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Abstract
Research suggests that the texts produced using machine translation (MT) do not fully represent the lin-
guistic traits of the natural language. Yet, the ever-increasing quality and access to MT is resulting in its
steady adoption by both language professionals and general users. According to contact linguistic theories,
such adoptionmight result inMT-specific language traits permeating the target languages. This work takes
a first step into considering the changes that a language might endure over time by observing the variation
of linguistic trends along a series of MT generations.We train ten sequential engines using each to produce
the target side of the training corpus of the following and calculate a number of metrics to observe linguis-
tic diversity at a lexical, morphological, and syntactic level for a large, fixed test set. Quantitative results
show an initial loss of lexical diversity, which, albeit gradually, only continues at a much slower pace in
the following MT generations. In turn, structural variations and, in particular, morphological variations
across generations are less marked, which might indicate a more stable behaviour regarding grammatical
consistency. Overall, the resulting MT language seems increasingly homogeneous, marked by the reduced
presence or disappearance of low-frequency words, and compact, with a decreasing proportion of function
words relative to content words.
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1. Introduction
Translation Studies scholars have proposed to consider translation from the perspective of con-
tact linguistics. Among other effects, a text produced through the translation process displays
features of the original language known as interference (Toury 1995) and shining through (Teich
2012). This means that a translated text might contain lexical and structural options that follow
the source text closely and express the meaning, making a correct use of the target language, but
not necessarily in the same manner a native speaker would if directly writing the same content
in that particular language. As happens with naturally occurring textual characteristics, according
to Kranich (2014), the features present in the translated texts could permeate the language if they
occur with sufficient frequency; that is, texts originally written in the target language could start
displaying such features (see Kotze 2020).

If translation is a factor in language change, we could argue that so is machine translation (MT)
as, after all, it is an act of translation. This technologically mediated modality could contribute its
own particular features. To start, research seems to show that the MT systems exacerbate certain
translation process-related effects such as homogenisation, simplification, and interference (Toral
2019; Vanmassenhove, Shterionov, andWay 2019, 2021). MT systems appear to make a more lim-
ited use of the linguistic diversity available in the target languages, opt for simpler units, including
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a tendency to write out elements that can be omitted, and use words, expressions, and syntax
of the source text unusually often. The slight degree of uncharacteristic language is amplified by
the suboptimal use of MT. As discussed by Sánchez-Gijón and Piqué Huerta (2020), it has been
proven that the success of theMT output is dependent on the alignment between the training data
and the source text. However, the authors underscore, once deployed, engines—publicly available
ones in particular—tend to be used irrespective of source text genre and domain; people often
overlook best practices for MT and avail of the technology to address ongoing translation needs
regardless of their nature. This can lead to translations that incorporate language that is not typical
of their context of use. Adding to this, let us note that MT is more and more widely used (Pitman
2021), not only by language professionals but also by general users with varying competence and
awareness of the languages involved.While the former might mitigate the negative effects brought
to language by the systems, the latter might not be equipped with the necessary skills to do so.

In this work, we aim to contribute to the emerging area of studies that seek to uncover the
impact MT could have on language development. Rather than focusing on the quality of the sys-
tems, we try to account for the shaping of a language due to the use of MT. It is important to
note that language change takes place within complex systems where many factors are implicated.
In such a scenario, MT is an additional element that will be more or less central to such change
depending on the status of the languages, societies, and events involved. We focus on the contri-
bution of MT, and as such, the sole factor considered in this experiment is the change introduced
in the target language as a result of the language processing mechanisms of an MT system, which
would or would not permeate people’s use of language in the real world.

In an attempt to study MT impact, we propagate the features of the MT output by training
several generations of systems and monitoring the tendencies of metrics that capture linguistic
richness at a lexical, morphological, and structural level. This initial exploration seems to show
that there is a decrease in lexical and morphological diversity in the language produced by the
MT baseline with respect to the original traits of the language and that, even when the decline
might persist, in particular for lexical elements, for the successive MT generations, it occurs at a
gradual, slower rate. The structural metrics used, however, do not seem to point to considerable
divergences for this aspect of the language over generations.

The remainder of this paper is structured as follows: Section 2 reviews the studies that have
looked into the linguistic characteristics ofMT output. Section 3 puts forward the language change
model and the role of the MT engine in that framework and sets out our MT training approach.
Section 4 describes the experimental setup, considering the data, the system characteristics, and
the training cycles. Section 5 discusses the results, focusing on overall quality, lexical richness,
morphological richness, and structural similarity. Finally, Section 6 draws the main conclusions
of this work and outlines the main avenues for future work.

2. Related work
Even whenmost research in the field ofMT focuses on new techniques and approaches to improve
the quality of the output, throughout the years, a number of studies have paid attention to the lin-
guistic features of the translation candidates generated by those engines. Albeit scarce, the research
focusing on the linguistic features of theMT output suggests that MT systems produce output that
does not fully reflect the characteristics of the target languages.

In their experiments with English, French, and Spanish, Vanmassenhove et al. (2019) found
that the language generated by MT systems was less diverse than when produced naturally based
on several lexical metrics (TTR (Templin 1957), Yule’s K (Yule 1944b), andMTLD (McCarthy and
Jarvis 2010)). What is more, based on an analysis of word frequencies and bias, they claimed that
recurrent language elements tend to appear even more frequently, while those that are originally
less common appear even more rarely.
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MT seems to distort the target language, but the features of the translation proposal also appear
to vary depending on the MT paradigm used to build the systems. When comparing the output
of neural machine translation (NMT) and statistical machine translation (SMT), Bentivogli et al.
(2016), working on the English-to-German combination, reported that NMT outperformed SMT
systems, namely, for lexical diversity, percentage of morphological and lexical errors, and word
ordering (based on the information extracted with the HTER metric using forms, lemmas, and
shifts). The exception was the effect of sentence length, which deteriorated the output quality of
both architectures but especially that of NMT systems for sentences over 35 words.

