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Abstract

Ambient air pollution remains a global challenge, with adverse impacts on health and the environment. Addressing air
pollution requires reliable data on pollutant concentrations, which form the foundation for interventions aimed at
improving air quality. However, in many regions, including the United Kingdom, air pollution monitoring networks
are characterized by spatial sparsity, heterogeneous placement, and frequent temporal data gaps, often due to issues such as
power outages. We introduce a scalable data-driven supervised machine learning model framework designed to address
temporal and spatial data gaps by filling missing measurements within the United Kingdom. The machine learning
framework used is LightGBM, a gradient boosting algorithm based on decision trees, for efficient and scalable modeling.
This approach provides a comprehensive dataset for England throughout 2018 at a 1 km2 hourly resolution. Leveraging
machine learning techniques and real-world data from the sparsely distributed monitoring stations, we generate 355,827
synthetic monitoring stations across the study area. Validation was conducted to assess the model’s performance in
forecasting, estimating missing locations, and capturing peak concentrations. The resulting dataset is of particular interest
to a diverse range of stakeholders engaged in downstream assessments supported by outdoor air pollution concentration
data for nitrogen dioxide (NO2), Ozone (O3), particulatematter with a diameter of 10 μmor less (PM10), particulatematter
with a diameter of 2.5 μm or less PM2.5, and sulphur dioxide (SO2), at a higher resolution than was previously possible.

Impact Statement

The current high-quality air pollution monitoring station network in the United Kingdom is spatially sparse with
heterogeneous placement and commonly suffers from missing data temporally from issues such as power
outages. We present a scalable data-driven supervised machine learning model framework to fill missing
measurements temporally and spatially, providing a complete dataset for England during 2018 at a 1 km2 hourly
resolution. The approach leverages machine learning and data from the sparse real-world monitoring stations to
create 355,827 synthetic monitoring stations across the study. Validation was conducted regarding the model’s
performance in forecasting, estimating missing locations, and capturing peak concentrations. The dataset
provided empowers stakeholders conducting downstream assessments underpinned by outdoor air pollution
concentration data for various pollutants, enabling studies to be performed at a higher resolution than previously
possible. Furthermore, this work demonstrates that similar approaches can be applied in other countries, as air
pollution is a global issue, and many regions face similar challenges of limited data availability.
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1. Introduction

Air pollution presents a significant health risk, with between 28,000 and 36,000 deaths per year in the UK
associated with exposure (Office for Health Improvement and Disparities, 2022). Estimating ambient air
pollution concentrations is crucial in addressing this health burden, although the high cost of individual
monitoring stations remains a major challenge. The potential cost for a single multi-pollutant monitoring
station could be as high as £198,000 (AEA Technology, 2006). Even for a country such as the United
Kingdom that has highlighted tackling ambient air pollution as a key priority (Eustice and LordGoldsmith
of Richmond Park, 2021), there are only 171 monitoring stations across the United Kingdom for all
pollutants currently being monitored1. Therefore, areas without a dedicated monitoring station must have
their ambient air pollution concentrations estimated through models. The outputs of these models inform
policy for interventions into air pollution, making the models of pivotal importance.

Existing national-level datasets produce estimations at the annual temporal scale and 1 km2 spatial
resolution (UK-AIR, 2019). However, it is imperative to note that health advisories, as articulated by
organizations like the World Health Organization, delineate constraints not solely on the annual mean of
air pollution concentrations within a specified region but also on the daily mean. To illustrate, for nitrogen
dioxide (NO2), the stipulated limits include a 10 μg/m3 annual mean and a 25 μg/m3 24-hour limit (World
Health Organization, 2021), with the absence of an explicitly defined hourly limit (World Health
Organization, 2021). The regulatory landscape in the United Kingdom, as governed by the Air Quality
Standard Regulations 2010 (King’s Printer of Acts of Parliament, 2010), delineates both limit values—
legally binding parameters not to be surpassed—and target values, akin to limit values but lacking legal
bindings. Notably, this legislation addresses hourly level means for pollutants like NO2, with ameticulous
limit of 200 μg/m3, not to be exceeded more than 18 times in a year.

The prevailing methodology, limited to generating mean annual estimates at the national scale,
introduces a challenge. This stems from the fact that only specific locales, equipped with monitoring
stations, possess hourly data on air pollution. Consequently, areas devoid of such monitoring infrastruc-
ture are excluded from any analysis of air pollution levels at a more granular temporal resolution. This
discrepancy in data availability raises concerns regarding health inequalities, underscoring the imperative
need for a more equitable and comprehensive approach.

The utilization of annual pollution levels provides a broad overview of the pollution within a
designated study area. However, a notable challenge arises concerning information loss when transition-
ing from an hourly to a daily or annual temporal scale. This issue has manifested in the United Kingdom,
where instances of divergent narratives emerge between the annual and daily means of specific locations.
Take, for instance, Leominster2 on 03/12/2014 at 08:00, which recorded a peak pollution value for NO2 of
80.2 μg/m3. The 24-hour mean in the vicinity of this peak, spanning 12 hours on either side (from
02/12/2014 20:00 to 03/12/2014 20:00), stands at 31.5 μg/m3, as illustrated in Figure 1a. This exceeds the
WHO’s dailymean guideline of 25 μg/m3. The complexity deepens when examining Leominster’s annual
mean for 2014, registering a value of 9.5 μg/m3, deemed safe by WHO guidelines and depicted in
Figure 1b. Similar disparities are observable in other monitoring stations. For instance, London North
Kensington exhibits unsafe levels at both the annual and daily scales, with a peak value of 209 μg/m3, a
daily mean of 122 μg/m3, and an annual mean of 33 μg/m3 for the pollutant NO2. Supplementary Table S1
details the peak values for the fivemost polluted stations for NO2within the study, encompassing the peak
value, daily mean surrounding the peak, and the annual mean for the year of the peak occurrence.

While there is evident importance in hourly air pollution concentration data for compliance and
legislation purposes, the data serves a spectrum of other critical purposes. Researchers, policymakers, and
public health officials routinely conduct human health assessments (E. Assessment, 1992), enabling
informed decisions concerning interventions to protect vulnerable populations (Zou et al., 2009). Further,
epidemiological studies assessments are routinely conducted (Atkinson et al., 2016) and are of crucial

1 https://uk-air.defra.gov.uk/networks/network-info?view=aurn
2 https://uk-air.defra.gov.uk/networks/site-info?site_id=LEOM
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importance when significant changes in air pollution are being observed, such as during the COVID-19
pandemic (Konstantinoudis et al., 2021). Beyond human health, ecosystem health can be significantly
impacted by air pollution, leading to damage to plants, manifested as leaf injury and stunted growth
(Molnár et al., 2020). This has critical implications for concerns related to crop yields and food security
(Tai et al., 2014).

As such, this work introduces a data-driven machine learning model designed to estimate the hourly
concentration of air pollutants at the same spatial resolution (1 km2) as the existing annual dataset

(a) Leominster day air pollution readings surrounding the 2014-2018 peak. Shown is the peak value for the Leominster
AURN monitoring station spanning 2014-2018, recorded at 08:00 on 03/12/2014. Presented alongside the peak value is the

24-hour window surrounding the peak, along with the annual and 24-hour limit averages.

(b) Leominster 2014 air pollution readings. Presented are all ambient air pollution measurements for NO2 at the Leominster for
the year 2014. Emphasised is the peak value, which is further examined in Figure 1a, along with the annual and 24-hour average

limits.

Figure 1. Leominster AURNmonitoring station NO2measurements. (a) Shows how the peak air pollution
reading for NO2 at the Leominster station dramatically exceeds the 24-hour limit, even more so for the
annual limit, showing how there can be periods of quite extreme pollution in the context of the annual
limits. (b) shows how there can be extended periods where the air pollution levels are below and exceed
the designated limits and the relation of the monitoring station peak to all available data for the station in
2014.
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available for the UK3. We argue that this work leads to a dataset of substantial value to various
stakeholders.

2. Related work

2.1. Measuring air pollution

Variousmethods exist to offer insight into air pollution concentrations in a given location. Themost robust
and straightforward method available involves specialized equipment designed to provide direct meas-
urements of air pollution concentrations. In-situ measuring equipment can be broadly categorized into
two groups: high-quality stationary monitoring stations discussed in Section 1 and more mobile low-cost
air quality sensors (Kang et al., 2022).

While high-quality fixed monitoring stations provide a reliable method of obtaining air pollution
concentration data, their deployment on a large scale is prohibitively expensive. In 2018, the United
Kingdom had 165 high-quality monitoring stations online across the country within its premier moni-
toring network. Notably, a majority of these monitoring stations are situated in urban areas, comprising
144 urban and 21 rural stations. The strategic decision of where to position these monitoring stations
carries the potential to exacerbate inequality between urban and rural areas, potentially fostering a divide
between rural and urban communities in terms of insight into air pollution where they live and work
(Rosofsky et al., 2018), particularly when considering that Ozone (O3) air pollution can often be worse in
rural locations (Stasiuk and Coffey, 1974; Belgian Interregional Environment Agency, 2024).

The emergence of low-cost sensors has made it possible to monitor air pollution concentrations over a
larger geographic area. However, we see two critical problemswith low-cost sensors. One such issue is the
quality of the sensors themselves, which can be influenced by changes in atmospheric composition and
meteorological conditions, or provide false signals if other air pollutants are present in high concentrations
(UK-AIR, DEFRA, 2021). Another issue is the quality control that is conducted on the sensors, such as the
calibration checks that go into ensuring that the measurement is made under the same conditions, such as
the height at which the measurement is taken, affecting the reading that is produced, potentially making
comparisons between different low-cost sensors and even the same sensor between locations more
challenging (Concas et al., 2021). There is research being conducted to help combat the issues facing
low-cost sensors; it is still an open challenge but rapidly improving (Rai et al., 2017). For now, low-cost air
pollution sensors are only suitable for raising awareness rather than applications requiring higher
accuracy, such as epidemiological studies or compliance with air quality legislation (Castell et al., 2017).

