approximation predicts output t ∈R, then we incur
loss �(x, y, t). The optimisation problem (2.2) contains two terms: The first term 1

N

∑N
n=1 �(xn, yn, f (xn))

is a data-fit term, measuring how good a given candidate function f ∈ Hk performs on the data set,
as measured by �. However, since we only have noisy outputs (the yn are not the real outputs f∗(xn)),
interpolating the data (x1, y1), . . . , (xN , yN) is not meaningful in general. In fact, forcing �f to exactly match
the data might result in a bad prediction of f∗, a phenomenon called overfitting in machine learning. To
avoid this, the second term λ‖f ‖2

k acts as a regularisation. The RKHS norm ‖ · ‖k is used as a complexity
measure, and the regularisation parameter λ ∈R>0 determines the strength of the regularisation. An
optimisation problem over an RKHS like (2.2) is often referred to as a kernel machine.

Finally, the loss function �, the kernel k (inducing the RKHS Hk) and the regularisation parameter
λ ∈R>0 need to be chosen. The loss function is often determined by the problem setting, or chosen for
theoretical and computational convenience, see [68, Chapters 2, 3] for many examples of loss functions
and theoretical considerations regarding their choice in concrete learning problems. The kernel k is
usually chosen based on properties of the associated RKHS Hk that are deemed appropriate for the
problem at hand. For example, if it is known or suspected that the underlying function f∗ is very smooth,
then a kernel-inducing smooth RKHS function is chosen, like the SE kernel (2.1). In practice, one usually
fixes a class of kernels up to some parameters, in this context called hyperparameters. For example, one
might decide to use the SE kernel, and then the length scale is a hyperparameter that remains to be set.
The regularisation parameter λ is also called a hyperparameter, and is usually chosen according to the
noise level (the larger the noise magnitude, the larger the regularisation parameter). This intuitive notion
will be made more precise towards the end of this section, when we discuss kernel ridge regression. In
practice, the choice of hyperparameters is very important in machine learning problems, and different
strategies like dataset-splitting, cross validation, or structural risk minimisation can be employed, cf.
[58, Chapter 4].
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In general, the candidate space Hk will be infinite-dimensional, so the question of existence and
uniqueness of a solution of (2.2), and computational tractability of this optimisation problem, becomes
very important. As another advantage of kernel methods and RKHSs, these questions actually do not
pose a problem, as assured by the following result.

Proposition 2.7. Let X �= ∅ be some set, k a kernel on X , L : RN →R≥0 a lower semicontinuous and
strictly convex function, and λ ∈R>0. For all x1, . . . , xN , the optimization problem

min
f ∈Hk

L (f (x1), . . . , f (xN)) + λ‖f ‖2
k

has a unique solution �f , which is of the form

�f (x) =
N∑

n=1

αnk(x, xn),

where α1, . . . , αN ∈R.

This result is known as the Representer Theorem, with many variants and generalisations avail-
able, for example, [64] or [68, Section 5.1, 5.2] for more details and proofs. If � is a benign loss
function (so that (t1, . . . , tN) �→ 1

N

∑N
n=1 �(xn, yn, tn) is lower semicontinuous and strictly continuous),

then Proposition 2.7 assures that a unique solution of the (in general infinite-dimensional) optimisation
problem (2.2) exists, and that it can be computed using a finite-dimensional optimisation problem.

Kernel ridge regression. In the following, we will focus on the �2- or least-squares loss function
�(x, y, t) = (y − t)2, so that (2.2) fulfils the conditions of Proposition 2.7. The resulting optimisation
problem is

min
f ∈Hk

1

N

N∑
n=1

(yn − f (xn))
2 + λ‖f ‖2

k , (2.3)

and finding a prediction �f by solving this problem is called kernel ridge regression (KRR). It turns out
that (2.3) has a closed-form solution, given as

�f (x) = �k(x)�(K + NλIN)−1�y,

where we defined

K = (k(xj, xi))i,j=1,...,N

�k(x)� = (
k(x, x1) · · · k(x, xN)

)
�y = (

y1 · · · yN

)
.

Furthermore, in contrast to a more general kernel machine like (2.2), KRR can be given a concrete prob-
abilistic interpretation. If we assume that the noise variables η1, . . . , ηN are independent and identically
distributed centred Gaussian random variables, then the KRR solution is exactly the resulting poste-
rior mean function occurring in GP regression, when using a zero prior mean function, and the kernel
as the covariance function, cf. [48]. Similarly, the KRR solution can also be linked to the maximum a
posteriori solution of Bayesian linear regression when using a Gaussian prior on the weights, cf. [58,
Section 11.3]. In both cases, the regularisation parameter is linked to the noise level.

3. IPS models and their numerical treatment

In this section, we recall some well-known examples of interacting particle systems describing the agent
dynamics on the microscopic level, as well as their corresponding mean-field limits. Furthermore, we
describe established numerical methods used to simulate these systems, both on the microscopic and
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mesoscopic levels. These example systems and the numerical methods will form the foundation for the
numerical experiments in the next section.

3.1. Example systems and their mean-field limits

Various authors have introduced and studied multiagent models on the microscopic level that model
social and political phenomena, aiming at understanding collective behaviours and self-organisation
within society [4, 28, 42, 70]. Our first example, a well-known first-order model on the microscopic
level, stems from this literature and has been used for example in opinion dynamics, cf. [69].

Let xi := xi(t) ∈R
d be the state of agent i = 1, . . . , M at time t ≥ 0. In the case of opinion dynamics,

xi represents the opinion(s) of individual i. The interaction of the agents is modelled by a function
P : Rd ×R

d →R, often called interaction function, and the dynamics are described by the first-order
ordinary differential equation system

ẋi = 1

M

M∑
j=1

P(xi, xj) (xj − xi) , i = 1, . . . , M (3.1)

starting from an initial condition xi(t0) = x0
i , i = 1, . . . , M.

For our second example, we focus on second-order systems aiming at describing swarming or flocking
behaviour. The latter refers to the aggregation behaviour of a group of similar entities, for example,
animals of the same species. For concreteness, we focus on Cucker-Smale systems, which consider only
the alignment behaviour of a group of agents [6, 22]. In the most common formulation of this model,
the state of agent i is now given by its position xi ∈R

d and velocity vi ∈R
d, evolving under the dynamics

described by

ẋi = vi

v̇i = 1

M

M∑
j=1

Hβ(xi, xj) (vj − vi) , i = 1, . . . , M (3.2)

and initial conditions xi(t0) = x0
i , vi(t0) = v0

i , i = 1, . . . , M. The function Hβ quantifies the intensity of
interaction between individuals i and j, usually varying based on their mutual distance, with the under-
lying assumption that closer individuals have a greater influence compared to those farther apart. A
common choice for the function Hβ is

Hβ(xi, xj) = 1

( 1 + ‖xi − xj‖2 )β
, (3.3)

where ‖ · ‖ is the usual Euclidean norm on R
d. Under the assumption β ≥ 0, it can be shown that the

system is forward-complete and that mass and momentum are preserved.
Simulating dynamics of this nature for large systems of individuals requires significant computa-

tional resources, and for many interesting applications, such microscopic models can indeed involve
very large populations of interacting individuals, ranging from several hundred thousand to millions.
From a mathematical modelling perspective, these challenges have been addressed within the mean
field research community, where deriving mean field equations serve as an initial step toward mitigating
computational complexity, transitioning from a microscopic description, centred on phase-space par-
ticles, to a mesoscopic level, where the focus shifts to particle distributions. Let us briefly recall the
formalisation of this.

