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Abstract

Using convolutional neural networks (CNNs) for image recognition is effective for early weed
detection. However, the impact of training data curation, specifically concerning morphological
changes during the early growth phases of weeds, on recognition robustness remains unclear.We
focused on four weed species (giant ragweed [Ambrosia trifida L.], red morningglory [Ipomoea
coccinea L.], pittedmorningglory [Ipomoea lacunosa L.], and burcucumber [Sicyos angulatus L.])
with varying cotyledon and true leaf shapes. Creating 16 models in total, we employed four
dataset patterns with different growth stage combinations, two image recognition algorithms
(object detection: You Look Only Once [YOLO] v5 and image classification: Visual Geometry
Group [VGG] 19), and two conditions regarding the number of species treated (four and two
species).We evaluated the effects of growth stage training on weed recognition success using two
datasets. One evaluation revealed superior results with a single class/species training dataset,
achieving >90% average precision for detection and classification accuracy under most
conditions. The other dataset revealed that merging different growth stages with different shapes
as a class effectively prevented misrecognition among different species when using YOLOv5.
Both results suggest that integrating different shapes in a plant species as a single class is effective
for maintaining robust recognition success amid temporal morphological changes during the
early growth stage. This finding not only enhances early detection of weed seedlings but also
bolsters the robustness of general plant species identification.

Introduction

Identification of weed species and their growth stages is critical for devising effective weed
management strategies (Rydahl 2003; Teimouri et al. 2018). Moreover, managing weeds during
their early growth stages is essential for efficient weed control and sustainable agricultural
productivity (Hussain et al. 2021). Early-stage weeds are more easily removed through physical
and chemical means, reducing herbicide usage (Espejo-Garcia et al. 2020), costs, and time and
labor requirements. However, identifying weeds at early growth stages in crop fields is
challenging due to their small size and differences in shape compared with mature plants.

To enhance weed detection, the application of image recognition employing convolutional
neural networks (CNNs) is on the rise (Coleman et al. 2022; Hasan et al. 2021; Rai et al. 2023).
Automating the process of finding weeds (Lottes et al. 2018; Sujaritha et al. 2017) and mapping
their distributions (Huang et al. 2018; Partel et al. 2019) is expected to contribute to the
facilitation of site-specific weed management (SSWM; Barnhart et al. 2022; Wang et al. 2019).
Despite the accumulation of case studies for practical applications, growth stages have been
identified as complicating factors in weed recognition (Coleman et al. 2022), and their effects on
the performance of CNN algorithms remain poorly understand (Coleman et al. 2022; Hasan
et al. 2021; Wang et al. 2019). Particularly at the early growth stage, there is a possibility that the
accuracy of weed recognition is unstable or decreases because the reflectance characteristics of
crops and weeds are generally similar (López-Granados 2011; Wang et al. 2019), and the shapes
of dicotyledons tend to change markedly during seedling development. Given that cotyledons
and true leaves often have different shapes in many species, even humans may struggle to
recognize them as the same species without proper knowledge. Teimouri et al. (2018)
demonstrated that leaf numbers may be useful for estimating early growth stages with a
classification algorithm; however, accuracy tended to vary among stages and species. To apply
image recognition to weed management, understanding how changes in plant shape during the
early growth stage influence accuracy is essential.

In this study, we address how the change in plant shape during the early growth stage should be
incorporated into image recognition training. To address these challenges, we focused on four weed
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species with different cotyledon and true leaf shapes: giant ragweed
(Ambrosia trifida L.), red morningglory (Ipomoea coccinea L.), pitted
morningglory (Ipomoea lacunosa L.), and burcucumber (Sicyos
angulatus L.). Each of these species is a major noxious annual in crop
fields globally, causing widespread yield loss (Grey and Raymler 2002;
Kurokawa et al. 2015; Lee and Son 2022; Norsworthy and Oliveira
2007; Regnier et al. 2016; Savić et al. 2021; Smeda andWeller 2001). In
Japan, these species pose a threat to soybeans [Glycinemax (L.)Merr.]
and/or feed grains as invasive alien species (Kurokawa 2017).Notably,
S. angulatus is designated as a “species to be managed urgently” in
“The List of Alien Species That May Have Adverse Effects on
Ecosystems in Japan” (Ministry of the Environment, Ministry of
Agriculture, Forestry and Fisheries 2015), with its cultivation being
banned without permission. By comparing models that use different
class patterns in training datasets, we illustrate how to maintain the
robustness of recognition accuracy amid temporal morphological
changes during the early growth stage.

