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LOCAL MARTINGALES WITH TWO
REFLECTING BARRIERS
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Abstract

We give an account of the characteristics that result from reflecting a drifting local
martingale (Le. the sum of a local martingale and a multiple of its quadratic variation
process) in 0 and b > O. We present conditions which guarantee the existence of finite
moments of what is required to keep the reflected process within its boundaries. Also,
we derive an associated law of large numbers and a central limit theorem which apply
when the input is continuous. Similar results for integrals of the paths of the reflected
process are also presented. These results are in close agreement to what has previously
been shown for Brownian motion.
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1. Introduction

In recent years many authors have studied problems which can be characterized as reflections
of some input. There have been a large variety of problems investigated with different reflection
schemes (one-sided reflection, two-sided reflection, reflection at current maximum, etc.) and
types of input (e.g. Levy processes and semimartingales). We are deliberately vague since
we want to use the phrases 'input', 'feeding process', etc. to denote a deterministic function
as well as a random process. The same rule applies to 'reflected process', 'local times', etc.
Throughout this paper we will assume that we are given a real-valued cadlag input X =
(X (t), t 2: 0) with X (0) = O. As an appetizer we provide a few references together with
short descriptions (this reference list is by no means complete) which contain treatments of
different reflection-type problems under various assumptions about the input X: [1] reflected
Levy processes, [2] reflected Levy processes, [3] reflected Levy processes with emphasis on the
reflection mechanism itself, [6] reflected Levy processes with an emphasis on the case where
the Levy measure is light-tailed, [8] reflection of a Markov modulated Brownian motion, [11]
on fundamental issues concerning reflection, [12] reflection of Levy process with a functional,
i.e. not constant, upper barrier, [13] discrete time reflection, [15] reflection of Levy process in
a functional upper barrier, [16] discrete time reflection, and [21] discrete time reflection.

Perhaps the simplest reflection we can think of is when we force an input X to stay above O.
This is an example of a so-called Skorokhod problem. We wish to find V with V(t) 2: 0 for
t ~ 0 and L with L(O) = 0 which is nondecreasing, finite for all t ~ 0, and right-continuous
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(thus cadlag) such that

Vet) = YeO) + X(t) + L(t), 100

V(s)dL(s) = O.

1063

(1)

The integral condition in (1) says that L increases only when V is O. It is well known that there
is an explicit solution to this problem given by

L(t) = (- inf XCv) - V(O»)+,
O~v~t

(2)

where x+ = max(O, x). Starting from (2) we can give conditions (typically restrictions on X)
which, e.g. guarantee finite moments of V and L (see Theorem 1 below) and the existence of
a stationary or asymptotic distribution of V .

Now, let us describe the two-sided reflection mechanism. It is (just like the one-sided
reflection) a well-known (and well-described) Skorokhod problem. Given an input and a
constant b > 0, find (V, L, U) with 0 ~ Vet) ~ b for t 2: 0 and L, U satisfying L(O) =
U (0) = 0, L(t), U (t) nondecreasing, finite for all t :::: 0 and right-continuous such that

and

V(t) = YeO) + X(t) + L(t) - U(t), (3)

100

V(s) dL(s) = 0, 100

(b - V(s)) dU(s) = O. (4)

The process V may be thought of as the process which results from reflecting X in 0 and b,
and Land U as the local times at 0 and b, i.e. the 'pushing away' from 0 and b, respectively.
The conditions in (4), of course, say that L and U can increase only when V is at the respective
barrier. Pihlsgard and Glynn [17] contains a discussion about the existence and uniqueness of
a solution (V, L, U).

We stress that the Skorokhod problems described above are formulated for a deterministic
input, i.e. they are defined path by path.

One main question is, ofcourse, if it is possible to obtain an explicit formula for V (containing
X and b) when we have two reflecting barriers. A partial answer in the affirmative to this question
was given in [7]. In that paper a formula for V was given which is valid when X is of bounded
variation. Rather recently, in Kruk et al. [14], an expression which applies to the general case
was presented. We present it here because it is an impressive result which confirms that the
solution to the two-sided reflection is, as expected, much more involved than that given in (2).

