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Abstract. Confirming a conjecture by Boshernitzan, it is proved that if T is a minimal
non-uniquely ergodic interval exchange, the minimum spacing of the partition
determined by T" is O( l /n) .

1. Introduction
In [1] Boshernitzan introduces a condition, which he calls 'Property P', in the
presence of which a minimal interval exchange transformation must be uniquely
ergodic. He goes on to conjecture that an apparently significant weakening of this
condition remains strong enough to guarantee unique ergodicity. The primary
purpose of this note is to verify Boshernitzan's conjecture.

Let T:[0, l)-»[0,1) be an exchange on m intervals with division points 0 = j80<
0i <• • • </3m_j </3m = 1. Write Dx for the set {j3,|0<;'< m} = Du and for all n > 0
define

(1.1) Dn = 1jT-kD1.
k = 0

Dn defines a partition of [0,1), and we write en = en (T) for the length of the shortest
interval of this partition. The following theorem affirms Boshernitzan's conjecture:

(1.2) THEOREM. Let T be a minimal interval exchange transformation which is not
uniquely ergodic. If en{T) is defined as above, then:

(1.3) lim
n-*oo

Theorem 1.2 has direct application to a restricted class of skew products realizable
as interval exchange transformations. To explain, let X = U/Z be viewed inter-
changeably with [0,1), and let 6 e X be a fixed irrational. Let F be a finite set, and
suppose given permutations yh 1 ^j^ r, of F. Let X be partitioned by 0 = ro< 'i <
• • • < tr = 1, and define a permutation valued function, <p(x) = yh r,-_i < x < th 1 < j <
r. Using 6 and <p, set up on X x F the skew product

(1.4) S(x,y) = (x+0,<p(x)y), (x,y)eXxF.
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We apply theorem 1.2 to obtain:

(1.5). THEOREM. With notation as above, suppose the discontinuities of <p lie in Z8
(modulo 1). If the skew product (1.4) is minimal, then it is uniquely ergodic.

A proof of theorem 1.5 (for the case of one discontinuity) was sketched in the
correspondence [6]. The theorem has been used to aid the study of a restricted class
of rational billiard tables by Boshernitzan [1] and Gutkin [3]. (In fact, the original
purpose of this note was to put a proof of theorem 1.5 in the literature. The proof
of theorem 1.2 is in spirit the same as our original proof of theorem 1.5, which had
its origin in [5].)

(1.6) Remark. Let F = Z2 = {±1}, let 0 < f < 1, and let (p,=X[o,t)-Xit.i) ( = <P above
for the partition {0, t, 1} and y1 = + l , y2 = ~l)- If tiZd, it is automatic that the
skew product in (1.4), here denoted S,, is minimal. If « > 0 , define Sn = Sn(S,) by

Sn = M i n ( m i n \\k6\\, min \\kd-t\\).
0<k<n \k\<n

In [4] it is proved that if 5, is not uniquely ergodic (tirrational), then lim||n9||_0 nSn =
0. This condition readily implies the condition lim,,.^ Sn = 0. If X x Z2 is identified
with [0,2) in an obvious way, then S, becomes an exchangee on five intervals, and
Sn is the same as the quantity en defined above. Thus theorem 1.2 contains as a
special case the criterion used in [4]. We recall also from [4] that if 6 has unbounded
partial quotients, there is an uncountable set of t (of Hausdorff dimension 0) such
that S, fails to be uniquely ergodic. In particular, the assumption on the placement
of discontinuities in theorem 1.5 cannot be dispensed with entirely.

(1.7) Remark, Fix m > l , and let n be a fixed irreducible permutation on
{1 ,2 , . . . , m) (i.e. TT({1, • • •, k}) = { 1 , . . . , k} implies k = m). Let

Am_, = {A eR m | A^X), 1 < 7 < m,L A; = 1},

and for each A £ Am_j let Tk be the (A, IT) interval exchange. Fix e > 0, and for each
n > 0 let u(n, e) be the (m- 1)-Lebesgue measure of the set of A such that
nen(TA)>e. In [1] Boshernitzan proves, by an ingenious argument, the assertion
limE^0

 u(n, e) = 0 uniformly in n. Coupled with theorem 1.2 one obtains an even
more direct proof that a.e. A the (A, IT) interval exchange is uniquely ergodic.