Materials and Methods

Target Species and Image Acquisition for Training

Leaf shapes of the target species (A. trifida, I. coccinea, I. lacunosa,
and S. angulatus) exhibit both similarities and differences
(Figure 1). Cotyledons in A. trifida and S. angulatus are round,
whereas those in I. coccinea and I. lacunosa are V-shaped. True

leaves of I. coccinea, I. lacunosa, and S. angulatus are roughly heart-
shaped and alternate, whereas those of A. trifida are deltate or
palmately 2- to 5-lobed and opposite.

Training images were captured in situ using 10 device
makers’ digital cameras and smartphones in Japan (35.8°N to
37.7°N, 137.9°E to 140.5°E) during April to October in 2019,
2021, and 2022. Images were taken from 5 to 100 cm directly
above plants, irrespective of weather and light conditions. These
images were categorized into three growth stages (Figure 1):
Stage 1, target weeds with only cotyledons; Stage 2, cotyledons
and one or two true leaves; and Stage 3, only true leaves.
Although some images included non-target plants and/or
multiple target plants, each image could be categorized into
one stage of one target species. For each stage of each species,
350 images were acquired (350 × 3 stages × 4 species = 4,200
images in total). These images were randomly divided in an 8:1:1
ratio for training, validation, and testing (280, 35, and 35
images/stage/species), respectively. The test data were used for
Evaluation 1 (Figure 2). The image area containing the target
species was annotated using an open-source tool LabelImg
(Tzutalin 2015) for detection models.

Training Datasets

To assess the impact of varying training for growth stages on weed
recognition success, we prepared four dataset patterns with
different class definitions (Figure 1): (A) one class/species, treating
Stages 1, 2, and 3 as a single class; (B) two classes/species, treating
Stages 2 and 3 as a class; (C) two classes/species, treating Stages 1
and 2 as a class; and (D) three classes/species, treating each stage as
a different class.

To ensure the robustness of the effects among A, B, C, andD, we
prepared 16 models using two image recognition algorithms and a

Figure 1. Target species and class patterns used in the training datasets.

Figure 2. Study design. Note that Sicyos angulatus was not used in Evaluation 2,
because its cultivation is not permitted in Japan. YOLOv5, You Look Only Once v5;
VGG19, Visual Geometry Group 19.
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couple of conditions regarding the number of species treated (four
and two species) (Figure 2). In the two-species models, we selected
A. trifida and I. coccinea, which exhibit unsimilar leaf shapes
throughout all stages.

Model Training

Two prominent open-source algorithms, namely the object
detection algorithm You Look Only Once (YOLO) v5 (Jocher
2020) and the classification algorithm Visual Geometry Group
(VGG) 19 (PyTorch tutorials: https://pytorch.org/tutorials,
accessed: January 23, 2024), were applied to eight training datasets
(4 class patterns × 2 species number conditions) within the Python
3.7.16 environment using PyTorch 1.13.1. Both YOLO and VGG
are often used for weed recognition studies (Hasan et al. 2021; Rai
et al. 2023). Regarding YOLOv5, a YOLOv5s architecture was
trained with pretrained weights (yolov5s.pt) of the COCO network
(Lin et al. 2014), employing default hyperparameter settings
(Jocher 2020). Each model underwent training for up to 200
epochs with 32 images per batch. Regarding VGG19, models were
trained for up to 100 epochs with a batch size of 30, using an
optimizer with a momentum of 0.9 and a learning rate of 0.001.
Proper learning convergence was confirmed for both YOLOv5 and
VGG19, and the best weights from each training session were used
for subsequent analysis. To evaluate model accuracy for each
species, average precision (AP) at 0.5 threshold for intersection
over union and classification accuracies were calculated for
YOLOv5 and VGG19, respectively, using the abovementioned
test dataset and the best weight (Evaluation 1). All training and
evaluation were conducted on the NARO AI research supercom-
puter Shiho, equipped with NVIDIA Tesla V100 SXM2GPU 32GB
(NVIDIA, CA, USA).

