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1. Introduction
The aim of this paper is to give a solution to three conjectures from

Euclidean geometry concerning the location of the Mittenpunkt. The first
two are solved without dependence on computer technology and with only a
moderate amount of calculations. They were initially tackled by heavy
calculations using computer algebra systems.

For unknown reasons, the remarkable Mittenpunkt M is a somewhat
neglected triangle centre, in spite of its intrinsic importance and usefulness
in triangle geometry [1]. In the comprehensive Kimberling's encyclopedia of
triangle centers (ETC) [2], it is denoted by . The centre, discovered by the
German mathematician Christian Heinrich von Nagel (1803-1882) in 1836,
is the point of concurrency of the lines passing through the centres of the
excircles and the corresponding midpoints of the sides of the triangle. Hence
its name Mittenpunkt. By definition, it is the symmedian point of the
excentral triangle of . For many more properties of the Mittenpunkt the
interested reader is referred to [3].
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The incentre  of a triangle with orthocentre  and centroid  lies in the
disc with diameter , the well-known orthocentroidal disc  [4].
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The Brocard disc of a triangle  is the disc  with diameter
where  and  are the circumcentre and the symmedian point, i.e. the point
of concurrence of the symmedians of , respectively, see Figure 1. It is
named after the French army officer Henri Brocard (1845-1922). Along with
Lemoine and Neuberg, he is widely considered as one of the founders of the
modern geometry of the triangle. A large part of it is consequently named
‘Brocard geometry’ and includes the two points  and  which bear his
name. These are the points in  with the following equal angle property:
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 and .∠Ω1AB = ∠Ω1BC = ∠Ω1CA ∠Ω2BA = ∠Ω2CB = ∠Ω2AC
The two angles formed by  and  are equal and this common angle is
the Brocard angle  of , see [3], [5], [6].
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We call the disc on diameter  the circumcentroidal disc and denote it
by . The Parry circle [3] is the circumcircle of triangle , where
and  are the isodynamic points, denoted in ETC by  and ,
respectively. We denote the corresponding Parry disc by .
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In [7], Graeme Taylor poses three conjectures about the location of the
Mittenpunkt.

Conjectures:
1. The Mittenpunkt is constrained to the Brocard disc .�OK

2. The Mittenpunkt is constrained to the circumcentroidal disc .�OG

3. The Mittenpunkt cannot lie in the Parry disc .�P
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FIGURE 1: Brocard disc , Mittenpunkt  and the Incentre �OK M I

The computer proof of the second conjecture given in [7] uses Maple to
deal with the unwieldy expressions which end up in a nasty inequality. The
result for the Mittenpunkt is very nice but the geometer is left unsatisfied
when he himself cannot confirm the calculations and must leave them to be
confirmed by Mathematica.

In this paper we will present proof of the properties concerning the
Mittenpunkt , the Brocard disc  and the circumcentroidal disc . The
first two geometric objects have been known for more than a century, but
the relationship between them is new, showing that the subject of Euclidean
geometry is still vibrant. A posteriori, from the first conjecture, the incentre
 also lies in the Brocard disc [8], since the centres ,  and  are collinear

(in that order) [9]. Recently, in [10], the term ‘symmedicentroidal disc’ is
coined for the disc  with diameter  and it was shown that the incentre
is additionally constrained to this disc.
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2. Möbius' ‘Der barycentrische Calcul’
To prove that  lies in the Brocard disc  and the circumcentroidal

disc , we will show that the angles  and  are obtuse.
Hence it will be sufficient to prove the inequalities

M �OK
�OG ∠OMK ∠OMG

OK2 ≥ OM2 + MK2 (1)
and

OG2 ≥ OM2 + MG2. (2)
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 FIGURE 2: Der barycentrische Calcul