Toral and Sánchez-Cartagena (2017), working on English and Czech, Finnish, German,
Romanian, and Russian, built on the previous findings, adding that, indeed, NMT and SMT sys-
tem outputs are considerably different based on character sequence overlaps. According to the
authors, based on the information extracted from the Hjerson metric (Popović 2011), NMT out-
put is more fluent and makes fewer inflection and reordering errors. Using MGIZA++ word
alignments and Kendall’s tau distance (Kendall 1938) as metrics, they also claimed that NMT
seems to display a greater capacity to perform reorderings, which results in proposals that follow
the reference translation closely.

It is not necessary to compare two distinct paradigms such as SMT and NMT to encounter
differences. For example, Vanmassenhove et al. (2019) included two NMT systems built using
different neural architectures in their experiments, a recursive neural network (RNN) (Cho et al.
2014; Sutskever, Vinyals, and Le 2014) and a transformer (Vaswani et al. 2017), and the outputs
differed, associating the latter with translation of higher quality. It is important to note, however,
that the linguistic tendencies shown by both architectures were similar. More recently, Marchisio
et al. (2022), working on English–German, revealed style differences between an unsupervised
system (a MASS transformer) and a supervised system (a transformer-big) when measuring TER
(Snover et al. 2006) over part-of-speech (POS) tag sequences and perplexity (Jelinek et al. 1977).
From their experiments, the authors conclude that unsupervised MT might have more structural
diversity as system quality improves and that its output might sound more natural.

Nevertheless, differences between naturally occurring language and MT language should not
come as a surprise. Translation scholars agree on the existence of a set of genuine, common
features that make translations distinct from texts originally written in that same language,
(un)popularly called translationese (Jiménez-Crespo 2023), even if they do not concur with the
specific features it involves (Laviosa 2002). In this context, some scholars talk about transla-
tion universals, namely, simplification, normalisation, explicitation, and interference (Baker 1993;
Toury 1995). Empirical research seems to indicate that translated texts show signs of reduced
richness and seem “abnormally normal” (Tirkkonen-Condit 2002, 217).

Therefore, because MT is, in essence, an act of translation, the translationese effect is not unex-
pected and is in fact proven by Vanmassenhove et al. (2021). Adding to this, post-editing—the
act of revising MT output—has been pointed to amplify the translationese features observed in
human translations (Toral 2019) probably because post-editors are primed by the MT output
(Green, Heer, and Manning 2013), which seems to already include significant bias. However, it is
possible that translationese is not the only effect at play in this context. Research seems to indicate
that an algorithmic effect might also be at play; that is, the techniques used to process and learn the
translation models might be distorting the language somehow (Zhao et al. 2017; Vanmassenhove
et al. 2019; Prates, Avelar, and Lamb 2020).

All in all, research suggests that, no matter how good its quality, MT generates a target lan-
guage with linguistic features that differ from those of texts originally written in that language. A
long way remains to fully understand the dimension of the distortion, that is, how much the MT
language distances itself from the naturally occurring language and how frequently this happens.
Similarly, we are yet to pinpoint in what language elements such distortion manifests concretely.
For example, we are yet to identify which specific grammatical structures, terms, idioms, and
collocations get promoted in terms of recurrence in the MT output and, conversely, determine

https://doi.org/10.1017/nlp.2025.10003 Published online by Cambridge University Press

https://doi.org/10.1017/nlp.2025.10003


4 N. Aranberri and J. A. Pascual

Table 1.The Replicator model adapted to language evolution (from Steels (2017: 202))

Replicator model Species Language

Units (interactors) Organisms Language users


Traits (replicators) Features of organisms Language components


Sources of variation Through genetic transmission Through social learning


Selection Survival and fecundity Communicative success, expressive power, cognitive effort

the presence of which is reduced or even discontinued. We might even find that modified struc-
tures and meaning allocations surface and appear recurrently or that new ones emerge altogether.
Ultimately, it would be relevant to study to what extent the MT language could permeate the nat-
ural use of the languages, in other words, how MT could shape the evolution of languages. It is
widely accepted that languages (and their speakers) and more prone to assimilate certain varia-
tions and reject others. Likewise, the status of a language, among others, its level of normalisation
and hegemony, also plays a role in permeability.

3. Language changemodel
According to Steels (2017), a language consists of three highly complex and significantly language-
specific systems, namely, the sound system, the conceptual system, and the vocabulary and
grammar system. And it is historical linguists who have made it their goal to account for their
evolution by drawing phylogenetic trees that display the temporal and distance relations between
languages (Gray and Atkinson 2003) and by examining samples of texts diachronically to identify
universal trends of changes, for example, from the perspective of grammaticalisation (Heine and
Kuteva 2007). More recently, evolutive features have been considered also from causal andmecha-
nistic perspectives, which consider, among others, the capacity of humans to process information,
how they interact and communicate, and how societies are structured (Steels 2011). What we can
extract from here is that language change is the result of an extraordinarily intricate process.

To try to understand where MT resides with respect to language change, let us consider how
the change happens using the replicator model, a tool evolutionary linguists have borrowed from
the field of biology (see Table 1) (Steels 2017). The units, in our case language users, carry traits, the
features of a language (vocabulary, syntactic patterns. . .). The traits vary through social learning
and are selected based on the benefits accrued for the units. Depending on how we view MT—as
a tool for communication that language users avail or an entity with its own “voice”—it might be
debatable whether MT is a unit or a source of variation. In any case, the consolidation of the MT
traits in language would depend on the level of permeation, which would be based on the language
users’ perception—conscious or unconscious—that they are beneficial.

In this work, we aim to take a preliminary step towards predicting what influence MT might
have in the shaping of languages. As a starting point, we study the potential for language change
caused by the MT engines in isolation. For our experiment, we take an extreme approach of the
replicator model as follows: we start from a scenario where language users interact with each other
naturally and construct an MT system with the language that represents that moment. From that
instant onwards, interaction with the target language happens through MT alone, and as a result,
MT traits completely permeate the target language. At this stage, a new MT system is trained
with data that reflects the target language change brought by the first generation of MT traits. We
experiment with several generations to observe language trends.
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Figure 1. Representation of our MT training (top) and testing (bottom) approach.

