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Abstract
We use a time-varying parameter dynamic factor model with stochastic volatility estimated using Bayesian
methods to disentangle the relative importance of the common component in Federal Housing Finance
Agency house price movements from state-specific shocks, over the quarterly period of 1975Q2 to 2017Q4.
We find that the contribution of the national factor in explaining fluctuations in house prices is critical. We
then use a Bayesian change-point vector autoregressive model that allows for different regimes throughout
the sample period, to study the impact of aggregate supply, aggregate demand, (conventional) monetary
policy, and term-spread shocks, identified based on sign restrictions on the national component of house
price movements. While monetary policy and other shocks are found to be quite dominant early on, we
find evidence that the national factor has been detached from the identified macroeconomic shocks since
2014, thus suggesting that a “national bubble” might be brewing again in the US housing market.

Keywords: House prices; time-varying dynamic factor model; change-point vector autoregressive model;
macroeconomic shocks

1. Introduction
In a seminal contribution related to the (regional and national) housing market of the USA
[Del Negro and Otrok (2007)] used a Bayesian dynamic factor model (DFM) to deduce the
importance of the common component in the Office of Federal Housing Enterprise Oversight’s
(OFHEO’s), now the Federal Housing Finance Agency’s (FHFA’s), house price movements rela-
tive to state- or region-specific shocks, estimated on quarterly state-level data from 1986 to 2005.
The authors found that, while movements in house prices have been mainly driven by the local
component, the period of 2001–2005 was different in the sense that the overall increase in house
prices was a national phenomenon, though “local bubbles” were important in some states. As a
next step, [Del Negro and Otrok (2007)] used a (constant parameter) vector autoregressive (VAR)
to investigate the role of monetary policy in explaining the movements of the common compo-
nent of house price. The authors concluded that the impact of monetary policy shocks, identified
based on sign restrictions, on the national house price factor was marginal. Within the context
of trying to explain the movement in overall US house prices based on macroeconomic shocks,
a recent study by Plakandaras et al. (2018) employed a Bayesian time-varying parameter VAR
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covering the period of 1830–2016. This is undoubtedly an important question since according to
recent financial accounts data of the USA, residential real estate represents about 83.7% of total
household non-financial assets, 28.3% of total household net worth, and 24.6% of household total
asset.1 Based on a model which identified (permanent) technology, price and financial (money)
shocks, and (temporary) housing market-related demand/supply shocks, these authors found that
technology shocks dominate in driving the US housing market.2 This finding further corroborates
the analysis of conditional volatilities and correlations with macroeconomic shocks. Interestingly,
these results are in line with those obtained earlier by Iacoviello and Neri (2010) from a micro-
founded dynamic stochastic general equilibrium model of the US economy, which incorporated
an explicit housing sector.

Motivated by the findings of the two above-mentioned VAR-based studies, that is, there are
possibly more important other shocks than just monetary policy surprises that drive house prices
in the USA,3 we aim to revisit the work of Del Negro and Otrok (2007), based on updated data
covering the quarterly period of 1975–2017. Understandably, recent data allow us to include the
tumultuous episodes of the “Great Recession,” the global financial crisis (GFC) (as well as the
European sovereign debt crisis) that followed thereafter, and unconventional monetary policy
decisions in the wake of the zero lower bound (ZLB) of monetary policy rates, with the roots
of all these events associated with the bursting of the US housing bubble and the subprime mort-
gage crisis [Leamer (2015)]. Besides, using updated data, we extend the work of Del Negro and
Otrok (2007), and the general literature which concentrates primarily the role of (conventional
and more recently, unconventional) monetary policy shocks (rather than other macroeconomic
surprises) in driving the US housing market (see Eickmeier and Hofmann (2013), Rahal (2016),
Simo-Kengne et al. (2016), and Huber and Punzi (2020) for detailed reviews in the regard),4 in
the following ways: (i) instead of the constant parameter DFM originally used by Del Negro and
Otrok (2007), we estimate an extended version of the traditional DFM with time-varying load-
ings and stochastic volatility (DFM-TV-SV, henceforth), as developed by Del Negro and Otrok
(2008), to obtain the national and local factors associated with US state-level house price move-
ments. As pointed out by these authors, an assumption of most DFMs is that both the stochastic
process driving volatility and the nature of comovement among variables have not changed
over time, but large amount of recent empirical work has shown that the assumption of struc-
tural stability is invalid for many macroeconomic aggregate and regional data sets of the USA
[Gupta et al. (2018b)], including house prices [Canarella et al. (2012), Karoglou et al. (2013),
Simo-Kengne et al. (2016), Huang (2019)]. Naturally, a DFM model with fixed parameters is
less likely to do well at describing house price data. As such, the generalized DFM-TV-SV not
only captures changing comovements among the house prices of the 50 states and the District
of Columbia by allowing for their dependence on common factors to evolve over time, but
also allows for stochastic volatility in the innovations to the processes followed by the factors
and the idiosyncratic components; (ii) unlike [Del Negro and Otrok (2007)], and inspired by
Plakandaras et al. (2018), we identify not only monetary policy shocks but also aggregate sup-
ply, aggregate demand, and term-spread shocks based on sign restrictions, to analyze the impact
of these shocks on the national component of house price movements. It must be realized that
the spread shock is important for us, since the time period of our analysis involves the period
of ZLB and hence, that of unconventional monetary policy, which in turn involved compres-
sion of the long-term yield spread; (iii) furthermore, different from the constant parameter VAR
model used by Del Negro and Otrok (2007), we estimate changes in macroeconomic dynam-
ics by using an innovative change-point VAR model, proposed by Liu et al. (2019), that allows
for different regimes throughout the sample period while studying the impact of the various
shocks on the common component of the state-level housing prices. This approach enables the
VAR model to endogenously identify changes to the structure of the US economy as well as
variations to the properties of the exogenous shocks during the sample period. Consistent with
evidence of time-varying effects of macroeconomic variables on the (regional) housing market of
the USA [Bork and Møller (2015), Li et al. (2015), Nyakabawo et al. (2015), Bork et al. (2019),
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Christou et al. (2019), Huang (2021)], the change-point VAR model with nonrecurrent states
offers a novel way to estimate changes in the transmission mechanism of a variety of shocks
over an extensive period, and (iv) since we estimate a DFM-TV-SV model, we are also able to
recover the stochastic volatility of the national factor, which we also incorporate into our change-
point VAR model. This in turn, even though our primary focus is on house prices, allows us to
simultaneously, as an aside, analyze the impact of the various identified shocks on the (common)
housing market volatility, which have been shown to be also driven by macroeconomic variables
[Miller and Peng (2006), Fairchild and ShuWu (2015), André et al. (2017), Plakandaras et al.
(2018)], besides housing returns [Miles (2008)].5 As pointed out by Segnon et al. (2021) with
housing serving the dual role of investment and consumption, the effects of housing on savings
and portfolio choices are extremely important questions, and hence, understanding the drivers
of the house price volatility cannot be ignored because it has individual portfolio implications,
as it affects households’ investment decisions regarding tenure choice and housing quantity. But
more importantly, including the national factor of the stochastic volatility of the states in our
change-point VAR allows us to control the possible effect of real estate uncertainty on the corre-
sponding national component of house prices (over and above the identifiedmacro shocks), as has
been shown to play an important role in driving the US housing market [Christidou and Fountas
(2018), Thanh et al. (2018)].

At this stage, it must be pointed out that there is widespread worry among academicians and
policy authorities alike that, the ultra-low interest rate environment, along with the rise in liquid-
ity caused by unconventional monetary policy measures that followed in the wake of the GFC,
is inflating new housing bubbles [Jordà et al. (2015a, 2015b), Blot et al. (2018), Alpert (2019),
Rosenberg (2019)]. Hence, distinguishing the national factor from local factors in the hous-
ing market and determining what fraction of the variation in house prices across the states is
explained by the common component remain important questions, since answering them allows
us to deduce whether the US economy is facing a “national bubble” or “local bubbles.”While “local
bubbles” are attributable to circumstances that are specific to each geographic market given the
widespread acceptance that housing markets are partially segmented [Apergis and Payne (2012),
Montañés and Olmos (2013), Barros et al. (2013), Miles (2015)], by linking the national price
factor to (conventional and unconventional) monetary policy and other macroeconomic shocks,
we will be able to gauge the part of common regional housing market movement attributable
to changes in fundamentals (wider array of macroeconomic shocks, besides the monetary policy
shock) and the portion that could be due to speculation or pricing errors. Naturally, our analysis
has tremendous significance from the policy perspective, if indeed the national factor dominates
the local factors in explaining state-level housing price movements, and monetary policy shocks
have had a role to play in driving the common component. These findings would in turn also align
our study to the large existing literature (see, e.g., Galí and Gambetti (2015) and Caraiani et al.
(2018) for comprehensive reviews) on the relationship between monetary policy and bubbles in
asset (housing) markets.

