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We describe the rising trajectory of bubbles in isotropic turbulence and quantify the
slowdown of the mean rise velocity of bubbles with sizes within the inertial subrange. We
perform direct numerical simulations of bubbles, for a wide range of turbulence intensity,
bubble inertia and deformability, with systematic comparison with the corresponding
quiescent case, with Reynolds number at the Taylor microscale from 38 to 77. Turbulent
fluctuations randomise the rising trajectory and cause a reduction of the mean rise velocity
w̃b compared with the rise velocity in quiescent flow wb. The decrease in mean rise velocity
of bubbles w̃b/wb is shown to be primarily a function of the ratio of the turbulence intensity
and the buoyancy forces, described by the Froude number Fr = u′/

√
gd, where u′ is the

root-mean-square velocity fluctuations, g is gravity and d is the bubble diameter. The
bubble inertia, characterised by the ratio of inertial to viscous forces (Galileo number),
and the bubble deformability, characterised by the ratio of buoyancy forces to surface
tension (Bond number), modulate the rise trajectory and velocity in quiescent fluid. The
slowdown of these bubbles in the inertial subrange is not due to preferential sampling, as is
the case with sub-Kolmogorov bubbles. Instead, it is caused by the nonlinear drag–velocity
relationship, where velocity fluctuations lead to an increased average drag. For Fr > 0.5,
we confirm the scaling w̃b/wb ∝ 1/Fr, as proposed previously by Ruth et al. (J. Fluid
Mech., vol. 924, 2021, p. A2), over a wide range of bubble inertia and deformability.
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1. Introduction

1.1. Context and motivation
Rising gas bubbles in liquid are ubiquitous in environmental and engineering applications.
Typical examples are bubbles in sparking wine fizzing up, bubble column reactors (Risso
2018; Mathai, Lohse & Sun 2020; Ni 2024), bubble curtains (Beelen & Krug 2024) and air
bubbles entrained in ocean water through breaking waves (Deike 2022; Mostert, Popinet
& Deike 2022). Bubbles control the mass transfer between the gas and liquid phases
due to either the large interface area created by submerged bubbles or their collapse at
depth (Deike & Melville 2018). Many of the flows surrounding gas bubbles are turbulent,
so that knowing how turbulence affects the bubble dynamics is important to model
bubble-mediated mass and energy transfer (Risso 2018; Deike 2022; Farsoiya et al. 2023b).

Before discussing the effects of turbulence, we briefly summarise the dynamics of a
bubble rising in a quiescent medium. The problem can be described as a gas bubble of
diameter d rising in a quiescent liquid medium, characterised by terminal rising speed wb,
viscosity μl, density ρl, surface tension σ and gravity g. A bubble rising in a still liquid
follows a straight vertical line and switches to a zigzag or helical trajectory after exceeding
a critical set of parameters, i.e. Galileo number Ga = ρl

√
gdd/μl and Bond number

Bo = ρlgd2/σ , which describe the ratio of inertial to viscous forces and the ratio of
buoyancy forces to capillary forces, respectively. Note that the onset of this path instability
of zigzag or helical trajectory can happen before the wake instability, which reflects that
the mechanism of the path instability can be linked to purely the coupling between the
dynamics of the bubble and the liquid through the interfacial boundary conditions (Mougin
& Magnaudet 2001; Ern et al. 2012; Cano-Lozano, Bohorquez & Martínez-Bazán 2013;
Tchoufag, Fabre & Magnaudet 2014; Cano-Lozano et al. 2016; Will et al. 2021; Bonnefis
et al. 2024).

The terminal rise velocity of a bubble in a quiescent medium is determined by the
balance between the buoyancy and drag force, and is written as wb = √

4dg/(3Cd),
where Cd is the drag coefficient. The drag force is viscous or inertial depending on the
quiescent bubble Reynolds number Req = ρlwbd/μl. Increasing the size of a gas bubble
in a specific liquid leads to an increase in the Req, which by itself is known to reduce the
drag coefficient Cd for a bubble of spherical shape (Moore 1963). However, if a bubble
transits to an ellipsoid, the resultant expansion in the frontal area and increased likelihood
of wake separation will cause an increase in the drag coefficient Cd for a given Req (Clift,
Grace & Weber 2005). Combining the effects of the reduction in drag coefficient Cd with
increasing Reynolds number Req for spherical bubbles and the increase in Cd due to the
transition to an ellipsoidal shape will lead to first a decrease and then an increase in the
drag coefficient Cd. This transition happens at different Req values for different liquid
properties (Loth 2008; Cano-Lozano et al. 2016). Semi-empirical formulae have been
proposed to describe the rise velocity, expressed as the drag coefficient being a function
of controlling parameters, the bubble Reynolds number and a non-dimensional number
including gravity and surface tension, either the Bond or Morton number (Clift et al. 2005;
Loth 2008). Separately, the terminal velocity is also affected by surface contamination
through immobilisation of the bubble surface (Magnaudet & Eames 2000; Farsoiya et al.
2024).

Turbulence has been demonstrated to affect the mean rise velocity for bubbles with
sizes smaller than the Kolmogorov microscale, by altering the sampling positions of the
bubble in the turbulent flow, with preferential concentration in vortex centre or downward
flows (Mathai et al. 2020). The preferential sampling is interpreted as occurring due to
two mechanisms, vortex trapping and lift force. Vortex trapping reduces the rise velocity
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of a bubble by preferentially driving and keeping the bubble to the core of the vortices
under pressure gradients. The velocity reduction in the rise velocity is maximised, up to
35 % (Spelt & Biesheuvel 1997; Poorte & Biesheuvel 2002), when the Stokes number
St ∼ 1, which evaluates the ratio of the viscous response time of the bubble to the
flow change τb to the Kolmogorov timescale τη (Mazzitelli & Lohse 2004; Calzavarini
et al. 2008; Aliseda & Lasheras 2011). This mechanism works efficiently for small
bubbles with diameter d comparable to the Kolmogorov length scale η, as St ≡ τb/τη =
ρld2/36μlτη = 1/36(d/η)2. Bubbles with St � 1 immediately respond to the velocity
change of the surrounding flow and behave like fluid tracers, therefore exhibiting no
preferential sampling in the flow, whereas bubbles with St � 1 have high inertia, meaning
they tend to maintain their rise motion and move through the vortex. Lift force reduces the
rise velocity by moving an uprising bubble horizontally towards the downward flow side of
the vortex (Mazzitelli, Lohse & Toschi 2003; Salibindla et al. 2020; Masuk, Salibindla &
Ni 2021). The influence of lift force is shown to be effective for weak turbulent perturbation
of the bubble trajectory (Fr � 0.5, with Fr = u′/

√
gd, u′ the root-mean-square velocity)

but ceases to be dominant as Fr � 0.5 (Spelt & Biesheuvel 1997; Ruth et al. 2021), with
the inclusion of the lift force in the point bubble simulation results in only a marginal
reduction in the rise velocity (Snyder et al. 2007; Ruth et al. 2021).