(1.8) Remark. In [1] Boshernitzan announces a generalization of theorem 1.5. If T
is an exchange on m intervals, and if the lengths of these intervals span a two
dimensional vector space over Q, then T is uniquely ergodic as soon as T is minimal.
Boshernitzan has pointed out to us that his theorem, which appears in [2], is also
a consequence of theorem 1.2.

2. Ergodicity
The proof of theorem 1.2 is based upon an elementary lemma. The set Dn of (1.1)
will be identified with the partition of X = [0,1) it determines, /x denotes Lebesgue
measure on R.
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(2.1) LEMMA. Let T be a minimal interval exchange, and let I be an interval of the
partition Dn. IfJ is a subinterval of I, of length at least e2n, then:

(2.2) n
\j=o

The lemma will be proved, in a slightly stronger formulation, in § 3. In this section
it will be used as a vehicle for establishing ergodicity. Define, in terms of T and
e > 0, a set S(e) = {n > 0| ne2n > e}. (The subscript 2n is intentional.)

(2.3) LEMMA. Let Tbe a minimal interval exchange, and suppose A <= X is a measurable
set such that TA = A. Given e>0 and 5>0, there exists q = q(A,e,8) with the
following property: If q^ne S(e), there exists for each interval I of Dn a choice,
B = B(I) = A or Ac, such that if J is any subinterval of I, of length at least e2n, then:

(2.4)

Proof. We may suppose S<^. Both sides of (2.4) are continuous functions of the
endpoints of / Therefore, if a choice of B = A or Ac can be made for each interval
J '—I, of length at least e2n, so that (2.4) is true, then the choice must be independent
of /, i.e. a function of /.

We may also suppose 8 < e. There exists y > 0 and a measurable set K c X with
the following properties: fi(K)> 1 — 8, and if xe K, there is a choice, B = B(x) = A
or Ac, such that (2.4) holds for every interval J satisfying xeJ and fi(J)< y.

Because T is minimal, we may select q so that en < y, n>q. Let such an n also
belong to 5(e), and let / be an interval of Dn. If J is a subinterval of / of measure
at least e2n, then (2.2), the fact e > 5, and the choice of K imply there is aj,0<j < n,
such that TjJ r\K^0. Select any point x in the intersection, and observe that
because A and Ac are invariant, B(x) satisfies

(Note that the definition of Dn implies V is linear on / for 0sj<n.) The lemma
is now proved.

We now consider D1 = {Bj\0<j<m}. For each 7,0<j<m, there exists 5 = ^ 2 0
such that the sequence T~'Bj, i> sjt does not intersect D,. (T can have no periodic
orbit.) Now let n be large, and let L{j,n) be the interval, L=(T'"Bj-en/4,
T'"Bj + en/4). The images of L under T\ 0< i < n - sjt are pairwise disjoint intervals,
by definition of Dn and en. Their total measure is (n - Sj)en/2, which is at least e/4
if n is large and belongs to S(e). If we assume 8 < e/4, it will follow there exists
B = Bj: = A or Ac such that (2.4) holds with T'L in place of /, 0< i < n - Sj. Fix such
an i, and let / ' and J" be the successive intervals of Dn which share T'T~"Bj as an
endpoint. If 8 is sufficiently small, lemma 2.3 implies readily that B(I') = Bj = B(I").
Letting S -»0, we conclude each set, A or Ac, is, modulo /u,, a union of intervals
with endpoints from the set Dr, where r = Max (su ..., sm_!), together with 0 and 1.
As each set is invariant, and as T is assumed to be minimal, it must be that one of
A or Ac has measure 0. A is an arbitrary measurable invariant set, and therefore T
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is ergodic. We have proved (assuming lemma 2.1):

(2.5) LEMMA. If T satisfies the hypotheses of theorem 1.2, then T is ergodic relative
to Lebesgue measure.