An ex-situ indirect measurement of air pollution concentrations can be achieved with remote sensing.
Sentinel 5P (Veefkind et al., 2012) is an ESA satellite platform that can provide insight into air pollution
concentrations at a vast spatial extent. However, a major challenge associated with the use of Sentinel 5P
is the issue of data completeness. Two primary drivers contribute to missing data from the Sentinel 5P
platform. The first challenge arises from the platform’s orbit, which follows a near-polar, sun-
synchronous path (European Space Agency - Copernicus, 2023). This orbit causes the platform to
consistently pass over a region at a similar time each day. While this characteristic is advantageous for
comparing locations, it complicates the provision of insight into air pollution concentrations across an
entire day. As a result, questions such as the difference between rush hour and midnight air pollution
concentrations become difficult to answer. Another factor contributing to data gaps is environmental
conditions that may lead to a specific reading not passing quality control, resulting in missing measure-
ments on certain days (European Space Agency - Copernicus, 2017). Another remote sensing platform is
the recently operational TEMPO (Zoogman et al., 2017), which provides hourly air pollution concen-
tration measurements. However, TEMPO shares similar limitations with Sentinel 5P and only offers
coverage over North America. While remote sensing is a valuable tool in certain circumstances, it cannot

3UK-AIR Annual Modelled Background Air Pollution Data.
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provide a complete picture of air pollution concentrations. This comprehensive understanding is crucial
for designing effective interventions to tackle air pollution.

2.2. Modelling air pollution

As it is evident that all methods of measuring air pollution concentrations have drawbacks, models have
been extensively utilized to complement real-world observations. Various types of model frameworks
exist, each offering distinct benefits and drawbacks.

There are two widely used air pollution model frameworks: Lagrangian and Eulerian. Lagrangian
models track individual air parcels (or particles) moving through the atmosphere. Each parcel is
associated with a set of equations of motion, making the parcel the focal point of the model as it moves
through space and time (Eliassen, 1984). On the other hand, Eulerian models do not concentrate on a
single air parcel; instead, they divide the atmosphere into regions, using fixed points or cells to represent
specific locations. The goal is to understand the concentrations of air pollutants at these specific locations
at different times (Byun et al., 2003). Lagrangian models are particularly well-suited for studying
problems where a specific pollution source is of interest, such as the ash emitted from a volcano
(Vitturi et al., 2010).

On the other hand, an Eulerian model is well-suited for studying the spatial distribution and long-term
trends of air pollutants, albeit at the expense of not being able to provide specific information about a given
source and pollutant. Consequently, this workwill primarily focus on Eulerianmodels, as they provide the
necessary data for conducting the analyses and assessments discussed in Section 1.

Statistical Eulerian models, such as Land use regression (LUR), exist as a method for creating
stochastic air pollution models. LUR incorporates a variety of predictors, including meteorological,
terrain, land use, and road network data (Hoek et al., 2008). Another paradigm of Eulerian air pollution
models is represented by mechanistic models, such as GEOS-Chem (Henze et al., 2007). These models
are open source and available for use, providing comprehensive spatial coverage of air pollution
concentrations. However, they demand a high level of expertise in the domain field for interrogation
due to their complexity. Additionally, these models come with extensive requirements for supporting
infrastructure, with a GEOS-Chem 4.00°x5.00° degree standard simulation requiring 15GB of RAM4.

A rapidly emerging area is the use of deterministic models to address the current gapwithin the existing
suite of models, providing high-resolution air pollution concentration data both temporally and spatially;
this empowers stakeholders to make informed decisions concerning air pollution. Several models in this
category are based on data-driven supervised machine learning, where a target vector, typically repre-
senting air pollution concentrations, is estimated from a feature vector, such as meteorological variables
(e.g., wind speed). Themodel’s objective is to learn the relationship between the target and feature vectors
in situations where both are available, enabling subsequent predictions of target vectors when only the
feature vector is available. In the scientific literature, numerous studies utilize machine learning tech-
niques to forecast air pollution concentrations (Freeman et al., 2018; Tao et al., 2019; Harishkumar et al.,
2020). However, a limitation exists, as this approach requires air pollution concentration data from the
location being predicted before the time that is to be predicted. Therefore, there is a need for historical air
pollution data to be available. For example, a forecasting model will use air pollution concentration data
fromT-X to estimate air pollution at time T,whereX is some defined time, such as 1/3/9 hours. If historical
air pollution concentrations are used, it restricts the method’s applicability to locations where an air
pollution monitoring station exists.

Existing studies have tackled the problem of estimating air pollution concentrations in locations
without monitoring stations. However, the studies focus either on small geographical areas, such as the
Bay of Algeciras (Spain) with hourly temporal resolution (Van Roode et al., 2019) or a large geographical
area with low temporal resolution, such as monthly (Chen et al., 2021). Some work has been able to
achieve higher spatial coverage with daily temporal resolution (He et al., 2023; Li et al., 2020). As such,

4 https://geos-chem.readthedocs.io/en/stable/getting-started/memory.html
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this work presents a model combining these aspects, predicting hourly temporal resolution concentrations
across England’s large geographical area, a considerable challenge due to the variance of air pollution
concentrations in locations covered.

This manuscript aims to usemachine learning to produce data similar to an Eulerianmodel framework.
While traditionally, the concentration is resolved over an area in an Eulerian model, the model presented
here can be considered an approach of using machine learning as a synthetic monitoring station. The
process that is followed for the model is answering the question of the air pollution concentration reading
of a monitoring station that experiences the environmental conditions described by the input data. The
model takes the training data to learn the relationship between environmental conditions and air pollution,
allowing us to use the environmental conditions that are known in all locations across England and make
predictions of air pollution concentrations that are not so readily available, providing a complete picture of
air pollution concentrations in the England. Compared with other deterministic methods, such as
mechanistic models, a key benefit of the approach is the improvement in computational speed. In contrast,
more traditional Eulerian models involve spatial dependencies between grids, where, for example, two
adjacent grids impact each other. The framework presented in this work, however, treats each synthetic
monitoring station as independent from one another. This approach offers a significant speedup in
computation through the parallelization of predictions, while also enabling more accessible exploration
of data by predicting air pollution locations independently. This novel approach is a key contribution of
this work, utilizing machine learning to underpin a scalable estimation of ambient air pollution concen-
trations. Importantly, this approach is linearly scalable concerning computational complexity, allowing
stakeholders to employ a model capable of predicting air pollution concentrations at any spatial and
temporal resolution.

3. Data

The data-driven supervised machine learning model this paper proposes for air pollution concentration
prediction is based on two primary sets of data: feature vectors and target vectors. In the case of air
pollution concentration estimation, the target vector is the air pollution concentration itself, the data to be
estimated, and the feature vector represents the data used to make predictions, for example, the wind
speed. The model aims to understand the relationship between the feature and target vectors, e.g., what is
the given NOx concentration at given wind speeds? The supervised machine learning model proposed in
this work aims to learn a function f that maps from the feature vectorX (which consists of input variables
such as wind speed, temperature, etc.) to the target vector X (air pollution concentrations). This can be
mathematically expressed as:

y¼ f Xð Þ (1)

The model attempts to estimate f by learning from historical data, aiming to minimize the difference
between the predicted values and the actual values of air pollution concentrations.

3.1. Target vector: air pollution concentrations

We obtained air pollution data for our study from the UK Automatic Urban and Rural Network (AURN)
using theOpenAir package (Carslaw andRopkins, 2012). Our study focuses on seven pollutants: nitrogen
oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter < 10 μm (PM10),
particulate matter < 2.5 μm (PM2.5), ozone (O3), and sulphur dioxide (SO2). All air pollutants are
measured in micrograms per cubic meter (μg/m3). All types of monitoring stations were included in
the study. The number of station types per pollutant varied, resulting in different data point distributions,
as shown in Table 1, with apparent gaps in some locations for certain air pollutants, such as suburban
Industrial for PM10, PM2.5, and SO2. Clear spatial differences exist in the locations of monitoring stations.
Supplementary Figure S2 shows the spatial distribution of all AURN monitoring stations used in this
study across three high-level environmental area classifications.
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Each environmental area has a representative area over which the station’s measurements relate (UK-
AIR, 2023). Urban stations are defined as representative of a few square kilometres (km2), suburban stations
cover tens of square kilometres, and rural stations encompass at least 1000 square kilometres. Each station
within the network also has a location type that specifies the primary source of air pollution at the station.
Background stations are strategically located to ensure that no single source or street significantly influences
the readings at the station. Instead, the measurements reflect an integrated contribution from all sources
upwind. Traffic stations are located so that the measurements represent a street segment of at least
100 meters, and industrial stations have a representative area of 250 square meters (m2).

The monitoring station location was abstracted to the closest grid centroid for ease of creating the
needed datasets. Consequently, there is some distance between the true location and the locationwhere we
created the feature vector for the monitoring station. This abstraction of location provided a common
framework, reducing the computation required to build the associated feature and target vectors, and
facilitating a more straightforward interpretation of the framework. While the AURN monitoring station
guidelines specify aminimal representative sample area, and themaximum abstraction distance across the
monitoring network locations was 399 meters for the London.

Hackneymonitoring station, we deemed this to be a worthwhile tradeoff. Full details of the abstraction
distance can be found in Supplementary Table S3. It is noteworthy that as the spatial resolution increases,
the associated errors will decrease, leading to an improvement in the approach. Eventually, the error from
abstracting the location of the monitoring station will be eliminated when the abstracted distance is below
the monitoring station representative sample area. However, this comes at the cost of considerable
additional computational expenses. Therefore, the experiments in this study represent a lower bound
for the framework’s performance, as any operational deployment could utilise increased spatial resolution
for potential performance improvement.

For the study, we used the years 2014–2016 as the training set, 2017 as the validation set, and 2018 as
the test set. To be included in the study, a station needed to have at least one measurement in each of
these sets.