To the best of our knowledge, this is the first paper to use a Bayesian DFM-TV-SV model to
first decompose the state-level house price movements of the USA into a national and local factors
and then use a Bayesian change-point VAR to analyze the impact of aggregate supply, aggregate
demand, monetary policy, and term-spread shocks (identified based on sign restrictions) on the
common component. The remainder of the paper is organized as follows: Section 2 discusses the
data used and the twomethodologies associated with the DFM-TV-SV and the change-point VAR,
Section 3 presents the empirical results from these two models, and Section 4 concludes.

2. Data andmethodologies
2.1. Data
To be consistent with Del Negro and Otrok (2007), we use the FHFA (then OFHEO) seasonally
adjusted house price indexes for the 50 US states and District of Columbia over the quarterly
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period of 1975Q1 to 2017Q4, with the start date driven by the availability of the house price data,
and the end of the sample corresponding to the latest data at the time of writing this paper. The
FHFA house price indexes provide a broad measure of the movement of single-family house
prices. The FHFA indexes are weighted, repeat-sales data, that is, they measure average price
changes in repeat sales or refinancings on the same properties. This information is obtained by
reviewing repeat mortgage transactions on single-family properties whose mortgages have been
purchased or securitized by Fannie Mae or Freddie Mac since January 1975. In particular, we use
the quarterly “All-Transactions Indexes.”6 To create a real version of house price, we deflate the
indexes by the (seasonally adjusted) Consumer Price Index (CPI) of the USA, derived from the
FRED database of the Federal Reserve Bank of St. Louis. We work with the quarter-on-quarter
(QoQ) version of the real house price indexes to obtain the national and local factors from the
DFM-TV-SV model for both real housing returns and the corresponding stochastic volatilities.

As far as the data used in the change-point VAR are concerned, besides the two national fac-
tors of real housing returns and stochastic volatility, we include data on the federal funds rate
(FFR), QoQ growth rate of seasonally adjusted real gross domestic product (GDP), QoQ growth
of the CPI measuring the inflation rate, and the term spread, which was defined as the difference
between 10-year government bond yield and the FFR. Data on FFR, real GDP, and the long-term
government bond yield are again sourced from the FRED database. The transformations of the
data imply that our effective sample covers the period of 1975Q2 to 2017Q4.

2.2. The generalized DFM
In this section, we present a generalized DFM that is employed to decompose the real housing
returns in all states into a common (or national) factor and an idiosyncratic (or state-specific)
factor. The DFM is often used to tease out the common movements among multiple time series
and has become a standard tool since the work by Stock and Watson (1989). We generalize the
standard DFM with constant parameters to one that allows for time-varying loading parameters
and the stochastic volatility (DFM-TV-SV, henceforth). As such, the generalized DFM-TV-SV
captures important time-varying comovements among multiple time series. Formally, our model
specification closely follows Del Negro and Otrok (2008) and is specified as follows7:

ri,t = βi,t · ft + ei,t (1)

Here, ri,t is the first difference of the natural log of the real house price for state i at time t. ft is the
national factor that affects all house prices at time t, and βi,t is the time-varying loading parameter
of this national factor. ei,t is the idiosyncratic factor.

The common factor and the idiosyncratic factors are assumed to be independent from each
other. Therefore, the variance decomposition of our model is given by:

Var(ri,t)= β2
i,t ·Var(ft)+Var(ei,t) (2)

Note that either the time-varying loading parameters or the stochastic volatility of the factors
enables the factors contributions to the total variations of each variable to vary over time.

Following the standard practice in this literature, we model the common factor ft using a
stationary AR(p) process:

ft = φ
f
1ft−1 + φ

f
2ft−2 + . . . . . . φ

f
pft−p + exp

(
hft
)

· εft (3)

where ε
f
t ∼ i.i.d.N

(
0, σ 2

f

)
. Therefore, the shock to the factor has a stochastic volatility, and its

time-varying volatility is governed by exp
(
hft
)
.
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To keep the model parsimonious, we employ a driftless random walk process to capture the
time variation of the volatility:

hft = hft−1 + σ h
f · ξ ft , ξ

f
t ∼ i.i.d.N(0, 1) (4)

The factor loading βi,t varies over time and is also assumed to follow a random walk process:

βi,t = βi,t−1 + σ
β
i · ηi,t ; ηi,t ∼ i.i.d.N(0, 1) (5)

Here, shocks to the loading parameters in different series are assumed to be orthogonal to each
other.8

The idiosyncratic factor follows a stationary AR(q) process:
ei,t = φi,1ei,t−1 + φi,2ei,t−2 + · · · + φi,qei,t−q + exp(hi,t) · εi,t (6)

where εi,t ∼ i.i.d.N
(
0, σ 2

i
)
. The stochastic volatility of the idiosyncratic factor follows a random

walk process:

hi,t = hi,t−1 + σ h
i · ξi,t , ξi,t ∼ i.i.d.N(0, 1) (7)

Here, we assume that the shocks to the stochastic volatility in different factors are independent
from each other. This assumption simplifies the estimation algorithm.

As usual, some normalizations of the factor rotations are needed before the model can be iden-
tified and estimated. The loading parameters and the variance of the shock to the common factor
are not separately identifiable. We choose to set σ 2

f = 1 to achieve the identification. Following
Del Negro and Otrok (2008), we also restrict that the time-varying volatility all starts from zero
for the same identification purpose. We demean each series before the estimation since the means
of factors are not separately identifiable. Finally, following works such as Neely and Rapach (2011)
and Bhatt et al. (2017), we set p= q= 2 to keep the model parsimonious.

2.3. Estimation procedure
We estimate this DFM-TV-SV model using the Monte Carlo Markov Chain (MCMC) Bayesian
estimation method. Specifically, we employ the well-established Gibbs sampling algorithm by
breaking the model into several blocks and sampling sequentially from posterior conditional den-
sities. The idea of the Gibbs sampling algorithm is that when the algorithm converges after the
initial burn-in draws, these random draws from the conditional densities altogether constitute
a good approximation of the underlying joint densities. Applying the law of large numbers, the
numerical integration can be easily taken to obtain the marginal densities of the parameters and
the state variables of our interest. Most blocks in the model are linear and Gaussian, and as a result
the standard algorithms in Kim and Nelson (1999) are readily applicable. The stochastic volatility
introduces a non-Gaussian feature into the model. We apply the procedure proposed in Kim et al.
(1998) that utilizes a mixture of normal densities to approximate the underlying non-Gaussian
distribution in order to simulate the stochastic volatility. This procedure has been widely used in
the literature, see, for example, Stock et al. (2007) and Primiceri (2005).

We briefly outline the Gibbs sampling estimation algorithm below. Further details are given in
Appendix A.2.

1. Cast the model into its state-space form as given in Appendix A.2 and draw the national
factor {ft}Tt=1 from the conditional density:

f
(

{ft}Tt=1

∣∣∣∣ {{βi,t}Tt=1

}n
i=1

, φf , {φi,e}ni=1,
{
σ 2
i
}n
i=1 ,

{
hft
}T
t=1

,
{{hi,t}Tt=1

}n
i=1,

{
{ri,t}Tt=1

}n
i=1

)
,

where φf =
(
φ
f
1, φ

f
2, . . . φ

f
p

)′
, and φi,e = (

φi,1, φi,2, . . . , φi,q
)′ for i= 1, 2, . . . , n.
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2. Draw the AR parameters of the common factor from the conditional density:

f
(

φf

∣∣∣∣{ft}Tt=1, {hft }Tt=1

)
Draws of the AR parameters outside the unity circle are discarded to ensure the stationar-
ity.

3. Sample the AR and variance parameters for each idiosyncratic factor from the conditional
density:

f
(

φi,e, σ 2
i

∣∣∣∣{ft}Tt=1,
{
βi,t
}T
t=1 ,

{
hi,t
}T
t=1 ,

{
{ri,t}Tt=1

}n
i=1

)
Because the idiosyncratic factors are orthogonal to each other, these draws can be made
one by one for each i= 1, 2, . . . .., n. Again, to ensure the stationarity any draw of the AR
parameters outside the unity circle is discarded.

4. Draw the loading parameters and the shock variance parameters from the conditional
density:

f
(

{βi,t}Tt=1, (σ
β
i )

2
∣∣∣∣{ft}Tt=1, φi,e, σ 2

i , {hi,t}Tt=1

)
Again, due to the orthogonality condition, these draws can be made one by one for each
i= 1, 2, . . . .., n.