Since the inequalities are hard to access by Euclidean geometry, in order to
make them more tractable, we will make use of the barycentric calculus
developed by the German mathematician and astronomer August Ferdinand
Möbius (1790-1868) in his 1827 book Der barycentrische Calcul. Möbius is
famous for his surface with just one side, called the Möbius strip, but he also
made other major contributions to mathematics. Named after him are
Möbius transformations in analysis, the Möbius function and the Möbius
inversion formula in number theory. However, of all Möbius’ works, we
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read in Felix Klein's influential 1926 book [11, p. 117], that the most
important is the first-mentioned:
‘Unter den Werken von Moebius steht zeitlich und inhaltlich als sein
Fundamentalwerk Der Barycentrische Calcul von 1827 voran, eine wahre
Fundgrube neuer Ideen in wunderbar abgeklärter Darstellung.’

Carl B. Boyer, another historian of prominence, thirty years later praises
the work even more [12, p. 242]:
‘The year 1827 is of considerable importance in the history of analytic
geometry in Germany for reasons far removed from Jacobi's work. It is
sometimes said that Descartes arithmetized geometry, but this is not strictly
correct. For almost two hundred years after his time coordinates were in
essence geometric. Cartesian coordinates were line segments, and polar
coordinates were vectorial radii and circular arcs. Even the areal coordinates
of Carnot were largely geometric. The arithmetization of coordinates took
place not in 1637 but in the crucial years 1827-1829. Bobillier should be
remembered as anticipating the new point of view to a certain extent, but
otherwise the change came with a certain suddenness in 1827 with the
Barycentrische Calcul of A. F. Mobius.’

The interested reader can find much more about Möbius' life, his legacy,
and mathematics and astronomy of the period in [13].

We return now to the treatment of the problem using barycentric
calculus. Barycentric coordinates of the centres will enable us to calculate
the distances between them in terms of the circumradius , inradius  and
semiperimeter  of the triangle  with sides ,  and .

R r
s ABC a b c

Let the point  be given in areal coordinates, that is,
with normalised barycentric coordinates, . If the distances
from an arbitrary point  to the vertices of  are known, then its distance
from  can be calculated by the following important formula:

P = (x : y : z)
x + y + z = 1

Q ABC
P

QP2 = xQA2 + yQB2 + zQC2 − yza2 − zxb2 − xyc2. (3)
In conjunction with the areal coordinates of the Mittenpunkt [9],

M = (a(s − a)
D

:
b(s − b)

D
:

c(s − c)
D ),   D = ∑a(s − a) = 2r (4R + r),

the formula (3) is used in [1] to find the distance  whereOM

OM2 = R2 −
2R (2R − r) s2

(4R + r)2
. (4)

The symmedian point has barycentric coordinates [3], [9] .
Hence by (3) it is immediate that

K (a2 : b2 : c2)

OK2 = R2 −
3a2b2c2

(a2 + b2 + c2)2 . (5)

We are left with the task of finding  and , which are the key
difficulties in the proof. In general, the distance of  from  is

MG2 MK2

P = (x : y : z) BC
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 where  is the area of . Thus the perpendicular distances of the
Mittenpunkt  from the sides  and  are
2� |x| / a � ABC

M AB AC

MX =
s (s − c)
4R + r

,  MY =
s (s − b)
4R + r

. (6)

The central place in the proof of the two conjectures is the following lemma
which is of independent interest.

Lemma 1: The distance between  and the vertex  is given byM A

MA2 =
s2

(4R + r)2
⎡⎢⎣
4R2 −

bc (s − b) (s − c)
s (s − a)

⎤⎥⎦
.

Proof: From the cyclic quadrilateral  and triangle  with
circumradius  (see Figure 1) we find, without going into the details of
the simple calculations, using (6) that

AXMY XMY
1
2MA

MA2 =
XY2

sin2 A
=

1
sin2 A

(MX2 + MY2 + 2MX × MY cos A)

=
s2

(4R + r)2
⎡⎢⎣
4R2 −

bc (s − b) (s − c)
s (s − a)

⎤⎥⎦
.