We conducted preprocessing on the collected air pollution concentration data. While UK-AIR
performs some data validation (DEFRA, Department for Environment Food and Rural Affairs, 2017),
we undertook additional preprocessing steps. The initial step involved removing negative values, which
are possible in the UK-AIR dataset (DEFRA, Department for Environment Food and Rural Affairs,
2023). The number of observations removed per air pollutant due to the presence of negative concen-
trations is detailed in Supplementary Table S2. The distribution of the positive air pollution concentration
values can vary widely across air pollutants and exhibit apparent differences between different environ-
mental locations of monitoring stations. To visualize the distribution of the different air pollution concen-
trations, Kernel Density Estimation (KDE) (We˛glarczyk, 2018) was used. KDE is a non-parametric way to

Table 1. AURN monitoring station counts by environmental classification per air pollutant

Pollutant
name

Urban
background

Urban
traffic

Rural
background

Suburban
background

Urban
industrial

Suburban
industrial

NOx 40 41 11 3 6 2
NO2 40 41 11 3 6 2
NO 40 41 11 3 6 2
O3 32 3 13 2 3 1
PM10 17 22 2 0 5 0
PM25 30 15 2 2 4 0
SO2 9 1 5 0 3 0

Note. The number of stations for each pollutant within the UK AURN network within England is shown. It can be seen that there is an unequal
distribution across the different environment types, alongside some pollutants such as SO2, missing some environmental types completely.
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estimate the probability density function of a variable. It provides a smooth curve that represents the
distribution of data points without making assumptions about the underlying distribution. In the context of
air pollution data, the KDE helps visualize the distribution of air pollution concentrations, highlighting
patterns such as skewness ormultimodality thatmay not be apparent from rawdata alone. TheKDE for each
air pollutant is shown in Supplementary Figure S3. This variability raises the question of how to identify
outliers, alongside the issue of developing a model that can handle target vectors with stark differences in
distribution. For example, O3 is the only air pollutant with a non-zero-inflated distribution, with the skewing
between distributions for different environmental classifications for each air pollutant showing varying
degrees of skew.

We considered removing outliers from the dataset but ultimately decided against it for several reasons.
Points that are distant from the mean have the potential not to be genuine outliers, but rather data points
generated by different phenomena compared with the other data points in the distribution. We aimed to
identify and remove both outliers and anomalies within the dataset. The challenge in identifying outliers lies
in the context of the dataset, where a single urban traffic data point within the context of rural background
monitoring station data points might be flagged as an outlier using established methods like Interquartile
Range (IQR) (Crosby, 1994). We were also cognizant of the potential presence of anomalies in the dataset.
We recognized that a single localized event could drive a high-value concentration data point. While this
reading might be accurate, it does not align with the AURN monitoring stations’ purpose, where concen-
trations are intended to represent a larger geographic area. Consequently, we considered identifying and
removing these values beyond the scope of this work and proceeded with the study, acknowledging the
presence of outliers and anomalous observations within the dataset that we could not explicitly identify.

3.2. Feature vectors

The data considered in this study can be categorized into different dataset families, each containing a set of
distinct but related datasets describing a phenomenon associated with air pollution concentrations.
Addressing the temporal and spatial resolution differences between the datasets was a key challenge in
creating a consistent feature vector to estimate the air pollution target vector. The common framework
employed consisted of 355,827 1 km2 grids covering the extent of the England land mass. England was
chosen as the study area since it was a common geographical region in all the datasets examined during
this study, as illustrated in Supplementary Figure S1. For the study, seven different dataset families were
used, each providing a set of datasets describing a range of related phenomena that correlate with air
pollution concentrations. Across all dataset families, there are 152 feature vector elements, with Figure 2
showing example feature vectors across England for each dataset family.

3.2.1. Transport infrastructure structural properties, 28 features
Transport infrastructure has been shown to provide information concerning air pollution concentrations
(Berrisford et al., 2022). We used Open Street Maps (Bennett, 2010) to create annual snapshots of
14 transport infrastructure networks, from motorways5 to residential6 roads. Using the road network, we
calculated two sets of feature vectors. One detailing the distance to each road type from the grid centroid,
and the second detailing the total length of the given road type within the grid. Further details on the
process conducted can be seen in Supplementary Section S1.3.

3.2.2. Transport infrastructure use, 5 features
Vehicles themselves are a primary driver of air pollution through multiple processes. Road vehicles
exhaust gas air pollutants such as NOx (Watkins, 1991) alongside causing PM air pollution (Yan et al.,

5 Open Street Maps Motorway Highway Classification (https://wiki.openstreetmap.org/wiki/Tag:highway%3Dmotorway#:~:
text=The%20tag%20highway%20%3D%20motorway%20is,local%20context%20and%20prevailing%20convention).

6 Open Street Maps Motorway Residential Classification (https://wiki.openstreetmap.org/wiki/Tag:highway%3Dresidential#:~:
text=The%20highway%20%3D%20residential%20tag%20is,have%20also%20some%20transit%20traffic).
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2011). Further vehicles can cause air pollution through traffic resuspension (Amato et al., 2010) and fuel
spillage and evaporation (Haagen-Smit, 1959), alongside PM2.5 and PM10 from brake, tyre, and road dust
emissions (Matthaios et al., 2022).Within England, only traffic counts from point locations detailing daily
traffic flows across different road types for key vehicle types such as Cars and Heavy Goods vehicles
(HGVs) were available from the Department of Transportation (Department of Transport, UK Govern-
ment, 2023). Using OpenStreetMaps, we created a spatially complete dataset by providing the average
daily traffic flow by road type per meter across the United Kingdom. We then used a spatial micro-
simulation using data from the UKCensus (providing sociodemographic details of different regions of the
United Kingdom) (Office for National Statistics, 2017) and the UKTimeUse Survey (providing details of
how different sociodemographic groups travel, both temporally and by which transportation mode)
(Sullivan andGershuny, 2023) to spatially distribute the daily traffic counts to produce an hourly spatially
complete dataset of traffic counts. Complete details of the process are covered in Supplementary Section
S1.4.

3.2.3. Meteorology, 11 features
Meteorological phenomena play a pivotal role in air pollution concentrations. Wind speed and direction
advects air pollution both to and from locations of interest through horizontal transport (Jurado et al.,
2021; Cichowicz et al., 2017). Temperature can have a range of impacts on air pollution, impacting
temperature inversions (Wallace et al., 2010), the production of O3 air pollution (Bloomer et al., 2009).
UV radiation directly impacts O3 production (Finlayson-Pitts and Pitts, 1986). The removal of air
pollution from the atmosphere via deposition by precipitation is notable (Jolliet and Hauschild, 2005),
alongside wash-off from surfaces (Yuan et al., 2017; Xu et al., 2019). Pressure can also influence air
pollution concentrations, either by vertical mixing in low-pressure systems (Ning et al., 2018) or high-
pressure systems, causing an accumulation of air pollution concentrations near the ground through a lack
of verticalmixing and advection (Vukovich, 1979). Further, O3 production is increased at higher pressures

Figure 2. Example feature vector dataset from each dataset family. From left to right, the example
datasets are the majority land use classification for each grid (geographic family, discussed in
Supplementary Section S1.8), Sentinel 5P NO2 measurements (remote sensing family, discussed in
Supplementary Section S1.6), 100 m U component of wind (meteorological family, discussed in
Supplementary Section S1.5), NAEI SNAP sector 7 (road transport) NOx emissions (emissions family,
discussed in Supplementary Section S1.7), road infrastructure distance from the nearest motorway and
total length of residential road per grid (transport infrastructure structural properties family, discussed in
Supplementary Section S1.3), and the car and taxis score (transport use family, discussed in
Supplementary Section S1.4).
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(Hippler et al., 1990). The boundary layer also influences air pollution concentrations through vertical
mixing within the layer. Larger boundary layer heights tend to produce less concentrated air pollution
at the surface. For smaller boundary layer heights, the inverse is true. (Xiang et al., 2019; Davies et al.,
2007). We retrieved data from the ECMWF Re-Analysis Version 5 (ERA5) dataset (Hersbach, 2016).
ERA5 is a global dataset that details the environmental conditions at equal space points, at 0.25°x0.25°

hourly resolution. We choose the variables commonly associated with air pollution concentrations in the
scientific literature. We interpolated across the study area to provide a value for each 1km2 grid centroid;
the details of the process of creating the dataset can be seen in Supplementary Section S1.5.

3.2.4. Remote sensing, 5 features
While there are limitations to the data produced by remote sensing, as discussed in Section 2.1, they
provide valuable insight into air pollution concentrations between locations.We usedmonthly averages of
Sentinel 5P data (Veefkind et al., 2012) to ensure that all locations had a measurement value. Further
details of the feature vector are discussed in Supplementary Section S1.6.

3.2.5. Emissions, 77 features
Emissions of air pollutants are the primary driver of a wide range of air pollutant concentrations. The
emissions are classified into 11 SNAP (Selected Nomenclature for Air Pollutant) sectors denoting the
emissions source, with particular details discussed in Supplementary Section S1.7. The first sector
“Combustion Energy Production and Transformation” (SNAP 1) includes power generation which can
produce air pollutants such as SO2 (Chaaban et al., 2004; Shi and Wu, 2021). Road vehicles exhaust gas
air pollutants such as CO, CO2, NOx, SO2 (Watkins, 1991) and are included in the “Road Transport”
category (SNAP 7). SNAP 8, “Other Transport and Mobile Machinery” includes shipping which emits
NOx, PM, CO2 and VOCs (Corbett and Fischbeck, 1997), particularly SOx from the marine fuels which
has a high sulfur content (Tao et al., 2013). Organic waste in landfills ("Waste Treatment and Disposal",
SNAP 9) can produce VOCs, a precursor to O3 (Nair et al., 2019). Agriculture emissions (part of SNAP
10, “Agriculture, Forestry and Land Use Change”), comprise a large source of air pollutants, for example,
39% of global PM2.5 is caused by ammonia from livestock manure and urine and synthetic nitrogen
fertilisers (Gu et al., 2021). Other emission sectors are “Combustion in Commercial, Institutional,
Residential and Agriculture” (SNAP 2), “Combustion in Industry” (SNAP 3), “Production Processes”
(SNAP 4), “Extraction andDistribution of Fossil Fuels” (SNAP5), “Solvent Use” (SNAP 6) and “Nature”
(SNAP 11).