Nonlinear drag has been shown to be a significant factor affecting the rise velocity of
larger bubbles, with sizes in the inertial subrange of the turbulence, through the combined
effects of the nonlinear drag–velocity relationship (coupling the velocity components) and
the turbulence-induced fluctuations in the bubble velocity (Ruth et al. 2021). For particle
Reynolds number Rep = |U s|d/νl � 1, where U s = ũb − u is the slip velocity of the
particle (or bubble ũb) relative to the surrounding flow u, the drag force is dominated
by the viscosity and varies linearly with the slip velocity. However, as the Reynolds
number increases beyond the Stokes flow regime Rep > 1, the drag–velocity relationship
starts to become nonlinear, with drag varying as the square of the slip velocity when
inertial forces dominate (Loth 2008). Experiments show that, under the nonlinear drag
regime, the reduction in rise velocity increases in magnitude with increasing turbulence
intensity, for both large air bubbles with Rep ∈ [60, 2000] (Prakash et al. 2012; Ruth
et al. 2021) and light solid particles with Rep ∈ [10, 80] (Kawanisi, Nielsen & Zeng
1999). The phenomenological model proposed in Ruth et al. (2021) introduced a nonlinear
drag F d ∝ −|U s|U s that reflects the nonlinear drag–velocity relationship and couples
the dynamics between the vertical and the horizontal motions. Consequently, velocity
fluctuations in both horizontal and vertical directions increase the time-averaged drag
along the vertical motion, slowing down the bubble rises and leading to the scaling
w̃b/wb ∝ 1/Fr. Although preferential sampling has been observed for sub-Kolmogorov
bubbles with Stokes number of order unity, nonlinear drag applies to bubbles of sizes
within the inertial subrange.

Direct numerical simulations (DNS) with a fully resolved treatment of the interaction
between turbulence and deformable bubbles remain limited. Loisy & Naso (2017) studied
the rise of a deformable bubble of the size of the Taylor microscale, d = λ ≈ 10η,
through isotropic turbulence (Reλ = ρlλu′/μl = 30) with DNS. The greatest reduction
in rise velocity was found when Fr = 0.9 among the three chosen values, 0.5, 0.9 and
1.6. They interpreted the velocity reduction as an effect of preferential sampling but
do not quantitatively characterise the link between preferential sampling and slowdown.
Reichardt, Tryggvason & Sommerfeld (2017) studied the rise of large bubbles in turbulence
(Reλ < 10) generated by applying a pseudo-spectral forcing method and revealed a
reduction of the rise velocity up to 38 % at their maximum turbulence intensity Fr = 0.12.
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Note that although most experimental and numerical studies report velocity reduction in
turbulence, an increase in the rise speed in turbulence for air bubbles was discussed by
Salibindla et al. (2020) and for light droplets by Friedman & Katz (2002).

Although most experiments indicate that turbulence typically reduces the speed at which
bubbles rise, the occasional conflicting findings and interpretations found in the literature,
along with the limited systematic DNS studies and comparison between quiescent and
turbulent scenarios, underscore the motivation for this study. To what extent and how the
turbulence influences the rise dynamics of bubbles with sizes within the turbulence inertial
range remains debated. Compared with experiments, DNS allows for proper homogeneous
and isotropic turbulence (HIT) with no vertical structure in the mean flow. Moreover, DNS
allows simulations to be performed matching exactly the conditions between the quiescent
and turbulent configurations, with direct access to the slip velocity in a fully coupled
bubble–turbulence flow and the ability to systematically vary the deformability of the
bubble at a fixed turbulence or bubble inertia non-dimensional number. This paper presents
a DNS study of bubbles in the inertial subrange rising in HIT, focusing on the effects of the
turbulence intensity and the bubble deformability. By systematically sweeping the relevant
non-dimensional parameters, we demonstrate that the rise velocity reduction in turbulence
w̃b/wb can be described mainly as a function of the Froude number.

1.2. Dimensional analysis
We consider a gas bubble of diameter d, viscosity μb and density ρb rising in a quiescent
liquid medium, characterised by a terminal rising speed wb, viscosity μl, density ρl,
surface tension σ and gravity g. The problem can be defined by five non-dimensional
groups. We consider low ratios of viscosity μb/μl � 1 and density ρb/ρl � 1, so that the
terminal rise velocity can be written as

wb/
√

gd = F(Ga, Bo). (1.1)

Here the Galileo number Ga = ρl
√

gd d/μl represents the relative importance of
buoyancy and viscous forces. The Galileo number is linked to the quiescent bubble
Reynolds number, with the former using an estimated rise speed

√
gd and the latter using

the actual rise speed wb as the characteristic speed. The Bond number Bo = ρlgd2/σ
evaluates the relative importance of buoyancy forces and surface tension and should
account for bubble deformability due to buoyancy.