3. Unique ergodicity
In this section we assume Dt is augmented by 0, and we write Dn = Dn(T) for the
set (1.1). Observe the relations

Dn(T-1)=T"Dn(T),

D2n(T)=T~"(Dn(T)uDn(T-1)).

Write D*(T) = TnD2n(T). We observe V is linear on each interval of Dn(T) (resp.
DniT'1)) forO<_/"<n (resp. - n < _ / < - l ) . In particular, V is linear on each interval
of D*(T) for -n<j<n. It follows from (3.1) that D*(T) has shortest interval of
length e2n. Finally, we note that if / is an interval of D*(T), the intervals
I, TI,..., T"~lI are pairwise disjoint.

(3.2) LEMMA. Let T be a minimal interval exchange, and suppose there exists e > 0
such that the set S(e), defined following lemma 2.1, is infinite. If fi0 is an ergodic
T-invariant Borelprobability measure on [0,1), then/j,0 is absolutely continuous relative
to fji (Lebesgue measure).

Proof. Since /A0 is assumed to be ergodic, and since the minimality of T implies fi0

is non-atomic, there exists a generic point x for fi0, that is, a point for which the
relation

(3.3) \im N-'YXj(Tix) = n0(J)

holds for each interval /. Let N increase to oo through a sequence in S(e). The
discussion preceding this lemma combines with (3.3) to imply fio(J) =s E~1(JL(J). The
lemma clearly follows.

We shall now recast the basic lemma:

(3.4) LEMMA. Let the notation and assumptions be those of lemma 2.1, and (for
convenience) assume the set D1 does not lie in a single orbit. The interval J contains
a subinterval L, of length at least e2n, such that the intervals TL, T2L,..., T"~lL are
disjoint from each other and from J.

Proof. We may suppose J is left closed and right open. Let Ux = T"(x)x be the
induced (first return) map of T on /. If n(x)^n for all xeJ, there is nothing to
prove. We next observe that because V is linear on / for 0 < j < n, and because U
is one-to-one, the set where n(x)<n, if non-empty, is comprised of one or two
intervals, each sharing an endpoint with /, and on each of which n(x) is constant.
Suppose first there is only one interval, Jf If n(x) =j on / , , and if V = Id + c, on
(/ and) J, the complement of Jj in / has length |c,| > e2n (see the first paragraph of
this section), and this complement can be taken for L. If there are two intervals, Jx

and I2 say, the assumed minimality of T and the assumption made about D, imply
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their union is not all of J. (Indeed, for each element /3 of Dt there exists an element
x0 of J which visits j8 before its return to J. If )3 is not in the orbit of the left
endpoint of /, then «(xo)>n.) If n(x)=jt on Jt, i=l,2, the interval J n
[TViU ThJ2Y contains the interval / n [ P ' / u Tj*I]c. The case / = / of the argu-
ment (in parentheses) just given implies the latter interval is non-trivial, and the
remark in the first paragraph of the section implies it has length at least e2n. The
lemma follows.

(3.5). Remark. If T is a minimal interval exchange, and if D, lies in a single orbit,
one finds that T arises by a stacking construction from a minimal exchange on two
intervals. T is then automatically uniquely ergodic, and for this reason we have
excluded it from consideration in lemma 3.4.

Proof of theorem 1.2. Lemmas 2.1 and 2.5 imply Lebesgue measure is ergodic for
T. Lemma 3.2 implies every ergodic T-invariant Borel probability is absolutely
continuous relative to Lebesgue measure. Therefore T admits but one ergodic
invariant Borel probability, and the ergodic decomposition of an arbitrary invariant
Borel probability has but one component. That is, T is uniquely ergodic.

Proof of theorem 1.5. Evidently S is an interval exchange on the interval [0, Card F),
where F is the given finite set. Let qk be the fcth denominator in the sequence of
convergents to 0. If 0 < a < \, and if n = [ qka ], where f • ] denotes the greatest integer
function, the assumption D,cZfl implies, for large k and this associated n,
e2n ^ Ikfc-i0||. It follows that ne2n > a/4.
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