Consider a continuous-time multiagent system with M agents, and suppose that the state space
of an individual agent is Z. For example, for the first-order model (3.1), we have Z =R

d, and for
the second-order model (3.2), we have Z =R

d ×R
d. The state of the whole system at time t ≥ 0

is then (z1(t), . . . , zM(t)) ∈ ZM, and assuming indistinguishability of the agents, this corresponds to a
time-varying empirical measure
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μM
t = 1

M

M∑
i=1

δzi(t),

where δz is the Dirac distribution centred at atom z ∈ Z. The idea is now, using a weak formulation, to
derive an evolution equation for the empirical measures, and go to the limit M → ∞, which then leads
to an evolution equation for probability measures over the state-space Z. Making this mean-field limit
precise is a classic subject, and well-posedness results are available for a broad range of models, for
example [14, 17].

Under regularity assumptions on the interaction function P and Hβ , respectively, one can compute the
mean-field limit of the microscopic models (3.1) and (3.2) introduced above. For the first-order model
(3.1), one obtains the following strong form of the evolution equation for the agent distribution

∂tμ(t, x) + ∇x ·
(

μ(t, x)
∫

P(x, y)(y − x)dμ(t, y)

)
= 0 ,

μ(0, x) = μ0(x) . (3.4)

In the case of the Cucker-Smale model (3.2), the evolution equation for the agent distribution in strong
form is

∂tμ(t, x, v) + v∇x · (μ(t, x, v)) + ∇v ·
(

μ(t, x, v)
∫ ∫

Hβ(x, y)(w − v)dμ(t, y, w)

)
= 0 ,

μ(0, x, v) = μ0(x, v) . (3.5)

Apart from allowing numerical tractability, the mean field Equations (3.4)–(3.5) can simplify the
analysis of interacting particle systems, and allow to gain insights into the macroscopic properties of
the model, such as its overall density, velocity, and direction, see, for example, [1, 9, 18]. This can be
useful for studying the emergence of global behaviour and patterns, understanding phase transitions and
analysing the stability of collective behaviours [2, 16, 29].

3.2. Numerics for the IPS models

We now turn to numerical approaches to approximate the first-order opinion dynamics model (3.1) and
the second-order alignment model (3.2), as well as their mean field counterparts (3.4) and (3.5).

In the numerical experiments of Section 4, the dynamics on the microscopic level are discretized
by a forward Euler scheme with time step �t over the time horizon [t0, T], so for (3.1), we obtain the
following discretization

xn+1
i = xn

i + �t

(
1

M

M∑
j=1

P(xn
i , xn

j )(xn
j − xn

i )

)
,

while for (3.2) we have

xn+1
i = xn

i + �t vn
i

vn+1
i = vn

i + �t

(
1

M

M∑
j=1

Hβ(xn
i , xn

j )(vn
j − vn

i )

)
,

where xn
i ≈ xi(tn), vn

i ≈ vi(tn) with tn = n �t ∈ [t0, T].
We consider now the corresponding mean field counterparts, starting with the first-order model (3.1)

and the associated mean field Equation (3.4). In order to approximate the latter, we use mean field Monte-
Carlo (MFMC) methods as developed in ref. [3]. These methods fall in the class of fast algorithms for
interacting particle systems such as direct simulation Monte-Carlo methods (DSMCs) [5, 11, 25], or
most recently Random Batch Methods [47]. For the MFMC method, we consider M̂ particles x0 ≡ {

x0
i

}
i

sampled from the initial distribution μ0(x), and we introduce the following approximation for the mean
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field dynamics (3.4)

xn+1
i = (1 − �t�Pn

i ) xn
i + �t �Pn

i
�Xn

i ,

where the quantities �Pn
i and �Xn

i are computed from a sub-sample of M̂s particles randomly selected from
the whole ensemble of M̂ sampled particles,

�Pn
i = 1

M̂s

M̂s∑
j=1

P(xn
i , xn

ij
) , �Xn

i = 1

M̂s

M̂s∑
j=1

P(xn
i , xn

ij
)

�Pn
i

xn
ij

, i = 1, . . . , M̂ .

Using this type of MC algorithm, we can reduce the cost due to the computation of the interaction
term from O(M̂2) to O(M̂s M̂). Observe that for M̂s = M̂, we obtain the explicit Euler scheme for the
original particle system (3.1) with M̂ particles.

Finally, for the implementation of the second-order mean field model (3.5), we use a two-dimensional
Lax–Friedrichs scheme [49, 50], known to be a very stable scheme with much diffusion. It is a numerical
method based on finite differences, forward in time and centred in space. For simplicity, we focus on the
case d = 1, and consider a compact space-time domain [t0, T] × [ax, bx] × [av, bv]. Rewriting (3.5) in
the compact form

μt + (g(μ) )x + ( h(μ) )v = 0 ,

where

μ := μ(t, x, v)

g(μ) := v μ(t, x, v)

h(μ) := μ(t, x, v)
∫ ∫

Hβ(x, y) (w − v) dμ(t, y, w) ,

the numerical scheme is given

μn+1
i,j = 1

4

(
μn

i+1,j + μn
i−1,j + μn

i,j+1 + μn
i,j−1

)− �t

2�x

(
gn

i+1,j − gn
i−1,j

)− �t

2�v

(
hn

i,j+1 − hn
i,j−1

)
,

where now μn
i,j ≈ μ(tn, xi, vj), and the domain [t0, T] × [ax, bx] × [av, bv] is discretized using equally

spaced points with a spacing of �t, �x, �v in the t, x, v direction, respectively, and gn
i,j, hn

i,j are the
numerical fluxes.

4. Kernel methods for IPS: Applications and numerical tests

We now present two novel applications of kernel methods to IPS, which we illustrate using numerical
experiments based on the example models and associated numerical methods outlined in the preceding
section. First, in Section 4.1, we describe the use of kernel methods for surrogate modelling in the context
of IPS, which to the best of our knowledge is a novel use case. Section 4.2 is concerned with kernel-based
learning of state-dependent features of IPS in the mean field setting, which naturally leads to mean-field
limits of kernels. This scenario and the associated theory have been introduced in ref. [31, 33], and we
provide a concise recap of the setting, the basic concepts and results from these references. We then
consider a specific class of kernels, for which we can provide more concrete results than the general
theory in the latter two references. These developments then form the basis for numerical experiments.