3.  The proof of the second conjecture
We begin by proving the second conjecture. The crucial step in the

proof of (1) is the following theorem

Theorem 1: The distance between  and the centroid  is given byM G

MG2 =
(12R2 + 8Rr − r2) s2 − r (4R + r)3

3 (4R + r)2
−

a2 + b2 + c2

9
. (7)

Proof: We will make use of the triangle identity

∑ bc (s − b)2 (s − c)2 = r3 [(4R + r)3 − (8R − r) s2] . (8)

It follows easily from

(s − b)2 (s − c)2 = s4 − 2as3 + (a2 − 2bc) s2 + 2abcs + b2c2

and the well-known triangle identities

∑ab = s2 + r (4R + r), ∑a2 = 2(s2 − r (4R + r)), ∑a3 = 2s(s2 − 6Rr − 3r2).

To calculate  we use the Leibniz formulaMG2

GP2 =
1
3 ∑ AP2 −

a2 + b2 + c2

9
,

where  is an arbitrary point in the plane of triangle .P ABC
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Hence from Lemma 1 and (8), we obtain

MG2 =
1
3 ∑ AM2 −

a2 + b2 + c2

9

=
4R2s2

(4R + r)2
−

1
3r2(4R + r)2 ∑bc(s − b)2(s − c)2 −

a2 + b2 + c2

9

=
(12R2 + 8Rr − r2)s2 − r (4R + r)3

3(4R + r)2
−

a2 + b2 + c2

9
.

In the calculations, Heron's formula for the area,  and
are also used.

� = rs abc = 4Rrs

Next we prove Conjecture 2 after it is reduced to an interesting triangle
inequality. The inequality is given two totally different proofs, one direct
and the other less straightforward but shorter.

Theorem 2: The Mittenpunkt  lies within the circumcentroidal disc .M �OG

Proof: The identity

OG2 = R2 −
a2 + b2 + c2

9
is well known. By (4) and (7), the inequality (2) can be rewritten as

6R (2R − r) s2 ≥ (12R2 + 8Rr − r2) s2 + r (4R + r)3 ,
which is equivalent to

s2 ≤
(4R + r)3

14R − r
. (9)

This inequality follows from the fundamental Kooi's inequality [14, 1]

s2 ≤
R (4R + r)2

2 (2R − r)
,

since  is equivalent to ,

which is true by Euler's inequality .

R (4R + r)2

2 (2R − r)
≤

(4R + r)3

14R − r
(2R + r) (R − 2r) ≥ 0

R ≥ 2r
A more fanciful proof of (9) can be given using the mixtilinear radii

 [16]. From the relationsρA, ρB, ρC

ρA + ρB + ρC = r ( 1 + (4R + r
s )2

 )
and

1
ρA

+
1
ρB

+
1
ρC

=
4R + r

2Rr
,
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we observe that the Cauchy-Schwarz inequality

(ρA + ρB + ρC) ( 1
ρA

+
1
ρB

+
1
ρC

) ≥ 9

is equivalent to (9). The proof is complete.

4.  The proof of the first conjecture and consequences
Theorem 3: The distance between the Mittenpunkt  and the symmedian
point  is given by

M
K

MK2 =
4R2s2

(4R + r)2
−

8Rr (8R2 + 2Rr − s2)s2

(a2 + b2 + c2)(4R + r)2
−

3a2b2c2

(a2 + b2 + c2)2 . (10)

Proof: The triangle identity needed for the proof is

∑ a (s − b)2 (s − c)2 = 2r2s (8R2 + 2Rr − s2) . (11)

It is proved similarly as the identity (8). Employing (3), Lemma 1 and the
triangle identity (11), we get

MK2 = ∑ a2

a2 + b2 + c2
MA2 −

3a2b2c2

(a2 + b2 + c2)2

=
4R2s2

(4R + r)2
−

abc ∑ a (s − b)2 (s − c)2

(a2 + b2 + c2) (4R + r)2 r2
−

3a2b2c2

(a2 + b2 + c2)2

=
4R2s2

(4R + r)2
−

8Rr (8R2 + 2Rr − s2) s2

(a2 + b2 + c2) (4R + r)2
−

3a2b2c2

(a2 + b2 + c2)2 .