Proposition 1. Let X'(t) = V(O) + X(t). Then

Vet) = X'(t) - (V(O) - b)+ /\ inf X'(u») v sup (X'(S) - b) /\ inf X'(u)). (5)
UE[O,t] SE[O,t] UE[S,t]

By inspecting (5) we observe that, strictly speaking, we are not given a complete solution
to the Skorokhod problem since we are not able to identify Land U. In view of (3), what
we see is L - U. One idea is to try to identify Land U by constructing a decomposition of
the signed measure corresponding to X'(t) - V(t) (see, e.g. [10, pp. 25-28] for a discussion
concerning this issue) such that (4) holds. Note that the decomposition is not unique unless
we impose the boundary conditions. However, this approach appears to be difficult. In [17]
a different path based on (formal) integration of (3) was chosen. The conditions in (4) enter
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the calculations very conveniently. Since we will make frequent use of it, we state the main
result from [17]. As always, if f is a real-valued function then Llf(s) = f(s) - f(s-), where
f(s-) = limuts f(u) (provided that the limit exists) with the convention that f(O-) = O. For
a stochastic process Y, we let [Y, Y] denote its quadratic variation process.

Proposition 2. Let

{

_(x2 + 2xy) ify ~ -x,

tpt», y) = y2 if - x < y < b - x,

2y(b-x)-(b-x)2 ify~b-x.

Then
V(O)2 - V(t)2 + 2J~+ V(s-)dX(s) + [X, X]C(t) + JR(t)

U(t) = 2b ,(6)

where
JR(t) = L cp(V(S-),8X(s))

O<s-:st

and [X, X]C denotes the continuous part of [X, X].

In [17] the authors pay the price of having to consider integrals where the 'differential'
stems from a function of possibly infinite variation. Thus, in general the integral in (6) lacks
Lebesgue-Stieltjes path-by-path significance. This obstacle is circumvented by letting integrals
be of Ito type and taking X to be a semimartingale.

In a sense, this paper starts off where [17] ends. We will narrow the perspective slightly and
go from letting the input be a general semimartingale to considering local martingales with drift,
i.e. X(t) = M(t) + JL[M, M](t), where M is a local martingale and JL E IR. One motivation to
study such objects is the following. A well-studied process is Brownian motion with drift, i.e.
X (r) = a B (t) + JLt, JL E IR, a > 0, where B is a standard Brownian motion. Of course, when
we view X as a Levy process, we may think of it as the most general example with continuous
sample paths, but if we decide to view it as a semimartingale, we insist that we should look at
it as a scaled standard Brownian motion to which we add a constant multiplied by its quadratic
variation process (which happens to be deterministic). Furthermore, the Dambis- Dubins­
Schwarz theorem (which tells us that a continuous local martingale can be represented as a
time-changed Brownian motion; see [19, p. 181]) strongly suggests that it could be worthwhile
to try to show results for drifting local martingales similar to that shown for Brownian motion
with drift if we use a different scale to measure the drift.

The paper is organized as follows. In Section 2 we show a few results concerning moments
of the local time U. Also, we include Proposition 3, which provides a representation of the local
time U (valid under certain conditions), and (as a slight digression) Proposition 4, which fills
a minor gap in [17]. In Section 3 we present a few asymptotic results for U and V, including
laws of large numbers and central limit theorems for U as well as for certain process obtained
as an integral of the paths of V, which apply when the input is taken to be a continuous local
martingale. This will further illustrate the connection between reflected Brownian motion and
reflected local martingales.

2. Moments and a result on the structure of U

In this section we will systematically investigate moments of the local times L and U in (3)
and (4). Since the details are very similar we will treat only U, but it should be obvious how
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to do the calculations for L. As a warm-up exercise we will have a short look at the one-sided
reflection defined in (1) (with the solution given in (2)). Note that we are not able to prove the
results in Theorem 1 for local martingales without imposing further conditions.

Theorem 1. Let p ~ 1. Assume without loss ofgenerality that V (0) = O.

(i) IfX is a Levy process then lE[LP(t)] < 00 ifand only iflE[X(l)P] < 00.

(ii) If X is a martingale such that X (0) = 0, we have lE[L (t)] < 00 if

sup lE[X(s)log+ X(s)] < 00
O:ss:st

and for p > 1 lE[LP(t)] < 00 if and only if lE[X(t)P] < 00. Here log" x =
max(O, log Ix!).

Proof From (2) it follows that if V(O) = 0 then L(t) = sUPo<s<t(-X(s)). Theorem l(i)
follows directly from [20, Theorem 25.18]. Theorem l(ii) follows, for p = 1, from a remark
in [19, p. 55] and for p > 1 from Doob's inequality.