3.2.6. Land use, 22 features
The land use composition of a given area is related to air pollution concentrations, such as throughout
greenspace (Nowak et al., 2002; Nowak et al., 2006) and urbanization (Arnfield, 1990; Yassin, 2011).
Land use composition profiles were created for each grid using the UKCEH 25m Land Cover Maps
(Rowland et al., 2017). Details of the process and the different land use types are discussed in
Supplementary Section S1.8.

3.2.7. Temporal aspects, 4 features
Air pollution displays various temporal cyclical elements, including diurnal cycles caused by rush hour
for NO2 (Goldberg et al., 2021), UV radiation for O3 (Garland and Derwent, 1979), and boundary layer
height for all pollutants (Su et al., 2018). Weekly trends also emerge due to the working week affecting
transportation and industrial emissions for NOx (Beirle et al., 2003), with similar patterns observed for PM
(Gietl andKlemm, 2009). Seasonal cycles for PM are evident due towinter residential heating (Feng et al.,
2014), with similar factors contributing to an increase in SO2 (Meng et al., 2018). Furthermore, winter has
a higher probability of adverse meteorological conditions, which reduces vertical mixing (Li et al., 2022).
Additionally, colder temperatures and reduced sunlight inwinter months affect O3 production (Cichowicz
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et al., 2017). Consequently, the hour, day of the week, week number, and month were all included as
elements in the feature vector.

The following section justifies the inclusion of such a broad range of different datasets by exploring the
relationship between the feature vector and the air pollution concentrations at AURNmonitoring stations.
This analysis highlights the differences between types of air pollution and variations experienced at
different environmental types for a single type of air pollution, ensuring robust estimation of air pollution
concentrations across all environment types found in England.

4. Feature selection

4.1. Air pollution and feature vectors

Air pollution can be attributed to various sources, with different processes influencing its concentration, as
discussed in Section 3.2. The issue of different drivers of air pollution is further complicated when
considering that at different locations, the key phenomena driving the pollution concentrations are
different, as detailed within the AURN environment classification discussed in Section 3.1. This tangled
web of sources, such as road transport, and sinks, such as wind speed, makes it challenging to identify a
common set of datasets that can provide insight into all the air pollutants of interest. Therefore, this
section aims to disentangle the relationship between the different air pollutants and monitoring station
environment types to provide insight into the different feature vectors and their relationship with the air
pollutant measurements. This provides insight into the benefit of each dataset, detailed in Section 3.2.

Figure 3 shows the average Spearman correlation coefficient across all monitoring stations for NOx and
O3. These figures depict the 10 highest magnitude feature vector elements in both directions. The
differences in the contributing sources of air pollution for a given pollutant are evident and appear to
support the scientific literature regarding the relationship between different air pollutants and their sources
and sinks.

For example, NOx has the highest positive Spearman correlation coefficient with the emissions dataset,
particularly SNAP sectors 1 and 2, indicating a strong relationship between energy production and
transformation emissions and the commercial, institutional, residential, and agriculture sectors. It is also
notable that the highest magnitude negative Spearman correlation belongs to the sinks, namely wind
speed and the boundary layer height, as expected.

In contrast, O3 presents a very different situation compared to NOx; the highest magnitude correlation
is inverse. Both wind speed and boundary layer height have a high positive magnitude Spearman
correlation, highlighting that the same phenomenon can have a completely opposite relationship on the
concentrations of air pollutants. It also follows that the correlation between “Downward UVRadiation At
Surface” and O3 has a positive correlation, given that O3 is produced under sunlight by the precursors of
NOx and Volatile Organic Compounds (VOCs) (United States Environmental Protection Agency, 2023),
highlighting that more sunlight results in more O3 being produced.

Figure 4 illustrates the relationship between feature vectors for Rural Background and Urban Traffic
monitoring station environment classifications (discussed in Section 3.1) for the air pollutant NOx. Each
subclassification of monitoring stations indicates the primary contributor to the measured air pollution.
Background stations have no single primary source, while traffic stations are primarily driven by traffic.

For the Urban Traffic station, the strongest positive correlation across air pollutants is with SNAP
Sector 7, denoting road transport emissions. Notably, there is a strong relationship with SNAP Sector
6 NMVOCs, indicating solvent use for NMVOCs. This might be explained by the small number of data
points for monitoring stations (41 Urban Traffic stations), alongside emissions data being based on
extensive scaling depending on the hour, week, and month of interest (UK National Atmospheric
Emissions Inventory (NAEI), 2023). The potential for confounding variables, such asNMVOC emissions
arising fromvapor frompetrol (UKNational Atmospheric Emissions Inventory (NAEI), 2023),makes the
0.014 magnitude difference in relationship strength negligible. The current data quality is suitable for
identifying general trends rather than pinpointing the most substantial relationship by sector.
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Figure 3. Spearman correlation coefficients overall mean for all pollutants. The mean Spearman
correlation coefficients for NOx and O3 across all the environmental classifications of the AURN network
for the 10 most extreme, both positive and negative, for the feature vectors are shown. The sources and
sinks of the air pollutants are different, aligning with the scientific literature (Section 3.2), with NOx being
highly positively correlated with emission features, whereas O3 exhibits such a relationship mainly with
meteorological features, such as wind gusts. Regarding negative correlations, the two air pollutants
exhibit counter relationships, with NOx having a negative correlation with the meteorological. The
analysis highlights how the relationships between a particular phenomenon and a given air pollutant can
be widely different in strength.
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The transport use dataset exhibits a positive but weaker Spearman correlation with the Urban Traffic site,
with an average score of 0.36 across the five datasets. In contrast, the Rural Background sites for the
transport use datasets have an average of 0.05. This aligns with the literature, showing a clear signal for
increased traffic near anUrban Traffic monitoring site and increased NOx concentrations. It also agreeswith
the AURN environment classification, with a still positive but significantly reduced magnitude correlation.

Figure 4. Spearman correlation coefficients for NOxmonitoring station environmental subclassification
locations, Rural Background and Urban Traffic. While Figure 3 highlights the difference between
phenomena and air pollutants, there exists a further difference between environmental subclassifications.
For theUrban Traffic monitoring stations, it can be seen that the primary positive correlations are related
to road transport as would be expected (the strong relationship with solvent use is likely an artefact of the
scaling performed and discussed in Section 3.2 and Supplementary Section S1.7, alongside a limited
sample size of 41 stations). In contrast, the Rural Background monitoring stations show a strong
relationship with emissions from the residential sector, highlighting that the sources and sinks for an air
pollutant depend on the air pollutant itself and the location of interest.
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As the AURN environment classification is based on the primary emitters closest to the station, it then
follows that both station types have the same feature vector for the highest negative magnitude Spearman
correlation with the expected boundary layer height and wind, namely the meteorological variables that
are present across all monitoring stations, and the sinks in the case of NOx.

4.2. Inter feature vectors

While there is considerable existing literature about the relationship between different air pollutants and
the phenomena covered in the datasets used in this study, considerably less literature covers the
relationship between the phenomena comprising the feature vector. This section aims to understand the
relationship between the different feature vectors to address the issue of multicollinearity, which can have
significant implications for the machine learning approach implemented.

The Spearman correlation coefficient was again used to calculate the relationship between each pair of
feature vectors. Figure 5 is a heatmap representing the Spearman correlation coefficient value for every
pairing. There are no air pollution monitoring stations for some feature vectors—nine feature vectors for
the emissions dataset family and four in the geographic dataset family. The lack of target vector data at

Figure 5. Spearman correlation heatmap between all feature vectors. The grey lines throughout the
heatmap show the data points missing from the dataset, phenomenawith nomonitoring stations across all
pollutants, including four geographic features and nine emissions features.
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some key feature vector locations presents the first significant problemwith any model developed: not all
environmental condition types experienced within England have observations. For example, there are no
air pollution concentration data for the Land Use classification of Saltwater, representing a scenario in
which the model has no exposure.

From the heatmap in Figure 5, it is clear that multicollinearity is present between some features, for
example between different species within the same emissions sector. Two main concerns were identified
with the complete set of feature vectors: the implications on model interpretation depending on the model
chosen and the redundant information between features. The model interpretation would impact future
stakeholder engagement, and redundant features would make the hyperparameter search more complex.
Therefore, we considered removing features entirely or creating a new set of features through dimen-
sionality reduction. Stakeholder engagement with the model is crucial, as many stakeholders rely on the
interpretability of the model to make informed decisions. Creating a new set of features through
dimensionality reduction techniques would have reduced the ability to explain or understand the
significance of certain sets of features. Preserving the original semantic meaning of features allows
stakeholders to directly relate model inputs to real-world phenomena, ensuring that the model remains
transparent and interpretable. Therefore, we chose not to create a new set of features and instead
prioritizedmaintaining the original feature set for better communication and practical use by stakeholders.

Hierarchical clustering was performed between the Spearman correlation of the feature vectors,
allowing us to create a more complex method of grouping together feature vectors. Figure 6 shows the
clustering results. We used Ward’s linkage method (Ward, 1963), which minimizes the variance within
clusters to ensure homogeneity. The linkage distance provides a consistent metric across all feature
vectors to explore the similarity of features and provide clusters of features depending on the value of the
linkage distance provided. Figure 6 shows how related some of the feature vectors are; for example, the
100m and 10m components of wind in both directions are highly correlated and therefore have a very low
linkage distance. There are also more complex relations between the feature vectors, such as within the
transport use datasets. Still, there are differences within the data set, such as car and taxi and bus and coach
being highly related but not to the same degree as HGVs. The motivation for performing hierarchical
clustering is to allow for a subset of features to be selected that provide the same information as one
another, aidingmodel interpretation. In the case above, the idea is that including the 100mUcomponent of
wind provides the same information as the 10mUcomponent ofwind, so there isn’t a need to include both.

Supplementary Table S7 shows the number of clusters at varying linkage distances, where increasing
the linkage distance results in fewer clusters as the information provided between datasets isn’t required to
be as strong.

As including redundant feature vectors increases the computation costs of creating and using themodel
rather than impacting the performance of the predictions, we decided to keep all feature vectors when
training the model.