All experiments have been implemented in MATLAB�. For convenience, the experimental parame-
ters are summarised in Table 1.

4.1. Surrogate modelling of IPS related properties

Consider an IPS with M ∈N+ agents or particles and state-space XM, where X is the state-space of
an individual particle. Frequently one is not directly interested in a trajectory �xM : [0, T] → XM, but
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Table 1. Simulation parameters for each test case.

t0 T �t M s M̂ M̂s �x �v
Test A1 0 10 0.01 30 4 – – – –
Test A2 0 10 0.01 30 5 – – – –
Test B1 0 10 0.01 30 {2, 4, 8} – – – –
Test B2 0 10 0.01 {10, 100, 1000, ∞} 8 10,000 100 – –
Test B3 0 10 0.01 30 4 – – – –
Test B4 0 1 0.001 ∞ 4 – – 0.05 0.05

rather in a functional of this trajectory. Such a functional is usually provided as a closed-form expres-
sion, or described implicitly by a numerical algorithm. In practice, one first computes the trajectory �xM,
using methods like the ones described in Section 3.2, and then applies the functional of interest to this
trajectory. However, if the system is very large, so M >> 1, then the computation of �xM becomes very
expensive. Similarly, for a very complex functional, even the second step can be very expensive. In this
section, we propose to use kernel-based surrogate models to reduce the computational effort needed.

For illustrative purposes, we focus on simple but prototypical scenarios, which allow us to effectively
evaluate the kernel-based techniques.

Test A1. Surrogate variance for the Cucker and Smale model. First, we consider the case of a
pointwise-in-time functional of the state, i.e., we have a map FM : XM →R that is applied on a state
�x ∈ XM. Given the trajectory �xM as above, this induces a corresponding trajectory of the functional,
t �→ FM(�xM(t)). If the latter needs to be evaluated on a fine grid on [0, T], for example, for visualisa-
tion purposes, this can become very expensive, in particular, if F requires complex computations. We
therefore approximate t �→ FM(�xM(t)) by a kernel method as

F̂M(t) =
N∑

i=1

αik(t, ti) (4.1)

from samples (t1, FM(�xM(t1))), . . . , (tN , FM(�xM(tM))), where α1, . . . , αN ∈R are the coefficients deter-
mined by the chosen kernel method. Since the samples are the result of a computation and not a
measurement, we do not incur measurement errors, and hence we have an interpolation problem, for
which we use kernel interpolation, cf. Section 2.2.

Remark 4.1. A related problem is to learn the evolution of a functional from few measurements. In
this case, the data will be noisy and kernel interpolation is inappropriate, and one could use KRR, for
example. However, investigating this scenario in detail is beyond the present article.

As a concrete example, we use the microscopic Cucker-Smale model (3.2), so X = (Rd)2, for fixed initial
conditions, and for ease of visualisation, we work with d = 1. As a functional of the state, we consider
the (pointwise-in-time) variance of the velocities, which we denoted by VM. The goal is therefore to
approximate VM by

V̂M(t) =
N∑

i=1

αi kγ (t, ti), (4.2)

from data (t1, VM(t1)), . . . , (tN , VM(tN)), where we chose for concreteness the SE kernel (2.1) with γ = 1√
2
.

The underlying dynamics adhere to the second-order microscopic model (3.2) and it is discretized as
explained in Section 3.2. It involves a swarm of M = 30 agents with N = 4 measurements in time of the
true variance over a total number of 1000 time-steps. The initial input data are uniformly distributed,
namely x0

i , v0
i ∼ U ([1, 2]), for every i = 1, . . . , M. Figure 1 depicts the evolution of positions and veloc-

ities over time and shows a comparison between the exact function VM and the approximated one V̂M.
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Figure 1. Test A1. Top-left: position of particles evolving over time with dynamics (3.2). Top-right:
evolution of velocities. Bottom-left: comparison true (blue) and approximated (red) variance from (4.2).
Bottom-right: Error t → |VM − V̂M|. Dots underline the time-step where the true variance is accessible.

We observe that there is a good agreement, in fact, the error t �→ |VM − V̂M| is in the interval
[10−18, 10−2]. Please refer to Table 1 for all the simulation parameters.

Test A2. Surrogate cost in a minimisation problem. We now consider the case of a functional, which
depends on the whole trajectory, and not only pointwise-in-time. As an example, we consider an opti-
misation problem whose objective function is a functional of a trajectory of a (parameterized) IPS. For
concreteness, consider the microscopic Cucker-Smale system (3.3) with M ∈N+ agents, and we want
to optimise the integrated (over time) variance of the velocities (w.r.t. a fixed initial condition) over the
interaction parameter β ∈R (appearing in the interaction function Hβ). Furthermore, we consider the
constraint β ∈ K, where K ⊆R is compact. The corresponding minimisation problem can be formalised
as

min
β∈K

J (β) =
∫ T

0

VM(t) dt ,

s.t.

{
ẋi = vi , xi(t0) = x0

i ,

v̇i = 1
M

∑M
j=1 Hβ(xi, xj) (vj − vi) , vi(t0) = v0

i , i = 1, . . . , M .

The previous problem is a one-dimensional minimisation problem and it could be solved without diffi-
culty if the functional J is easily evaluated. However, numerical optimisation methods usually evaluate
the underlying objective functions many times. Observe that in the present situation, the objective func-
tion involves the simulation of an IPS, and then the integral over (a functional of) the whole trajectory.
For large T and M, this can become very expensive. Hence, it is reasonable to use a surrogate model
for the objective function J , which can be cheaply evaluated. We will use again kernel interpolation for
this task, applying it to the data (β1, J (β1)), . . . , (βN , J (βN)). The corresponding surrogate function is
hence given by

Ĵ (β) =
N∑

i=1

αi kγ (β, βi) ,

where for concreteness, we chose again the SE kernel with γ = 1√
2
. For our experiment, the time integral

in the definition of J is computed using the rectangular rule, and the underlying microscopic dynamics
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Figure 2. Test A2. Left: comparison true (blue) and approximated (red) running cost. Right: Error
β → |J − Ĵ |. Dots underline the points where the true variance is accessible, these correspond to the
values of β ∈ {0, 1.2, 2.55, 3.75, 4.95}.

are simulated as described in Section 3.2. The results for N = 5 are depicted in Figure 2 and we observe
again a coincidence of the surrogate function Ĵ and the true cost J . This shows that kernel approxima-
tion could be used for an efficient minimisation using surrogate models. Additionally, one could easily
seek the optimal value of β numerically by employing a gradient descent approach, since the gradi-
ent of Ĵ can be easily computed. However, these considerations are beyond the scope of the present
work.

4.2. Kernels in the mean-field limit

We now turn to kernels in the mean-field limit, which naturally arise when learning state-dependent
functionals of large IPS. We first recall this latter learning problem as described in [33], and then describe
some of the general theory of kernels in the mean-field limit, following [31, 33]. We then specialise
the theory to our concrete setting, which forms the foundation for the numerical experiments in the
remainder of this section.