Theorem 1 tells us that the local time L in (1) behaves more or less as expected as long
as X is a Levy process or a martingale. However, when we consider a two-sided reflection the
calculations become more involved. As we will see below, we require the finite 2pth moment
of X* in order to guarantee the finite pth moment of U(t), e.g. if X is a martingale. For the
case where X is a Levy process, it was proven in [6] that lE[X(t)] < 00 yields lE[U(t) <]00
and in [17] that lE[X2(t ) ] < 00 implies E[U 2(t ] ) < 00, but we do not see an immediate way
of generalizing these results to, e.g. the case where X is a local martingale. Let us very briefly
explain why the Levy process case is easier than the case where the input is a local martingale.
First, the stationary independent increments of a Levy process leads to the reflected process
being regenerative. This means that U (r) can be split into independent contributions coming
from different cycles and we can use powerful results from renewal theory when analyzing
U(t). Secondly, in the Levy process case the continuous part can cause no problems as far as
moments of U (r) are concerned. Thirdly, we can control the intensities of small and large jumps
via the Levy measure (to the best of the author's knowledge there are no similar results which
apply to martingales or local martingales) and this makes it possible to exploit the structure of
<p(., .) (more precisely, for small y, tpt», y) is quadratic and for large y it is linear) to obtain
conditions guaranteeing the existence of finite moments of JR which are sharper than those
presented below. We recall the Burkholder-Davis-Gundy inequalities, which make it possible
to compare moments of X and [X, X] (when X is a local martingale); see [18] and [19]. Thus,

cplE[X, X]p/2(t) s E[X*]P(t) .s Cp1E[X , X]p/2(t), p E (0,00) (7)

when X is continuous and for p ~ 1 when X is cadlag, where cP and CP are constants and
X*(t) = sUPo<s:st IX(s)l·

Theorem 2. Let p > O. Assume without loss of generality that V (0) = o. If X is a local
martingale with drift generated by a continuous local martingale M then, regardless of u, if
lE[M*]2p(t) < 00 then lE[UP(t)] < 00.

Proof From (6) it follows (recall that X(t) = M(t) + JL[M, M](t)) that

V(0)2 - V(t)2 + 2 J~+ V(s) dM(s) + 2J.-t J~+ V(s) d[M, M](s) + [M, M](t)
U(t) = 2b .
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Clearly,

M. PIHLSOARD

12/Li~ V(s)d[M, M](s) + [M, M](t) I::: (21/Llb + l)[M, M]{t).

We have Y(t) = s. V(s) dM(s) is a continuous local martingale such that

[Y, Y]{t) = t V(s)2d[M, M](s) ::: b2[M , M](t).
10+

The claim now follows from
IEIY(t)I P :s IE[Y*(t)]P

:s CplE[Y, y]p/2(t)

:::s CpbP]E[M, M]p/2(t)

CpbPJE[M*(t)]P
<-----
- Cp

< 00,

which holds in view of (7) and the assumption that ]E[M*(t)]2p < 00.

We can provide a result similar to Theorem 2 for the case where M is not continuous.

Theorem 3. Let p ~ 1. Assume without loss ofgenerality that V (0) = O.

(i) If JL = 0 and IE[M*]2p(t) < 00, then IE[U P(t)] < 00.

(ii) If JL i= 0 and lE[M*]4p(t) < 00, then lE[UP(t)] < 00.

Proof. We start by noting that cp (., .) in Proposition 2 satisfies 0 :s cp (x, y) :s y2. Thus,

[M, M]C(t) + L qJ(V(s-), fJ.M(s)) :s [M, M]C(t) + L (fJ.M(s))2 = [M, M](t) (8)

O<s~t O<s~t

and Theorem 3(i) follows in the same way as Theorem 2. Now, if X(t) = M(t) +JL[M, M](t)
then

JR(t) = L cp(V(s-), ~X(s))
O<s~t

= L cp(V(s-), ~M(s)+ JL(~M(s))2)
O<s~t

:s L (~M(s) + JL(~M(s))2)2

O<s~t

S c(2) L «~M(s))2 + J1-2(~M(s))4)

O<s~t

:s c(2)[M, M](t) + c(2)Jl2[M, M]2(t),

where c(2) is a finite constant. In the last step, if we let

Y{t) = { L (~M(S»2} 2,

O<s~t

(9)

then (fJ.M(t))4 :s ~Y(t) and Y(t) :s [M, M]2(t). Now, Theorem 3(ii) follows (again, in the
same way as Theorem 2).
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When studying reflected Levy processes, Brownian motion is by far the easiest example.
In order to emphasize that its simple quadratic variation structure to a large extent accounts
for its simplicity, we state the following simple corollary which applies to its local martingale
counterpart (from a reflective perspective).

Corollary 1. Suppose that X(t) = M(t) + JL[M, M](t), where [M, M] is deterministic and
continuous (this is well known to imply that M is a continuous martingale). Then all moments
ofU(t) exist.

Proof. The corollary does not need a proof.