The models discussed in the following sections use all 152 feature vector elements. The intention is to
provide a baseline performance of a machine learning model that utilizes all the datasets covered while
allowing for an understanding by individual stakeholders of the redundant feature through the hierarchical
clustering performed, allowing them to subset the datasets as desired for their particular use case. The idea
of using different subsets of the 152 feature vector elements is explored in Section 5.6; however, up until
that section, all 152 feature vector elements are used. Using all the feature vectors does mean, however,
that amachine learning approach that is robust tomulticollinearity needs to be chosen. The second issue of
model interpretability implications is discussed in Section 5.1.

5. Modeling

Section 5 starts by describing the reasoning behind different modelling choices. Themodel’s performance
in two critical scenarios is then explored: forecasting and estimating missing stations. Forecasting aims to
answer the question of, given a location the model has already seen, how well the model performs when
estimating a future year it has not. The estimating of a missing station then experiments with
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Figure 6. Dendrogram depicting hierarchical clustering of feature vectors. The lower the linkage
distance between feature vectors, themore correlated the features are, indicating that they provide similar
information. Supplementary Table S7 details the number of clusters for different linkage distances.
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understandingmodel performance when predicting air pollution at a location it has never seen before. The
model’s performance on peak concentrations is also analyzed, a critical situation for the model to perform
well. Finally, a justification for including such awide range of datasets ismotivated by experimentingwith
a model that predicts based on one dataset family.

5.1. Model design and training

The first consideration when choosing the model framework was the need for the model to be robust to
multiple uninformative and redundant features. As discussed in Sections 4.1 and 4.2, uninformative
features exist for various reasons. Some features are uninformative for specific air pollutants, such as the
transport use features with O3. Features can also be uninformative for specific environmental locations of
monitoring stations, as seen in Section 4.1 for rural background NOx stations. Multicollinearity further
compounds the issue, allowing multiple features to extract the same information about air pollution
measurements, as discussed in Section 4.2. The second consideration when choosing the model was for it
to be robust to outliers and anomalies, as discussed in Section 3.1. The model we chose to use was
LightGBM, a gradient-boosting algorithm based on decision trees.

LightGBM (Ke et al., 2017) was identified as a machine learning approach that could address the
concerns raised in the study through various techniques while also providing state-of-the-art performance
on tabular prediction problems. Tabular prediction problems are those that are based on structured data,
which is typically organized in rows and columns. Each row represents an observation, and each column a
feature of that instance. In our case, the air pollution data is structured in this tabular format, with various
environmental factors (such as wind speed and temperature) serving as the features used to predict air
pollution concentrations. LightGBM is a gradient-boosting decision tree (GBDT) algorithm where an
ensemble of decision trees is trained in sequence, with the n + 1 decision tree fitting the residuals of the
first n decision trees, learning the difference between the actual target vector and the weighted sum of
predictions of the first n decision trees. For illustration purposes consider a decision tree that predicts air
pollution concentration y based on wind speed X1 and temperature X2. A possible structure of the tree
could look like:

y¼

y1, if X1 ≤ 5m=s andX2 ≤ 20oC

y2, if X1 ≤ 5m=s andX2 > 20oC

y3, if X1 > 5m=s andX2 ≤ 25oC

y4, if X1 > 5m=s andX2 > 25
oC

8>>><
>>>:

9>>>=
>>>;

(2)

Here, X1 (wind speed) and X2 (temperature) are feature vectors that the decision tree uses to make
predictions about y (air pollution concentration). Each branch of the tree represents a different split based
on feature values, leading to different predictions y1, y2, y3, y4. A parameter in this context would be the
predicted values y1, y2, y3, y4, which are learned during model training. A hyperparameter would be the
number of splits or branches in the decision tree, which is set before training and influences the model’s
complexity.

LightGBM allows us to mitigate the impact of uninformative and redundant features on training time
through the tree-building algorithm. The approach that LightGBM takes when building the decision trees
is to split observations based on the feature vector values, looking for the best possible split regarding
information gain and reducing the uncertainty regarding the target vector. This involves grouping
homogenous instances of data points, such as instances where there is high transport use at a monitoring
station that is measuring high concentration readings for NOx.

One of the core issues with our air pollution training data is that many data points within the datasets
repeat the same information due to the cyclical nature of air pollution measurements, causing a
considerable amount of bloat in the datasets. The standard approach to identifying split points within a
GBDT is the pre-sorted algorithm where all possible split points are explored, an approach which, in this
use case, would be highly costly regarding computation andmemory. LightGBMhelps tackle this issue by
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using histograms when performing the splits, where continuous variables are put into discrete bins,
changing the computational cost from being dependent on the number of data points to the number of
discrete bins created.

The second concern identified when exploring the datasets was the presence of outliers and anomalies
within the dataset. LightGBM inherently tackles this problem via decision trees being the underlying
learner within the model. The decision tree’s goal is to group homogenous data instances, and there is an
ability to set a minimum number of data instances that comprise a valid leaf on the decision tree via the
“minimum data in leaf” model parameter.

The “minimum data in leaf” parameter allows for a minimum threshold of homogeneous data points
for the LightGBM algorithm to view as a set of data points that should be learned from and used in
predictions. In this context, homogeneous refers to instances where the data points share similar feature
values, such as numerous data points with a short distance to a motorway road feature and a high air
pollution concentration. Concerning the air pollution prediction problem as a notional example, say there
is a high wind speed and low traffic count but a high air pollution concentration reading, which only
occurs once in the dataset; LightGBM will not create a leaf for this data instance. The scenario described
could plausibly happen if a single air pollution emitter passes by the station, causing an artificially high
measurement that would not represent the geographic area intended for the station as outlined by the
AURN documentation, as discussed in Section 3.1.

There are, however, some trade-offs to the LightGBM solutions presented above. The feature
importances given for the feature vectors via the model will likely be misleading due to the multi-
collinearity present. For example, the most extreme case seen in the hierarchical clustering of multi-
collinearity is for the wind speeds at 10 m and 100 m, where both features exhibit a strong correlation,
meaning that we can extract information about air pollution from either feature. Therefore, during model
building, in the split performed, the model would use only the 10 m or 100 m component of the wind
direction, as they would present the same information gain about the target variable as each other. As the
feature importance given by LightGBM is based on the number of times a feature vector is used, the total
number of times the two feature vectors are used may be split across the two features, reducing the feature
importance given to each one. There are also implications for any sensitivity analysis conducted, as it is
possible that we could increase/decrease the 100 m component of wind and there be a misleading change
in the air pollution concentration prediction if the model used the 10 mwind component as the split point.
The feature importances given must be analyzed considering the clusters presented in Supplementary
Table S7, treating each of the clusters’ feature importances together. Another method to understanding the
model would be using SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017). SHAP is a
game-theory-based approach used in ML to explain the contribution of each feature to a model
predictions. It assigns each feature a “SHAP value” that represents its impact on the prediction, providing
a more nuanced understanding of feature importance by accounting for feature interactions and multi-
collinearity. Unlike traditional feature importance methods, SHAP ensures that the contributions of all
features are fairly distributed, making it a robust tool for model interpretability.

A key consideration during the model design was the choice of the loss function. The loss function
represents the error of a given prediction, in this case, quantifying the difference between the prediction
and the actual air pollution concentration measurement of a model, thereby allowing for comparisons
between models and subsequent choice of the optimal model. The choice of the loss function in this
situation was between themean absolute error (MAE) and themean squared error (MSE) (Hodson, 2022).
TheMAEwould help reduce the influence of higher air pollution measurements on the model present due
to the known presence of outliers and anomalies within the dataset. However, these high air pollution
measurements are of vital interest within the context of air pollution, even if they are potentially
erroneous. So, a tradeoff of potentially overfitting on these higher values was seen as a worthwhile
tradeoff, and as such, theMSEwas chosen as the loss function. The underlying premise is that 10 μg/m3 is
more than twice as bad for human health than 5 μg/m3, so using the MSE is more appropriate given the
domain in which the model would be used, supporting the existing literature that there is a non-linear
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relationship between the detrimental effects of air pollution concentrations (Yang et al., 2022; Zhao et al.,
2019).

As an air pollution concentration can never measure less than zero, we trained the model on the log
transformation of the target vector. We added a small constant of 1 × 10�7 to the target vector and then
performed the log transformation due to the presence of 0 concentration measurements within the dataset.
The log transformation and addition ensured that the model would never predict a negative value as the
model output, as the reverse transformation of calculating the exponential and subtracting 1 × 10�7 was
performed on the output. A further hyperparameter explored during model training was L2 regularization
(Hoerl and Kennard, 1970). Including L2 regularization helps distribute the weights within the decision
tree, encouraging the weights to be closer to 0 but keeping all feature vectors, ensuring that no single
feature vector drives predictions, which is key with the considerable number of feature vectors used.

The framework for choosing the model’s hyperparameters was a randomized grid search of 40 hyper-
parameter sets. The hyperparameters we optimized during the randomized search were the L2 regular-
ization and the min data in each leaf already discussed, alongside the number of leaves, the number of
trees, and the max depth (Microsoft, 2023). The number of leaves search space was given the range of
1,000 to 4,095 (Mishra, 2023), with the optimal values being chosen near the centre of this range,
validating its choice. The number of trees was controlled via early stopping, where no additional tree
would be added after 30 trees had been added without any improvement in the loss function performance.
Similarly, the max depth was not limited and left to grow as needed until performance did not improve
during training.

Somemodel parameters were kept constant throughout the search, such as themax bin, kept constant at
255. The max bin refers to the number of discrete bins created for a continuous feature vector. 255 was
chosen to ensure that a range of different splits during model training could be created while also helping
to reduce training time by allowing data to be stored optimally as an int8 data type. The boosting type used
during training was Gradient-based One-Side Sampling (GOSS) (Ke et al., 2017). GOSS is a method of
boosting that allows the n+ 1 decision tree discussed at the start of this section to be trained on a subsample
of the data. The subsample of data chosen is the data that has a large gradient, that is, the data has yet to
learn well from in the model and a random sample of the small gradient data, helping to reduce the amount
of data used drastically, and therefore training time. The tradeoff with GOSS is the potential for overfitting
when the datasets are small; however, this was not a concern in the context of air pollution.