Collection and Evaluation of Time-Series Images

To evaluate the accuracy of each model in capturing temporal
morphological changes during the early growth stage
(Evaluation 2; Figure 2), we collected time-series images. We
sowed and cultivated 16 individuals of 3 target weeds, namely
A. trifida, I. coccinea, and I. lacunosa, with S. angulatus excluded, as
its cultivation is not permitted in Japan, at the experimental garden
at NARO (Tsukuba, 36.03°N, 140.10°E) during May to June 2023.
Images were captured from30 to 50 cmdirectly above the plants 2 to
5 d wk−1. To minimize differences in sunlight condition, we used a
sunshade during shooting. We recorded the number of true leaves
for each plant, with zero true leaves corresponding to Stage 1 and
one or two true leaves corresponding to Stage 2. To set replications
for each date and plant and ensure data independence from
training data, four different smartphones (Apple iPhone SE [Apple,
CA, USA], SHARP A103SH [SHARP, Osaka, Japan], FCNT F-41B
[FCNT, Kanagawa, Japan], and Samsung SC-56B [Samsung,
Gyeonggi-do, Korea]) not used for training data collection were
employed. As images takenwith the autofocus of three smartphones,
excluding the Apple iPhone SE, sometimes exhibited blown-out
highlights depending on weather conditions, we set their exposure
values to a minimum to avoid this. In total, 3,652 images (14 to 27,
8 to 25, and 14 to 22 per plant per camera for A. trifida, I. coccinea,
and I. lacunosa, respectively) were collected.

All imageswere subjected to inference using YOLOv5 andVGG19
models (Figure 2). Four-species models were applied to all images,
and two-species models were applied to images of A. trifida and
I. coccinea. To evaluate changes in accuracy along with growth, we
assessed the recognition success of each image rather than using
comprehensive indices such as mean AP (mAP) and accuracy. In
YOLOv5-based detection, inference results with a confidence

Figure 3. Evaluation 1 results under You Look Only Once [YOLO] v5 and Visual Geometry Group [VGG] 19 for four and two weed species. Each algorithm was applied to four
training datasets with different class definitions as follows: (A) one class/species, treating growth Stages 1 (target with only cotyledons), 2 (cotyledons and one or two true leaves),
and 3 (only true leaves) as a single class; (B) two classes/species, treating Stages 2 and 3 as a class; (C) two classes/species, treating Stages 1 and 2 as a class; and (D) three classes/
species, treating each stage as a different class.
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threshold of 0.5 were defined as “TRUE” (detected only correct
species), “FALSE” (results including incorrect species and/or
locations), and “NONDETECT.” For VGG19-based classification,
inference results were defined as TRUE or FALSE as a result was
classified to one species per image. When a target’s shape displayed
intermediate stages, that is, between Stages 1 and 2 or between 2 and 3,
both stages (Stages 1 and 2 or 2 and 3) were considered correct. As
VGG19 is a classification algorithm and does not indicate where
models focused on location in an image, we created heat maps
illustrating visual explanations of classification through VGG19 using
gradient-weighted class activation mapping (GradCAM; Gildenblat
2021; Selvaraju et al. 2020).