Alternatively, another set of dimensionless numbers can be chosen, which will be
used when comparing our DNS results with experiments and semi-empirical formulae
(Loth 2008) for quiescent rising velocity. The three independent dimensionless numbers
to describe the rise dynamics in quiescent flow can be chosen as the drag coefficient
Cd = 4dg/3w2

b, the quiescent bubble Reynolds number Req = ρlwbd/μl and the Morton
number Mo = gμ4

l /ρlσ
3, which lacks a direct physical interpretation but is conveniently

used to compare liquid properties in experiments.
Turning to a bubble rising in turbulence, two more quantities are introduced to describe

HIT, the root mean square of the velocity fluctuations u′ and the Taylor microscale
λ (Perrard et al. 2021; Ruth et al. 2021), introducing two non-dimensional variables
that characterise the bubble interacting with the turbulent flow. We consider the Froude
number Fr = u′/

√
gd, which describes the turbulence intensity as the ratio between

a typical turbulent fluctuation velocity u′ and a typical quiescent rising speed; and a
non-dimensional bubble size d∗ = d/λ which describes whether the bubble is in the
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inertial or viscous subrange. The velocity reduction in turbulence can then be expressed as

w̃b/wb = H(Ga, Bo, Fr, d∗). (1.2)

Alternative non-dimensional numbers can be considered to understand the problem
from different perspectives, and various interchangeable dimensional parameters can be
formulated and will be related to those chosen in (1.2). In particular, the turbulence
is usually characterised by a Reynolds number. The Reynolds number based on the
Taylor microscale can be written as Reλ = ρlλu′/μl and is related to Ga, Fr and d∗ by
Reλ = Ga Fr/d∗. The turbulent Weber number for bubble diameter within the inertial
subrange, We = ε2/3d5/3/(σ/ρl), gives the ratio between the turbulent inertial stresses
and the Laplace pressure from surface tension. With the dissipation rate being ε =
15μlu′2/ρlλ

2, the Weber number can be written as We = (15μlu′2/ρlλ
2)2/3d5/3/(σ/ρl) =

6.1Bo Ga−2/3(Fr d∗)4/3, accounting for bubble deformation due to turbulence. The Weber
number We indicates whether the bubble might break in the turbulent flow, and we here
consider stable bubbles, with a We number below a critical value (see Rivière et al. 2021).

The Stokes number describes the ratio of the viscous response time of a bubble
to changes in the flow field to the Kolmogorov time scale of the flow, and for small
bubbles can be written as St ≡ ρld2/36μlτη = 1/36(d/η)2 = 0.11Ga Fr d∗. Using this
definition, for most of the bubbles with sizes within the inertial subrange in our
simulations, the Stokes number is around 10, which implies that the bubble has significant
inertia compared with the viscous force of the surrounding flow. As eluded to in the
introduction, preferential sampling in both vortex centre and downward flows is important
for sub-Kolmogorov bubbles with d∗ ≈ η/λ� 1 and St ∼ 1, whereas we consider
bubbles within the inertial subrange (0.5 < d∗ < 3, St ≈ 10). We recently proposed
that for large bubbles, with large St and sizes within the inertial subrange, inspired by
experimental data from Ruth et al. (2021), preferential sampling is not effective and that
the observed slowdown can actually be modelled by a nonlinear drag effect. Although
the Stokes number is traditionally useful for bubbles near the Kolmogorov length scale η,
its definition becomes ambiguous for large, finite-size bubbles in the inertial subrange
due to different response times and flow time scales. The above classical definition
assumes point-like bubbles and low Reynolds numbers, which does not hold for our case.
Corrections, as discussed in Homann & Bec (2010), Gibert, Xu & Bodenschatz (2012)
and Mathai et al. (2016), account for finite size and Reynolds number effects, which
would lower our estimated Stokes number. Given this ambiguity, we suggest that the
non-dimensional numbers d∗ and Froude number, which better capture the dynamics of
large bubbles in turbulence, are more appropriate indicators for this system.

Here, we focus on the effects of bubble inertia (quantified by the Ga number) and
buoyancy-induced bubble deformation (quantified by the Bo number) on the quiescent
rise dynamics and how turbulence with different intensities (quantified by the Fr number)
affect the rise dynamics. The effects of the bubble diameter d∗ are also tested and are
demonstrated to be minor as long as the bubble is within the inertial subrange.

2. Approach

We perform three-dimensional DNS of a single gas bubble that is free to move and
deform in a quiescent or turbulent liquid medium using the open-source software
Basilisk (Popinet 2009, 2018). For each bubble rising in the turbulence case, there
is a corresponding quiescent case with the same parameters except that the surrounding
flow is initially set to be quiet instead of turbulent.
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A fully resolved treatment of the interaction between the surrounding flow and the
bubble is achieved by directly solving the two-phase, incompressible Navier–Stokes
equations. The incompressible Navier–Stokes equations are solved in both phases, with
appropriate interface conditions, including continuity of velocity and shear stress, and a
jump in normal stress due to surface tension, through which the coupled force between
the bubble and the fluid is resolved directly. A one-fluid formulation that combines the
incompressible Navier–Stokes equations in both phases and interface conditions, with
surface tension and gravity accounted, is solved with a momentum-conserving scheme.
The interface is reconstructed by a sharp geometric volume of fluid method, and the
domain is discretised by a spatial adaptive octree grid that saves computational time while
resolving the different length scales of the problem. Details of the numerical methods are
provided in previous studies, as well as validation of the accuracy of the solver for complex
multiphase flow, including bubble deformation in turbulence (Perrard et al. 2021), bubble
and drop breakup in turbulence (Rivière et al. 2021, 2022; Farsoiya et al. 2023a), bubble
gas transfer in turbulence (Farsoiya et al. 2023b) and breaking waves (Mostert et al. 2022).

In all simulations presented here, the density ratio is ρb/ρl = 1/850 and the dynamical
viscosity ratio μb/μl = 1/25, close to air and water conditions. We describe in the
following the numerical configurations in quiescent and turbulent flows.

2.1. Bubble rise in a quiescent medium
A spherical bubble is placed in the domain with the ratio of the initial radius to the box size
0.067 (or 0.033) and the volume ratio 0.0012 (or 0.00016). The domain is discretised by an
adaptive mesh grid with a concentration of grid cells at the interface and in the near wake.
The maximum refinement level of the adaptive mesh grid, denoted as L, determines the
smallest grid size in the domain, allowing us to compare with a fixed grid size equivalent
to (2L)3 grid points. The level of refinement around the interface is L = 9 or 10, with at
least 68 points across the initial bubble diameter and we have verified grid convergence in
the mean rise velocity in quiescent and turbulent flows (see Appendix A).

The flow in both phases is initially set to zero. We analyse the bubble rise dynamics
due to the buoyancy and extract the drag coefficient based on the grid-converged terminal
rise speed, which is verified against experimental results and semi-empirical relationship
(Loth 2008) as described in the following.