The final consideration was the grouping and number of models to develop. One possible choice was
creating a single unified model with all seven air pollutants comprising the target vector. However, due to
the considerable imbalance in the number of data points and the issue of every monitoring station
measuring a different subset of pollutants, the number of locations with every air pollutant measured at the
same timestamp was minuscule. Another possibility was to create an individual model for each
environment type covered in the AURN environment classification, such as Urban Traffic, Rural
Background. However, this approach presented the problem of requiring a determination of the envir-
onment type of every grid in the study where there wasn’t an existing monitoring station. Therefore, we
created a single model for each of the different air pollutants mixed with all the different environment
types, the benefit of which is simplifying the process of estimating a never before seen location while
making use of all of the air pollution observations possible.

During the hyperparameter grid search, data from 2014 to 2016 was used as the training set, with the
validation set being 2017 and 2018 as the test set.We split the dataset temporally to ensure no data leakage
and to give an intuitive sense of the performance metrics gathered. We chose the best parameter set based
on the model’s MSE on the validation set across the parameter sets. Subsequently, using the best
parameter set to train a model with both the training and validation set, with performance evaluated
using the test set, data the model has never seen. The R2 score for each model on the different sets was
calculated at each stage.

To allow flexibility in extending the model with new data, we deliberately excluded feature vector
elements that would identify monitoring station details, such as names or locations. Additionally, we
opted not to include lags of air pollution concentrations, like using the concentration at T-1 to estimate the
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concentration at time T. This decision enables us to make predictions even in the absence of a specific air
pollution measurement, promoting the use of observations as independent entities. This structure
facilitates the tabular format, leveraging the state-of- the-art performance of LightGBM. The temporal
and spatial independence of observations supports the creation of a lightweight model, conducive to
parallel computation for different locations and time points. Our experiments addressed two crucial
scenarios, providing insights into the model’s temporal and spatial performance.We assessed its ability to
forecast air pollution concentrations into the future (discussed in Section 5.2), and extended the analysis to
evaluate the model’s performance in estimating air pollution concentrations in spatial locations not
previously encountered (discussed in Section 5.3).

5.2. Filling temporal missing data

The initial set of experiments focused on evaluating the models’ capability to predict future air pollution
concentrations at locations already included in the model. These experiments aimed to assess the model’s
performance in forecasting scenarios. The achieved performance serves as a conservative estimate for
filling in missing data temporally in a givenmonitoring station’s time series, considering that air pollution
concentration readings at the estimated time would be available in an operational hindcast situation.

Table 2 presents the R2 score for the model developed at each stage, as discussed in Section 5.1. The
results illustrate a degradation in the model’s performance as it moves temporally away from the data it
was initially optimized for during the randomized parameter grid search. These experiments demonstrate
that the model parameters identified during the randomized search remain consistent across the three
datasets, with minimal performance loss observed between the validation and test sets. This observation
supports the idea that the model is effectively learning the true relationship between the feature and target
vectors.

In the best-case scenario, NO2 shows no drop in performance (rounded to 2 decimal places) between
the validation and test sets. The most significant performance decrease is observed in SO2; however, it is
important to note that this may be influenced by a data issue, as SO2 has significantly fewer stations
(18) compared to NO2 (103), as detailed in Table 1.

While a benefit of the model presented is the ability to forecast air pollution concentrations into the
future, answering the question of what air pollution concentrations at a station will look like in the next
year, the adaptable temporal and spatial independence discussed in Section 5.1 allows for the model to be
used to estimate missing data. Figure 7 shows the model used to estimate the missing data in the NO2

observations for the Chesterfield Loundsley Green monitoring station from 2014 to 2018. There are two
possible cases for the missing data being filled in. The first is to backdate or postdate the observations

Table 2. R2 scores depicting forecasting performance (2014–2016 train score, 2017 validation score,
2018 test score)

Pollutant name Dataset train score Dataset validation score Dataset test score

NO2 0.85 0.77 0.77
NOx 0.82 0.75 0.74
NO 0.73 0.67 0.65
O3 .80 0.70 0.67
SO2 0.45 0.43 0.30
PM10 0.51 0.38 0.32
PM25 0.55 0.35 0.29

Note. The dataset train score shows the model’s performance in capturing the relationship of the training data shown with the validation showing
the performance in 2017 and the test score on 2018 data. The similar performance between the validation and test scores shows that the model
optimized during the parameter search is learning the true relationship between the features and air pollution that is robust to data never seen
before.
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depending on when the station came online or was decommissioned. Chesterfield Loundsley Green came
online on 01/03/2015 (UK-AIR, DEFRA, 2023a), but the model can backdate the observations to
01/01/2014, extending the readings and helping to create a complete dataset. It is also possible to extend
the life of a station if it was taken offline by filling in observations since the station was decommissioned
(UK-AIR, DEFRA, 2023b).

The second situation where the model can fill in missing data is when an issue at the monitoring station
or associated infrastructure causes the station to go offline andmeasurements not to be reported (UK-AIR,
DEFRA, 2023c). However, one potential issue with this approach is if there is a particular reason that the
site cannot report data, for example, when wind speeds are over a defined speed. This situation would
indicate that no data is within the training set concerning this specific situation, indicating the model is
extrapolating. However, this is not a concern in this situation as AURN reports the reasoning behind data
not being reported, such as a communication issue or an instrument error. It is something, however, to be
understood in the context of any future work that uses this framework where this situation could occur. In
Figure 7, there are three prolonged periods in which Chesterfield was not reporting NOx measurements.
The model presented can fill in these periods alongside the periods from before the station came online to
create a time series for the station that has all available data as seen in Figure 7 where the real
measurements from the station have been augmented with the model output where real measurements
are not available.

5.3. Filling spatial missing data

The second set of experiments that we conducted explored the ability of a model to be trained and predict
the complete time series for another station, never seen before. We used 5-fold leave-one-out validation
(LOOV) to experiment with this scenario. The results from this experiment provide an understanding of
how the model performs when filling in missing air pollution concentration data spatially, a situation akin
to using the model as synthetic stations across England at locations where no station has ever existed.

The same experimental design as Section 5.2 was repeated alongside a final step that calculates the
LOOV score for every station not included in the training, validation or test set. Table 3 shows that the
models trained during the 5-fold LOOV can retain their future predictive performance, with minor
differences for the performance of ai pollutants across the different subsets of stations used, showing the
results from Section 5.2 to be robust to changing input datasets. Table 4 shows the LOOV summary
statistics for the experiments conducted, based on theR2 retrieved from themodel estimating the complete
time series of a monitoring station’s data. Four different summary statistics were considered from the set
of LOOVresults, namely the mean, median, min, andmax results. The max LOOVresults are positive for
all of the pollutants, indicating some merit to this approach across all pollutants. This is further supported
by the majority of positive results in the mean and median LOOV for all pollutants apart from SO2. Of
central interest is the LOOVmin, where for all pollutants other than PM10 there is a negativeR

2, indicating

Figure 7. Chesterfield Loundsley Green NO2 concentrations augmented dataset, with missing AURN
measurements filled with model predictions. This figure shows that the station’s measurements (green)
started in early 2015 with three clear periods of long-term missing data. The model predictions (yellow)
can create a complete augmented time series using the model.
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a prediction across the time series that is worse than simply predicting the average concentration. In this
case, a potential hypothesis for the model performance is a lack of data available. The performance of SO2

supports this hypothesis; the worst out of all pollutants and has the least available data.
Through the definition provided for the AURN station environment types, we know that air pollutant

concentrations exhibit different signatures in different locations. There is the possibility of further
subclassifications within these environment types. For example, taking the Urban Traffic environment
type, there could be a distinction between the Urban Traffic stations within London and outside of
London. Particularly for the approach used within this work, a data-driven model, this can have wide-
ranging implications. Suppose it does exist that a subset or single station within the LOOV dataset is
unique compared to others, resulting in no similar data present within the training data. In that case, the
model presented will fail to replicate the time series measured. This hypothesis is supported as the
temporal experiment framework performance is consistent across all the experiments conducted, shown
in Figures 2 and 3, with the issue only appearing in the spatial experiments. As amore concrete example of
this scenario, the Aston Hill AURN monitoring station is the only monitoring station in the NOx dataset
with no roads nearby, a clearly unique monitoring station in the dataset. This issue is further complicated
when considering the results from Section 4.2, where not all feature vector elements have an air pollution
monitoring station present, showing clear environment types that have no data available, denoting
situations where the model is extrapolating and potentially widely wrong.

Table 3. R2 scores depicting forecasting performance for 5-fold leave-one-out-validation

Pollutant name Dataset train score Dataset validation score Dataset test score

NO2 0.85 0.77 0.77
NOx 0.82 0.75 0.74
NO 0.73 0.67 0.65
O3 0.81 0.70 0.67
SO2 0.46 0.42 0.29
PM10 0.54 0.38 0.32
PM25 0.58 0.34 0.29

Note. The experiment conducted aimed to ensure that with different subsets of monitoring stations, the forecasting performance of the model remains
robust. Shownwith Table 3 having similar performance as the experiment result shown in Table 2, particularly the test score, data themodels have never
seen before.

Table 4. R2 scores for missing monitoring stations performance summary statistics for 5-fold leave-
one-out- validation

Pollutant
name

Estimation LOOV
max

Estimation LOOV
min

Estimation LOOV
mean

Estimation LOOV
median

NO 0.62 �2.28 0.10 0.21
NO2 0.70 �1.75 0.25 0.37
NOx 0.67 �1.46 0.20 0.32
O3 0.78 �1.95 0.45 0.62
PM10 0.59 �0.17 0.35 0.38
PM25 0.59 0.23 0.45 0.46
SO2 0.10 �1.65 –0.20 –0.02

Note.The summary statistics show theR2 for eachmonitoring station in the study for amodel that has never seen the stations’ data before. The approach
has clear merit, with all air pollutants having a positivemaximum score. However, somemonitoring stations have a negativeminimum score, driven by
their unique nature concerning the feature vectors and phenomena driving the air pollution concentrations at a given location. Themean andmedian R2

scores show that the approach works for most stations for most air pollutants in estimating air pollution concentrations at a missing location.
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The experiment here provides the basis for using the model to create a complete spatial map of
pollution across England and Wales with the framework of synthetic stations. In the case of the grid
system used in this study, the framework acts as if 355,827 synthetic stations are present at the centroid of
each grid, which gives a point sample measurement of the ambient air pollution concentration at a given
time. Figure 8 shows the resulting air pollution concentration map we can create from the model,
predicting air pollution at every location across England.