We conclude this section with two propositions which are intimately related to that presented
in [17]. The first proposition summarizes the author's current understanding of the local time V
when the input is a martingale with finite second moment. It is an interesting problem to try to
show that Proposition 3, or a result similar to it, holds under weaker assumptions. The second
proposition is a slight digression and relates to reflection with a functional upper barrier T.
Unfortunately, this result was overlooked in [17]. It makes it possible for us to sharpen [17,
Lemma 1] (which leads to the important Theorem 3), where the assumptions are unnecessarily
strict.

Proposition 3. Suppose that X(t) = M(t) + JL[M, M](t) with JL ~ 0 and lE[M2(t)] < 00

(this means that M is a martingale).

(i) If M is continuous (or u. = 0) then U has the representation

U(t) = UI(t) + U2(t), (10)

where -b/2 ::s VI (t) ::s b/2 and V2(t) is a submartingale.

(ii) If, in addition, lE[M4 (t)] < 00 then (10) holds for discontinuous M and u. > o.

Proof We identify VI (t) as (2b)-I(V(0)2 - V(t)2). Also, J~+ V(s-) dM(s) is a local
martingale such that its quadratic covariation process is given by J~+ V (s - )2 d[M, M] (s)
which is bounded by b2[M, M](t) and it follows by [18, Corollary 3] that J~+ V(s-)dM(s)
is a martingale. Propositions 3(i) and (ii) now follow easily from (6)- (9).

The two-sided reflection with functional upper barrier T was described in [17], where it
was assumed that T is a semimartingale which fulfills T(s) ~ 8 > 0 for all s ~ 0 (with 8 a
constant).

Proposition 4. Let p > O. If the input X is a semimartingale such that IE[U P(t)] < 00 for
constant upper barrier, then E[V P(t)] < 00 for any functional barrier T satisfying T(s) 2:
8 > O.

Proof. Assume without loss of generality that V(O) = O. Let VT, V£, LT, L£, UT, and U£
denote the reflected processes and local times corresponding to reflection with T and e as upper
barrier, respectively. From the construction of VT given in [17, Proposition 1], in view of
T (s) 2: 8, it follows that

{t ~ 0: VT(t) = O} ~ {t ~ 0: V£(t) = O}
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and, thus, LT(S) :::: LE(s). The claim now follows from

°s UT(t)
.s UT(t) + VT(t)

= X(t) + LT(t)

:::: X(t) + LE(t)

= VE(t) + UE(t)

:::: e + UE(t).

M. PIHLSGARn

3. A few asymptotic results for a continuous input

In this section we provide asymptotic results which apply when the input is continuous.
We provide a law of large numbers and a central limit theorem for U. Furthermore, we
obtain, more or less as a byproduct of the techniques used to show the aforementioned results,
a corresponding result for certain integrals of the paths of V, which can be interpreted as
time-averages. This shows yet another interesting connection between reflected Brownian
motion (with drift) and reflected drifting local martingales. Zhang and Glynn [22] contains the
corresponding investigation for reflected Brownian motion.

Recall the structure of the feeding process given by X(t) = M(t) + JL[M, M](t). In
differential form (3) becomes

d V (r) = dX (t) + dL(t) - dU (t) = dM(t) + JL d[M, M](t) + dL(t) - dU (t). (11)

Denote by e2 ([0, b]) functions from [0, b] to lRwhich are twice continuously differentiable. We
takef E e2([0, b]) and apply Ito's lemma and [17, Proposition 4] (which saysthat[V, V](t) =
[X, X](t» to (11), note that [X, X](t) = [M, M](t), and thus obtain (we assume that V(O) = 0)

f(V(t» - f(O)

l
t

11t= f'(V(s» dyes) + - f"(V(s» dry, V](s)
0 20

=it f'(V(s))dM(s)+JL it f'(V(s»d[M, M](s) +f'(O)L(t)

1 (t
- f'(b)U(t) + 2: 10 f"(V(s»d[M, M](s)

=it !,(V(s)) dM(s) + !,(O)L(t) - f'(b)U(t)

+ it {~f"(V(S» + JLf'(V(s)) }d[M, M](s)

=it f'(V(s»dM(s) + f'(O)L(t) - !,(b)U(t) + it(oCf){V{s))d[M, M](s),

(12)

where
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Note that if we take I (x) = x 2 , we arrive at (6). The idea of investigating the differential
operator £, comes from [22]. Example 1below contains a short discussion about the differences
between the techniques used in [22] and this paper.

In what follows we will assume that the only alternatives that occur are [M, M](t) ~ 00

almost surely (a.s.) and [M, M](t) ~ [M, M](oo) a.s., respectively, as t ~ 00, for some
finite random variable [M, M](oo). The reason is that we wish to avoid issues like state space
decompositions, etc. Most of what remains of the paper is devoted to the first case. For the
second case, we have the following result.