Let us consider our particular scenario in more detail (see Figure 1). We focus on the English–
Spanish combination where English acts as the source language and Spanish as the target language;
in other words, we look into how Spanish could vary influenced by English through automated
translation over time. We start by training a system with an extract of a corpus of current web-
crawled data (see Section 4). This baseline system (MT0) introduces the first MT traits within the
natural language. We assume that with time, they completely permeate Spanish. Then, we train a
second system, MT1, the first MT generation, which reflects the changed Spanish. That is, we use
a new extract of the corpus for which the English source has been translated into Spanish with the
previous system. This provides us with the second generation of MT traits. Again, we assume that
they completely permeate Spanish. We proceed in this manner to produce several generations of
MT traits.

By following this approach, we can monitor the trends in which MT might contribute to the
change of Spanish over time. In this constrained approach, the source language remains stable, all
traits permeate the target language, and the lapse of time is only partially represented through the
different generations of the systems and their different training sets. Yet, all in all, we believe that
it allows us to propagate MT influence and capture its gradual contribution. While one-to-one
system comparisons cannot be made given the different training sets used, we can study trends
through a common test set, which consists of sentences extracted and kept from the same pool of
data from where the training sets were obtained.
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4. Experimental setup
4.1 The data
We use CCMatrix (Schwenk et al. 2021; Fan et al. 2021) as our data source for training and testing.
The texts are collected from web data released by the Common Crawl project.a We acknowl-
edge that this collection might include both original and translated texts for any of the languages
involved. In any case, we can argue that it is a rather representative sample of the current linguistic
traits of the languages. The English–Spanish language pair consists of 409.1 million sentence pairs
(downloaded from Tiedemann 2012). We set aside a random set of 1 million sentences to be used
as the test set. We use a significantly larger sample compared to other MT experiments because we
aim to represent the widest breadth of the languages’ traits as possible. From the remaining data,
we randomly extract batches of 8 million sentence pairs to train the systems (see Section 4.3 for
further details as to how these data are used). No further filtering is applied during extraction.

4.2 The system
Weuse the transformer architecture implementation of theOpenNMT-tf toolkitb with the settings
suggested by its community as optimal to lead to quality on par with the original transformer work
(Vaswani et al. 2017) as follows:

• number of layers: 6
• size: 512
• transformer ff: 2048
• number of heads: 8
• dropout: 0.1
• batch size: 4096
• batch type: tokens
• learning optimiser Adam with beta2 = 0.998
• learning rate: 2
• learning rate decay enabled

The cap for system training is established at a maximum of 100,000 steps. We validate the
model every 5,000 steps using perplexity as a metric, and we save the 5 best-scoring validation
models. We set as early stopping criteria that no improvement higher than 0.001 of perplexity
score is reached on the last five validation steps.

The data was tokenised using OpenNMT’s tokeniser, and the vocabularies were built based
on sub-word units computed using BPE with 60,000 merging operations, based on results from
Gowda and May (2020), for the training sets (source and target separately).

4.3 The training cycles
We train a chain of systems as follows: We use a subset of 8 million sentence pairs to train the
baseline MT system, MT0. Next, we use MT0 to obtain the Spanish translation of a second 8-
million subset and use this new parallel data to train the first-generation MT system, MT1. We
proceed in this manner for ten generations.

ahttps://commoncrawl.org
bhttps://opennmt.net/OpenNMT-tf
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5. Results
To monitor change, we calculate several linguistic characteristics on the original test set, the
output of the baseline MT, and the subsequent MT generations and monitor the trends.

5.1 Translation quality
We first look at a number of metrics that are used to assess general MT quality. We calculate
the widely used lexical metrics BLEU (Papineni et al. 2002), TER (Snover et al. 2006), and chrF
(Popović 2015) using the sacreBLEU (Post 2018) implementation and, following the advice of
Freitag et al. (2022), also report on two neural-based metrics, namely, BLEURT (Sellam, Das,
and Parikh 2020) (specifically, implementation BLEURT-20-D12, a 12-layer distilled model that
is∼ 3.5X smaller and 1 order of magnitude faster than the original BLEURT-20) and COMET (Rei
et al. 2020) (specifically, the default model WMT20-COMET-DA), which are reported to correlate
better with human judgements.

BLEU considers word-level precision with regard to a reference translation with a penalty for
brevity, while chrF works at character n-gram level. In turn, TER, also working at word level, is
an edit-distance metric that calculates the minimum number of edits (additions, deletions, sub-
stitutions, and shifts) required to transform the MT output into the reference sentence. From a
completely different perspective, BLEURT is a pre-trained evaluation model that uses the BERT
language model (Devlin et al. 2019), synthetic data to represent a diverse range of lexical, syntac-
tic, and semantic dissimilarities and a set of human evaluations. COMET is also a reference-based
neural regression model built on top of XLM-R (large) (Conneau et al. 2020) and trained on
human judgments of translation quality. As can be noted, the chosen metrics cover a consider-
able set of approaches, which serves to monitor the level of quality from different perspectives for
sounder conclusions.

For the outputs of the baseline MT and each of the following generations, we calculate scores
using the target side of the test set as a reference, which represents the traits of the original Spanish,
and also the source in the case of COMET. Results gathered in Table 2 show that neural metrics
and BLEU point to the same tendency: as the MT generations advance, the scores drop slightly
and rather steadily.c This implies that the output of the systems is more and more different from
the reference each time. chrF seems to contradict this. However, the character-based nature of this
metric might be having an effect here. As we will see in Section 5.2, the number of types used by
each MT generation decreases, in particular, types with low frequencies, which may contain char-
acter sequences that are rarer. As a result, the text might be getting more and more homogeneous
also in terms of character sequences. Therefore, the quantity of character sequences that are cor-
rect (more standard) can be higher in each generation, while at the same time, the text being more
and more different from the reference translation. We see another exception with TER, which
indicates that, albeit minimally, fewer changes are needed to transform the MT outputs into the
reference as the generations advance. Further qualitative research would be necessary at this point
in order to understand this behaviour, although the homogenisation effect attributed toMTmight
be at play again. With regard to the level of quality, it should be noted that absolute numbers seem
to point to a rather strong baseline and strong subsequent generations.