2.2. Bubble rise in turbulence
The simulations of bubble rise in turbulence are performed in two steps, with the creation
of the turbulent flow and then insertion of the bubble, following Perrard et al. (2021),
Rivière et al. (2021), Farsoiya, Popinet & Deike (2021) and Farsoiya et al. (2023a,b).
The turbulence is generated by a volumetric force that is locally proportional to the
velocity at every point of the real space in the liquid phase. Rosales & Meneveau (2005)
have demonstrated that this approach results in a turbulent field that exhibits statistics
comparable to those achieved using a spectral code, and leads to a well-characterised
homogeneous isotropic turbulent flow. The evolution of turbulence statistics, including
kinetic energy, dissipation rate and turbulent Reynolds number Reλ, are monitored until
reaching a statistically stationary regime. The second-order structure functions exhibit a
well-defined inertial range, aligning with HIT scaling found in the literature, as verified
in Perrard et al. (2021), Rivière et al. (2021) and Farsoiya et al. (2021, 2023a,b). This
approach has been used to study bubble rising (Loisy & Naso 2017), bubble deformation
(Perrard et al. 2021), breakup (Rivière et al. 2021; Farsoiya et al. 2023a) and gas exchange
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Group We Bo d∗ Fr Reλ Ga St d/�x (L)

Fixed Weber 0.125 2.7 → 0.04 1.56 0.25 → 2 38 237 → 25 10 68 (L9)
Fixed Weber 0.0625 3.8 → 0.02 1.56 0.15 → 2 38 400 → 25 10 68 (L9)

Fixed Bond 0.01 → 0.6 0.8 1.56 0.15 → 1 38 400 → 50 10 68 (L9)
Fixed Bond 0.007 → 0.7 0.4 1.56 0.15 → 1.5 38 400 → 35 10 68 (L9)

Test d∗ 0.125 4.3 → 0.27 0.78 0.25 → 1 38 125 → 30 2.5 68 (L10)
Test d∗ 0.15 → 0.7 1 2.72 0.5, 0.75, 1 77 370 → 180 63 68 (L9)
High u′ 0.25 1.7 → 0.1 2.61 0.5 → 2 85 440 → 110 63 68 (L9)

Table 1. Parameters of the simulations of bubble rising in turbulence with various We, Bo, d∗, Fr, Reλ, Ga,
St, the initial drop-to-grid-size ratio d/�x and maximum refinement level L.

(Farsoiya et al. 2023b) in turbulence. A bubble is inserted after the turbulent stationary
state is reached, and the flow in the inner phase is initially set to zero. Grid convergence on
the instantaneous velocity signals and trajectories of the bubble is verified for individual
realisations in Appendix A. For each turbulent run, the simulation is long enough with
�t/

√
d/g ≈ 100 to ensure the statistical convergence of the mean rise speed. We have

verified that the turbulence properties agree with the classic turbulence results (Pope 2000)
and are not changed significantly by the inserted bubble as the gas–liquid volume ratio is
small, see Appendix B, therefore validating our approach to study drops and bubbles in
homogeneous and isotropic flow in the presence of gravity.

2.3. Parameter space and validation of the quiescent bubble rise configuration
The simulation parameters are summarised in table 1. We consider a bubble rising in a
quiescent medium for a wide range of bubble inertia Ga ∈ [25, 440] and deformability
Bo ∈ [0.02, 4.3]. The parameter space considered in terms of Ga and Bo spans
various types of trajectories, from straight paths to unstable helicoidal or zigzag
paths (Cano-Lozano et al. 2016). Bubbles rising under a wide range of turbulence
intensity with Fr varying between 0.15 and 2, are systematically compared with
their corresponding quiescent case Fr = 0. When varying Fr, one of the two groups
characterising deformation, We or Bo, is kept constant, whereas the other is varying over
two orders of magnitude. All simulations are at Bo and We below breakup threshold.
The bubbles considered in this study are bubbles with sizes within the inertial subrange
d∗ = d/λ = O(1), with the majority being d∗ = 1.56. We test the effects of bubble size
d∗ by considering d∗ = 0.78 and 2.72 by changing the bubble diameter d and the length
scales of the turbulence Reλ, in particular the Taylor microscale λ.

The typical number of grid points at L = 9 is approximately 500 000, compared with an
equivalent ≈134 million uniform grid points, representing a reduction by a factor of about
200 in the number of grid points. The reduction of the number of grid points thanks to the
adaptive mesh grid is central to achieving a large parameter sweep, together with the high
resolution on the interface. There is a minimum of three grid points within the boundary
layer, characterised by a thickness δ = d/

√
Ga, and the Kolmogorov length scale η is

well-resolved with at least four grid points. As discussed in more details in the following,
studying mean rise velocity in turbulent conditions require relatively long simulations to
achieve a well-defined statistically stationary terminal rise velocity. A typical simulation
in quiescent conditions uses 80 cores for a total of 16 000 CPU hours and, in turbulence
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Figure 1. Rise dynamics of a bubble in a quiescent medium. (a,b) Velocity components and trajectories of
two typical cases of bubble rise in quiescent flow. The two chosen cases are indicated in the Ga–Bo plot
in (c) by the two asterisks with corresponding colours. (c) Randomness (colour coding) and path instability
(symbol fillings) of bubble trajectories. Symbols represent DNS data, with filled being spiral or zigzagging
trajectories and empty being recliner trajectories. The black solid line is the path instability onset curve from
Cano-Lozano et al. (2013). The colour-coded trajectory randomness is characterised by the standard deviation

of the horizontal speed of the bubble, i.e. σh =
√

σ 2
ub

+ σ 2
vb

. (d) Colour-coded bubble rise speed in a quiescent
medium. (e) Comparison of DNS and experimental fitting from Loth (2008). Drag coefficient as a function
of the quiescent bubble Reynolds number, with the colour scale denoting the Morton number associated with
different types of liquid. ( f ) Moving to turbulence, the turbulence intensity Fr of the corresponding turbulent
cases.

conditions, uses 120 cores and 24 000 CPU hours. The total computational cost of the
present study is 1 680 000 CPU hours.