We now have all the necessary ingredients for the proving the first
conjecture

Theorem 4: The Mittenpunkt  is constrained to the Brocard disc .M �OK

Proof: The statement is equivalent to the inequality (1). Having found all the
distances between the triangle centres ,  and , by (5), (4) and (10), the
inequality (1) reads

O K M

8Rr (8R2 + 2Rr − s2) s2

(a2 + b2 + c2) (4R + r)2
≥

4R2s2

(4R + r)2
−

2R (2R − r) s2

(4R + r)2
.

Sorting out, by , the inequality can be rewritten as∑a2 = 2(s2 − r (4R + r))
3s2 ≤ (4R + r)2 . (12)

This last inequality follows from (9) and Euler's inequality . We
obtain

R ≥ 2r

3s2 ≤
3 (4R + r)3

14R − r
≤ (4R + r)2 .
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It is worth remarking that (12) is an equivalent form of the famous
Finsler-Hadwiger inequality from 1937 (see [17, 18, 19]):

a2 + b2 + c2 ≥ 4 3� + (a − b)2 + (b − c)2 + (c − a)2 .
The proof that the Mittenpunkt  is in the Brocard disc is complete.M

As a direct consequence of the theorem, in addition to the given
restrictions for the location of the incentre  from [4], we now have one
more. Since  is collinear with  and , and lies between them [9], we
deduce:

I
I K M

Theorem 5: The incentre  lies inside the Brocard disc .I �OK
A

B C

O

M
G

I

K

Ω1

Ω2

FIGURE 3: Mittenpunkt , constrained to circumcentroidal disc  and to Brocard
disc 

M �OG
�OK

Another, direct and simpler proof of the last theorem can be found in [8].

We now have a pretty good understanding of the location of the
Mittenpunkt ; see Figure 3 with the two discs  and .M �OK �OG

It is worthwhile summarising the known facts about various points and
their relationship to the Brocard circle and the Brocard disc; see Figure 3.
We have four points on the Brocard circle

• the circumcentre ;O
• the symmedian point ;K
• the Brocard points  and .Ω1 Ω2

In the Brocard disc  we have�OK

• the incentre ;I
• the Mittenpunkt .M
The Brocard disc  certainly contains many more interesting centres

that remain to be discovered.
�OK
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5.  The proof of the third conjecture
This time the conjecture is about the place where the Mittenpunkt

should not be looked for − within the Parry circle. Unfortunately we have
not been able to give a simple proof like the proofs of the two previous
conjectures.

Let  be the centre of the Parry circle,  its radius and  the
Mittenpunkt. The centre  of the Parry circle is known to be X(351) in ETC
where its barycentric coordinates are given by:

P r M
P

(a2(b2 − c2)(−2a2 + b2 + c2), b2(c2 − a2)(a2 − 2b2 + c2), c2(a2 − b2)(a2 + b2 − 2c2)).
The squared radius of the Parry circle is

r2 =
a2b2c2 (a4 − a2b2 + b4 − a2c2 − b2c2 + c4)2

9 (a2 − b2)2 (a2 − c2)2 (b2 − c2)2 .

Conjecture 3 that the Mittenpunkt  lies outside  is actually the inequalityM �P

MP2 − r2 > 0.
The distance  is calculated to be something really nasty by Mathematica
and then

MP2

MP2 − r2 > 0

reduces to showing that the term

2Rs2 (r3 − 10r2R + 5r (s2 − 4R2) + 2Rs2)
3 (r + 4R)2 (r2 + 2rR + s2)

is always positive, which is true and not difficult to show. The interested
readers can find the algorithm used in [20].

We would like to see a proof of this conjecture in the spirit of the
previous two, but for now it seems out of reach.
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