5. Draw the stochastic volatility of the common factor from the conditional density:

f
(

{hft }Tt=1, σ
h
f

∣∣∣∣{ft}Tt=1, φf

)
And draw the stochastic volatility of the idiosyncratic factor from the conditional density:

f
(

{hi,t}Tt=1, σ
h
i

∣∣∣∣{ft}Tt=1, {βi,t}Tt=1, φi,e, {ri,t}Tt=1

)

Starting with initial values, we repeat steps (1) through (5) for (D+ S) number of times. Here,
D is the initial burn-in draws needed for the algorithm to converge, and the results are based on
the saved S number of draws. We set D to 2000 and S to 8000.

2.4. Change-point VARmodel
This section reviews the empirical model used for structural analysis. It also discusses how the
marginal likelihood of the model is applied to determine: (i) the number of regimes and (ii) the
order of lags. A similar framework has been applied by Kapetanios et al. (2012) and Liu et al.
(2019).

To assess whether agents’ responses to macroeconomic shocks vary across regimes, the
following VAR model is estimated:

Zt = cS +
K∑
j=1

BSZt−j + εt , (8)

where εt ∼N(0,�S) and the data matrix Zt contains quarterly data on the FFR, real GDP growth,
inflation, term spread, and the national factors of real housing returns and volatility derived
from the DFM-TV-SV model. BS and �S denote the VAR coefficient and covariance matrix,
respectively, which vary across regimes.
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The empirical model permitsM breaks to take place at unknown dates, and as in Chib (1998)
the evolution of these breaks is prescribed by the latent state variable, St . The latter state variable
follows an M state Markov chain with restricted transition probabilities, pij = p(St = j|St−1 = i),
given by

pij > 0 if i= j (9)
pij > 0 if j= i+ 1

pMM = 1
pij = 0 otherwise.

For example, ifM = 3, the transition matrix is defined as

P̃ =

⎛
⎜⎜⎝

p11 0 0

1− p11 p22 0

0 1− p22 1

⎞
⎟⎟⎠ .

Equations (8) and (9) describe a Markov switching VAR with nonrecurrent states where transi-
tions from one regime are restricted to happen sequentially. For example, to move from regime 1
to regime 3, the process has to visit regime 2. The transition matrix also precludes transitions
to past regimes. As discussed in Sims et al. (2008), this is a Markov switching model where struc-
tural breaks are modeled as multiple change points. We believe that this approach is advantageous
over standard Markov switching models as it permits the user to associate changes in the macroe-
conomic dynamics with structural breaks in the economy. For instance, it is shown below that
the marginal likelihood metric selects the best “fitting” model as the one with three regimes.
Furthermore, these regimes seem to coincide with the Great Inflation, Great Moderation, and
Great Recession-ZLB periods.

2.5. Estimation and selection of the number of change points and lags
We follow Chib (1998) and adopt a Bayesian Gibbs sampling approach to the estimation of the
change-point VARmodels. Appendix B provides a detailed description of the prior and Appendix
C describes the main steps of the algorithm. The only feature that is perhaps important to be
mentioned here is that during the last regime, the policy rate does not respond to any variable
into the system (to proxy for the ZLB). This characteristic is imposed via tight priors (see the
discussion in the Appendix B).

The choice of the number of breakpoints is a crucial specification issue. The number of regimes
is selected by comparing the marginal likelihood across models (i.e., different number of regimes
or/and lags). The maximum number of regimes has been set equal to three, while the maximum
number of lags equals to four. Both choices are driven by concerns regarding the limited number
of observations per regime.9

Given m and l, the marginal likelihood is estimated based on Chib (1998) and Bauwens and
Rombouts (2012):

lnG
(
Zt |m, k

)= ln f
(
Zt |m, k,	, P̃

)+ ln p
(
	, P̃ |m, k

)− ln g
(
	, P̃ | Zt ,m, k

)
(10)

where lnG(Zt |m, k) denotes the marginal likelihood, ln f (Zt |m, k,	, P̃) is the likelihood, while
ln p(	, P̃ |m, k) and ln g(	, P̃ | Zt ,m, k) are the prior and posterior distribution of the VAR
parameter vector, respectively. Note that lnG(Zt |m) does not depend on the parameters of the
model and in theory it can be evaluated at any value of the parameters. Following standard
practices, we evaluate the marginal likelihood at the posterior mean. The first two terms on the
right-hand side of equation (10) are easily evaluated, whereas the calculation of the normalizing
constant ln g(	, P̃ | Zt ,m) requires some work. As described in detail in Bauwens and Rombouts
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Table 1. Sign restrictions

Shocks

Variables Demand Supply Monetary policy Slope

Policy rate + – + 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GDP growth + + – –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Inflation + – – –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Term spread ? ? ? +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

House prices factor ? ? ? ?
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

House prices volatility factor ? ? ? ?

Notes: All sing restrictions have been imposed for 4 periods. During the ZLB regime, the policy rate does not
respond to the demand and supply shock as well (i.e., additional zero restrictions).

(2012), this term can be evaluated by considering reduced Gibbs runs on an appropriate factor-
ization of g(	, P̃ | Zt ,m). We use 10,000 additional Gibbs replications to evaluate g(	, P̃ | Zt ,m)
at the posterior mean.

2.6. Shock identification
This section explains briefly the identification scheme employed in this paper, and it is motivated
by the work of Uhlig (2004), Mountford and Uhlig (2009), and Barsky and Sims (2011). The iden-
tified shocksmaximize their contribution on selected variables and also satisfy the sign restrictions
described in Table 1, which are imposed for four periods.

The mapping between reduced and structural errors is given by

εt =A0,Svt (11)

For any orthogonal matrix D (DD′ = I, where I is the identity matrix), the above mapping can be
written as

εt =A0,SDSvt

Since

�S =A0,SDSD′
SA

′
0,S =A0,SA′

0,S

Using the companion form of the VAR(p) model, the impulse of variable j and the impulse of
shock i in the period h can be expressed as

IRFi,j(h)= JjBh−1
S A0,SDSJ′i (12)

where Ji and Jh are selection matrices of zeros and ones.
In Uhlig (2005), the matrix DS results from the following minimization problem:

D∗
S = arg min

∑
j∈I+

Hj,+∈H+∑
hj=h̃j

f

(
− JjBh−1

S A0,SDSJ′i
σj,S

)
+
∑
j∈I−

Hj,+∈H+∑
hj=h̃j

f

(
JjBh−1

S A0,SDSJ′i
σj,S

)
(13)

s.t.

DSD′
S = I
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where σj,S is the standard deviation of variable j and f (x)=
⎧⎨
⎩ 100x if x≥ 0

x otherwise
. Finally, I+ is the

index set of variables, for which identification of a given shock restricts the impulse response to be
positive and I− is the index set of variables, for which identification restricts the impulse response
to be negative. The use of this scheme is to identify “meaningful” macroeconomic shocks and to
study how these disturbances affect house price movements.

Although the identification scheme employed shares many similarities with the one devel-
oped by Mountford and Uhlig (2009) and Barsky and Sims (2011), two features of the proposed
methodology are of worth to bementioned explicitly. The first point is that thematrixDS is regime
dependent, meaning that the above maximization problem (expression 13) needs to be performed
for each regime. More importantly, no restriction is placed on the house price level and volatility
factors. In other words, our approach about the effects of “standard” macroeconomic shocks on
the series that describe the evolution of the common components associated with real housing
returns and stochastic volatility is agnostic.

Table 1 reports the sign restrictions employed to identify a demand, supply, monetary policy,
and term-spread shock. The restrictions for the first three shocks are uncontroversial, and they
have been used in the literature extensively. Although the last shock has been studied in a number
of papers Kapetanios et al. (2012), Baumeister and Benati (2013), and Liu et al. (2019) (among
others), it is less common and aims to capture movements at the long end of the yield curve
that are not induced by variations in the policy rate. During the Great Moderation period, this
shock could reflect the foreign capital inflows to the USA, capturing the so-called savings glut
phenomenon [Sá et al. (2014), Sá and Wieladek (2015), Cesa-Bianchi et al. (2018)], while during
the ZLB period, this shock could proxy the Federal Reserve’s unconventional policies.

3. Empirical results
In this section, we present the estimation results of the DFM-TV-SV model as described in
Section 2.2 and when applied to the quarterly real housing returns in 50 states and the District of
Columbia. We first present the national factor of the real housing returns together with its time-
varying stochastic volatility and then discuss its time-varying contributions to real housing returns
in all states, followed by discussions of the implied time-varying cross-state correlation and the
cross-state volatility dispersion from the DFM-TV-SV model. Finally, we turn our attention to
analyzing the impact of sign restrictions-based identified aggregate demand, aggregate supply,
monetary policy, and credit shocks on the evolution of the national factor using a change-point
VAR model.