We start by presenting a brief analysis of the bubbles rising in a quiescent medium,
and validate our results against the experimental and theoretical work in the literature.
We discuss the rising trajectory and rise speed of a bubble in a quiescent medium.
Figure 1(a,b) shows the velocity signals and trajectories of two typical cases of bubbles
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Direct numerical simulation of bubble rising in turbulence

released from rest in quiescent flow. The instantaneous vertical component wb(t) first
accelerates driven by the buoyancy and then approaches a steady state value due to the
force balance with the drag. The high Ga–Bo case shows significant oscillations both for
the horizontal components and the vertical component of the velocity signal after the
bubble gains enough rise speed, featuring a transition from the initial stable rectilinear
trajectory to the unstable spiral trajectory. At the transition, the vertical speed of the bubble
bottoms out when the horizontal speed peaks, which indicates the coupling between
vertical and horizontal motions. In contrast, the low Ga–Bo case shows a vertical velocity
signal gradually approaching the steady value and a consistent rectilinear trajectory.

Figure 1(c) shows where our DNS are located in the Ga–Bo phase diagram, together
with the trajectory randomness (quantified by the standard deviation of the horizontal
velocity normalised by

√
gd) colour coded. Whether the path is rectilinear or demonstrate

path instability is indicated by the empty (stable) or filled (unstable) symbols. The path
instability of our DNS data agrees well with the path instability onset curve from the
numerical results of Cano-Lozano et al. (2013), which assumes a frozen deformed bubble
shape. A bubble with stronger inertia Ga and buoyancy-induced deformation Bo is more
likely to rise in a spiral or zigzagging trajectory. Although large bubble inertia is associated
with unstable wakes behind the bubble, the path instability is observed at Ga below
the wake instability threshold, therefore pure dynamical coupling between the bubble
and the surrounding fluid could cause the path instability (Cano-Lozano et al. 2013;
Tchoufag et al. 2014; Cano-Lozano et al. 2016; Bonnefis et al. 2024). Due to this coupling,
flow disturbances affect bubble motion through the surface distributions of interfacial
stresses, whereas the movements of the bubble influence the fluid motion via the boundary
conditions at the bubble surface. There is an overall trend of larger trajectory randomness
for cases in the phase map where trajectories become spiral or zigzagging.

Figure 1(d) summarises the terminal rise speed of a bubble rising in a quiescent medium.
The terminal rise speed is averaged over a time window that is after the bubble speed
saturates and contains enough oscillation periods for unstable cases (see Appendix A).
Increasing the inertia Ga leads to an increase in the rise speed wb/

√
gd for a bubble of

spherical shape. The deformation caused by the buoyancy Bo transits the bubble shape
from a sphere to an ellipsoid that creates a larger frontal area and helps induce wake
separation, which increases the drag and thus slows down the bubble rising.

We compare the DNS results with the experimental fitting proposed by Loth (2008)
in figure 1(e). To compare with Loth (2008), the problem is reformulated as the drag
coefficient being a function of the quiescent bubble Reynolds at different liquid Morton
numbers (colour coded). The range of the bubble Reynolds number in this study is between
20 and 1000. The DNS results are in good agreement with the fitting for clean spherical
bubbles

Cd = 16
Req

⎧⎨⎩1 +
[

8
Req

+ 1
2

(
1 + 3.315√

Req

)]−1
⎫⎬⎭ , (2.1)

and implicit semi-empirical formula for deformed bubbles at different Morton numbers
(Loth 2008).

Finally, figure 1( f ) shows the turbulence intensity Fr of the corresponding turbulent
cases, with matching parameters (in terms of Ga, Bo), with the only change being the
surrounding flow.
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wb(t), w̃b(t)/�gd –2 –1 0 1 2

Figure 2. Bubble rise trajectories in quiescent and increasing turbulence intensities Fr = 0, 0.25 and 0.75 for
fixed Ga = 237 and Bo = 2.7. The instantaneous vertical speed is colour coded. Trajectories are shown over
the same elapsed time t/

√
d/g ∈ [0, 47].

3. Bubble rise dynamics in turbulence

We now qualitatively discuss the bubble rise dynamics in turbulence for varying
controlling parameters. We first discuss the effect of increasing turbulence intensity at
fixed (Ga, Bo) numbers; then the effect of increasing deformability for various values of
Fr numbers; and, finally, discuss statistical properties of the rise velocity, slip velocity and
sampled fluid velocity.

3.1. Effect of the turbulence intensity for fixed parameters
Figure 2 shows how increasing turbulence intensity impacts the rising trajectory and mean
rise velocity for a given Ga and Bo number. The trajectories are recorded over the same
time, with the trajectories colour coded by the instantaneous rise speed and increasing
turbulence intensity (left to right, Fr from 0, 0.25 to 0.75). The chosen Ga and Bo values
Ga = 237 and Bo = 2.7 lead to an unstable path in the quiescent configuration (Fr = 0)
and a spiralling motion as seen in figure 2(a). Compared with the base quiescent case,
turbulence introduces additional disturbances to the bubble trajectory, which transits the
bubble trajectory to a spiralling mode at an earlier time for the lower turbulence intensity
(figure 2b, middle panel, Fr = 0.25). The horizontal oscillations keep a similar temporal
frequency, although the turbulence amplifies the oscillation amplitude and introduces
additional smaller high-frequency components. The vertical rise speed is reduced most
when the bubble has a large horizontal motion as can be inferred from the colour coding
of the spiralling trajectory. Moving to higher turbulence intensity (Fr = 0.75) randomises
the rise speed and trajectory completely, and the memory of the quiescent oscillation
frequency appears forgotten. Based on the rise distances, turbulence slows the bubble rise
down, with higher intensity slowing down the bubble more.