Proposition 5. Suppose that [M, M](t) ~ [M, M](oo) < 00 a.s. as t ~ 00. Then U(t) ~
U(oo) < 00 a.s. and Vet) ~ V(oo) a.s. lflE[M, M](oo)P < 00 then lE[U](oo)P < 00.

Furthermore, lEI Vet) - V(oo)IP ~ 0 and lEIU(t) - U(oo)IP ~ Olor all p > O.

Proof Choose an injective f E e2 ( [0 , b]) such that f'CO) = f'(b) = O. The part
f~ I' (V (s) dM (s) in (12) is a local martingale whose quadratic variation is bounded by
C2[M, M](t), where C = sUPsE[O,b] ['(s), We now apply [19, Proposition 1.8] which says
that for a continuous local martingale M,

{ lim [M, M](t) < oo} = { lim M(t) exists},
t~oo t~oo

(13)

if JL = 0,

and we see that both terms in the rightmost part of (12) converge which means that f (V (t»
converges and so does Vet) = (/- 1

0 f)(V(t». That U(t) converges now follows if we
apply the same arguments to (6). The rest follows by monotone convergence and dominated
convergence in combination with the fact that U is nondecreasing and IV (t ) I ~ b.

Remark 1. When we derived (12) we used the fact that [V, V](t) = [M, M](t). It could be
tempting to try to show that this directly implies that Vet) ~ V(oo) a.s. as t ~ 00. However,
to the best of our understanding, we cannot conclude this since V is a semimartingale, not a
local martingale, and it does not follow automatically from (3) that Ltt) and U(t) converge.

From now on we will assume that [M, M](t) ~ 00 a.s. as t ~ 00 . For later use, we will
now describe the solutions I (.) to the differential equations (cl f) (x) = K + r (x) for a few r ,

where K is a constant. It is fairly straightforward to show that

!,(x) = e-2/LX f 2(K + r(x))e2/LX dx.

This leads us to Table 1. The form of the solution is I = fh + fp, where fh solves the
differential equation (clfh)(x) = K and I p solves (cllp)(x) = rex). This means that the
solution to (clf)(x) = K +clr l (x) + +cnrn(x) is f(x) = Ih (x) +CI f~ (x)+· ..+cnf; (x)
(in the obvious notation), where CI, , Cn are constants. If JL = 0 then I~ (x) = 2Kx + K 1
(fh(X) = Kx2 + KIX + K2) and if JL =1= 0 then f~(x) = KIJL + Kle-2J.LX (fh(X) = KxIJL­
K 1e-2J.LX12JL + K2), where K 1 and K2 are constants. Now, let us state and prove a law of large
numbers for U.

Theorem 4. It holds that U(t)/[M, M](t) ~ C a.s. as t ~ 00, where

1

2b
C=
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J.L rex)

=0 x

=0 x 2

=0 eax

=0 xe ax

;':0 x

;':0 eax

~o eax

M. PIHLSGARD

TABLE 1: Solutions to (£fp)(x) = rex).

x2 x3/3
2x 3/3 x 4/6

2eax/a 2eax/a2

2eax (x - l/a)/a 2eax (x - 2/a)/a2

-1/2J.L2 +x/J.L -x/2J.L2 +x2/2J.L

2eax /(a + 2J.L), a ~ -2J.L 2eax /a(a + 2J.L), a ;': -2J.L

2xe-2jlx , a = -2JL _e-2jlx (x + 1/2JL)/JL, a = -2JL

(14)

Proof Recallthatweassumethat[M, M](t) ~ ooa.s. Letf = fh, so that (cCf)(x) = K.
Choose K and K 1 such that I' (0) = 0 and t' (b) = 1. It turns out that K = 1f2b and K 1 = 0
if u. = 0 and K = J,lf(1 - e-2/-tb ) and K 1 = -Kf JL if u. =1= O. In view of (12), we have

U(t) = f(O) - f(V(t» + it f'(V(s»dM(s) + K[M, M](t)

and, since (f(O) - f(V(t»)f[M, M](t) ~ 0 as t ~ 00, it suffices to show that

(t f'(V(s») dM(s) ~ 0 a.s.
10 [M, M](t)

But J~ t' (V (s) dM(s) is a local martingale with quadratic variation bounded by C[M, M](t)
for some constant C, which means that (14) follows directly from (13) and the law of large
numbers for local martingales, which says that for a local martingale Y, Y(t)f[Y, Y](t) ~ 0,
t ~ 00 on try, Y](t) ~ 00, t ~ oo}; see, e.g. [19, Exercise 1.16].

We will need the following lemma.