3.1. The national factor of the real housing returns
Figure 1 plots the national factor (in a solid line), together with the 90% probability intervals (in
dotted lines)10. One important advantage of this generalized DFM is that it allows exposures of
the real housing returns in all states to the national factor to vary over time and thus permits
a time-varying integration of the local housing market with the national market. The national
factor started to increase in 1975 but then declined in the late 1970s through the early 1980s. Since
around the mid-1980s, the national factor had steadily risen for an extended period of time until
about 2006, when the national factor plunged leading to a severe financial crisis and recession in
2007–2009. The national real housing returns factor leveled off around 2010 and has rebounded
sharply since 2011. The dynamics of the national factor of real housing returns estimated from our
DFM-TV-SV model is in general consistent with those findings documented over the common
period of the past literature (see, e.g., Del Negro and Otrok (2007) and Fairchild and ShuWu
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Figure 1. The national factor.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.

(2015)). We explain this pattern below by identifying various shocks in the context of a change-
point VAR framework.

Figures 2 and 3 plot the time-varying loading parameters of the national factor, together
with the 90% probability intervals, for the growth of real house price in each state. Overall,
the exposures of the real housing returns in all states to the national factor vary substantially
over time. These loading parameters appear to be positive for all states at all time periods, indi-
cating that there is no identification issue. The dynamic patterns of these time variations also
display substantial heterogeneity across states. A number of states, including Alaska, California,
Delaware, Florida, Hawaii, Idaho, Illinois, Maryland, Nevada, New York, Oregon, Virginia,
Vermont, Washington, and Wisconsin, all witnessed a steady increase in the exposures of their
real housing returns from the early 1990s to the pre-crisis period. Interestingly, many other states,
including Arkansas, Colorado, Connecticut, DC, Iowa, Indiana, Kansas, Kentucky, Louisiana,
Massachusetts, Maine, Mississippi, North Dakota, Nebraska, New Hampshire, Ohio, Oklahoma,
Rhode Island, South Dakota, Texas, Utah, West Virginia, and Wyoming, all experienced a steady
decline in the exposures of their real house price growth in the same period.

Figure 4 shows the stochastic volatility of the national factor with its 90% probability interval.
There is a rapid and substantial increase in the stochastic volatility of the national factor from
around 1998 to around 2011, followed by a large decline afterwards. Figures 5 and 6 plot the
stochastic volatility of each state-specific factor. Overall, there is a substantial time variation in
the stochastic volatility for all idiosyncratic factors, and there is a substantial heterogeneity in the
dynamic patterns across states.

Recall, from equation (2), that both the time-varying loading parameters and the stochastic
volatility of the national and the state-specific factors jointly determine the time-varying contri-
butions of the national factor to the total variations of the growth in real house price in the states.
Figures 7 and 8 show the dynamic evolution of the relative contribution of the national factor to
the real housing returns in all states. The relative contribution of the national factor has increased
since the mid-1980s for most states. These include states that have experienced an overall steady
increase in its loading of the national factor, such as California and New York, and states that have
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Figure 2. Time-varying loading parameters of the national factor.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.

witnessed a decline in its loading of the national factor, such as Connecticut and Massachusetts.
For the latter group of states, it seems that the decline in the loading of the national factor is more
than offset by a large increase in the stochastic volatility of the national factor and a large decline
in the stochastic volatility of the idiosyncratic factor, resulting in an increasing relative contribu-
tion of the national factor. To quantify the relative contribution of the national factor to the total
variations, we note that the contribution of the national factor for the full sample period in all
states is 44.85% on average. This contribution is only about 28.85% on average during the period
from 1975Q1 to 1989Q4, rises to as much as 52.12% during the period from 1990Q1 to 2006Q4,
and remains as high as 55.08% during the period from 2007Q1 to 2017Q4. Although the contri-
bution of the national factor has declined somewhat after the financial crisis in some states, we
conclude that overall the role of the national factor in explaining the house prices in all states is
not only critical but also has been increasing to become more important than the local factors
since around 1990. These findings are broadly in line with previous works such as Del Negro and
Otrok (2007), but recall the sample period of that study ended in 2005 and hence did not cover the
most recent periods, including that of the GFC which corresponded with a tumultuous period of
the US housing market. Given the dominance of the national factor in explaining state-level house
price movements, especially since 1990, identifying the role of various macroeconomic shocks in
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Figure 3. Time-varying loading parameters of the national factor—continued.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.
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Figure 4. The stochastic volatility of the national factor.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.
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Figure 5. The stochastic volatility of the individual factor.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.

driving this common real housing returns component in a regime-specific context is clearly of
paramount importance, and this is what we focus on in detail below in a short while.

3.2. Cross-state time-varying correlation
The generalized DFM as employed here can capture potentially time-varying comovements
among multiple series. To this end, we compute the implied correlation for each pair of states
and present the average of these pairwise correlations at each time point in Figure 9. The average
cross-state correlations increased from the mid-1980s till around 2011 and then declined until the
end of the sample. The increase in this correlation was more rapid in 1985–1995 than in 1996–
2005. This correlation increased more rapidly again between 2005 and 2011, which may have been
driven by the financial crisis.

3.3. Cross-sectional dispersion in volatility
Another metric that can be computed based on the DFM-TV-SV model to usefully summarize
the dynamic patters of these growth in real house prices is the volatility dispersion, which is the
standard deviation of the implied volatility of all states, as shown in Del Negro and Otrok (2008).
In Figure 10, we present this time-varying volatility dispersion and the decomposition of it into the
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Figure 6. The stochastic volatility of the individual factor—continued.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.

component driven by the national factor and that by the state-specific factor. We find that there
is a large increase in the volatility dispersion at the beginning of the sample period till around the
mid-1980s, followed by a large decline. The third panel in this figure indicates that this rise and
decline in the total volatility dispersion is primarily attributed to the idiosyncratic factor. The total
volatility dispersion increased between 2000 and 2009 again and then declined until the end of the
sample. The second panel suggests that this is primarily due to the national factor.

3.4. Change-point VARmodel specification and evolution of regimes
Next, we focus our attention on the change-point VAR, using which we analyze the impact of
various identified macroeconomic shocks on the national factors of real housing returns and
stochastic volatility.11 We start with the discussion of the dynamic specification of the model.
Table 2 reveals that the model that gets the most support from the data is the most flexible one. In
words, the data prefer a model with three regimes and four lags.12

Figure 11 helps us to understand the model selection implied by the marginal likelihood statis-
tic. The evolution of the regimes coincides with the three phases of inflation and, consequently, the
policy rate during the time interval considered in this study. Namely, the first regime is associated
with high inflation and policy rate (“Great Inflation”). In contrast, the second regime overlaps
(mostly) with the Great Moderation (stable low inflation and policy rate) and the final regime
with the ZLB period. Interestingly, the second regime more or less corresponds to sample period
used by Del Negro and Otrok (2007) under the rationale that this sample corresponds to a single
monetary policy regime and thus helps in correctly identifying the monetary policy shocks. The
“good-luck” versus “good-policy” and ZLB literature document that the dynamics across these
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Figure 7. Time-varying variance contributions of the national factor.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.

different regimes are dramatically different (see Sims and Zha (2006), Cogley and Sargent (2005),
and Liu et al. (2019) among others). In addition, when we look at these three regimes, we observe
the first regime being characterized by the declining national factor of real housing returns and
then recovery of the same with low volatility,13 followed by the rapid increases with eventual col-
lapse and highly volatile national factors in the second regime, and then finally the recovery of the
common component with declining variability in the wake of expansionary unconventional mon-
etary policies. As a result, a model with sufficient flexibility is required to capture accurately the
extensive non-linearities in the data. The results displayed in Table 2 are inline with this rationale.

3.5. Shocks
The evident time-varying importance of the national real housing returns factor in explaining
movements at the state-level especially post-1990 tends to suggest that the housing market boom
before the collapse in 2007, and then again the recovery after that is not necessarily purely driven
by local factors (“local bubbles”). Hence, this section is devoted to studying the responses of the
economy including the national housing market factors of returns and volatility, to each identified
shocks and whether these responses are regime dependent. The importance of the shock across all
three regimes is also assessed in this section.
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Figure 8. Time-varying variance contributions of the national factor—continued.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.
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Figure 9. The time-varying average of cross-states correlations.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.

3.5.1. Demand shock
Figure 12 illustrates responses to a demand shock. To remind the reader, the effects of the shock on
the term spread, the real housing returns factor, and the house prices volatility factor are left unre-
stricted. Figure 12 makes apparent that the transmission of the shock to the macroeconomy varies
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Table 2. Marginal likelihood comparison

Regimes/Lags 1 2 3 4

2 −3204.35 −2364.70 −703.00 −135.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 −749.32 −78.69 349.55 703.91
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Figure 10. The total volatility dispersion and its decomposition into the national and the individual components.
Notes: The solid black line is the median of the posterior distribution, while the dotted lines represent the 5%− 95%
percentiles.