5.2 Lexical richness and density
To study linguistic diversity, we first report type and token information and then calculate four
widely used metrics, specifically, type/token ratio (TTR) (Templin 1957), Yule’s K (Yule 1944a),

cGiven that the quality of the systems can vary depending on the used seed, we trained three MT0 and MT10 systems to
check whether the quality remained similar, and therefore, the trends in the experiments are valid.
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Table 2.Global quality automatic scores as reported by BLEU, TER, chrF, BLEURT, and COMET,
where the output of each MT generation (Gen.), MT0 to MT10, is compared against the Spanish
side of the test set. Scores are providedwithin a 0–100 range, with the best-scoringMT genera-
tion for eachmetric in bold. The↓ symbol indicates that lower values of themetric correspond
to better performance

Gen. BLEU TER ↓ chrF BLEURT COMET

0 37.281 61.653 51.986 62.045 59.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 37.010 61.526 52.156 61.744 58.92
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 36.633 61.318 52.399 61.493 58.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 36.333 61.144 52.630 61.281 57.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 36.059 60.979 52.871 61.102 56.73
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 35.786 60.815 53.057 60.921 56.14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 35.548 60.684 53.246 60.778 55.62
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 35.368 60.586 53.334 60.644 55.18
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 35.182 60.474 53.498 60.544 54.81
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 35.010 60.369 53.692 60.442 54.49
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 34.831 60.262 53.862 60.351 54.06

and the measure of textual lexical diversity (MTLD) (McCarthy and Jarvis 2010), followed by
lexical density (LD) (Toral 2019).

The assumption behind these lexical diversity indices, which are based on type (unique words)
and token (all instances of the types) distributions and ratios, is that the higher the number of
different words in a text, the richer the text is and, as a consequence, better and requiring a higher
language competence to produce it. TTR is the simplest of the metrics. It is calculated by dividing
the number of types in a text by the number of tokens.

Yule’s K focuses on the frequency distribution of words in a text. It measures how constant a
text is in terms of the appearance of new words; that is, it aims to capture how often words repeat
and to what extent the vocabulary is spread across different frequency levels. It is calculated as
follows:

K = 104 ·
(∑∞

i=1 i2fi −N
N2

)
(1)

where
∑∞

i=1 i2fi is the sum of the squares of the frequencies of each word andN is the total number
of words in the text.

Lower values of Yule’s K indicate a richer vocabulary, meaning the text uses a wider variety of
words and has less repetition. Conversely, higher values point to a less rich vocabulary, meaning
the text has more repetition of the same words.

In turn, MTLD calculates the average length of word sequences in a text that maintain a given
level of lexical diversity. It does this by setting a threshold for the diversity and splitting the text
into segments based on when this threshold is crossed (we use the default value of .720 TTR). The
text is read word by word, and the TTR is calculated cumulatively. When the TTR falls below the
threshold of 0.72, a segment is marked, and the calculation restarts from the next word. Next, the
average length of all segments is calculated. This average length is theMTLD score, indicating how
many words, on average, can be read before the lexical diversity falls below the threshold. Higher
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MTLD values indicate greater lexical diversity, as it takes more words to reach the threshold, while
lower MTLD values indicate lower lexical diversity, as the threshold is reached more quickly.

According to McCarthy and Jarvis (2010), lexical diversity indices suffer from two key prob-
lems: their sensitivity to text length and the assumption of textual homogeneity. The issue with
text length lies in the fact that tokens increase linearly as the text expands, whereas types, that
is, the number of different words, gradually decrease given the degree of repeated tokens that is
necessary to maintain a meaningful and understandable development of a narrative. In fact, some
researchers have taken this as an opportunity to account for the representativeness of a topic in a
text or corpus (Morse 1995; McEnery 2003). In reference to the assumption of homogeneity, the
authors point that the level of diversity required by specific rhetorical purposes and strategies is
different, and therefore, an unsteady distribution of types might not necessarily reflect weaker text
production skills.

These vulnerabilities lead us to consider their appropriateness for our experimental setup. First,
the metrics are not usually tested on texts as large as our test set, and as we mentioned, all metrics
are dependent on length to a higher or lower degree. Second, our test set consists of isolated sen-
tences instead of internally coherent full-length texts with a narrative thread that reflects natural
type/token distributions.

The previous notwithstanding, we concluded that the two issues discussed above do not seem
crucial in our experiments because of the static nature of our test set (we use the same 1 million
English sentences to obtain the Spanish translation of the different MT generations) and because
our aim is to consider relative changes across generations. However, to reduce the effect the men-
tioned issues might have, we calculate the scores by applying a batch approach as suggested by
Hess et al. (1986) andMcCarthy and Jarvis (2007), among others. Concretely, we have divided the
test set into batches of 1,000 sentences and calculated all metrics for each one of them and report
their averages.d

The results of the different metrics are displayed in Table 3. Let us focus on the type and token
counts first. The former inform about the number of different words used throughout the texts,
while the latter account for all instances of such words. These are indicative of the breadth of
the vocabulary used, its frequency, and also text length. The original Spanish text, consisting of 1
million sentences, contains 17,345,663 tokens and 299,158 types. The counts for both tokens and
types decrease in the Spanish translation produced by the baseline MT (MT generation 0, MT0).
Tokens are reduced by 1.41%, meaning that the length of the text produced by MT is slightly
shorter than in the original. The drop in types is more considerable as 17.15% do not appear in
the Spanish translation with respect to the original version.