Lemma 1. Suppose that there exists a solution f to the differential equation (£f)(x) =
K + rex) such that f'(O) = f'(h) = O. Then it holds a.s. that

1 It
lim r(V(s» d[M, M](s) = -K.

t--).oo [M, M](t) 0

Proof. By (12), it follows that

f(V(t» - f(O) = it f'(V(s» dM(s) + K[M, M](t) + it r(V(s» d[M, M](s). (15)

We divide both sides of (15) by [M, M](t) and let t ~ 00. The claim follows by the law of
large numbers for local martingales and (f(O) - f(V(t»)f[M, M](t) ~ O.

Theorem 5. Let c he as in Theorem 4 and M he a martingale with deterministic quadratic
variation. As t ~ 00, it holds that

(
U(t) ) DJ[M, M](t) - c ~ N(O, rJ 2 ) ,

[M, M](t)
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where N(·, .) denotes the normal distribution, ~ denotes convergence in distribution, and

if Jvl = 0,

2 {~
TJ = e-2j.Lb(e2j.Lb _ e-2j.Lb - 4Jvlb)

(1 _ e-2J.Lb)3 if Jvl 1= o.
Proof With f as in the proof of Theorem 4, (12) yields

(16)

j (V(t) ) (f(O) - f(V(t))) J~ f'(V(s))dM(s)
v [M, M](t) - c = + .

[M, M](t) J[M, M](t) J[M, M](t)

We note that as t --+ 00, (f(O) - f(V(t»))/ J[M, M](t) --+ 0 a.s. Thus, what we need to show
is that

1 ityet) = I' (V(s» dM(s) ~ N(O, TJ2) as t --+ 00
J[M, M](t) 0

with 1]2 as in (16). Now, Yt (s) = J~ f' (V (u)) dM (u) / J[M, M] (t) is a continuous martingale
with quadratic variation [Yt, Yt](s) given by J~ (f'(V(u»))2 d[M, M](u)/[M, M](t) (we are
considering a family Yt of martingales indexed by t). We make the simple but important
observation that along the time-index 'diagonal', Y and Yt coincide, i.e. yet) = Yt(t). It

follows, by the martingale central limit theorem (see [9, pp. 338-340]) that Yt(t) ~ N(O, TJ2)
as t --+ 00, where TJ2 = limt~oo[Yt, Yt](t). What remains is thus to calculate

1
. [Y Y]() _ 1· J~ (f'(V(u»)2 d[M, M](u)
Hfl t, t t - 1m .

t~oo t~oo [M, M](t)

Recall that for u. = 0, we have f'(x) = x jb and for u. i= 0, f'(x) = (1- e-2J.LX)/ (1 - e-2j.Lb).
Take rex) = x2/b2 for u. = 0 and rex) = «1 - e-2j.LX)/(1 - e-2j.Lb»)2 for Jvl i= O. From
Table 1, we can find solutions to (c:lf)(x) = K + rex). If we require that f'(O) = f'(h) = 0
it turns out that K = -1 if u. = 0 and

(-1 - e-2j.Lb + 4Jvlbe-2j.Lb /(1 - e-2j.Lb)) e-2j.Lb(_e2J.Lb + e-2j.Lb + 4Jvlb)
K = (1 _ e-2/Lb)2 = (1 _ e-2/Lb)3 if JL =1= o.
Equation (16) now follows from Lemma 1.

Remark 2. The condition in Theorem 5 that [M, M] is deterministic looks strict. However, it is
crucial that the processes Yt defined in the proof are local martingales; see [9]. Suppose that M
is a local martingale. Then J~ I' (V (u) dM (u) is a local martingale, but it may be that Yt is
not. The problem is that [M, M](t)-lj2 need not be measurable with respect to :F(s), s < t.
It is not obvious how to expand the filtration to make Yt measurable and a local martingale at
the same time.

Remark 3. The reader may wonder why we do not take (6) as a starting point in the proofs of
Theorems 4 and 5. We could actually derive the law of large numbers (Theorem 4) by using
(6) to identify U and Lemma 1 to evaluate limt~oo J~ V(s) d[M, M](s)/[M, M](t). However,
the problem is that when we then try to prove Theorem 5 we can conclude that as t --+ 00, U
fulfills the condition

2bU(t) = - V(t)2 +2i
t

V(s) dM(s) + 2bK[M, M](t) + o([M, M](t», (17)
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where o([M, M](t»/[M, M](t) ~ 0, rather than the stronger condition

M. PIHLSGARD

U(t) = f(O) - f(V(t)) +it f'(V(s))dM(s) + K[M, M](t),

which follows by finding a solution to (£f)(x) = K satisfying f'(O) = 0 and f'(b) = 1,
and applying (12). Since o([M, M](t»/.J[M, M](t) need not go to 0, we cannot control
J[M, M](t)(U(t)/[M, M](t) - K) in (17) and the method of proof that we use will not work.