Introduction. Consider a multiagent system consisting of M ∈N+ agents or particles, and assume that
the system state at each time instant t ≥ 0 is completely described by all the individual agent states xi(t) ∈
R

d, i = 1, . . . , M, at time t, so the state of the whole system at time t is just �x(t) = (xi(t))i=1,...,M ∈ (Rd)M.
We are interested in a certain state-dependent feature of the IPS. For example, in opinion dynamics, the
individual state xi(t) corresponds to the opinion (in some potentially high-dimensional opinion space) of
agent i, i = 1, . . . , M. A feature of interest could then be a measure of disagreement between the agents,
or a measure of susceptibility to adversarial external influence. Since the IPS is completely described
by its state �x(t), it appears reasonable to model such a feature as a functional on the state space, i.e., if
the system is in state �x, then the feature takes the value fM(�x), where fM : (Rd)M →Y , with Y some real
vectorspace. Simple examples of such a feature are the mean and the variance of the agent states. These
two cases are essentially trivial since the maps describing the features are given by analytical formu-
las. However, in modern applications of IPS like opinion dynamics, it can be very difficult to describe
features using first-principles modelling. Instead, we can learn them from data. To simplify the follow-
ing exposition, we consider only scalar-valued features (corresponding to Y =R in the notation from
above), since the vector-valued (or even matrix-valued) case can be covered by treating each component
separately.

We assume that potentially noisy measurements of the feature of interest are available at certain time
instances. More formally, let 0 ≤ t1 < . . . < tN , then we assume access to state snapshots �x(t1), . . . , �x(tN)
and noisy measurements of the feature at these times modelled as

yn = fM(�x(tn)) + ηn, n = 1, . . . , N,

https://doi.org/10.1017/S0956792524000706 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000706


European Journal of Applied Mathematics 13

where η1, . . . , ηN is additive noise. We can treat this as a standard supervised learning problem, with
data set (�x(t1), y1), . . . , (�x(tN), yN). If we want to use a kernel method like (2.2), we need a kernel of the
form kM : (Rd)M × (Rd)M →R, and the resulting approximation of the map describing the feature then
becomes

�fM(�x) =
N∑

n=1

αnkM(�x, �x(tn)).

In particular, if we have at any time t ≥ 0 a state snapshot �x(t), then we can predict the feature at this
time by �fM(�x(t)). Moreover, if we have a model of the IPS dynamics, then we can predict the evolution
of the feature by t �→ �fM(�x(t)).

We consider now the case of a very large MAS, i.e., M >> 1. As described in Section 3 for concrete
examples, the modelling, simulation and prediction of the dynamics in this setting can be made tractable
by going to the kinetic level, for instance using the mean-field limit, corresponding to the limit M → ∞.
A key modelling assumption for this is the homogeneity of agents, i.e., the agents are indistinguishable.
Under this condition, it appears reasonable to assume that also the feature of interest does not depend
on the order of the agents, and standard results like [15, Lemma 1.2] suggest that also the maps fM have
a mean-field limit. But what happens to the learning problems in the limit M → ∞? Recall that we need
kernels of the form kM : (Rd)M × (Rd)M →R, so we have to consider the case of a sequence of kernels
with inputs tuples of increasing length. It turns out that we can formulate an appropriate mean-field limit
of kernels and their RKHSs, and that the resulting theory can be used for the learning problems.

Mean-field limit of functions and kernels. We first recall some preliminaries from measure theory.
Let (X, dX) be a compact metric space and denote by P(X) the set of Borel probability measures on X,
which we endow with the topology of weak convergence. It is well-known that this topology can be
metrized by the Kantorowich–Rubinstein metric

dKR(μ1, μ2) = sup

{∫
X

φ(x)d(μ1 − μ2)(x) | φ : X →R is 1-Lipschitz
}

. (4.3)

Since X is separable as a compact metric space, this metric coincides with the 1-Wasserstein metric.
Furthermore, since X is compact, also the metric space (P(X), dKR) is compact. Given �x ∈ XM, we denote
the i-th component of �x by xi, and we define the empirical measure with atoms in �x by μ̂[�x] = 1

M

∑M
i=1 δxi ,

where δx denotes the Dirac measure centred at x ∈ X. It is well-known that the empirical measures are
dense in P(X) w.r.t. the Kantorowich–Rubinstein metric. For more details and background, we refer to
[28, Chapter 11].

The following definition makes precise the intuitive concept of a mean-field limit of a sequence of
functions with an increasing limit of arguments.

Definition 4.2. Consider functions fM : XM →R, M ∈N+ and f : P(X) →R. We say that f is the mean-
field limit of (fM)M, or that (fM)M converges in mean field to f , if

lim
M→∞

sup
�x∈XM

|fM(�x) − f (μ̂[�x])| = 0.

This notion originated in the literature on mean field games [15], and is now common in the context
of mean-field limits of IPS, cf. [36] and [32], for examples, in continuous and discrete-time, respectively.

The next well-known result, cf. [15, Lemma 1.2], ensures the existence of a (subsequential) mean-
field limit of functions in the sense of Definition 4.2. For M ∈N+, denote by SM the set of permutations
on {1, . . . , M}, and for a tuple �x ∈ XM and permutation σ ∈ SM, define σ�x = (xσ (1), . . . , xσ (M)).

Proposition 4.3. Let fM : XM →R, M ∈N+, be a sequence of functions fulfilling the following
conditions.

1. (Permutation-invariance) For all M ∈N+, σ ∈ SM and �x ∈ XM, we have fM(σ�x) = fM(�x).
2. (Uniform boundedness) There exists Bf ∈R≥0 such that for all M ∈N+, �x ∈ XM, we have |fM(�x)| ≤ Bf .
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3. (Uniform Lipschitz continuity) There exists Lf ∈R≥0 such that for all M ∈N+, �x, �x′ ∈ XM we have

|fM(�x) − fM(�x′)| ≤ Lf dKR(μ̂[�x], μ̂[�x′]).

Then there exists a Lipschitz continuous function f : P(X) →R and a subsequence (fM�
)� such that

lim
�→∞

sup
�x∈XM�

|fM�
(�x) − f (μ̂[�x])| = 0.

This result can be used to justify the assumption that a mean-field limit map exists to model a state-
dependent feature at the kinetic level. These developments can be extended to the case of kernels, as has
been done first in [31].

Definition 4.4. Consider bivariate functions κM : XM × XM →R, M ∈N+ and κ : XM × XM →R. We
say that κ is the mean-field limit of (κM)M, or that (κM)M converges in mean field to κ , if

lim
M→∞

sup
�x,�x′∈XM

|κM(�x, �x′) − κ(μ̂[�x], μ̂[�x′])| = 0.

For the next result, define the metric

d2
KR((μ, ν), (μ′, ν ′)) = dKR(μ, μ′) + dKR(ν, ν ′)

on P(X) ×P(X), which is one metric for the product topology, and hence (P(X) ×P(X), d2
KR) is again

a compact metric space.