3.2. Effect of deformability for increasing turbulence intensity
We now discuss the effect of deformability and turbulence intensity on the rise dynamics.
Figure 3 shows rising trajectories of bubbles in turbulence for increasing turbulence
intensity from top to bottom (increasing Fr number) whereas deformability increases from
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w~b(t)/wb

Fr = 0.25 Bo = 0.4

We = 0.02

Fr = 0.25 Bo = 1.4

We = 0.06

Fr = 0.25 Bo = 2.7

We = 0.13

Fr = 0.75 Bo = 0.15

We = 0.06

Fr = 0.75 Bo = 0.4

We = 0.17

Fr = 0.75 Bo = 0.8

We = 0.33

Fr = 1.5 Bo = 0.04

We = 0.06

Fr = 1.5 Bo = 0.08

We = 0.13

Fr = 1.5 Bo = 0.4

We = 0.7

–2 –1 0 1 2

Figure 3. Bubble rising trajectories for different turbulence intensity and deformation extent shown in a box
of 30d × 30d × 100d. The colour code visualises the instantaneous bubble vertical velocity w̃b(t) in turbulence
normalised by the terminal rising speed wb of the same bubble in the quiescent medium. All trajectories are
recorded over the same time span with �t/

√
d/g = 40. The bubble shape at the end of each trajectory is

displayed in the top left corner, enlarged for clarity. The projections of the trajectories are shown in horizontal
and vertical planes. The Galileo numbers from top to bottom are 237, 79 and 40.
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left to right (increasing Bo number). The trajectories are colour coded by the instantaneous
vertical speed (normalised by the corresponding quiescent terminal rise speed).

The top row shows the effect of increasing deformation at low turbulence intensity
Fr = 0.25. Deformed bubbles rise slower according to the vertical distance travelled
over the same amount of time. This slowdown can be attributed to the shape-dependent
drag, which increases for disc-like bubbles occurring from buoyancy effects (large
Bo). In other words, the absolute rising speed w̃b is reduced by the deformation
extent.

The next two rows show the effect of increasing turbulence intensity, with Fr = 0.75
and Fr = 1.5. As the turbulence intensity increases, the trajectories jiggle and even show
overturning in the vertical direction. The rising speed in terms of absolute values w̃b and
relative values w̃b/wb are both reduced as reflected by the vertical distance travelled and
more blue regions (negative normalised vertical velocity) colour coded in the trajectory,
respectively. Remarkably, comparing the rows and the columns qualitatively, the relative
rising speed w̃b/wb appears to be dominated by the Froude Number rather than the Bond
number.

3.3. Statistics of bubble rise velocity, sampled velocity and slip velocity
Figure 4(a) shows a typical velocity signal along the rising trajectory. The vertical
component w̃b(t) first accelerates and then fluctuates around a mean rise speed (which
we have verified to be statistically converged as well as grid converged), as illustrated
in Appendix A. The mean value of the horizontal components, ũb(t) and ṽb(t), is zero,
which shows the analysed signal is long enough to reach statistical convergence. Statistical
convergence is typically reached for trajectories of �t ≈ 100

√
d/g ≈ 2000τη. Note that a

longer time is required to reach statistical convergence for large turbulence intensity Fr,
which features large velocity fluctuations.

Figure 4(b) shows the trajectory randomness increasing with Fr, with the randomness
characterised by the standard deviation of the bubble velocity in the horizontal direction.
Compared with the corresponding base quiescent case (colour coded), the change in
randomness due to the turbulence is small at low Fr, with the majority of the randomness
resulting from the path instability due to body–fluid coupling, whereas at high Fr the
randomness in trajectories is mainly from the turbulence-induced variations.

Figure 4(c–f ) shows typical time signal and probability distributions of the vertical
component of the bubble velocity, the velocity of the sampled fluid and the slip velocity
at two turbulence intensities Fr = 0.25 and 0.75. The sampled velocity is calculated based
on the mean flow velocity in a shell region surrounding the bubble. The region consists
of a shell of liquid situated between two concentric spheres with differing diameters, both
centred on the mass centre of the bubble. The sampled velocity is defined based on search
diameter 1.5d < SD < 2d, where d is the volume-equivalent bubble diameter. The slip
velocity is the difference between the bubble velocity and sampled velocity. Different
search diameters have been tested including smaller lower boundaries 1.2d < SD <

1.5d and larger upper boundaries 2d < SD < 3d, which only show marginal influence
on the sampled velocity and the slip velocity. All three velocity signals show larger
fluctuations and broader distributions at higher turbulence intensity. In both cases, the
mean sampled velocity remains much smaller than the bubble velocity and slip velocity,
with the distributions of the vertical sampled velocity centred around a value near zero.
The distributions of the slip velocity are centred around a value smaller than the bubble
velocity. These distributions suggest that the reduction in rise velocity is not due to a
preferential sampling effect.
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We = 0.13, Bo : 2.7 → 0.04

We = 0.06, Bo : 3.8 → 0.02
Bo = 0.8, We : 0.007 → 0.7

Bo = 0.4, We : 0.01 → 0.7

Figure 4. (a) Velocity signal of bubble rising in turbulence at Fr = 0.75, Ga = 79, Bo = 0.3 and We = 0.125,
with the solid lines being the instantaneous velocity components and the dashed lines being the mean values.

(b) Trajectory randomness characterised by the standard deviation of the horizontal speed (σh =
√

σ 2
ũ + σ 2

ṽ
),

with the change between the turbulent and corresponding base quiescent case colour coded. The vertical speed
of the bubble, sampled fluid, and the slip velocity at (c) Fr = 0.25, Ga = 237, Bo = 2.7 and We = 0.125 and
(d) Fr = 0.75, Ga = 79, Bo = 0.3 and We = 0.125, and (e, f ) their respective original histograms and
smoothed probability density functions (smoothed with a moving average technique over each window).

4. Scaling the rise velocity

We now summarise the results on the bubble rise velocity reduction for all cases
considered. Figure 5 shows the bubble relative rising speed in the DNS, as a function
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We = 0.125 (d ∗ = 0.78)
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Exp. d ∗ = 3
Exp. d ∗ = 4

We = 0.25 (high u′)
1 – χ Fr2

0.37/Fr

Bo = 1 (d ∗ = 2.72)

Figure 5. The relative rising speed as a function of the Froude number for DNS with various Bo and We
(coloured filled dots with Bo colour coded), experiments of various d∗ (grey empty dots) and point-bubble
simulations (grey crosses). The thicker lines show the w̃b/wb = 1 − χ Fr2 relation at low Fr (Spelt &
Biesheuvel 1997) and the w̃b/wb = 0.37/Fr scaling at high Fr (Ruth et al. 2021). The inset shows the standard
deviation of the vertical speed of the bubble in turbulence normalised by the corresponding quiescent speed.
The vertical speed shows a decreasing mean value but an increasing fluctuation as Fr increases.

of the turbulence intensity (Fr number), for all deformation extent (colour coded by the Bo
number) and sizes (different symbols).