The subsequent MT generations also see a tendency of reduced tokens and types (0.03% and
0.94%, respectively, for MT1 with reference to MT0), but the drop is substantially more limited,
with even a couple of exceptions where the counts increase. In the case of types, we see amaximum
drop of 2,339 units (MT1) and aminimum of 98 (MT9). Note that MT10 sees a small increase of 68
types. In turn, the number of tokens also tends to shrink, but between amaximum of 31,518 words
(MT2) and a minimum of 4,723 words (MT1). We observe two cases (MT4 and MT9), where the
token count increases, even when the types decrease.

Overall, these counts seem to indicate that there is certain diversity or language traits that the
MT system cannot learn and/or reproduce, but once the traits of theMT language are determined,
the loss is drastically reduced going forward. The Spanish with MT traits is, unsurprisingly, more
suitable for the subsequent engines to imitate.

Let us now turn to lexical diversity indices. Results show inconclusive trends: all three metrics,
TTR, MTLD, and Yule’s K, show a drop from the original to the baseline MT (MT0)—and an
increase in Yule’s K, given that it accounts for uniformity, and therefore, it is a lower score that

dWe recalculated the scores by dividing the test set into extracts of different lengths (100 and 25 sentences), and the results
displayed similar trends.
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Table 3.Lexical diversity and density scores as reported by type and token counts, type-token ratio (TTR),
measure of textual lexical diversity (MTLD), Yule’s K, and lexical density (LD) for the Spanish side of the test
set and the output of each MT generation, MT0 to MT10 (Gen.), and where the generation with the highest
diversity for each metric is in bold. The ↓ symbol indicates that lower values of the metric correspond to
better performance

Gen. Types Tokens TTR MTLD Yule’s K ↓ LD

orig. 299,158 17,345,663 0.40 (0.01) 74.45 (3.58) 146.66 (9.94) 0.55 (0.004)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 247,845 17,100,251 0.38 (0.01) 69.21 (6.70) 147.87 (9.85) 0.56 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 245,506 17,095,528 0.39 (0.01) 69.67 (7.43) 144.84 (9.87) 0.56 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 244,647 17,064,010 0.39 (0.02) 70.80 (8.01) 142.62 (9.65) 0.56 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 243,731 17,047,171 0.39 (0.01) 70.97 (8.96) 141.04 (9.59) 0.56 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 242,660 17,052,538 0.39 (0.01) 70.82 (9.42) 140.10 (9.42) 0.56 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 242,543 17,028,742 0.39 (0.01) 70.41 (10.28) 138.25 (9.44) 0.56 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 242,083 17,020,396 0.39 (0.01) 69.72 (11.19) 136.85 (9.41) 0.56 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 241,943 17,000,971 0.39 (0.01) 71.68 (10.23) 136.42 (9.25) 0.57 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 241,577 16,992,709 0.39 (0.01) 69.97 (12.25) 135.24 (9.73) 0.57 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 241,479 17,003,902 0.39 (0.01) 69.60 (12.31) 134.98 (9.73) 0.57 (0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 241,547 16,988,185 0.39 (0.01) 68.61 (13.24) 132.91 (9.48) 0.57 (0.005)

indicates a higher diversity (see Table 3). From the baseline MT onward, TTR increases slightly
(MT0 to MT1) but stabilises early. MTLD scores also stay within the 68–71 range, even when the
fluctuation is more varied (it increases until MT3 and then decreases until MT6; it goes upward for
MT7 and then down again for MT7–MT10). In contrast to the previous metrics, Yule’s K shows a
rather steady increase in diversity.

We calculated one final metric for this linguistic level: LD. It is calculated as the ratio of content
words (nouns, proper nouns, verbs, adjectives, and adverbs) to total words (tokens) and can be
taken as an approximation of the informativeness of a text (Toral 2019). The higher the number
of content words, the more information a text is supposed to include. A higher ratio indicates that
the text is, indeed, more informative but also that it becomes more and more compact in the sense
that fewer function words are used to arrange the content words within the sentence. The results
in Table 3 show an apparent slight increase in LD, indicating that, in proportion, the occurrences
of function words are actually decreasing as MT generations advance.

What lexical metrics seem to reveal is that there is a tendency to use a reduced vocabulary
as MT generations advance. We further inspected this trend by focusing on POS categories. We
tagged the original Spanish text and the MT proposals with Universal POS tagseE using spaCyf
model es_core_news_sm-3.7.0. We then counted the occurrences of each category for the original
test set and the output of the MT baseline and generations. This allows us to observe whether
the vocabulary reduction happens across all grammatical categories similarly or whether there are
certain categories that suffer more.

Figures 2 and 3 show the progression of the content words and the function words, respectively.
We normalised the results by dividing the counts for eachMT output by the counts of the original
test. If we look at content words, we see that except for proper nouns (PROPN), all categories tend

ehttps://universaldependencies.org/u/pos
F https://spacy.io
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Figure 2. Normalised token counts for content words across MT generations, MT0 to MT10, where NOUN refers to nouns,
PROPN to proper nouns, VERB to lexical verbs, ADJ to adjectives, and ADV to adverbs.

Figure 3. Normalised token counts for function words across MT generations, MT0 to MT10, where DET refers to determin-
ers, PRON to pronouns, ADP to prepositions, AUX to auxiliary verbs, CCONJ to coordinating conjunctions, and SCONJ to
subordinating conjunctions.

to increase, albeit slightly. We see certain nuances when paying attention to each of the categories.
Nouns (NOUN) undergo a rather steady increase starting from MT0. And so seems the case of
verbs (VERB) from MT0 and MT2, but it seems to level from then onwards. What is interesting
about verbs is that this category suffers a drop from the original text toMT0 before it starts picking
up, and ten generations later, it is still behind original counts. Proper nouns experience the same
drop, which is even sharper and continues in this direction for a few generations before it starts
increasing slowly. Interestingly, adjectives (ADJ) and adverbs (ADV) are more frequent in the
machine-translated texts, and adjectives, in particular, increase as generations advance.