Proposition 4.5. Let kM : XM × XM →R, M ∈N+, be a sequence of kernels that fulfils the following
conditions.

1. (Permutation-invariance) For all M ∈N+, σ ∈ SM and �x, �x′ ∈ XM, we have kM(σ�x, �x′) = kM(�x, �x′).
2. (Uniform boundedness) There exists Bk ∈R≥0 such that for all M ∈N+, �x, �x′ ∈ XM, we have

|kM(�x, �x′)| ≤ Bf .
3. (Uniform Lipschitz continuity) There exists Lk ∈R≥0 such that for all M ∈N+, �x, �x′, �y, �y′ ∈ XM we

have

|kM(�x, �x′) − kM(�y, �y′)| ≤ Lkd
2
KR

(
(μ̂[�x], μ̂[�x′]), (μ̂[�y], μ̂[�y′])

)
.

Then there exists a Lipschitz continuous kernel k on P(X) and a subsequence (kM�
)� such that

lim
�→∞

sup
�x,�x′∈XM�

|κM�
(�x, �x′) − κ(μ̂[�x], μ̂[�x′])| = 0.

In the preceding result, since kM�
and k are all kernels, they come with their unique RKHSs. Importantly,

the corresponding RKHS functions inherit from their reproducing kernels properties that are relevant for
the mean-field limit of functions, e.g., the permutation-invariance, cf. Lemma 2.5. Moreover, the mean-
field limit of the kernels induces a certain limiting behaviour inside the RKHSs. Every function from
the RKHS Hk arises as a mean-field limit of functions from the RKHSs corresponding to the kernels kM,
and conversely, every uniformly norm bounded sequence of functions from the RKHSs corresponding
to the kernels kM has a subsequence that converges in mean field to a function contained in Hk, cf. [33,
Theorem 2.3] for details.

Mean-field limit of the kernel learning problem. All the preceding discussion suggests that we can use
such kernels to learn feature functionals in the mean-field limit context. For this, we have to connect the
learning problems for finite M ∈N+ and for the mean-field limit. This can be done with the following
mean field variant of the Representer Theorem, cf. [33, Theorem 3.3, Remark 3.4]. To simplify the
exposition, assume from now on the situation of Proposition 4.5, relabel the convergent subsequence
again by M, and define HM = HkM for all M ∈N+.

Proposition 4.6. Let N ∈N+, μ1, . . . , μN ∈P(X), and for n = 1, . . . , N consider �x[M]
n ∈ XM, M ∈N+,

such that μ̂[�x[M]
n ]

dKR−→ μn for M → ∞. Let L : RN →R≥0 be continuous and strictly convex and λ > 0.
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For each M ∈N+, consider the problem

min
f ∈HM

L(f (�x[M]
1 ), . . . , f (�x[M]

N )) + λ‖f ‖2
M, (4.4)

as well as the problem

min
f ∈Hk

L (f (μ1), . . . , f (μN)) + λ‖f ‖2
k . (4.5)

Then for each M ∈N+, problem (4.4) has a unique solution �fM, which is of the form

�fM =
N∑

n=1

α[M]
n kM(·, �x[M]

n ) ∈ HM

with α
[M]
1 , . . . , α[M]

N ∈R, and problem (4.5) has a unique solution �f , which is of the form

�f =
N∑

n=1

αnk(·, μn) ∈ Hk

with α1, . . . , αN ∈R. Furthermore, there exists a subsequence (�fMj )j such that �fMj → �f for j → ∞ in mean
field, and

L
(�fMj (�x[Mj]

1 ), . . . , �fMj (�x[Mj]
N )

)
+ λ‖�fMj‖2

Mj
→ L

(�f (μ1), . . . , �f (μN)
)

+ λ‖�f‖2
k .

for j → ∞.

Kernel ridge regression. We can immediately specialise this result to the case of KRR. Let
(μ1, y1), . . . , (μN , yN) ∈P(X) ×R, (�x[M]

1 , y[M]
1 ), . . . , (�x[M]

N , y[M]
N ) ∈ XM ×R, M ∈N+, such that for all n =

1, . . . , N, it holds that μ̂[�x[M]
n ]

dKR−→ μn for M → ∞. Consider the KRR problems

min
f ∈HM

1

N

N∑
n=1

(
f (�x[M]

n ) − y[M]
n

)2 + λ‖f ‖2
M, M ∈N+ (4.6)

min
f ∈Hk

1

N

N∑
n=1

(f (μn) − yn)
2 + λ‖f ‖2

k . (4.7)

where λ ∈R>0 is the regularisation parameter. The problems have unique solutions

�fM(�x) = �kM(�x)�(KM + NλIN)−1�yM, M ∈N+
�f (μ) = �k(μ)�(K + NλIN)−1�y,

where we defined for M ∈N+

KM = (kM(�x[M]
j , x[M]

i ))i,j=1,...,N

�kM(x)� = (
kM(x, x[M]

1 ) · · · kM(x, x[M]
N )
)

�y�
N = (

y[M]
1 · · · y[M]

N

)
.

and

K = (k(μj, μi))i,j=1,...,N

�k(μ)� = (
k(μ, μ1) · · · k(μ, μN)

)
�y� = (

y1 · · · yN

)
.
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According to Proposition 4.6, there exists a strictly increasing sequence (Mj)j such that �fMj → �f in mean
field, and

1

N

N∑
n=1

(�fMj (�x[Mj]
n ) − y[Mj]

n

)2 + λ‖�fMj‖2
Mj

→ 1

N

N∑
n=1

(�f (μn) − yn

)2 + λ‖�f‖2
k

for j → ∞.

A concrete example of mean field kernels. As a concrete example of kernels in the mean-field limit,
we use the double-sum kernel, cf. [31, Section 5.2]. In contrast to the latter reference, we proceed
with a more elementary approach. Let k0 be a bounded kernel on X, so there exists B0 ∈R≥0 such that
|k0(x, x′)| ≤ B0 for all x, x′ ∈ X. Define now k : P(X) ×P(X) →R by

k(μ, ν) =
∫

X

∫
X

k0(x, x′)dμ(x)dν(x′). (4.8)

Since μ, ν ∈P(X) are finite measures and k0 is bounded, the double integral above is well-defined.
Furthermore, we have

k(μ, ν) =
∫

X

∫
X

k0(x, x′)dμ(x)dν(x′)

=
∫

X

∫
X

〈k0(·, x′), k0(·, x)〉k0 dμ(x)dν(x′)

=
〈 ∫

X

k0(·, x′)dν(x),
∫

X

k0(·, x)dμ(x)
〉

k0

,

where the integrals in the last line are in the sense of Bochner, cf. [67, Theorem 1], and we used in the
last step that the scalar product as a continuous linear functional commutes with the Bochner integral.
The above equality shows that k is indeed a kernel on P(X), cf. Remark 2.3.