Bubbles in the relatively weak turbulence regime (Fr ≈ 0.15, 0.25 in our simulations)
have a dimensionless average rise velocity reduced by a small factor (<20 %). With
increased turbulence intensity, the relative rising speed declines and reaches more than
80 % at the highest Fr number tested.

The data collapse at large Fr on a single curve, w̃b/wb = c/Fr, with c a non-dimensional
coefficient fitted to the data, c = 0.37, as suggested by Ruth et al. (2021). We remark
that at high Fr, the vertical speed of the bubble rising in turbulence exhibits fluctuations
larger than the mean, as shown in the inset of figure 5. As a consequence, statistical
convergence is difficult to reach, and a long time of simulations is required. To test the
convergence, we randomly sample half of the vertical velocity signal and calculate their
mean values, which results in a distribution of values centred around mean values using
the whole signal. To indicate the width of the distribution around the central value, we
display the standard deviations of these half-sampled mean values as error bars in figure 5.
Data for various bubble inertia (with Ga ∈ [25 : 400]), deformation parameters (with
We ∈ [0.01, 2.4] and Bo ∈ [0.02, 4]) and bubble sizes (with d∗ from 0.78 to 4) collapse
reasonably well. Symbols are colour coded by the Bond number and at a given Fr number,
no trend in Bo number is observed.

Good agreement with the DNS is also observed with the laboratory experiments and
point bubble simulations from Ruth et al. (2021), which were conducted at a significantly
larger turbulence Reynolds number. In Ruth et al. (2021), the experimental average speed
of air bubbles of various sizes within the inertial subrange (d∗ ∈ [1, 4]) rising through
varying turbulence (Reλ ∈ [165, 256]) in a water tank was measured and compared with
the inferred (parameterised) quiescent rise speed in dirty water from Clift et al. (2005).
The point-particle simulations were conducted separately and we demonstrated that
a nonlinear drag model agrees quantitatively with the experimental results. Both
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experiments and point-bubble simulations were performed at significantly larger
turbulence Reynolds numbers, suggesting that the scaling is valid in a wide range of
turbulent Reynolds numbers. Separately, at small Fr number, the reduction in rise velocity
follows a parabolic scaling for both the experimental and numerical data.

The scalings of the reduction in rise velocity observed in the DNS and in other
experimental and numerical datasets as a function of Fr number and summarised in
figure 5 can be discussed within the framework of the Maxey–Riley equation (Maxey &
Riley 1983). In the weak turbulence limit Fr � 1, the data (for both small sub-Kolmogorov
bubbles and bubbles within the inertial subrange) follow a parabolic scaling w̃b/wb =
1 − χ Fr2, with χ a non-dimensional prefactor. Such parabolic scaling can be obtained
from various perturbation analysis of bubbles trajectories in turbulent flow using the
Maxey–Riley equation. Spelt & Biesheuvel (1997) derived such result considering a linear
viscous drag for small sub-Kolmogorov bubbles and obtained a size-dependent prefactor
χ . Performing a similar analysis using a nonlinear drag relationship at small Fr number
would also yield a parabolic scaling but with a modified prefactor.

For bubbles in the inertial subrange at large turbulence intensity Fr � 0.5, we observe
w̃b/wb = c/Fr. In this regime, the inertial motion of the flow around the bubble induces
a coupling between the horizontal and vertical motions of the bubble. Such coupling can
be modelled by a nonlinear drag depending on the instantaneous slip velocity within the
Maxey–Riley equations (Ruth et al. 2021).

The nonlinear drag force is modelled as F d = −K|Us|Us, with K = Cdπd2ρl/8 an
effective drag coefficient, | · | the absolute value and Us the slip velocity. The slip
velocity is defined as the difference between the bubble velocity and the surrounding flow
Us = ũb − u. Note that the drag coefficient Cd is assumed to be the same in both the
quiescent and the turbulent case. Ruth et al. (2021) showed that a varying drag coefficient
Cd based on an instantaneous bubble Reynolds number does not change the mean rise
speed significantly. We remind the reader that the DNS performed in this study are directly
solving the coupled two-phase Navier–Stokes equations and do not use the nonlinear drag
model. The Maxey–Riley equation with a nonlinear drag is invoked here only to interpret
our data and those in the literature.

It is critical to keep the instantaneous slip velocity when considering bubbles with sizes
within the turbulence inertial ranges, as it causes the velocity fluctuations of the bubble
slip velocity U ′

s = ũ′
b − u′ to increase the drag. The magnitude of the drag increase will

depend on the relative strength of the fluctuating random motion to the mean rise motion,
controlled by the Fr number. At high Fr number, Ruth et al. (2021) assumed that the
fluctuation magnitude of the slip velocity |U ′

s| (normalised by wb) increases linearly with
Fr, a scaling recovered in the point particles simulations they performed.

The scaling of the slip velocity with Fr number can now be tested with the present DNS
by measuring the slip velocity using a shell-averaged velocity around the bubble. Figure 6
shows the mean value of the slip velocity fluctuation magnitude. As shown in figure 6, we
qualitatively confirm the scaling

〈|U ′
s|〉/wb ∝ Fr, (4.1)

in the Fr ≈ 1 regime, though different deformation extent causes some scattering. From
a physical standpoint, the variations in slip velocity 〈|U ′

s|〉 are primarily attributed to
turbulence in the high-Froude-number (Fr = u′/

√
gd) regime, suggesting that the average

magnitude of these fluctuations scales linearly with the turbulent velocity fluctuations,
denoted by u′. Given that

√
gd is a characteristic rise speed for large bubbles, this results
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Figure 6. The mean value of the slip velocity fluctuation magnitude 〈|U ′
s|〉 (filled symbols) and vertical fluid

velocity sampled by the bubble 〈w〉 (empty symbols) as a function of Fr, with Bo colour coded. Symbol
shapes represent different deformation extents and the slip velocity is defined based on the search diameter
1.5d < SD < 2d.

in a linear relationship (4.1). We remark that this scaling is approximate for Fr > 0.5 since√
gd is a rough estimation of wb.
The mean vertical speed of the liquid surrounding the bubble in the defined spherical

shell (sampled velocity), shown in empty symbols in figure 6, is typically around zero.
Although both the bubble motions and potential preferential sampling in the flow could
influence the mean vertical speed of the surrounding liquid, the fact that the sampled
velocity does not change much at different Fr indicates that the slow down in rise velocity
due to turbulence for bubbles with sizes within the inertial range is not due to the
preferential sampling of downward flow regions with w < 0, in contrast to what has been
reported for sub-Kolmogorov bubbles with Stokes number around 1 (Spelt & Biesheuvel
1997; Mazzitelli et al. 2003). It confirms that the mechanism of slow down of bubbles in
turbulent background flow critically depends on the Stokes number, and that preferential
sampling is not effective for bubbles in the inertial subrange with St � 1.