If we turn to closed categories, that is, function words, we observe that all categories suffer an
initial more pronounced drop from the original text to MT0 and then decrease at different rates.
Prepositions (ADP) and coordinating conjunctions (CCONJ) vary slightly, while determiners
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Figure 4. Normalised type counts for content words across MT generations, MT0 to MT10, where NOUN refers to nouns,
PROPN to proper nouns, VERB to lexical verbs, ADJ to adjectives, and ADV to adverbs.

(DET) and pronouns (PRON) do so more sharply. The progression of subordinating conjunc-
tions (SCONJ) is more uneven. Even when it never reaches original occurrences, it fluctuates as
MT generations advance. One exception to the downward trend is that of auxiliaries (AUX), that
is, the elements that accompany lexical verbs to express grammatical information such as person,
number, tense, mood, aspect, voice, or evidentiality. They sustain an increase from the original text
to MT0 and then start decreasing. After ten MT generations, their occurrence rate is still higher
than in the original. A possible reason for this increase might be that MT systems might have used
verb phrases requiring auxiliaries more frequently compared to the original Spanish.

From the review of POS counts, we can conclude that all open categories except proper nouns
increase as the MT generations advance, and function words tend to decrease. This might indicate
that the language becomes increasingly compact, which corroborates the LD results in Table 3.
This can happen either by favouring syntactic constructions that compress content words and
require fewer function words, for example, noun clusters over complements, which include prepo-
sitions and determiners for each of the elements involved. It can also mean that language becomes
more explicit and lacking referencing by means of pronouns. Of course, the higher density of
content words can also be due to incorrect clusterings and omissions of compulsory function
words. Yet, each category is affected differently, which calls for a more qualitative study to fully
understand the in-category changes.

Token-based counts hide the diversity of the vocabulary in terms of the actual number of dif-
ferent words that are used. Therefore, in order to check whether all POS categories follow the same
trends as overall token counts, we investigated word counts further and looked into the counts of
types for words grouped by POS tag. Results are displayed in Figures 4 and 5 for content words
and function words, respectively. As before, we normalised the results by dividing the counts for
each MT output by the counts of the original test set.

The first thing to notice is that the loss of types, which happens much more markedly from the
original test set to the MT0 baseline, as we already saw in Table 3, occurs across all POS categories.
All categories decrease between 10% and 30%. Specifically, in the case of open categories, except
for proper nouns, they all decrease between 20% and 28%, and in the case of closed categories
between 12% and 29%. The trend for open categories seems to show that noun, verb, and adjective
types are reduced very slightly after the initial drop at MT0 towards a point of stability. Adverbs
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Figure 5. Normalised type counts for function words across MT generations, MT0 to MT10, where DET refers to determin-
ers, PRON to pronouns, ADP to prepositions, AUX to auxiliary verbs, CCONJ to coordinating conjunctions, and SCONJ to
subordinating conjunctions.

drop slightly lower with the baseline MT0 but then increase slightly until they reach a very similar
range as the other categories.

If we combine these trends with those of the token counts (see Figure 2), we can say that in the
case of nouns, adjectives, and adverbs, even when the texts display a continuous slightly higher
number of occurrences across generations, there is an initial loss of types with the MT0 base-
line, but after that, their number remains rather steady. This means that those types that have got
through MT0 will appear more frequently than in the original test set. The verbs also follow this
trend, but we did observe a slight initial drop in token counts too. We see a rather unexpected
behaviour with proper nouns, as the frequency of tokens decreases up until MT4 while types
undergo an initial upward trend and only stabilise after MT4. This could indicate that MT leads
to proper nouns being used less frequently while they become more diverse. Further exploration
would be necessary to find out how specifically MT handles this word category.

In reference to closed categories, we observe that the type counts for coordinated conjunc-
tions decrease gradually, while the remaining categories stay within a certain range with more
marked fluctuations from generation to generation. Remember that in terms of token counts (see
Figure 3), we observed that coordinated conjunctions stayed rather stable, which means that cer-
tain types appear more and more often and others disappear as generations advance. In the case
of pronouns and determiners, which saw a steady drop, we see that there is some stability with
regard to types. Therefore, these categories disappear as syntactic elements but not in terms of
variety. Auxiliaries undergo an increase in overall occurrences, but their types decrease from the
very beginning and there seems to be a tendency towards their reduction, although this is not
constant.

We have observed that to a certain degree, all type categories decrease, especially when going
through the MT0 baseline. In order to learn whether the frequency of occurrences for the types
changes as MT generations advance, we calculate the number of types across six frequency bands:
Band 1 includes the number of words that appear over 100,000 times, Band 2 99,999–10,000 times,
Band 3 9,999–1,000 times, Band 4 999–100 times, Band 5 99–10 times, and Band 6 9–1 times.
The results, displayed in Table 4, clearly show that the words that have a higher risk to disap-
pear from the language are those in the lowest frequency band. This is in line with the results by
Vanmassenhove et al. (2019). What is more, it seems that types remain rather stable with frequen-
cies of over 1,000 and some slight loss is observed for those with 100 to 1,000 occurrences. Band 5
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Table 4.Counts of types across frequency bands for the Spanish side of the test set and the
output of each MT generation, MT0 to MT10 (Gen.), where Band 1 refers to words that appear
over 100,000 times, Band 2 99,999–10,000 times, Band 3 9,999–1,000 times, Band 4 999–100
times, Band 5 99–10 times, and Band 6 9–1 times

Gen. Band 1 Band 2 Band 3 Band 4 Band 5 Band 6

orig. 19 108 1,730 10,186 34,749 247,336
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 19 105 1,708 9,874 35,032 201,017
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 19 105 1,713 9,909 34,907 198,853
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 19 104 1,716 9,903 34,939 197,966
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 19 104 1,721 9,900 34,908 197,079
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 19 106 1,724 9,896 34,871 196,044
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 19 104 1,718 9,916 34,848 195,938
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 19 106 1,718 9,918 34,901 195,421
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 19 106 1,726 9,912 34,916 195,264
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 19 106 1,729 9,918 34,879 194,926
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 19 106 1,729 9,913 34,957 194,755
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 19 107 1,733 9,911 35,025 194,752

with 10–99 occurrences displays a contrasting trend as it shows a higher occurrence for the base-
line MT0 with respect the original language. This then decreases and increases slightly seemingly
in a randomly manner, yet never as low as the original. It seems to pick an upward trend after
MT5, even when, within our range of generations, we do not see it surpass the values of MT0. The
obvious decline is sustained by the types with frequencies below 10. Note that in this band, it is
the drop between the original test and the baseline MT0 that suffers considerably (a drop of over
45,000 types), but then, the decline is markedly slower.