For M ∈N+, define kM : XM × XM →R by

kM(�x, �x′) = 1

M2

M∑
i,j=1

k0(xi, x′
j). (4.9)

These bivariate maps are called double-sum kernels, and it is well-known that they are indeed kernels,
and permutation-invariant. Furthermore, since for M ∈N+ and �x, �x′ ∈ XM we have

|kM(�x, �x′)| =
∣∣∣∣∣ 1

M2

M∑
i,j=1

k0(xi, x′
j)

∣∣∣∣∣≤ 1

M2

M∑
i,j=1

|k0(xi, x′
j)| ≤ B0,

the kernels kM are uniformly bounded in the sense of Proposition 4.5.
Observe now that for all M ∈N+ and �x, �x′ ∈ XM, we have

k(μ̂[�x], μ̂[�x′]) =
∫

X

∫
X

k0(x, x′)dμ̂[�x](x)dμ̂[�x′](x′)

= 1

M

M∑
i=1

1

M

M∑
j=1

k(xi, x′
j)

= kM(�x, �x′),

which implies that
lim

M→∞
sup

�x,�x′∈XM

|kM(�x, �x′) − k(μ̂[�x], μ̂[�x′])| = 0,

so the kernels kM converge to k in mean field in the sense of Definition 4.4.
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Remark 4.7. The preceding developments work for any measurable space (X, AX), where P(X) is now
the set of probability measures defined on this measurable space, and any A⊗A-B(R)-measurable
(here B(R) is the Borel σ -algebra on R) and bounded kernel k0 : X × X →R.

Note that while we established the mean field convergence of kM directly, without relying on
Proposition 4.5, we still need all the assumptions of this latter result for the mean-field limit vari-
ant of the Representer Theorem stated as Proposition 4.6, cf. the corresponding proofs in [33]. The
only missing property for the kernels kM is uniform Lipschitz continuity. For a particular and broad
class of kernels, the following result provides a sufficient condition for this property. Please refer
to Appendix A for the proof of the following proposition. To the best of our knowledge, this result
is new.

Proposition 4.8. LetX be a normed vectorspace, X ⊆X a nonempty Borel-measurable subset, φ : X →
R a L-Lipschitz continuous function, define κ0 : X × X →R by κ0(x, x′) = φ(‖x − x′‖), and for M ∈N+
define κM(�x, �x′) = 1

M2

∑M
i,j=1 κ0(�xi, �x′

j). We then have for all M ∈N+, �x, �x′, �y, �y′ ∈ XM that

|κM(�x, �x′) − κM(�y, �y′)| ≤ L d2
KR

(
(μ̂[�x], μ̂[�x′]), (μ̂[�y], μ̂[�y′])

)
.

Let’s consider now X ⊆H a nonempty subset of a Hilbert space. A kernel k0 on X of the form k0(x, x′) =
φ(‖x − x′‖) is called a radial kernel, or a radial basis function (kernel). In the following, we consider
H=R

d, X ⊆R
d a nonempty compact subset, and choose k0 as the Gaussian kernel, so in this case,

φ(s) = exp ( − s2

2γ 2 ). Observe that this φ is bounded, and (globally) Lipschitz continuous with Lipschitz
bound given by maxs∈R |φ ′(s)|, so the resulting sequence of double-sum kernel fulfils all conditions from
Proposition 4.5.

Remark 4.9. We would like to point out the following delicate aspects of the preceding developments.
By direct calculation, we have established the mean field convergence of the double-sum kernels kM,
as defined in (4.9), to k given by (4.8). Furthermore, the sequence of double-sum kernels based on the
Gaussian kernel fulfils all the conditions of Proposition 4.5, so there exists a mean-field limit kernel
that is bounded and Lipschitz continuous, and a subsequence of the double-sum kernel sequence, that
converges in mean field to this latter kernel. However, we did not prove that this kernel is (4.8). If we had
uniqueness of the mean-field limit kernel in Proposition 4.5, then this would trivially follow. Investigation
of this uniqueness question is beyond the scope of the present work. However, it is clear that (4.8) is
bounded, and by using mutatis mutandis the arguments from the proof of Proposition 4.8, one can
verify that (4.8) is Lipschitz continuous. This means that (4.8) fulfils the properties from the limit kernel
in Proposition 4.5.

Experimental setup. Below, we conduct numerical experiments concerning mean field kernel meth-
ods, particularly emphasising learning tasks within large-scale IPS. These tests numerically validate the
theoretical insights presented in this section. In particular, we focus on the kernel approximation of the
variance vM : (Rd)M →R and the skewness sM : (Rd)M →R of the agent system �x = (xi)i=1,...,M ∈ (Rd)M,
i.e.

vM(�x) = 1

M

M∑
i=1

‖xi − mM(�x)‖2 ,

sM(�x) = 1

M

M∑
i=1

(
‖xi − mM(�x)‖√

vM(�x)

)3

,

where mM(�x) = 1
M

∑M
i=1 xi is the mean of the agents and ‖ · ‖ denotes the usual Euclidean norm in R

d.
The mean-field limit of those functions is v∞, s∞ : P(Rd) →R

d given by
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Figure 3. Test B1. Inference problem for the microscopic dynamics (3.1). Evolution in time of the
errors |vM − v̂M| (left column) and |sM − ŝM| (right column) for different number of measurements
N ∈ {2 (top row), 4 (middle row), 8 (bottom row)}. The known data points are indicated as red dots.

v∞(μ) =
∫
Rd

‖x − m∞(μ)‖2 μ(x)dx ,

s∞(μ) =
∫
Rd

(‖x − m∞(μ)‖√
v∞(μ)

)3

μ(x)dx ,

where the mean is m∞(μ) = ∫
Rd x dμ(x). Please refer to Table 1 for simulation parameters of all the

numerical tests, and to Section 3.2 for the models’ discretization approaches.
Regarding the choice of the kernel, in the following numerical tests, we consider the double-sum

kernel kM in equation (4.9), and the correspondent mean-field limit kernel k in Equation (4.8). In both
cases, we take k0 = kγ given by (2.1).

Test B1. Microscopic first-order model. In this section, we present numerical tests for the opinion
formation model (3.1). The interaction between the agents is described by P, which is given by

P(xi, xj) = ‖xi − xj‖2 . (4.10)

P promotes mutual attraction among the agents as it consistently remains non-negative. The initial con-
ditions x0

i for the agents i = 1, . . . , M, are randomly chosen with uniform distribution in the interval
[1, 2], i.e., �x(t0) ∼ U ([1, 2])M. For the given function P, it is known that the dynamics xi(t) ∈ [1, 2] for all
t ≥ 0 due to the non-negativity of the interaction rules. We consider first both functionals vM and sM in
the noise-free case.

The numerical results presented in Figure 3 illustrate the inference of vM and sM under varying values
of measurements N ∈ {2, 4, 8}, with M = 30 agents. These results underscore the high approximation
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Table 2. Test B1. L∞ error over time for different number of
measurements N.