Figure 11. Evolution of regimes.
Notes: Observed data (solid blue line), regime 1 (red shaded area), span between 1975Q1 and 1984Q4, regime 2 (blue shaded
area) between 1985Q1 and 2008Q4, and regime 3 (yellow shaded area) between 2009Q1 and 2017Q4.
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Figure 12. Impulse responses: demand shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.

dramatically across the three regimes. The shocks seems to have a larger effect on the economy
during the “Great Moderation” (regime 2), and the forecast variance decomposition also confirms
this (Figure 13 and Table 3). Although the effect on the real GDP growth is comparable across the
three regimes, inflation rises substantially more in the second regime, and this leads to a pro-
tracted increase in the interest rate. Despite the long-lasting policy rate increase, the term-spread
falls indicating that the long-term interest rate rises by less than the short end of the yield curve,
perhaps due to well-anchored inflation expectation during the Great Moderation. The housing
factor increases initially, but this is only a short-lasting effect, since as monetary authorities start
“fighting” higher inflation and the policy rate increases, the real housing returns factor falls.

During the Great Moderation, the demand shock explains 50% of the variability of the policy
rate, indicating that the Federal Reserve’s intense effort to mitigate the inflationary consequences
of the shock. This elevated impact is also reflected on GDP (20%), inflation (20%), term spread
(35%), real housing returns factor (30%), and real house price volatility factor (20%).

3.5.2. Supply shock
The responses of output growth, inflation, and the policy rate are stronger in the first than in
the other two regimes (Figure 14). The stimulative monetary policy needed for the (negative)
output gap to be closed leads to the higher housing returns factor in regimes 1 and 2. This effect
is supported further by the strong (income) growth in the economy, which also leads to lower
volatility of the national factor of housing returns for regimes 1 and 2.

The forecast variance contribution of the shock does not seem to vary across the 1st and 2nd
regimes and it fluctuates between 10% and 20% (Figure 13 and Table 3). The supply shock plays a
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Figure 13. Forecast variance decomposition.

more important role during the 3rd regime, with its contribution to GDP growth, and the factors
of real housing returns and stochastic volatility rising above 20%.

3.5.3. Policy shock
A policy “cut” increases output growth persistently during the second regime (Figure 15).
Interestingly, the term spread rises approximately by 200 basis points suggesting that long-term
interest rates do not decrease as much as the policy rate. The stimulative environment created
by the Federal Reserve leads to higher values of the real housing returns factor during the Great
Moderation, while this effect is insignificant in the first regime. This highly accommodative pol-
icy results in higher volatility of the national housing returns factor, although this effect is not
precisely estimated.

The forecast variance contribution to GDP growth and inflation is admittedly quite small
(Figure 13 and Table 3), which is in line with a number of existing studies (see Bernanke et al.
(2005), Smets andWouters (2007), and Justiniano et al. (2010) among others). On the other hand,
the contribution of the policy shock on the term spread and national housing returns factor rises
to (almost) 30%,14 indicating the strong link between policy actions and decision of agents to
invest in either long-term or/and housing debt.

3.5.4. Slope shock
The slope shock is a perturbation that lowers the long end of the yield curve, while the policy
rate remains constant contemporaneously (Figure 16). In the first regime, the shock stimulates
demand and inflation. As the authorities start increasing the policy rate to restore price stability,
the national house price factor starts falling with (about) a year delay, while the corresponding
volatility increases contemporaneously. These effects carry over to the next regime. However, the
response of volatility of the national housing returns factor is not precisely estimated. As the econ-
omymoves into the ZLB regime, the responses of the level and volatility of common factors change
sign. In this regime, real housing returns factor increases and volatility falls (but again, the latter
response is not precisely estimated). Recall that, the slope shock in the last regime proxies the
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Table 3. Forecast variance contributions

H= 1Q H= 4Q H= 12Q H= 40Q

R= 1 R= 2 R= 3 R= 1 R= 2 R= 3 R= 1 R= 2 R= 3 R= 1 R= 2 R= 3

Demand 5 44 0 6 52 0 7 50 0 9 42 0


Supply 5 21 0 5 18 0 9 14 0 11 14 0


Policy 5 18 55 3 7 55 4 6 55 5 10 55


Slope 0 0 0 1 1 0 6 5 0 8 9 0


Demand 4 11 12 4 12 15 4 17 16 5 22 15


Supply 4 11 23 5 12 23 5 13 22 6 13 21


Policy 1 11 17 1 11 16 2 12 16 3 13 17


Slope 2 35 6 1 30 6 2 24 6 3 22 7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Demand 11 4 48 8 8 45 9 16 41 10 18 35


Supply 19 15 8 19 15 9 17 14 10 17 14 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Policy 11 6 13 7 6 13 8 7 14 8 9 18


Slope 10 3 6 8 3 7 9 4 7 10 6 8


Demand 9 11 24 6 25 24 8 36 22 10 35 19


Supply 11 14 18 13 17 18 15 15 18 15 15 16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Policy 8 34 8 6 31 8 7 19 10 7 18 16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Slope 4 4 17 5 3 16 7 5 16 10 7 15


Demand 17 13 12 16 11 14 14 31 16 14 31 15


Supply 9 11 20 9 14 19 10 17 19 12 16 17


Policy 12 29 7 12 25 7 10 17 9 9 16 13


Slope 13 23 23 12 20 27 13 11 25 13 15 22


Demand 4 13 15 4 14 16 4 18 14 5 20 11


Supply 4 21 23 5 22 23 5 19 17 6 16 12


Policy 4 12 8 4 13 8 4 14 15 4 17 27


Slope 6 23 33 6 27 32 6 30 26 7 28 18

Notes: The table reports the posterior mean forecast variance shares. R= 1, R= 2, and R= 3 indicate regimes 1, 2, and 3, respectively. While H= 1Q,
H= 4Q, H= 12Q, and H= 40Q refer to forecast horizons, 1 quarter, 4 quarter, 1 year, and 10 years, respectively.

Federal Reserve’s unconventional policies adopted to repair macroeconomic stability (something
which we will return to below) in the wake of the Great Recession.

The shock seems to have a limited effect on the macroeconomic variables including the term
spread (Figure 13 and Table 3). An exception is the contribution of the GDP on growth during
the Great Moderation, especially at short horizons such as one quarter and one year, whereby the
shock explains 35% and 30% of the variability of growth. The contribution of the shock to the slope
of the yield curve rises as the forecast horizon increases. However, the magnitude of this effect is
(approximately) 15%. Interestingly, the contribution of the term-spread shocks is much higher for
the remaining two variables (between 20% and 30%). What seems to be more noteworthy is the
fact that the contribution of the shock peaks in the third regime.

3.6. Sensitivity analysis
It is illustrated in the Appendix D that the results are robust: i) when the value of the hyperpa-
rameter that controls the tightness of the VAR coefficients is increased (looser priors), ii) when
the unemployment (instead of the GDP growth) series, derived from the FRED database, is used
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Figure 14. Impulse responses: supply shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.

Figure 15. Impulse responses: policy shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.
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Figure 16. Impulse responses: slope shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.

to proxy the real sector of the economy, and iii) when the dynamic order to the VAR is reduced to
3, 2, and 1 lags (per regime).15

3.7. The national housing returns factor and identified shocks
The discussion in this section is concentrated on the national real housing returns factor in rela-
tion to not only conventional and unconventional monetary policy shocks but also aggregate
demand and aggregate supply innovations. Table 3 illustrates that the identified macroeconomic
economic shocks explain between 50% and 70% of the variability of the national housing returns
factor (depending on the horizon and the regime). This message is further reinforced by Figure 17,
where the identified shocks account for (almost) all the historical evolution of the common
component of state-level growth in real house prices during the first and second regimes. The
explanatory power of the identified shocks collapses during the Great Recession, while it improves
in the period between 2011Q1 and 2014Q2 but breaks down again from 2014Q3 till the end of the
sample (2017Q4).16

Several interesting facts emerge from both Table 3 and Figure 17. The first one is that, unlike in
the high inflation regime, conventional monetary policy played almost no role in the growth of the
national factor related to the housing market during the Great Moderation—a result in line with
Del Negro and Otrok (2007); if anything, its contribution is rather negative [Nelson et al. (2018)].
This finding is consistent with the work of Justiniano et al. (2017) and Justiniano et al. (2019)
where the authors explain that factors related to the credit supply and demand, and not monetary
policy, are behind the increase of house prices (and housing debt/leverage). In this study, credit
supply and demand shocks are not identified explicitly, but are probably captured by the demand,
supply, and slope shocks in our model and, interestingly, the contribution of all these three types
of shocks to the national factor of real housing returns is positive during this period, which, in
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Figure 17. Historical decomposition of real housing returns factor.
Notes: The historical decomposition is calculated for each posterior draw. The (posterior) mean of these calculations is
reported here. The quarter-on-quarter contributions have been aggregated to annual changes contributions. The same
transformation is applied for the data series.

turn, corroborates the findings of Plakandaras et al. (2018), especially in terms of the importance
of the aggregate supply shocks.