5.3 Morphological richness
To account for morphological variety, we consider the inflexional diversity of lemmas. We fol-
low the work of Vanmassenhove et al. (2021), where the authors adopt the Shannon entropy
(Shannon 1948) and Simpson’s diversity index (Simpson 1949) to compute the entropy of the
inflexional paradigms of lemmas. This could account for the richness of diversity.g The authors
claim that, in line with the conceptualisation of Shannon, the entropy of the inflexional paradigm
of a specific lemma could be computed by taking the base frequency of that lemma (frequency of
all word forms associated with that lemma) and the probabilities of all the word forms within the
inflexional paradigm of that particular lemma as shown in Equation 2:

p(wf | l)= count (wf )∑
wf ∗∈l count

(
wf ∗

) (2)

where p(wf | l) is computed as the fraction of the counts of the wordform, count (wf ), to the count
of all wordforms for the lemma l and ∈ indicates the wordforms of a given lemma l.

gWe have replicated the approach used by Vanmassenhove et al. (2021) to calculate these metrics, including the Spacy-
udpipe lemmatiser to identify the lemmas.
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Table 5.Morphological variety scores as reported by Shannon
Entropy and Simpson’s Diversity Index for the Spanish side
of the test set and the output of each MT generation, MT0 to
MT10 (Gen.), where the generation with the highest diversity
for each metric appears in bold. The ↓ symbol indicates that
lower values of the metric correspond to better performance

Gen. Shannon entropy Simpson’s diversity index ↓

orig. 6.39 96.19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 5.50 96.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 5.69 96.65
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 5.61 96.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 5.55 96.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 5.57 96.72
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 5.69 96.65
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 5.69 96.65
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 5.61 96.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 5.61 96.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 5.61 96.70
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 5.61 96.70

Based on this idea, Shannon entropy is calculated as per Equation 3:

H(l)= −
∑
wf∈l

p(wf | l) log p(wf | l) (3)

where H(l) denotes the entropy of the lemma l.
This idea can also be followed for Simpson’s diversity index (D), which accounts for the

evenness of the diversity, and it is calculated as per Equation 4:

D(l)= 1∑
wf∈� p(wf | l)2 (4)

We then calculate the average Shannon entropy and Simpson’s diversity index for all lemmas l
to obtain a representative score for the Spanish side of the original test set and eachMT generation.
Both metrics serve as approximations of morphological diversity, with higher values indicating
greater diversity and lower values indicating less diversity.

The scores of both metrics usually range between 0 and 1, but for ease of readability, we mul-
tiply the scores presented in Table 5 by 100 to present them in the range of [0–100]. We can
observe that according to these twometrics, similar to what we observed with lexical metrics, there
seems to be a drop in diversity for MT0 compared to the original Spanish (represented as a lower
score for Shannon entropy and a higher score for Simpson’s diversity index). Then, the MT traits
across generations are very stable. This might indicate that while a degree of morphological reduc-
tion seems to be occurring when the language goes through the first MT cycle, the grammatical
information may not be suffering any further considerable loss as generations progress.
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Table 6.Structural similarity scores as reported by the perplexitymeasure and
posTER metric, for the Spanish side of the test set and the output of each
MT generation, MT0 to MT10 (Gen.), where P:ES represents the perplexity of
the the Spanish LM at the word level, P:ES-POS represents perplexity of the
Spanish POS LM, and P:EN-POS represents the perplexity of the English POS
LM. The ↓ symbol indicates that lower values of the metric correspond to bet-
ter performance. The generation with the best scores for each metric appears
in bold

Gen. P:ES ↓ P:ES-POS ↓ P: EN-POS ↓ posTER ↓

orig. 27.22 5.52 7.55 -
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 24.31 5.26 7.30 28.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 24.81 5.28 7.34 28.36
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 25.23 5.30 7.37 28.55
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 25.53 5.32 7.40 28.69
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 25.78 5.34 7.43 28.75
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 26.04 5.35 7.44 28.94
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 26.24 5.37 7.46 29.09
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 26.44 5.38 7.48 29.08
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 26.62 5.39 7.49 29.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 26.75 5.40 7.51 29.38
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 26.91 5.41 7.52 29.54

5.4 Structural similarity
In this section, we study to what extent the language of each of the MT generations has the same
structural traits as the original Spanish. To do so, we explore the results of two metrics, namely,
perplexity and posTER (Marchisio et al. 2022).

To start, let us consider perplexity. We first build a language model, both at the word level and
at POS level, trained using 8million sentences from the original Spanish corpus, thus representing
unprocessed language, which coincides with the batch used to train the baseline MT system. To
train our neural model, we follow the architecture used to build GPT-2 (Radford et al. 2019),
which is basically a decoder-only transformer. We then score the capacity of the LM to predict
the language of the original Spanish test set and the output of the baseline MT and successive MT
generations. The lower the perplexity, the better the LM is at predicting the language in the test
sets, and therefore, the better it captures the features of the original language.

Results in Table 6 show that, both at word level and at POS level, MT0 sees an improvement
with respect to the original language, and then it degrades slowly and steadily. In ten MT genera-
tions, the perplexity does not reach the level of uncertainty it displays with the original language.
The fact that the Spanish of the original test set—same language generation with which the LM has
been trained—is more difficult to predict for the LM than the subsequent MT generation outputs
seems counter-intuitive at first glance.