The following approach to the derivation of Theorem 4 and Theorem 5 as well as the idea of
how to weaken the assumptions in Theorem 5 was suggested to us by the anonymous referee.
Besides being elegant it provides a nice explanation of why the constants "1 2 and c appearing
in Theorem 4 and Theorem 5 are the same as in their counterpart in [22, Proposition 1], which
is valid for Brownian motion. In (3), we use the representation M(t) = B([M, M](t» a.s.
where B is the Dambis-Dubins-Schwarz Brownian motion of M; see, e.g. [19, Theorem 1.6].
Then, we obtain

V(t) = V(O) + B([M, M](t» + J.L[M, M](t) + L(t) - V(t). (18)

Now, if we take X (t) = B(t) + J.Lt and replace t by [M, M](t) in (3), we obtain

VB([M, M](t» =

V(O) + B([M, M](t» + J.L[M, M](t) + LB([M, M](t» - VB([M, M](t», (19)

where (VB, L B, VB) is the solution to the Skorokhod problem when the input is Brown­
ian motion with drift. By comparing (18) and (19) and applying the uniqueness result for
(V, L, V) discussed in [17], we conclude that a.s. V(t) = VB([M, M](t». Since we assume
that [M, M](t) ~ 00 a.s. as t ~ 00, Theorem 4 and Theorem 5 follow easily from [22,
Proposition 1], which tells us that

UB(t)
--~c a.s.,

t

(VB(t) - ct) D 2
.Ji ~ N(O, TJ ) as t ~ 00. (20)

Let Q denote the rational numbers and let Yq = (UB(q) - cq)/~, q E Q. It follows follows
by (20) that

Yq ~ N(O, "12) as Q 3 q ~ 00.

A general version of the Anscombe theorem (see, e.g. [4]) allows us to conclude that

YT(t) ~ N(O, "12
) as t ~ 00,

for a stochastic index process r (t ), provided that r (t) E Q,

r(t) r
- ~ 1 as t ~ 00,
b(t)

(21)

for some sequence of positive real numbers {b(t), t 2:: O} where b(t) t 00 and that given E > 0
and l/J > 0, there exist 8 > 0 and qo, such that, for all q > qo,

JP>( max /Yr - Yq / > E) < l/J.
{r: Ir-ql <q~}

(22)
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(23)

ifJl = 0, a ~ 0,

d=

Let us choose a continuous local martingale M with a nondeterministic [M, M] and take r(t)
to be a suitable rational approximation of [M, M](t). If we manage to verify (21) and (22), the
above should be adequate to show that Theorem 5 actually holds for this particular choice of M.
However, to the best of the author's knowledge, (21) and (22) are not automatically satisfied for
M with a general nondeterministic [M, M], which means that the verification must be made
on a case-by-case basis.

We will conclude the paper by having a look at the asymptotic behavior of the 'time-average'
of the reflected process V. Let Y(t, a) = I~ eaV(s) d[M, M](s).

Theorem 6. As t ~ 00, Y(t, a)/[M, M](t) ~ d a.s.,where

(ea b - 1)

ab

(J-lea b+2J1,b - J-l)
«JL + a/2)(e2JLb _ 1)) ifJL #- 0, a #- -2JL.

Proof We consult Table 1 to find solutions of (£f)(x) = K + eax . Then we choose K
and K 1 such that I' (0) = t' (b) = O. The part of (23) to the right of the '{' shows - K. We
apply Lemma 1 to finish the proof.

We recognize d = d(a) in (23) as the moment generating function of a uniform distribution
on [0, b] when Jl = 0 and a truncated exponential distribution with density 2J-le2p,x /(e2J1,b ­

1), 0 ~ x ~ b, when Jl ~ O. The following example shows an application of Theorem 6.

Example I. Suppose that we take M(t) = aB(t), so that X(t) = aB(t) + ut , i.e. X is
Brownian motion with drift and [M, M](t) = a 2t . This example was treated in [22]. It was
proven in [17] that the V corresponding to this input is regenerative with nonlattice cycle length
distribution with finite mean. Now, according to Theorem 6, it holds that

~ r eaV(s) ds ~ d a.s. as t ~ 00,
t 10

and since V is regenerative, it follows by [5, Theorems 1.2 and 3.1] that there exists a limiting
(thus stationary) distribution 1! of V, specified by Ii eaXrr(dx) = d, and from (23) we conclude
that n corresponds to a uniform distribution on [0, b] when Jl = 0 and a truncated exponential
distribution when Jl ~ O. We have thus derived the stationary distribution of the process
resulting from a two-sided reflection ofBrownian motion with drift without performing optional
stopping of the Wald martingale (or the Kella-Whitt martingale), which is the typical way of
approaching this problem; see, e.g. [5, Example 3.6] and [6].