The national real house price growth factor collapsed during the Great Recession, with
one-third of this fall not being explained by the shocks identified. During this period, the (con-
ventional) monetary policy is constrained by the ZLB, which started binding at the beginning
of the 2009. Interestingly, substantial negative policy contribution started cumulating a few quar-
ters before the ZLB, and these adverse effects picked up during the ZLB period (persistence effect).
This anecdotal evidence could suggest that the inability of monetary authorities to lower the policy
rate, which cannot be modeled as a shock, could explain a large part of the unexplained wedge.

Although quantitative easing (QE) was introduced in the last quarter of 2008, the model sug-
gests that the slope (or QE) shock started contributing positively to the economy around 2012.
This period coincides with the introduction of the open-ended QE3 and the forward guidance
(FG) unconventional monetary policy. This does not mean that the first two QE programs had
no positive effects on recovering the housing market, as this question cannot be answered from
the historical decomposition and in turn requires the knowledge of the counterfactual profile of
the national factor in the absence of the QE1 and QE2 programs. However, the assumption that
the large positive contributions by the slope shock during the third regime are associated with
explicit guidance about future policy rate would be consistent with the point made in the previ-
ous paragraph. In other words, what matters most for agents when it comes to house prices is the
systematic part of the monetary policy described by the policy rate.

Finally, the real housing returns factor post-2014 has decoupled again from the identified
macroeconomic shocks. This perhaps reflects the concerns, as also as outlined above in the
introduction, from important policy institutions and policy-makers (see, e.g., Borio (2019) and
Carstens (2019), among others) that low interest rates led many investors to search for higher
returns that are also subject to elevated risks. Moreover, studies like Bork et al. (2019), Balcilar
et al. (2021), Bouri et al. (2021), and Gupta et al. (2021) have recently highlighted the importance
of behavioral factors such as sentiment and uncertainty in playing crucial roles, beyond standard
macroeconomic and financial variables, in driving house price movements, that is, both returns
and volatility for the overall and regional USA.17 In light of this, our findings should not come
as a surprise and carry important implications from the perspective of modeling the US housing
market. In particular, such behavioral variables should then be explicitly included, and shocks to
them analyzed, while performing structural analyses of macroeconomic and financial shocks on
the housing market. From the policy perspective, if these shocks are indeed important relative
to conventional shocks for the US housing market, then policy authorities would need to target
these behavioral variables to indirectly affect the movements in housing returns and volatility,
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especially given evidence that sentiment and uncertainty are not necessarily exogenous and are
indeed predictable [Marfatia et al. (2020), André et al. (2021), Ludvigson et al. (2021), Salisu et al.
(2021)].

3.8. Identifying conventional and unconventional monetary policy shocks using external
instruments

This section scrutinizes the role of both conventional and unconventional monetary policy on
the real housing returns factor.18 In the first stage, the monetary policy (conventional and uncon-
ventional) shocks are identified from interest rate surprises that take place in a narrow window
(30 min) before and after the policy meetings by using the methodology developed by Swanson
(2021). In the second phase, proxy SVAR techniques (as in Mertens and Ravn (2013) and Mertens
and Ravn (2014)) identify the effects on house prices.

3.8.1. Proxy SVAR
This section briefly reviews the shock identification methodology proposed by Mertens and Ravn
(2013) and Mertens and Ravn (2014). Although, the scheme proposed initially was for a fixed-
coefficient VAR model, the studies of Mumtaz and Petrova (2018) and Mumtaz and Theodoridis
(2020) illustrate how the process can be extended to allow for time and regime dependence,
respectively.

The fundamental idea of this methodology is that a “proxy” (φt) that is correlated with the
shock of interest (vmt ) and uncorrelated with the remaining shocks (v•

t ) is used to identify the
structural shock. These conditions can be expressed as follows:

E
(
φt , vmt

) = α �= 0 (14)
E
(
φt , v•

t
) = 0

As explained in Mertens and Ravn (2013) and Mertens and Ravn (2014), the identification of
structural shocks (i.e., the first column of A0,S) can result as a solution of a generalized method of
moments estimation problem that satisfies themoment conditions (14). The authors also illustrate
that the structural shocks, vmt , can be simply derived by regression of φt on εt . For instance, let us
assume that the fitted value of the vmt is given by:

�Sεt = E
(
φtε

′
t
)
�−1

S εt (15)

= αSAm
0,S
(
A0,SDSD′

SA
′
0,S
)−1
t εt
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(
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0,S

(
A−1
0,S

)′) (
A−1
0,Sεt

)
= αSvmt

where �S denotes the regime-dependent variance–covariance matrix of the VAR residuals, while
moving from the third to the fourth line we employ the orthonormality properties of the identified
matrix and mapping between the structural and reduced-form errors discussed above.

3.8.2. Narrative measures for conventional and unconventional monetary policy shocks
The strength of the identification scheme discussed in the previous section relies on the quality
of the instrument used to identify the structural shock.19 As explained by Jarociński and Karadi
(2020) and Miranda-Agrippino and Ricco (2021), changes in the forward interest rate contracts
defined in a narrow window of 30 min before and after the policy announcements can contain
also information that is related to the state of the economy and not, necessarily, to the reaction
function of the monetary authority.
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Figure 18. Responses of real housing returns factor across different types of adverse monetary policy shocks and across
regimes.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution.

Jarociński and Karadi (2020) propose a methodology that isolates the monetary policy shocks
from the disturbances that contain “information” about the state of the economy. However, their
scheme does not disentangle “conventional” monetary policy shocks from “unconventional” QE
and FG ones. As discussed in the literature (see Andres et al. (2004), Chen et al. (2012), De Graeve
(2016), and Liu et al. (2019) among others), the transmission mechanism of different monetary
policy is not necessarily the same, meaning that the effects of conventional and unconventional
monetary policy shocks on the real housing returns factor could be different.

Fortunately, Swanson (2021) and Altavilla et al. (2019) extend the methodology proposed by
Gürkaynak et al. (2005) and achieve the identification of all three types of monetary policy shocks.
Figure 18 reports the effects of different monetary policy shocks on the real housing returns factor
across different regimes using the proxy SVAR techniques and the narrative measures. Before
discussing the results, it is important to mention that the lack of available futures interest rate
contracts for the USA prior to 1991, limits the evaluation exercise to regimes 2 and 3 and only.

Similar to the benchmark sign restrictions identification scheme, Figures 15 and 18 indicate
that conventional monetary policy shocks have a sizeable effect on the real housing returns factor
(first-row and first-column subplot). The latter effect appears to be more persistent and more pre-
cisely estimated when narrative measures are used. QE monetary policy shocks have again a large
impact on the factor (first-row and second-column subplot). Interestingly, the QE shocks appear
to be less persistent than conventionalmonetary policy shocks. Finally, FGmonetary policy shocks
do affect house price significantly.