Variance Skewness
M N ‖vM − v̂M‖∞ ‖sM − ŝM‖∞
30 2 1.60e-2 5.42e-2
30 4 4.42e-3 4.17e-3
30 8 7.07e-5 1.37e-4

Figure 4. Test B1. Inference problem for the microscopic dynamics (3.1) with noisy measurements.
Left: comparison between true (blue) and approximated (red) variance. Right: error |vM − v̂M|. Dots
underline the values in time where the (noisy) variance is accessible.

quality of the RKHS, even when the number of measurements is rather low. The graphical representa-
tion portrays the evolution in time of the errors |vM − v̂M| and |sM − ŝM|, indicating a small discrepancy
between the inferred functionals v̂M(�x(t)), ŝM(�x(t)), derived from solving the interpolation problem pre-
sented in Proposition 2.6, and the true solutions vM(�x(t)), sM(�x(t)) across all time points t ≥ 0. This
alignment is further substantiated by the numerical data in Table 2. Notably, as the number of known
data points N increases, the error associated with approximated variance and skewness diminishes.

As an additional scenario, we introduce random noise perturbations η to the evaluations, as described
in Section 2.3. Maintaining the same initial condition �x(t0) ∼ U ([1, 2])M, we now explore the approxima-
tion of vM and sM in the presence of noise. Specifically, we consider ηn that follows a normal distribution
ηn ∼N (0, σ 2), for i = 1, . . . , N, with σ 2 = 0.01. In this noisy scenario, we solve the minimisation
problem (2.3) with λ = √

σ 2.
Figure 4 illustrates the estimation of vM and sM under the condition of N = 4 measurements and

a swarm size of M = 30 agents. Even with the presence of noise, these results demonstrate that the
unknown functional can be successfully approximated. Notably, the approximation exhibits similar
behaviour to the true function even in the presence of noise.

Test B2. Mean field first-order model. In this section, we explore the same opinion formation model,
examining it first at the microscopic level while gradually increasing the number of particles, and sub-
sequently, in the context of the mean-field limit described by Equation (3.4). The interaction between
the agents P is still given by (4.10). As initial conditions of the agents, in the microscopic model (3.1),
we consider a uniform distribution U ([1, 2]). In other words, we set �x(t0) ∼ U ([1, 2])M, which means the
parameter space is defined again as [1, 2] ⊂R.

The numerical results presented in Figure 5 demonstrate the estimation error of vM(�x(t)) and sM(�x(t))
for N = 8 measurements and various values of M, where M is chosen from the set {10, 100, 1000}. We
observe that the quality of approximation remains consistent across different values of the agent popu-
lation, confirming the fact that there exists a well-defined mean-field limit. Consequently, the inference
problem appears to be independent of the number of agents, and these findings are further substan-
tiated by the numerical values provided in Table 3. The inference problem is addressed at the mean
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Table 3. Test B2. L∞ error over time for increasing number of agents M, including the
mean field limit (last row).

Variance Skewness
M N ‖vM − v̂M‖∞ ‖sM − ŝM‖∞
10 8 1.26e-5 2.33e-4
100 8 1.43e-5 4.22e-4
1000 8 1.22e-5 6.71e-4
∞ 8 3.21e-5 1.71e-4

Figure 5. Test B2. Evolution in time of particles and density (column 1) for the microscopic (3.1) (rows
1-2-3) and mean field (3.4) (row 4) dynamics. Evolution in time of the error |vM − v̂M| (column 2)
and |sM − ŝM| (column 3) for different number of agents M ∈ {10 (row 1), 100 (row 2), 1000 (row 3), ∞
(row 4)}. The known data points are indicated as red dots.
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Figure 6. Test B2. Approximation problem for the mean-field dynamics (3.4) with noisy measurements
of variance evolution. Left: comparison between true (blue) and approximated (red) variance. Right:
error |v∞ − v̂∞|. Dots underline the values in time where the (noisy) variance is accessible.

field level, employing an MC simulation method as explained in the Section 3.2. We choose a sub-
sample of M̂s = 100, and a sample of M̂ = 10, 000 particles for the approximation of the density, we
then reconstruct the evolution in the phase space by a histogram approach. For the initial condition, we
adopt μ0(x) = χ[1,2](x) that is the indicator function of the interval [a, b], i.e. the function that equals 1
when x is within the interval [a, b] and equals 0 when x is outside that interval. In a manner consistent
with our approach, we consider a set of N = 8 measurements, clearly marked as red dots in Figure 5.
At these specific measurement times, the complete state μ(ti, ·) is recorded. Both functionals for vari-
ance and skewness, denoted as v∞ and s∞, respectively, are assessed at these measurement times ti for
i = 1, . . . , N. The error for the mean field case (see Figure 5, row 4) is of the same order as the scenario
with a finite number of agents.

As for the microscopic model in Test B1, we investigate here the noisy scenario also for the mean
field case. We introduce random noise perturbations η into the variance evaluations

yn = v∞(μ(tn)) + ηn, n = 1, . . . , N,

and we solve the approximation problem as detailed in the mean-field kernel ridge regression paragraph
in Section 4.2. We still consider μ0(x) = χ[1,2](x) as initial condition and we examine the approximation
of v∞ in the presence of noise. Here, ηn is assumed again to follow a normal distribution, specifically
ηn ∼N (0, σ 2), for i = 1, . . . , N, with σ 2 set to 0.01. In this noisy setting, we tackle the minimisation
problem (4.7) using λ = √

σ 2. Figure 6 showcases the estimation of v∞ under the condition of having
N = 8 noisy measurements of the system variance. Despite the presence of noise, the results indicate
that the unknown functional can still be approximated effectively.

Test B3. Microscopic second-order model. In this section, we conduct numerical experiments to
examine the second-order model (3.2) and the corresponding mean field PDE (3.5). The agent interac-
tions, as represented by the parameter Hβ , are governed by the Cucker–Smale function (3.3) with β = 2.
In this model, the agents in the swarm align their velocities with the average velocity of their nearby
neighbours, while they are also attracted to their neighbours, which helps to maintain group cohesion.
In the context of this model, our primary focus is on approximating the velocity variance in a noise-
free scenario, denoted as vM. Both initial position and velocity conditions are randomly selected from a
uniform distribution within the interval [1, 2], specifically as �x(t0), �v(t0) ∼ U ([1, 2])M.

The numerical results displayed in Figure 7 demonstrate the inference process for a case with
N = 4 measurements and a swarm consisting of M = 30 agents. These results highlight the remarkable
accuracy of the RKHS approach, even when applied to a second-order microscopic system.

Test B4. Mean field second-order model. We now address the inference problem at the mean field
level, using the two-dimensional Lax–Friedrichs scheme [50], as elaborated in Section 3.2. We consider
Dirichlet’s initial and Neumann’s final boundary conditions. For the discretization of both x and y spaces,
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Figure 7. Test B3. Inference problem for the second-order microscopic dynamics (3.2). Left: compar-
ison true (blue) and approximated (red) variance. Right: error |vM − v̂M|. Dots underline the values in
time where the true variance is accessible.