On the other hand, since V is regenerative and [M, M](t) = a 2t , we may conclude directly
from results for regenerative processes (this is precisely what the authors do in [22]) that

. I~r(V(s»d[M,M](s) . J~r(V(s»ds l b
lim = lim = r(x)rr(dx),
t~oo [M, M](t) t~oo t 0

and since n can be found in the literature, there is no need for Lemma 1 and finding the
potentially messy solutions to (£f)(x) = K + r(x), where r(x) ~ O.

Theorem 7. Let d be as in (23) and M be a martingale with deterministic quadratic variation.
As t ~ 00,

J[M, M](t)( Y(t, a) - d) ~ N(O, T/2),
[M, M](t)
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where
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4d 2b2 4(e-ctb - ectb + 2ab) 4d(2(ectb - I)ja2 - 2bectb[a + b2)
"12 = -- + +------------

3 (a2 (1 - ectb» ab

if u. = 0 and a =1= 0, whereas if u. =1= 0 and a =1= -2J..i and a =1= 0, then

2 d2e-2JLb(e2JLb - e-2JLb - 4J..ib) 4ectb(e-ctb - ectb + 2ab)
"1 = + ---------

(Jl2(1 - e-2Jlb» «a + 2Jl)2(1 - ectb»

[
jl(2jl + 2ba(a + 2jl» 2jlectb 2jle(ct-2JL)b]

+4d 1- - +---
(a(a + 2jl» (a + 2Jl) a

x [(1 - e-2JLb)Jl(a + 2Jl)]-I.

Proof The proof is identical to the proof ofTheorem 5, except that "12 is of a different form.
We have that the solution to (£f)(x) = K + ectx satisfying f'CO) = f'(b) = 0 is given by

{

2(ectX - 1)
-2dx+ ifjl=O,

I a
f (x) = -dO _ e-2tLx) _ 2(1 _ ectX)

--- if Jl =1= O.
u. (a + 2J1')

We take rex) = f'(X)2 and solve (£f)(x) = K + rex) by consulting Table 1. The details
consist of tedious but straightforward algebra and are omitted. We finish the proof by applying
Lemma 1.

It is one ofthe main goals of the theory ofregenerative processes to state and prove equivalents
of Theorems 6 and 7; see [5, pp. 177-179]. There are, however, some noteworthy differences
between this paper and the classical approach for regenerative processes. First, in regenerative
process theory, one typically expresses the global time-average limt~oo t- 1 J~ r(V(s» ds via
an average formed over a cycle, i.e. one goes from local cycle properties to a global result.
Here, we can only say something about the global average (not very surprising since we have
no cycles in general). Secondly, the results in [5] are formulated for general r , i.e, the only
requirement is that integration makes sense. This is in contrast to Theorem 6, where we take
r(x) = ectx. We go from a general r to an r belonging to this parametric family for two
reasons. First, we can compute only exact averages for r such that we can find an explicit
solution to (£f)(x) = K + rex) satisfying f'(O) = f'(b) = o. Secondly, we can rather
easily generalize the results shown for this particular choice of r. For example, suppose that
we take g continuous such that g(O) = g(b). It follows by Weirstrass' theorem that g can be
approximated by a trigonometric polynomial in the sense that for each e > 0, there exists a
polynomial p such that sUPO~x~b Ig(x) - p(e'2nx/b)1 < c. Then clearly,

I
(J~ g(V(s» d[M, M](s) - J~ p(e ' 2Jr V (s )/ b ) d[M, M](s» 1< e

[M, M](t) - ,

and we may approximate limt~ooJ~g(V(s»d[M, M](s)j[M, M](t) arbitrarily well by the
corresponding limit for a trigonometric polynomial which we can compute using (23) (and the
linearity of integration). The condition g(O) = g(b) is no restriction. To see this, note that a
general continuous g can be written as

(
g (X) - x(g(b) - g(O») x(g(b) - g(O»

g(x) = b + b ' (24)
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so that
. J~ g(V(s)) d[M, M](s) . J~ (g(V(s)) - V(s)(g(b) - g(O))/b) d[M, M](s)

hm = hm
t-+oo [M, M](t) t-+oo [M, M](t)

. J~ V(s)(g(b) - g(O))/bd[M, M](s)+ hm . (25)
t-+oo [M, M](t)

The first part in the right-hand side of (24) is a continuous function whose values at the endpoints
coincide. Furthermore, we can easily compute the rightmost global time-average in (25) using
Lemma 1 and Table 1.
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