The lack of a significant impact on the real housing returns factor from FG shocks might seem
puzzling at first. However, this consideration might be addressed if the nature of interest rate
shocks is understood. FG is nothing more than a communication policy that reveals information
about the central bank’s reaction function in the future. As a result, it reduces uncertainty about
the future monetary policy actions and, consequently, reinforces the effects of conventional and
quantitative monetary policy decided today.
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4. Conclusions
In this paper, we use a time-varying parameter dynamic factor model with stochastic volatil-
ity (DFM-TV-SV) estimated using Bayesian methods to disentangle the relative importance of
the common component in FHFA house price movements from state-specific shocks, over the
quarterly period of 1975Q2 to 2017Q4. We find that the contribution of the national factor in
explaining fluctuations in house prices has declined somewhat after the financial crisis in some
states, but overall the role of the national factor in all states is not only critical but also has been
increasing and has become more important than the local factors since around 1990. This result
suggests that, while “local bubbles” have been important in some states, overall the increase in
house prices is a national phenomenon. We then use a Bayesian change-point VAR model that
allows for different regimes throughout the sample period, to study the impact of not only (con-
ventional) monetary policy shocks but also aggregate supply, aggregate demand, and term-spread
shocks, identified based on sign restrictions, on the national component of house price move-
ments, with the term-spread surprises measuring unconventional monetary policy decisions. We
detect three regimes corresponding to the periods of “Great Inflation,” “Great Moderation,” and
the episodes of the “Great Recession” and the GFC thereafter, associated with the ZLB.While con-
ventional monetary policy is found to have played an important role in the historical evolution of
the national factor of real housing returns of the USA in the first regime, other shocks are found
to be quite dominant as well, especially during the second regime of the “Great Moderation,”
with monetary policy shocks playing virtually no role in explaining the national housing market
boom during this period. As far as the third regime is concerned, unconventional monetary pol-
icy shocks, associated with the phase 3 of the quantitative easing (QE3), are found to have led to a
(delayed) recovery in the housing market. Since the DFM-TV-SV model also allows us to recover
the national factor of housing market volatility, we could incorporate it into our change-point
VAR to analyze what shocks play a role in driving this factor. In this context, again the role of mon-
etary policy is limited, with dominant effect coming from the term-spread shock, followed by the
aggregate supply and aggregate demand shocks. But perhaps more importantly, we find evidence
of the national real housing returns factor to have got detached from the identified macroeco-
nomic shocks, that is, fundamentals since 2014—somewhat similar to what was observed in terms
of the low explanatory power of the shocks during the Great Recession. This result seems to sug-
gest that a “national bubble” is brewing again in the US housing market,20 resulting from the
prolonged period of loose unconventional monetary policies following the recent financial cri-
sis. Naturally, our findings call for careful monitoring of the behavior of house prices, in order
for the policy authorities to decide whether or not to “lean against the wind,” by raising policy
rates [Martin et al. (2022)]. Besides the cost of producing a future recession, whether such policies
can in fact affect the housing market also remains debatable, given our finding of a limited role
for conventional monetary policy in driving the US housing market historically. Perhaps, in this
regard the role of macro-prudential tools become important, which are often considered as the
best instruments to prevent the build-up of credit-driven bubbles, notably because they can be
tailored to address specific market failures [Cerutti et al. (2017)].

Notes
1 See: https://www.federalreserve.gov/releases/z1/20190920/html/b101h.htm.
2 This result is actually in line with Gupta et al. (2019), who made similar observations for the Real Estate Investment Trusts
sector of the US economy. Reverting back to the paper by Plakandaras et al. (2018), when the authors also conducted a
comparative analysis for the United Kingdom (UK) over the period of 1845–1846, interestingly they found that monetary
policy is the most important driver of house price.
3 In fact, Del Negro and Otrok (2007) clearly pointed out that there are indeed many other potential causes that led to the
booming housing market before its collapse.
4 More recently, some studies have also emphasized the role of fiscal policy shocks in driving the US housing market in the
wake of the ZLB (see Gupta et al. (2018a) and Montasser et al. (2020) for further details).
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5 In this regard, the role of monetary policy in producing second moment macroeconomic effects for the US economy,
including the equity market, has also been recently depicted by Mumtaz and Theodoridis (2020).
6 The data can be downloaded from: https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx.
7 As a robustness check, we also expand our dynamic factor model to include five regional factors that include Northeast,
Midwest, West, Southeast, and Southwest following Del Negro and Otrok (2007). The resulting national factor from this
expanded model is very similar to the national factor from the model without regional factors and the correlation between
the two is 0.98. Furthermore, the variance decomposition results indicate that the contributions of the national factor to house
price variations are little changed by adding regional factors. These results are available upon request.
8 It is straightforward to see that potential comovements in the factor loadings across all series can be captured by the
common factor volatility. This was pointed out by Del Negro and Otrok (2008).
9 Allowing for a larger number of breakpoints and lags turns out to be an infeasible task as there are not enough observations
per regime.
10 To provide diagnostics of the algorithm convergence, we follow Primiceri (2005) to compute the 20th-order sample auto-
correlation of simulation draws for each parameter and state variable (averaged over the sample period for state variables)
and plot them in Figure 19. These numbers are all around 0.2 and indeed most of them are far below 0.2. Our results are also
robust to different initial values. We deem these results quite satisfactory as indication of the algorithm convergence.
11 An interesting area of future research in this regard would be to determine what state-specific characteristics drive the
differences in exposures to the common factor.
12 Extending the search for a larger number of regimes or/and lags is not possible given the scale of the empirical model and
the quarterly nature of the data. There are no enough observations per regime to ensure meaningful estimates.
13 This period is known to be associated with large structural changes in the credit market culminating into the end of
regulation Q.
14 This is actually more than twice the figure of 13% detected by Del Negro and Otrok (2007) and could be an indication of
our model picking up the existing nonlinearity in the relationships among the variables of the change-point VAR.
15 For all these exercises, the number of regimes is set equal to 3 as in the benchmark model.
16 Based on the suggestion of an anonymous referee, we extended our data until 2021Q1. However, these additional obser-
vations had almost no effect on the estimation. This should not come as surprise as the scale of the model is enormous (with
close to 200 parameters) and 13 additional observations are not sufficient to change the inference dramatically. For instance,
when we looked at the historical decomposition from the longer data set, the model interprets the COVID-19 pandemic as a
demand shock mainly. More importantly, the increase in the housing returns seen during the corona virus crisis cannot be
justified by fundamental shocks. This decoupling is what gives rise to overvaluation and, potentially, sharp correction con-
cerns as it is explained in a recent IMF blog by Ahir et al. (2021) (among others). Complete details of these results are available
upon request from the authors.
17 This line of reasoning is vindicated, when based on the suggestion of an anonymous referee, inclusion of a metric of
macroeconomic uncertainty (as developed by Jurado et al. (2015)) and the excess bond premium (as per [Gilchrist and
Zakrajsek (2012)]) continues to not only depict the decoupling but makes it even relatively larger. Complete details of these
results are available upon request from the authors.
18 We would like to thank an anonymous referee for suggesting this line of analysis.
19 The methodology proposed by Caldara and Herbst (2019) deals also with “weak” instruments.
20 In this regard, as part of future research, it would be interesting to study the distributional impact of housing bubbles, as
outlined theoretically in Graczyk and Phan (2021).
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A. Bayesian MCMC estimation algorithm
In this section, we provide further details of each step in the Gibbs sampling estimation algorithm.

A.1. Draws of the national factor
We follow a procedure as laid out in Kim and Nelson (1999) to reduce the dimensionality of the
resulting state-space model so as to facilitate the estimation. Specifically, substitute equation (1)
into equation (6) to yield the following state-space representation:
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Measurement equation:

r∗i,t =Ht · Zt + exp(hi,t) · εi,t (16)

Transition equation:

Zt = F · Zt−1 + ζt (17)

where in the measurement equation, r∗i,t = (1− φi,1L− φi,2L2)ri,t , Ht = (βi,t ,−φi,1βi,t−1,
−φi,2βi,t−2). In the transition equation, the state vector is Zt = (ft , ft−1, ft−2)′ and the matrix
F is:

F =

⎛
⎜⎜⎝

φ
f
1 φ

f
2 0

0 1 0
0 0 1

⎞
⎟⎟⎠ (18)

The shock vector is ζt =
(
exp
(
hft
)

· εft , 0, 0
)′
, and its variance matrix is denoted by Qt .

Conditioning on the previous draws of {Ht}Tt=1,
{{

hi,t
}T
t=1

}n
i=1

,
{
σ 2
i
}n
i=1 , F, and {Qt}Tt=1, we

rely on the above state-space representation to take random draws of the national factor {ft}Tt=1.
Formally, we employ the Kalman filter and the ”filter forward and sample backwards” algorithm
as in Carter and Kohn (1994). See Kim and Nelson (1999) for details of this standard algorithm.

A.2. Draws of the model parameters in the factor dynamics

Given previous draws of the common factor
({ft}Tt=1

)
and its stochastic volatility

(
{hft }Tt=1

)
, the

AR parameter of the common factor dynamics is sampled from the linear regression (3). The
conjugate prior for φf is a Gaussian distribution with a zeromean and a variance that is an identity
matrix.

Conditional on the previous draws of the common factor
({ft}Tt=1

)
and the time-varying load-

ing
({βi,t}Tt=1

)
, the idiosyncratic factor (ei,t) can be computed from equation (1). Given the

idiosyncratic factor together with its stochastic volatility
({hi,t}Tt=1

)
, the AR and the variance

parameters are sampled from the linear regression (6). Again the conjugate prior for φi,e is a
Gaussian distribution with a zero mean and a variance that is an identity matrix. In addition, the
conjugate prior for the variance parameter is σ 2

i ∼ IG(0, 0), where IG denotes the inverted-gamma
distribution. This specification ensures a diffuse prior for the variance parameters.

Since in both cases, the factor volatility is time varying, and the regression errors are het-
eroskedastic. We re-scale the variables in each equation to make the errors homoskedastic,
essentially doing a weighted least square. We sample these parameters from the transformed
regression.