Figure 8. Test B4. Three snapshot in time t ∈ {0, 0.1, 1} of the density ν(t, x, v) evolution for the mean
field model (3.5).

Figure 9. Test B4. Inference problem for the second-order mean field dynamics (3.5). Left: comparison
of true (blue) and approximated (red) variance. Right: error |v∞ − v̂∞|. Dots underline the values in time
where the true variance is accessible.

we take �x = �v = 0.05 in the interval [0, 3]. For time, in order to respect the Courant–Friedrichs–Lewy
(CFL) stability condition, we take �t = 0.001 in [0 1].

In Figure 8, we provide three snapshots illustrating the density evolution over time. As initial condi-
tion, we opt for μ0(x, v) = χ[1,2](x) × χ[1,2](v), depicted in the first plot on the left. As expected from the
model, the density is seen moving upwards in the x direction while concentrating in the v dimension,
reflecting alignment behaviour. The observed diffusion is a result of the chosen numerical scheme.

Similar to the scenario with a finite number of agents, Figure 9 shows that no discernible differences
exist between the kernel-based estimated variance and the actual variance.

5. Conclusion and outlook

In this paper, we have outlined recent and novel kernel-based approaches for numerical problems involv-
ing IPS. After providing a self-contained presentation of background on kernels and kernel methods, as
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well as IPS and their numerical treatment, we presented interesting problem classes amenable to kernel
methods. First, we investigated the usage of kernel methods for surrogate modelling in the context of IPS,
which can provide a route to reducing the computational cost of properties of IPS. Our initial numerical
results indicate that this could be a promising avenue for future research, in particular in the context
of large-scale IPS. Second, we conducted the first numerical experiments on kernels in the mean-field
limit, a recent development started in ref. [31, 33]. The numerical experiments show that this approach
can indeed connect learning and approximation problems on the microscopic and mesoscopic levels. In
future work, we plan to explore the learning rates of kernel approximations in a mean-field context and
conduct a numerical error analysis.
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A. Additional material

Proof of Lemma 2.5

Let x, x′ ∈X be arbitrary, then k(·, x′) ∈ Hk, and hence the second statement implies that k(T(x), x′) =
k(·, x′)(T(x)) = k(·, x′)(x) = k(x, x′). Conversely, observe that by symmetry of k we have for all x, x′ ∈
X that k(x, T(x′)) = k(T(x′), x) = k(x′, x) = k(x, x′). Since this holds for all x, x′ ∈X , we find that
k(·, T(x′)) = k(·, x′) as an element of Hk, so we get for all f ∈ Hk and x ∈X that f (T(x)) = 〈f , k(·, T(x))〉k =
〈f , k(·, x)〉k = f (x) by the reproducing property of k.

Proof of Proposition 4.8

Without loss of generality, we can assume that L ∈R>0. Define for x ∈ X the function ϕx : X →R by
ϕx(x′) = L−1φ(‖x′ − x‖), and observe that since that for all x′, y′ ∈ X

|ϕx(x
′) − ϕx(y

′)| = L−1|φ(‖x′ − x‖) − φ(‖y′ − x‖)|
≤ L−1L|‖x′ − x‖ − ‖y′ − x‖|
≤ ‖(x′ − x) − (y′ − x)‖
= ‖x′ − y′‖

the function ϕx is 1-Lipschitz continuous.
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Let now M ∈N+, �x, �x′, �y, �y′ ∈ XM, then we get

|κM(�x, �x′) − κM(�y, �y′)| =
∣∣∣∣∣ 1

M2

M∑
i,j=1

κ0(xi, x′
j) − 1

M2

M∑
i,j=1

κ0(yi, y′
j)

∣∣∣∣∣
=
∣∣∣∣∣ 1

M

M∑
i=1

(
1

M

M∑
j=1

φ(‖xi − x′
j‖) − 1

M

M∑
j=1

φ(‖yi − y′
j‖)

)∣∣∣∣∣
≤
∣∣∣∣∣ 1

M

M∑
i=1

(
1

M

M∑
j=1

φ(‖xi − x′
j‖) − 1

M

M∑
j=1

φ(‖xi − y′
j‖)

)∣∣∣∣∣
+
∣∣∣∣∣ 1

M

M∑
i=1

(
1

M

M∑
j=1

φ(‖xi − y′
j‖) − 1

M

M∑
j=1

φ(‖yi − y′
j‖)

)∣∣∣∣∣
= L

∣∣∣∣∣ 1

M

M∑
i=1

(
1

M

M∑
j=1

ϕxi (x
′
j) − 1

M

M∑
j=1

ϕxi (y
′
j)

)∣∣∣∣∣
+ L

∣∣∣∣∣ 1

M

M∑
j=1

(
1

M

M∑
i=1

ϕy′
j
(xi) − 1

M

M∑
i=1

ϕy′
j
(yi)

)∣∣∣∣∣
≤ L

1

M

M∑
i=1

∣∣∣∣∣ 1

M

M∑
j=1

ϕxi (x
′
j) − 1

M

M∑
j=1

ϕxi (y
′
j)

∣∣∣∣∣
+ L

1

M

M∑
j=1

∣∣∣∣∣ 1

M

M∑
i=1

ϕy′
j
(xi) − 1

M

M∑
i=1

ϕy′
j
(yi)

∣∣∣∣∣ .

Observe now that for all Borel-measurable f : X →R, we have

1

M

M∑
i=1

f (xi) =
∫

X

f (x)dμ̂[�x](x),

so we can continue with

|κM(�x, �x′) − κM(�y, �y′)| ≤ L
1

M

M∑
i=1

∣∣∣∣
∫

X

ϕxi (x
′)dμ̂[�x′](x′) −

∫
X

ϕxi (y
′)dμ̂[�y′](y′)

∣∣∣∣
+ L

1

M

M∑
j=1

∣∣∣∣
∫

X

ϕy′
j
(x)dμ̂[�x](x) −

∫
X

ϕy′
j
(y)dμ̂[�y](y)

∣∣∣∣
≤ L

1

M

M∑
i=1

sup
f :X→R

f 1-Lipschitz

∣∣∣∣
∫

X

f (x′)dμ̂[�x′](x′) −
∫

X

f (y′)dμ̂[�y′](y′)

∣∣∣∣
+ L

1

M

M∑
j=1

sup
f :X→R

f 1-Lipschitz

∣∣∣∣
∫

X

f (x)dμ̂[�x](x) −
∫

X

f (y)dμ̂[�y](y)

∣∣∣∣
= L

1

M

M∑
i=1

dKR(μ̂[�x′], μ̂[�y′]) + L
1

M

M∑
j=1

dKR(μ̂[�x], μ̂[�y])

= L(dKR(μ̂[�x′], μ̂[�y′]) + dKR(μ̂[�x], μ̂[�y]))

= Ld2
KR

(
(μ̂[�x], μ̂[�x′]), (μ̂[�y], μ̂[�y′])

)
,

establishing the claim.
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