5.4. Prediction of peak values

While the R2 score provides a metric for evaluating the overall performance of the model on the entire
dataset, a critical consideration in the context of air pollution concentration estimation is the model’s
performance during peak concentrations. Given that peak concentrations have themost significant impact
on human health and well-being and are the focus of policymakers when designing interventions, it is
crucial to assess how well the model performs in these high-concentration scenarios.

We conducted an analysis of the model predictions during peak concentration events observed at each
station. Figure 9 illustrates the model’s predictions compared to real-world measurements from AURN
monitoring stations. Specifically, Figure 9a focuses on the Leominster monitoring station discussed in
Section 1. The visual comparison reveals that while the model did not capture the exact magnitude of the
peak concentration at the station, it did exhibit an uptick at the correct time. This raises concerns about the
model’s ability to make high-magnitude predictions. However, further investigation indicates otherwise,

Figure 8. Full spatial map of England for all pollutants for 8AM on 19/01/2018, chosen arbitrarily as a
typical working day away from national holidays in England. Plotted on a log scale to help highlight the
differences within regions in the map.
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as evidenced by the Stanford-le-Hope RoadsideAURN station, which had a high-magnitude prediction of
approximately 140 μg/m3 for its overall peak concentration reading between 2014 and 2018.

This prompts the question of whether the model’s prediction for the Leominster peak value was an
underprediction or if the peak value itself was an anomalous reading. The percentage difference for the
Leominster monitoring station at 03/12/2014 8 AM was 42.5%. In contrast, the mean peak percentage
difference across all NO2 monitoring stations was 22.1% during the Leominster peak, considerably lower
than the overall NO2 average peakdistance of 50.72%. The considerable difference in expected peak distance
suggests that the Leominster station differed from nearby stations at this time. The performance variation
across different pollutants sheds light on a potential issue with themodel stemming from the training data, as
depicted in Table 5. Notably, O3 exhibits the best performance in predicting peak concentrations. As outlined
in Section 2, meteorological conditions predominantly drive O3 concentrations. The ERA5 data used in this
study stands out as the most robust dataset, featuring temporally and spatially unique data points.

In contrast, other datasets used in the model lack this level of uniqueness, relying on idealized values
that may not accurately represent the true variability. For instance, the transport use dataset family follows

(a) Leominster NO2.

(b) Stanford-le-Hope Roadside NO2.

Figure 9. Prediction of peak values for NO2 monitoring stations. In (a), it is evident that the model failed
to capture the peak concentration for the Leominster monitoring station. However, there is a noticeable
uptick in the concentration prediction at the correct time, raising concerns about a consistent
underestimation by the model. Conversely, (b) illustrates the peak prediction for the Stanford-le-Hope
monitoring station. Themodel not only captures the peak but also yields amagnitude considerably higher
than that for Leominster, offering an initial indication that the model may not be systematically
underpredicting concentrations.
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a common temporal distribution, emissions are scaled, and datasets like transport infrastructure lack
sufficient variability. These idealized values present an avenue for improving the model by seeking
enhanced data representations of phenomena influencing air pollution. Additionally, addressing the
potential impact of outlier and anomalous data points could further enhance model performance. The
peak distance percentage is defined in Equation 3.

Measured Peak‐Model Predictionð Þ
Peak Value

� �
× 100 (3)

5.5. Final model performance summary analysis

Additional performance metrics have been calculated to improve understanding of the final models on the
input air pollution concentration data. Whilst the R2 provides a good indication of the model’s performance
for a given monitoring station’s prediction, the bias and correlation of the prediction can provide further
insight into the model’s performance. Bias represents the average difference between the monitoring station
measurements and themodel predictions, providing ametric for the overall tendency of the predictions to be
higher or lower than the observations. Correlation quantifies the linear relationship between the monitoring
station measurements and the model predictions, reflecting how well the model captures the temporal
variations. We use the Pearson Correlation Coefficient to capture this characteristic. MSE quantifies the
average squared difference between the monitoring station measurements and the model predictions. It
provides a measure of how close the model’s predictions are to the actual observations, with larger errors
contributing more heavily to the score. The MSE is provided as a further indicator of bias, providing an
indication of the effect ofmore extreme differences between observed and predicted. Table 6 show themean,
max and min values for each of these metrics for all air pollution monitoring stations across each of the air
pollutants. The mean, min, and max values for the correlation highlight that the final models can accurately
capture the overall trends of the air pollution concentrations across all air pollutants.Within the context of the
air pollution concentrations used in this study, as shown in Figure 9, the bias across the air pollutants
indicates strong performance across the models, systematically predicting within single-digit values even
though the magnitude of concentrations can exceed 100 (μg/m3).

5.6. Data subsetting

The scalability of the framework has been considered primarily within temporal and spatial resolution
dimensions. However, the framework’s adaptability extends to different amounts of data, contingent on

Table 5. Average peak concentrations prediction difference

Pollutant name
Average peak distance
percentage (% of μg/m3)

O3 32.07
NO2 50.72
NOx 63.82
NO 72.32
PM25 84.21
PM10 87.37
SO2 93.00

Note.The peak percentage difference is calculated according to equation 3. O3 has the best performance for predicting the peak concentrations across all
the monitoring stations, with SO2 having the worst performance. This ordering presents further evidence that the likely explanation for the model not
capturing the peak concentrations is not the model framework itself but rather the input data. SO2 has by a considerable margin the least amount of data
across the air pollutants (Table 1), alongsideO3 beingmost correlated (Section 4.1) and driven bymeteorological phenomena according to the scientific
literature (Section 3.2), which given that ERA5 is the highest quality dataset, with unique points spatially and temporally indicates that the difference in
data is likely driving the difference in peak concentration estimation performance.
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the availability of specific datasets. Variations in input datasets allow for the development of models
tailored to different use cases. For instance, datasets that are only available after historical dates, such as
remote sensing, may be excluded when creating models for forecasting purposes. Supplementary Table
S18 provides experiment results for this type of model. Additionally, in situations where a location lacks
certain datasets, such as traffic estimates for an entire country, models can be built using only the available
datasets. Both meteorological and remote sensing datasets have global availability, making them suitable
for creating baseline hindcast models for locations not just in England. Supplementary Table S17
showcases the performance of such a model.

Further experimentation delved into assessing the performance of each dataset family, as depicted in
Table 7. These findings support the concepts presented in Section 4.1, emphasizing that no single
dataset alone can achieve a positive mean LOOV score. In the tables presented in this section and
corresponding supplementary section, the training, validation and test scores format follows the same
framework used throughout this section, with the additional LOOV summary data included.

6. Research data output

As part of our ongoing efforts, we plan to release an open-source dataset consisting of two components.
The first component is the augmented AURN dataset, as illustrated in Figure 7. This dataset includes

Table 6. Mean, max, and minimum values for bias, correlation and MSE for each air pollutant across
all air pollution monitoring stations

Air
pollutant

Mean
correlation

Max
correlation

Min
correlation

Mean bias
(μg/m3)

Max
bias

(μg/m3)

Min
bias

(μg/m3)

Mean
MSE

(μg/m3)2

Max
MSE

(μg/m3)2

Min
MSE

(μg/m3)2

NO2 0.87 0.92 0.75 �1.12 �0.50 �2.48 74.80 336.94 7.65
O3 0.89 0.92 0.82 �1.74 �0.70 �2.62 112.37 164.38 47.30
NOx 0.84 0.90 0.72 �3.72 �0.53 �9.85 1008.38 7587.10 11.02
NO 0.74 0.88 0.45 �2.61 �0.07 �8.03 365.12 2925.59 0.21
PM10 0.74 0.82 0.36 �1.52 �1.16 �2.16 76.41 335.28 36.14
PM25 0.75 0.82 0.66 �1.44 �1.10 �2.39 44.11 73.46 26.51
SO2 0.58 0.88 0.35 �0.45 �0.14 �1.45 4.85 30.77 0.25

Note. Supplementary Section S3.1 provides the bias, correlation and MSE for each individual monitoring station across each air pollutant.

Table 7. Repeat experiments results of Tables 2 and 4 for models trained on individual dataset families
(Section 3.2) for NO2

Dataset family Dataset train score Dataset validation score Dataset test score Mean LOOV

Emissions 0.46 0.42 0.42 �0.23
Geographic 0.31 0.25 0.29 �0.46
Meteorological 0.15 0.17 0.14 �0.53
Remote sensing 0.35 0.31 0.36 �0.38
Temporal 0.00 0.03 0.02 �0.64
Transport infrastructure 0.32 0.29 0.29 �0.41
Transport use 0.35 0.23 0.16 �0.47

Note. The framework presented can be used on varying amounts of input data, depending on available data, providing a basic understanding of
limitationswhenmoving themodel between areas, such as being used to predict countries other than England. Table 7 shows that in the case of England,
while individual dataset families can forecast into the future, the performance of estimating missing monitoring stations is limited and requires datasets
that cover a wide range of phenomena to achieve the same performance as 4.
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model predictions for air pollution concentrations at all AURN monitoring stations for the period 2014-
2018, which were utilized in this study. The second component is a comprehensive air pollution
concentration map for England, encompassing each air pollutant for the year 2018. This dataset provides
a spatial resolution of 1 km2 and hourly temporal resolution. We anticipate that this dataset will be of
significant interest to various stakeholders, as outlined in Section 1. Moreover, it opens avenues for the
research community to explore a diverse range of research topics that were previously constrained, given
that current air pollution estimations at this spatial resolution typically operate at the annual temporal
level.

The presented dataset opens up diverse research possibilities, with one illustrative example being the
examination of air pollution concentration variations across different locations concerning legislation
compliance, as discussed in Section 1. Figure 10 showcases a series of heatmaps representing the grids
employed in this study. Each grid is color-coded based on the number of times it exceeded specific
concentration thresholds in 2018 at an hourly granularity. Themaximum possible number of exceedances
per grid is 8,760, representing the total hours in 2018.