From (4.1) and the Reynolds type decomposition of the velocities (see Ruth et al. 2021
for details), the drag force in the vertical direction becomes |〈F v

d〉| = K〈|U ′
s|〉w̃b. Through

balancing drag and buoyancy force |F b| = Kw2
b, we obtain

w̃b/wb = wb/〈|U ′
s|〉 ∝ 1/Fr. (4.2)

Despite the wide range of bubble inertia, deformability and bubble sizes within the
inertial range considered, the trends of the compiled DNS, experimental and point-bubble
simulation data in figure 5 remain consistent with the 1/Fr scaling presented. The scatter
of points around these relationships suggests that the factors not captured in the nonlinear
drag model also contribute to determining the average rise speed, including bubble
deformability, the instantaneous local flow field around the bubble, lift and added-mass
force, bubble finite-size effects and effects of trajectory instability. Nevertheless, the
nonlinear drag model explains the effects of turbulence on top of a wide range of quiescent
rising dynamics with different bubble inertia and deformability reasonably well and
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provides a conceptual framework that captures the essence to understand to what extent
and how turbulence slows down the bubbles rising in a turbulent flow.

5. Conclusions

We have performed DNS of bubbles rising in isotropic turbulence. We have found that the
relative rising speed of bubbles with sizes in the turbulent inertial range (compared with
in quiescent medium) is primarily influenced by the Froude number, demonstrating the
dominant role of turbulence intensity. We have demonstrated that the bubble slip velocity
fluctuations scale with the Froude number. The rise reduction scales as w̃b/wb ∝ 1/Fr at a
high Fr, as suggested by Ruth et al. (2021) and we show that this scaling is applicable for
a wide range of bubble inertia Ga, bubble deformability, Bo or We and sizes d∗. Bubble
deformation, as characterised by the Bond and Weber numbers, plays a role in the bubble’s
absolute rising speed w̃b especially at low Fr, but only a secondary role in modulating the
bubble’s relative rise velocity w̃b/wb.

Bubble rising in turbulence carries rich physical information, therefore many
dimensionless numbers can be formulated to understand the problem from different
perspectives. For bubbles of sizes within the inertial subrange of the turbulence, Fr
describes the turbulence intensity and d∗ = d/λ is a good indicator of whether the bubble
is in the inertial subrange, together with Ga and Bo to describe the rise dynamics in a
base corresponding quiescent medium. For bubbles in the viscous regime with a linear
drag–velocity relationship, the turbulence-induced velocity fluctuations do not change
the average bubble drag. These sub-Kolmogorov bubbles slow down due to preferential
sampling or accumulation in the vortex centre or downward flow regions, therefore the
influence of the bubble’s response time to the flow (i.e. Stokes number) needs to be
considered, which measures the effectiveness of the flow to accumulate the bubble in
certain regions. Unifying bubble rise scaling laws in the inertial and viscous subranges
remains to be performed.
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Appendix A. Grid convergence

Figure 7 shows the rise speed of a bubble in quiescent and turbulent flows at different
simulation resolutions. The time signal in quiescent flow is converged between L9 and L10,
therefore L9 is enough, equivalent to ∼70 grid points per bubble diameter. The terminal
rise speed in a quiescent medium is averaged over a time window of the latter half of
the whole vertical speed signal, which excludes the initial acceleration period, ensures
the bubble speed fully saturates and contains enough oscillation periods for cases with
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Figure 7. Grid convergence of (a) a typical quiescent case at Ga = 119, Bo = 0.7 and We = 0.125 and
(b) a turbulent case at Fr = 0.75, Ga = 79, Bo = 0.3 and We = 0.125. The dashed line represents the mean
rise speed average over the time window t/

√
d/g ∈ [16, 80], which excludes the effects of initial unsteady

acceleration.
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Figure 8. Properties of the homogenous and isotropic turbulent flow. (a) Kinetic energy and (b) Taylor-scale
Reynolds number as a function of time. After the initial transient period, the turbulence properties reach a
statistically stationary state and a bubble is inserted in this HIT flow. (c) Second-order longitudinal structure
function DLL before and after the bubble insertion, compensated for by the turbulence scaling (rε)−2/3.
Turbulence theory for the inertial subrange DLL(rε)−2/3 = 2 is superimposed as a black dashed line. The
bubble is inserted at t = 0 and is of a size ∼20η for most cases, comparable to the Taylor microscale and
within the inertia subrange.
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unstable trajectories. For the turbulent case, the convergence check is based on the mean
rise speed defined over a period such that the initial unsteady effects are excluded, where
L9 and L10 show good convergence.

Appendix B. Turbulence properties

Figure 8(a,b) shows the time evolution of the turbulent kinetic energy and Taylor-scale
Reynolds number before inserting the bubble, which reaches a statistically stationary
state at 3εt/2K = 40. Grid convergence of these quantities is achieved and verified in
previous work (Farsoiya et al. 2021; Perrard et al. 2021; Rivière et al. 2021; Farsoiya
et al. 2023b). We characterise the statistically steady turbulence properties using the
second-order longitudinal structure function DLL(r) = 1

3
∑

i〈(ui(r, t) − ui(r + dr̂i, t))2〉,
where r̂i is the unit vector along the ith direction. Figure 8(c) shows that the scaled
structure function shows a constant plateau at C = 2 (Pope 2000) in the inertia subrange,
and no significant change in the turbulence properties is induced after inserting a bubble
of a volume ratio ∼0.1 % rising under buoyancy and relaxing to steady state. Turbulence
properties are similar to the same configuration without gravity described in Perrard et al.
(2021), Rivière et al. (2021) and Farsoiya et al. (2021, 2023b).
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