We assessed whether the number of images assigned to TRUE
was affected by patterns A, B, C, and D using a generalized linear
mixed model with a binomial distribution, employing the glmer
function from the LME4 package in R v. 4.3.0 (R Core Team 2023).
With four replications for each date and plant, the maximum
number of TRUE for each date and plant was four. The number of
TRUE per four replications was considered the response variable,
whereas patterns A, B, C, and D were treated as the explanatory
variables, and the plant individual was regarded as the random
effect. Separate analyses were conducted for each species, that is,
A. trifida, I. coccinea, and I. lacunosa.

Results and Discussion

Comparison of Model Accuracy

Regarding the results of Evaluation 1, the mAP and mean accuracy
of pattern A, treating all stages as a single class, surpassed those of
the other patterns in most species under both YOLOv5 and
VGG19 (Figure 3). Although the AP and accuracy of some classes
in B, C, and D were marginally higher than those in A, certain
instances in C and D (e.g., I. lacunosa in the four-species models
under YOLOv5 and VGG19) exhibited a decrease ofmore than 0.1.
When comparing the four-species and two-species models were
compared, the AP values of A. trifida remained nearly constant
under YOLOv5 across patterns A to D. Conversely, the accuracy in
two-species models under VGG19 was slightly higher than that in
four-species models. These findings suggest that because lower
species number in a model contributes to higher accuracy in
classification, such as in VGG19, it is necessary to narrow down the
number of targets as appropriate.

Regarding four-species models, the AP and accuracy of
I. lacunosa tended to be lower than those of the other species.
Images of I. lacunosa were occasionally misrecognized as
I. coccinea under both YOLOv5 and VGG19. Moreover, images
categorized as Stage 3 were sometimes incorrectly detected as

Figure 4. Evaluation 2 time-series detection results under You Look Only Once [YOLO] v5. A, B, C, and D indicate class patterns in training datasets. When the number of leaves is
two, this corresponds to Stage 1 (only cotyledons). When the number of leaves is three or four, this corresponds to Stage 2 (cotyledons and one or two true leaves). When the
number of leaves is 2.5, this indicates half-grown true leaves. Note that Sicyos angulatus was not used in Evaluation 2, because its cultivation is not permitted in Japan.
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nontargets under YOLOv5. During Stage 3, I. coccinea typically
exhibits more leaf-angle variation compared with the other three
species; therefore, capturing its features may be challenging.
However, the AP and accuracy of models with patterns A and B,
integrating Stage 3 of I. coccinea with Stage 1 and/or 2, surpassed
those with patterns C and D. This implies that growth stages
influence recognition success, although integrating different stages
could maintain higher accuracy. Despite the same class number
between B and C, the accuracy in B was higher than that in C,
suggesting that the combination of integrating growth stages is
important to improve accuracy.

Overall, these Evaluation 1 results suggest that integrating
growth stage classes for each species, rather than separating classes
by growth stages, could contribute to maintaining higher accuracy
in both detection and classification. As it is possible that not only
class number but also different combinations integrating growth
stage classes influence accuracy, optimization is necessary to
compare accuracy among these combinations.

Image Recognition Robustness against Temporal Change

In Evaluation 2 results for images depicting temporal morpho-
logical changes in A. trifida, I. coccinea, and I. lacunosa, variations
in recognition success emerged among species, class patterns,

algorithms, and growth stages (Figures 4 and 5). Under YOLOv5,
the detection success rate (TRUE detection rate) for A. trifida and
I. coccinea in pattern A tended to surpass that in patterns B, C, and
D (Figure 4; Supplementary Table S1). In particular, regarding the
four-species model with patterns C and D of I. coccinea when the
number of true leaves exceeded two (four or more leaves),
detection failure increased: true leaves of I. coccinea were
occasionally misidentified as those of I. lacunosa or S. angulatus.
It is possible that these models could not distinguish shapes and
arrangements of true leaves among the three species well because of
their similarities of the shapes and arrangement (Figure 1). A
comparison of the location of the output bounding box between
detection success in patterns A and B and misrecognition as
S. angulatus in C and D revealed no clear differences
(Supplementary Figure S1). This suggests that detectors focused
on similar parts in the image as the features of each species. Stage 3
(only true leaves) was treated as a single class in both patterns C
and D. Treating similar shapes of different species as a class and
training them with the same model may increase the risk of
misrecognition. One way to avoid such issues is limiting targets, as
observed in two-species models. For example, in two-species
models excluding I. lacunosa and S. angulatus, misrecognition in
patterns C and D did not occur, leading to increased detection
success for true leaves of I. coccinea (Figure 4). However,