The thresholds considered include 10 μg/m3, aligning with the WHO NO2 air quality guideline level
for the annual temporal period. The second threshold is 25 μg/m3, corresponding to the WHO 24-hour
aggregate air quality guideline (World Health Organisation, 2021). The third threshold is 40 μg/m3,
reflecting the UK National Air Quality Guideline annual limit. Lastly, 200 μg/m3 represents the UK
National Air Quality Guideline hourly target for NO2 concentrations (King’s Printer of Acts of Parlia-
ment, 2010). While not all these thresholds directly pertain to hourly concentration legislation, they
provide a comprehensive set of benchmarks derived from actual legislation, offering insights into the
distribution of air pollutants across England.

The analysis reveals compelling insights into air pollution concentration exceedances across various
thresholds. It was found that 99.96% of locations surpassed the 10 μg/m3 threshold at least once, 63%
exceeded the 25 μg/m3 threshold at least once, 26.2% exceeded the 40 μg/m3 threshold at least once, and
only a single grid exceeded the 200 μg/m3 threshold at least once. This analysis serves as a valuable tool to
pinpoint locations demanding further investigation into air pollution concentration causes and potential
interventions at the local level. For instance, the coordinates at latitude 51.5, longitude �0.15, repre-
senting a location exceeding the 200 μg/m3 threshold with concentration predictions surpassing 10 for
every hour in 2018, underscore the need for targeted attention. Moreover, leveraging the temporal
precision of the predictions allows for flexible aggregation to various temporal levels stipulated in United

(a) 10µg/m3 threshold. (b) 25µg/m3 threshold. (c) 40µg/m3 threshold. (d) 200µg/m3 threshold.

Figure 10. Count of times that a grid exceeded the outlined thresholds for NO2 in 2018. (a) shows the 10
μg/m3 threshold where one grid exceeds the threshold for every hour of the year, with 99.6% of grids
exceeding the threshold at least once. (b) depicts the counts for the 25 μg/m3 where the max count was
8,656 exceedances across the year, with 63% of grids exceeding the threshold at least once. (c) uses a
threshold of 40 μg/m3 where themax count for exceedances was 8,086 across the year, with 26.2%of grids
exceeding the threshold at least once. (d) denotes a 200 μg/m3 threshold, where only a single grid
exceeded the threshold twice across the year. Latitude 51.5, longitude �0.15 was the location that
exceeded the threshold, a central London location with the postcode W1G 6JA.

Environmental Data Science e17-27

https://doi.org/10.1017/eds.2025.9 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.9


Kingdom or EU legislation. For instance, aggregating to a 24-hour mean (UK-AIR, DEFRA, 2023d) for
each grid facilitates a comprehensive assessment of legislation compliance, as depicted in Figure 11.

7. Discussion

We have released two datasets that hold significant value for the scientific community, policymakers, and
the public. The comprehensive spatial dataset offers valuable insights into locations where air pollution
concentration data might be non-existent at the hourly temporal level. If one were to acquire the data
produced by our model through real-world measurements, the cost would amount to £70B7 through
AURNmonitoring stations.We do not imply that our approach is equivalent in value to this figure; rather,
we present it to highlight the impracticality of installing monitoring stations on such a large scale,
underscoring the need for cost-effective alternatives like our proposed model.

The augmentedAURNdataset, generated from this study, provides a complete temporal perspective of
all monitoring station measurements across England. This is particularly crucial for compliance assess-
ments related to absolute threshold exceedances, such as NO2, where a detailed limit of 200μg/m3 should
not be exceeded more than 18 times a year (King’s Printer of Acts of Parliament, 2010). Ensuring a
complete time series with measurements at each time step is essential when comparing two locations,
especially in situations where missing data during peak pollution periods, like NOx during rush hour,
could potentially mask crucial information. This consideration becomes paramount when creating higher
temporal resolution statistics through UK AIR8.

While the presentedmodel has demonstrated its effectiveness in fillingmissing data fromhigh-quality air
quality monitoring stations, its most significant advantages lie in its potential application to low-cost
monitoring sensors and citizen science initiatives. The symbiotic relationship between the model and low-
cost sensors addresses a core issue present in both approaches. Themodel’s performance is notably impacted

Figure 11. 24-hour mean (UK-AIR, DEFRA, 2023d) exceedance counts example. The threshold used is a
mean of 25 μg/m3. As the hourly level is the most common high-resolution temporal level mentioned in air
quality legislation, pursuing data at this level allows for a more coarse temporal level to be calculated
from the input data, resulting in the dataset providing complete legislation coverage no matter the
resolution of interest.

7 Calculated based on 355,827 monitoring stations at a cost of £198,000 per station, as outlined in Section 1.
8 UK AIR Statistics Using Incomplete Data, denoted by data capture rate (https://uk-air.defra.gov.uk/data/exceedance?f_

exceedence_id=S3&f_year_start=2006&f_year_end=2007&f_group_id=4&f_region_reference_id=1&f_parameter_id=SO2&
f_sub_region_id=1&f_output=screen&action=exceedance3&go=Submit).
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by a lack of data. In locations where the installation of more expensive AURN-style stations might not be
deemed a worthwhile investment, low-cost sensors can be strategically deployed to fill data gaps. These
sensors, due to their minimal cost, can be implemented in various locations, enhancing spatial coverage.

Conversely, the model can contribute to overcoming the challenges associated with low-cost sensors,
which are often less robust than AURN stations. By leveraging the model, missing data points can be
backfilled temporally and spatially, ensuring the generation of amore complete dataset. This collaborative
approach is particularly valuable in scenarios where the less frequent deployment of AURN stations
results in gaps in the feature vector, as discussed in Section 4.2. An additional advantage is the model’s
ability to handle temporally messy data commonly encountered in citizen science initiatives. Unlike
AURN monitoring stations that provide data at regular intervals, citizen science datasets may exhibit
irregular time stamps (e.g., 10:14, 10:47, and 11:46). The model enables a more sophisticated estimation
of air pollution at specific times (e.g., 10:00, 11:00, 12:00), facilitating further analysis such as legislation
compliance or integration with other forecasting systems.

Importantly, the model method offers substantial benefits compared to other approaches for filling
missing data, such as interpolation, as it takes into account the nuanced patterns present in air pollution
concentration time series datasets.

Although the proposed model demonstrates significant advantages, there is a clear pathway to
extracting even more benefits from the model framework, given its inherent scalability in both spatial
and temporal dimensions. The extension of the method to make predictions at a minute temporal-level is
straightforward, and similarly, increasing the spatial resolution grid size to 100 m2 is feasible. This
scalable approach empowers researchers by providing the desired data without being constrained by
limitations in financial resources for monitoring station placement.

Furthermore, the encoding of the temporal aspect into a tabular format facilitates a substantial
acceleration through parallelization. Each timestep and grid within the estimation is independent of
one another, enabling the simultaneous calculation of all timesteps and grids. This approach yields a
significant speedup over traditional forecasting methods, whether machine-learning or physics-based,
that rely on lags from previous timesteps.

From a performance standpoint, the capacity to parallelize estimations becomes pivotal when
combined with the scalability of the approach. This combination forms the basis for a computationally
effective method of estimating air pollution concentrations at a global level. Future work could extend the
experiment conducted in Section 5.3, where air pollution concentrations at one station were estimated
using data from othermonitoring stations, to a study that analyzes the feasibility of estimating air pollution
between countries and their respective air pollution monitoring networks. The potential benefit of this
analysis is to help reduce inequalities between countries concerning monitoring stations, enabling the
design of interventions based on air pollution without the need for high-cost, dedicatedmonitoring station
networks to be implemented by a country’s government.

While the datasets employed in this study successfully estimated air pollution concentrations under a
variety of conditions, there remains room for improvement in the input feature vectors. Presently, the
model does not consider variations associated with specific days, such as distinct travel patterns on bank
holidays compared to regular weekdays. Incorporating local knowledge into the model, such as categor-
izing whether a day is a bank holiday or another national holiday, would enhance the model’s under-
standing of unique circumstances on special days, such asBonfireNight in theUnitedKingdom, known to
have considerable impact on air pollution concentrations (Adams et al., 2020). Additionally, some feature
vectors used in the model will improve over time as technology advances, enabling improved model
performance. For example, remote sensing of trace gases over Europe will improve with the Sentinel-4
missions, which are currently scheduled for launch in 2024, on the MTG-s Satellite (ESA, 2024).
Sentinel-4 will provide hourly temporal resolution, with a spatial resolution of 8km for much of northern
Europe for O3, NO2, SO2, and Aerosol Optical Depth (AOD) (EUMETSAT, 2024), which has been used
in the literature to estimate air pollution concentrations (Ranjan et al., 2021). Further it is possible that
other model outputs could be used as inputs to the model framework proposed here, such as outputs of
chemical transport models as has been used before in the literature (Gariazzo et al., 2020).
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In addition to incorporating additional knowledge into the model, a thorough analysis of the training
data used in the study is crucial to ensure comprehensive coverage of all scenarios, minimizing the need
for extrapolation during model estimations. For instance, as discussed in Section 4.2, there are environ-
mental conditions where no air pollution concentration measurements are available. Future work could
focus on analyzing missing scenarios in the training data, identifying locations where additional air
pollution monitoring stations should be placed. When combined with low-cost sensors, this approach
could form the basis for a dynamic mobile monitoring network to identify areas where the model
predictions are most uncertain.

In summary,we believe thiswork holds significant importance for a broad audience, addressing critical
challenges outlined in the United Nations (UN) Sustainable Development Goals (SDGs). The work
presented empowers decision-makers with high-quality data for crucial indicators (UN SDG 3.9.1,
11.6.2) for essential goals such as Good Health and Well-being (SDG 3) and Sustainable Cities and
Communities (SDG 11). The contribution to SDG 3 is evident in reallocating resources from monitoring
air pollution to clean air initiatives, providing estimates in all regions, not just those with monitoring
stations. Simultaneously, the research contributes to SDG 11 by advancing the understanding of the
relationship between urban and rural air pollution.
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