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1. Introduction

Let X,,7=1,2,3, - be a sequence of independent and identically
distributed random variables and write S, =0, S, =37, X,, n = 1.
Let I,(0), I,(1),---,I,(n) be that unique permutation of 1, 2, - - -, # such
that S; (9 = S; ) =+ = Spm and such that if S; =35, with j <#
then I,(k) < I,(j). Thus, I,(f) is an index of the j-th largest partial sum.

In this note, we shall obtain the distribution of the order index I ,(j)
in terms of the distribution of the number of positive partial sums in the
sequence 0 = S,, S;,---, S,. Then, under the condition

Pr (S, > 0)+--+Pr (S, > 0
(1) fim TG > O AP S, >0 oy

n—00 n

we shall go on to obtain the limit distribution lim,_,, Pr{I,([#a]) < nz},
0 < a < 1. This will be seen to constitute a generalization of the limit
result of Spitzer [3], Theorem 7.1, on the number of positive partial sums
Sk, 0 = k& = n, and proceeds along the lines of an extension of the work of
Darling [1]. As with the result of Spitzer, no limit distribution will exist if
the condition (1) is not satisfied.

2. Distribution of the order indices

For n = 0, take N, as the number of positive S;, 0 < %2 < #». In ad-
dition to the sequence {S,, £ =0, 1, - - -, n}, we introduce for each fixed j
the two further sequences

S(’) = 0, S(’)’ = Ov
S =X, Sy = X,
Sy =X;+X,4, Sy = Xipat+Xiia

.oy .

Si= X+X 4+ -+ X, S = Xint Xt +X,,

1 Research carried out at Aarhus University.
369

https://doi.org/10.1017/51446788700005437 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700005437

370 C. C. Heyde (2]

and define random variables N; and N, _; with respect to the S} and S,
respectively, in the same way as with N, for the S,.

Let us look at the event {I,(k) = j}. That is, & is one plus the number
out of Sy, S;, - -, S;_; that are less than S; plus the number out of S, ,,
S;1s, -, S, that are less than or equal to S,. Clearly, the number of
S¢, Sy, -+, S, that are less than S, is precisely the number of
51, S;, -+, S; that are positive or, in other words, N;. Furthermore, the
number of S;,;, S;,, -, S, that are less than or equal to S; is just
the number of Si,S;,--- S, , that are non-positive which is

n—7

n—j—1—N,_;. We therefore see that the events {I,(k) =j} and

{N;+n—j—N,_; = k} are the same. Now the primed and double primed
random variables are independent as they depend on disjoint subsets of the
X;. Thus,

min (3, %)

Pril (k) =7}= 3  Pr(N,=9 Pr(N/,=n—j—k+t).

v =max (0, j+k—n)

Also, the X, are identically distributed so the prime and double prime can

conveniently be dropped at this stage and we obtain the distribution,
min (4, k)

@ Pril,&)=f}= Y Pr(N,=vPr(N, =n—j—kty).

¥=max (0, j+k—n)

This result is a generalization of the result of Theorem 1 of Darling [1]
which relates to random variables which have continuous and symmetric
distributions.

Using the well-known result of Sparre-Andersen that

Pr(N,=k =Pr(N,=k)Pr(N,_,=0), 0=k <,
we have

Pr(N; =) Pr(N,_, = n—j—k-+v)
= Pr(N, =»)Pr(N,_, = 0) Pr(N,_, 4\, = n—j—k-+») Pr(N,_, = 0)
= Pr(N, = v) Pr(N,_ = n—j—k+v),

so that from (2),
(3) Pril, (k) =7} = Pril,() = k}.
We have therefore established the following theorem.

THEOREM 1. The random variable 1,(7) has the same distribution as the
random variable N;+n—j—N,_;, the primed and double primed random
variables being independent.
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3. Limit theorem
We shall establish the following theorem.

THEOREM 2. Suppose the random variables X ; are such that the condition
(1) s satisfied. Then, for 0 < a < 1,
Hm Pr {#n=11 ([na]) < x} = G, (x),

—>

where
4)

G, . () sinmc)2 ”Umi“("’“) dv }du
X)) =
> ( T J;) v=max (0, ut-a—1) (M_v)a (l_a_u+v)1—avl—a(a_v)a

W=z =1,0<a<l, 0<a<]y,

Go,a(x) = 1——*F¢(1—£E), Gl,a(x) = Fa(x)’
0 (x < 1—a), 0 (x <a),
mam={1@gl_@ QA@={1®2“%

and F,(x) ts given in the velations (5). If the condition (1) is not satisfied
then Pr {n=11, ((na]) < x} does not tend to a limit as n — 0.

ProOF. From Theorem 1 we see that #~1 I, ([#a]) has the same distribu-
tion as 7! Ni,,+1—n"'nal—n"IN, ., the primed and double primed
terms being independent. Further, the results of Spitzer [3], Theorem 7.1,
tell us that as # — oo, !N, converges in law to a random variable with

distribution function F, given by

[0 (z<0),
F@ =] w0
(6) F,lz) = Sinn”“f:ua-l(l—u)—mdu 0=2z<1,0<a<l),
0 (x <1,
Fr=) = : 1 (x=1).

It is therefore clear that as # — oo, 11 ,([#a]) will converge in law to
a random variable with the same distribution as aY,+(1—a)(1—Y,),
where Y, and Y, are independent and each has distribution function F,.
It remains only to examine the particular cases.

If 0<a<l1 0<a<1, a¥, has density n~!sinzmaz*'(a—=z)"7,
0 =<z <a, while (1—4)(1—Y,) has density n!sinzez*(1—a—x)*71,

0 = x = 1—a. The density of the random variable aY,}+ (1—a)(1-Y,) is
therefore
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sin mc)z J‘ min (z, @) dy
( T y =max (0,2+a—1) (x_y)a (l_a_x+y)l—ay1—a(a_y)a -
as required.

The other cases can be read off immediately using relations (5). If
0=<a=<1, a=0, then n=1 I ([na]) converges in law to 1—a as n — 0,
and hence converges in probability to 1—a. Similarly, if 0 <a =<1, a =1,
n~11,([na]) converges in probability to @ as # — co. On the other hand,
we see that lim, , Pr{n1,((na]) <z} is 1—F,(1—), if a=0 or
F,(x)ifa=1.

Finally, if the condition (1) is not satisfied then the relation

Pr(S;>0)4 - +Pr(s,>0) _ N,
n n

shows us that #~1 N, cannot converge in distribution and so neither can
#1 N{pgy+1—n2 [na]—nIN, (., or, in other words, n~*I,([na]). This
completes the proof of the theorem.

Theorem 2 of Darling [1] is the particular case of our Theorem 2 where
the X, are restricted to have a continuous and symmetric distribution.
The case 0 < o << 1 of our theorem could have been established along parallel
lines to the proof of Theorem 2 of {1] by making use of Theorem 2 of
Heyde [2] in which it is shown that there must exist a function of slow
variation L such that

Ln—k i
Fi=e(n— k) (n—F) o,y Sinma

Pr(N,=%)=
L " (N, = k) -
where o(k, #) tends to zero uniformly in £ and #» as min (k, n—£k) — 0.
In order to read off the results of Spitzer’s generalization [3], Theorem
7.1, of the arc-sine law from our Theorem 2 we note that

Pr(N,=%k)=Pr{l,(n—k) =0} =Pr{l,(0) =n—~k},

+o(k, n)

so that
Pr (N, < nx) =Pr (N, =< [nx])
=Pr(n—{nx] =1,(0)=n)
—1—Gy ,(1—x) = F,(x), as n — oo.
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