We hypothesise that the naturally occurring Spanish is more difficult to predict maybe due to
its higher diversity. Then, when the language goes through the MT architecture for the first time,
it might create a less diverse andmore homogeneous language, whichmight be easier to predict by
the LM. The trend of the metric in reference to the MT generations is not surprising if we assume
that a level of degradation, which deviates from the original Spanish, is introduced by each system.
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We also trained an English LM at the POS level to test whether the distortion we observe across
MT generations is due to the impact of the source language to some extent; that is, the Spanish
output of the MT generations is acquiring traits of the English source through interference. To
start, results clearly show that the English LM is worse at predicting Spanish than the Spanish
LM, which is a good sign. Next, we also observe that the behaviour of the metric shows the same
trend as with the Spanish LMs, that is, the LM is better at predicting machine-translated Spanish
than the original Spanish. The perplexity increases gradually for the subsequent MT generations,
indicating that it is increasingly difficult for the English LM to predict the POS sequencing of
the Spanish outputs. We can derive that the Spanish language is changing across generations
and that such change is not identified as resulting in a POS sequencing that resembles English
patterns more closely regardless of the level of interference that might (or might not) be happen-
ing. Therefore, the distortion introduced by the MT generations cannot be associated to source
language interference without further analysis.

Let us focus on the secondmetric. posTERwas proposed byMarchisio et al. (2022) as ameasure
to calculate structural similarity at POS level. The authors calculate the edit distance between
translations to account for differences between versions.We apply this measure by using the POS-
tagged, original Spanish test set as a reference and the translations of each of the MT systems as
hypotheses.

Results in Table 6 show rather gradual yet minimal distortion according to this metric. From
MT0 to MT10, which represent the lowest and highest posTER scores, the difference in the per-
centage of POS-level changes would be 1.23. Yet, as the authors (Marchisio et al. 2022) themselves
suggest, the seventeen POS categories used by the Universal Dependency tag set might be too
coarse to identify more subtle changes and conceive actual deviations.

6. Conclusions
In this work, we have taken a first step to explore how a language could be shaped by the use of
MT. We have done so by applying an extreme approach where language change is solely consid-
ered from the MT perspective: we have tried to simulate an environment where the technology
dictates which features get permeated and where generational changes are captured. Specifically,
we have trained a chain of MT systems, where each training set consists of original English lan-
guage text and its translation into Spanish obtained from the previous system. This has allowed
us to propagate linguistic traits generated by the text processing capabilities of the transformer
NMT architecture in a succession of ten MT generations in order to observe diversity trends at a
lexical, morphological, and structural level. Needless to say that this approach is limited and not
indicative of how exactly the target language would evolve given the complex ecosystems in which
languages exist. However, it is a first step towards providing an insight into what happens to lexical
and morphological elements and structural patterns of a target language when we put it through
a transformer architecture for translation.

Overall quality metrics show that systems degrade generation after generation, albeit slightly,
losing around 3 BLEU points and 5 COMET points from the MT0 baseline to the last MT10 gen-
eration in a rather steady manner. This means that the translations are getting more and more
different from the reference text, that is, the expected language traits.

In reference to lexical richness, type and token information confirms that using MT results in a
decrease of diversity. Interestingly, we see that this drop is particularly marked when the language
goes through the MT architecture for the first time (MT0) and that the decline is slower and less
noticeable as MT generations advance. We also observe that the number of types with a frequency
of occurrence of 10 and over hardly changes, while those which appear more rarely decrease (and
even end up disappearing), particularly when going through theMT architecture for the first time.
This will bring homogeneity to the text through the increasing use of already frequent words.
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When inspecting words based on POS categories, we see that the occurrence frequency of
nouns, adjectives, and adverbs increases slightly, without an initial drop, as MT generations
advance, while verbs remain rather stable after the initial drop. Function words tend to drop,
except for auxiliaries, and while conjunctions and prepositions remain stable, determiners and
pronouns occur less every time. This points to a language that is more compact every time, with
a higher content-to-function word ratio. As per types, for all POS categories except proper nouns
and coordinated conjunctions, numbers remain rather stable, with an almost unnoticeable down-
ward trend, after an initial drop. If we combine type and token information, we see that for some
POS categories, it is the diversity within them that decreases, whereas for others, it is the category
as a whole that is reduced.

In terms of morphology, Shannon entropy and Simpson’s diversity index indicate that there is
hardly any change in the richness and evenness of the inflectional paradigms of the lemmas after
an initial drop. Considering the ranges of the metric scores and our results, we can say that the
richness is rather low, but the distribution is even. The fact that there are only small fluctuations
within a stable range can be taken as an indication that while lexical items are reduced, the gram-
matical information—encoded in the inflections—remains in the language as the MT generations
advance.

Finally, with regard to structure, a simple posTERmetric based on edit-distance counts of POS-
tagged test sets indicates a very slow distortion of the language as MT traits propagate through the
MT generations. A more complex perplexity metric at a word and POS level based on a neural LM
seems to indicate that the language is somewhat distorted after going through theMT architecture
for the first time but then starts becoming easier to predict, probably thanks to a homogenisation
effect generated byMT. Also, there appears to be no source language interference at the POS level,
as the source language LM finds the translations more difficult to predict with each generation.

All in all, there seems to be certain “human” traits of language that the MT engines still fail
to capture. As a consequence, the systems do not seem able to reproduce the target language
with all its inherent features, which results in a degree of lexical loss and structural distortion.
However, once those traits are absent, the MT engines seem to produce and learn the language
rather consistently with minor loss. The current results stem from a specific language pair and an
initial MT engine of robust quality trained with texts from multiple domains, which leaves other
configurations to be tested, including those that consider full, coherent texts rather than isolated
sentences. Besides, results point to interesting further research in the change in specific lexical,
morphological, and structural elements, as occurrence frequencies and POS categories seem to
play a role. However, identifying the specific language traits that the current transformer-based
NMT systems cannot capture from naturally occurring languages seems a priority.
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