Figure 5. Evaluation 2 time-series detection results under Visual Geometry Group [VGG] 19. A, B, C, and D indicate class patterns in training datasets. When the number of leaves is
two, this corresponds to Stage 1 (only cotyledons). When the number of leaves is three or four, this corresponds to Stage 2 (cotyledons and one or two true leaves). When the
number of leaves is 2.5, this indicates half-grown true leaves. Note that Sicyos angulatus was not used in Evaluation 2, because its cultivation is not permitted in Japan.
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misrecognition may occur in two-species models when nontarget
species resembling the target species are apparent. Our results
suggest the potential of another approach, wherein merging
different growth stages with different shapes as a class, as observed
in patterns A and B, can effectively prevent misrecognition
(Figure 4). Although cotyledons and true leaves have distinct
shapes in this study’s target species, their integration is expected to
contribute to maintaining stable recognition success at the species
level during the early growth period.

Rates of NONDETECT tended to be higher in both four- and
two-species models when leaf numbers were 2.5 to 4 (Figure 4). A
leaf number of 2.5 indicates that true leaves were half-grown,
whereas 3 or 4 corresponds to Stage 2 (cotyledons and one or two
true leaves). These timings corresponded with changes in leaf

shapes from cotyledons to true leaves. The timing of leaf shape
changes may have increased training difficulty, although the
number of training images categorized into Stage 2 was equal to
that in Stages 1 and 3.

Results of recognition success under VGG19 did not exhibit a
common pattern among target species (Figure 5; Supplementary
Table S1). Rates of TRUE classification in two-species models were
higher than those in four-species models. In four-species models,
A. trifidawas prone tomisclassification as I. coccinea or I. lacunosa,
with I. coccinea often misclassified as I. lacunosa and vice versa.
GradCAM-generated heat maps illustrating classification success
under VGG19 tended to focus on the whole plant shape or around
the plant (Figure 6). However, heat maps of some images did
not focus on target plants, despite successful classification. Thus,

Figure 6. Examples from Evaluation 2 of You Look Only Once [YOLO] v5–based detection and gradient-weighted class activation mapping (GradCAM)-generated heat maps
indicating Visual Geometry Group [VGG] 19–based classification. Note that Sicyos angulatus was not used in Evaluation 2, because its cultivation is not permitted in Japan.
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over-learning may have occurred. Common patterns and biases in
such heat maps were not discernible.

The Evaluation 2 results indicate that recognition accuracy
was unstable during the early growth stage when leaf shapes
changed temporally. However, they also suggest that integrating
classes per species has the potential to increase accuracy, as
observed for I. coccinea in four-species models under YOLOv5.
For distinguishing among weed species with similar shapes and
facilitate practical SSWM, merging different growth stages with
different shapes as a single class, as demonstrated in patterns A
and B, is effective.

When developing identifiers for specific plant species,
determining how to train the temporal change in plant shape is
a primary challenge. The present study reveals that integrating
different shapes within a plant species as a single class is effective
for maintaining robust recognition success during the early growth
stage. This finding is expected to contribute not only to the early
detection of weed seedlings but also to the robustness of general
plant species identifications. Our study also highlights the
difficulty of identifying multiple species and each growth stage
simultaneously. As both pieces of information are essential for
optimizing weed management and reducing herbicide use, solving
this problem will enhance the application of image recognition
technology to weed management. Although this issue is
challenging, further technological improvements and the accu-
mulation of training images are anticipated to address it in the
future.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/wsc.2024.63
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