A.3. Draws of the loading parameters and the shock variance
Applying the same procedure as in Section (A.2) to reduce the dimensionality, we can cast the
model into its following state-space representation:

Measurement equation:

r∗i,t = Xi,t · Bi,t + exp(hi,t) · εi,t (19)

Transition equation:

Bi,t =G · Bi,t−1 + ξi,t (20)
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where r∗i,t = (1− φi,1L− φi,2L2)ri,t , Xi,t = (ft ,−φi,1 · ft−1,−φi,2 · ft−2), Bi,t = (βi,t , βi,t−1,

βi,t−2)′, ξi,t =
(
σ

β
i · ηi,t , 0, 0

)′
, and the matrix G in the transition equation is

G=

⎛
⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎠

Because conditional on r∗i,t , Xi,t , hi,t , σi, σβ
i , the loading parameters are independent across

series, this step can be conducted for each series i. The algorithm “filter forward, sample back-
wards” in Carter and Kohn (1994) is employed to draw the latent factors Bi,t . Conditional on Bi,t ,
the variance parameter σ

β
i is sampled from the linear regression (5). For the variance parameter

σ
β
i , we employ the conjugate prior:

(
σ

β
i

)2 ∼ IG(0.002, 2) with a relatively diffuse prior.

A.4. Draws of the stochastic volatility
Conditional on factors and corresponding parameters in the stochastic volatility process, the
stochastic volatility of factors is independent from each other. As a result, we explain the sam-
pling algorithm for the stochastic volatility of the common factor, and the same procedure applies
to each idiosyncratic factor.

Given a draw of the common factor and other parameters, compute the random shock in
equation (3):

f ∗t = ft − φ
f
1ft−1 − φ

f
2ft−2 = exp

(
hft
)

· εft (21)

Square and take a natural logarithm of both sides to obtain the following state-space represen-
tation:

Measurement equation:

f ∗∗
t = 2hgft + ζ

f
t (22)

Transition equation:

hft = hft−1 + σ h
f · ξ ft , ξ

f
t ∼ i.i.d.N(0, 1) (23)

where f ∗∗
t = ln(f ∗t )2, ζ

f
t = ln(εft )2.

First note that the shocks ζ
f
t and ξ

f
t are independent. However, the shock ζ

f
t in the mea-

surement equation is not normally distributed, and its distribution is lnχ2(1). Kim et al. (1998)
propose an approach based on a mixture of normal densities to approximate the underlying
non-normal distribution when utilizing the Kalman filter to draw the stochastic volatility in this
context. Specifically, they suggest using seven normal densities with different meansmk − 1.2704
and variances τ 2k , for k= 1, 2, . . . , 7, with the component probabilities being θk. They carefully
choose these values to closely replicate the exact density of lnχ2(1). Table 4 is taken from Kim
et al. (1998) and reports these values.

Conditional on knowing f ∗∗ and the component probabilities of the seven normal densities, the
above state-space model is approximately linear and Gaussian. Therefore, the standard sampling
algorithm in Carter and Kohn (1994) can be employed again to draw the stochastic volatility.
Given a sample of the stochastic volatility, the component probabilities are then updated using
the Bayes’ rule. The specific sampling algorithm follows those in Primiceri (2005), Del Negro and
Primiceri (2015), and Koop and Korobilis (2010). For the shock variance to the volatility process,
we use the conjugate with a relatively diffuse prior: IG(0.002, 2).
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Table 4. Selection of the mixing distribution

δ Pr(δ = k) mk τ 2k

1 0.0073 −10.13 5.79596
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.10556 −3.9728 2.61369
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.00002 −8.5669 5.1795
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.04395 2.77786 0.16735
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.34001 0.61942 0.64009
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.24566 1.79518 0.34023
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.2575 −1.0882 1.26261

A.5. Diagnostics of the algorithm convergence
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Figure 19. Convergence diagnostics for parameters and state variables.
Notes: 1–52 are the common factor and state-specific factors; 53–104 are stochastic volatilities; 105–208 are AR parameters;
209–259 are variance parameters for individual factors; 260–310 are factor loadings.

B. Description of the priors
The priors for the VAR(P) coefficients and the error covariance matrices are set via dummy
observations. The normal inverse Wishart prior is defined as

YD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

diag(γ1σ1...γNσN )

τ

0N×(P−1)×N

. . . . . . . . . . . . ..
diag(σ1 . . . σN)

. . . . . . . . . . . . ..
01×N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and XD =

⎛
⎜⎜⎜⎜⎜⎝

JP⊗diag(σ1...σN )

τ
0NP×1

0N×NP 0N×1

. . . . . . . . . . . . ..
01×NP c

⎞
⎟⎟⎟⎟⎟⎠ ,
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where σi for i= 1, 2, ..N represents scaling factors, γi denotes the prior mean for the coefficients
on the first lag, τ is the tightness of the prior on the VAR coefficients, and c is the tightness of
the prior on the constant terms. In order to obtain a value for γi, σi, we estimate an AR(1) model
via ordinary least squares (OLS) for each endogenous variable. γi is set equal to OLS estimate of
the AR(1) coefficient, while σi is the standard deviation of the residual. The matrix JP is defined
as diag(1, 2, ..P). We set τ = 0.1 and c= 1 in our implementation. The value for τ implies a rela-
tively high degree of shrinkage; however, the model is estimated using quarterly macroeconomic
data and a larger number of both regimes and lags are considered in order to be confident that
the dynamics of the data captured properly. A tight prior and a low number of observations
per regime should bias the results against state variation. However, we know from the discus-
sion in the text that this is not the case. Despite the tight priors, the estimation of the model
reveals significantly different dynamics across regimes. Note that in the final regime covering the
unconventional monetary policy period, we introduce an additional prior on the VAR coefficients
that ensures that lagged coefficients on the non-dependent variables in the interest rate equation
are close to zero. This prior is implemented via a prior covariance matrix with the diagonal ele-
ments corresponding to the coefficients of interest in the interest rate equation set to small values
(1e− 12). The remaining diagonal elements are set to 1e12.

The prior for the nonzero elements of the transition probability matrix pij is of the following
form:

p0ij =D
(
uij
)
,

where D(.) denotes the Dirichlet distribution and uij = 15 if i= j and uij = 1 if i �= j. This choice
of uij implies that the regimes are fairly persistent. The posterior distribution is

pij =D
(
uij + ηij

)
,

where ηij denotes the number of times regime i is followed by regime j.

C. Description of the Gibbs sampling algorithm
The Gibbs sampling algorithm proceeds in the following steps:

1. Sampling St Following (Kim and Nelson 1999, Chapter 9), we use multi-move Gibbs sam-
pling to draw St from the joint conditional density, f (St|Zt , cS, B1,S, . . . , BK,S,�S, P̃). Note
that we impose the restriction that each regime must have at leastN ×K + 2 observations,
where N denotes the number of endogenous variables in the VAR, to ensure sufficient
degrees of freedom for each regime.

2. Sampling cS, B1,S, . . . , BK,S,�S Conditional on a draw for St , the model is simply a
sequence of Bayesian VARmodels. The regime-specific VAR coefficients are sampled from
a normal distribution and the covariances are drawn from an inverted Wishart distribu-
tion. For the first M regimes, we use a normal inverse Wishart prior (see Kadiyala and
Karlsson 1997). However, as described in detail below, we employ a (normal diffuse) prior
distribution for the VAR coefficients to the final regime, which is compatible with the iden-
tification of the shock to the government bond spread. In our sample, the recent financial
crisis coincides with the final regime of the estimated VAR model. The prior on the VAR
coefficients in this regime implies that the policy rate does not respond to lagged changes in
other endogenous variables. This assumption is compatible with restrictions used to iden-
tify the shock to the bond-yield spread and reflects the fact that policy rates have reached
the ZLB.
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3. Sampling P̃ Given the state variables St , the nonzero elements of the transition probability
matrix are independent of Zt and the other parameters of the model, and they are drawn
from a Dirichlet posterior.

D. Robustness analysis
D.1. Looser priors
This section illustrates that agents’ responses to identified macroeconomic shocks are (almost)
unchanged when the hyperparameter that controls the tightness of the VAR coefficients is
increased to 2.

Figure 20. Impulse responses: demand shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.

Figure 21. Impulse responses: supply shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.
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Figure 22. Impulse responses: policy shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.

Figure 23. Impulse responses: slope shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.

D.2. Unemployment
This section illustrates that agents’ responses to identified macroeconomic shocks are again
(almost) unchanged when the unemployment (instead of GDP growth) is used.
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Figure 24. Impulse responses: demand shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.
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Figure 25. Impulse responses: supply shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.

Figure 26. Impulse responses: policy shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.
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Figure 27. Impulse responses: slope shock.
Notes: The solid (black) line represents the (pointwise) median, while the shaded area captures the 16%− 84% percentiles
of the posterior distribution. The shock has been normalized to increase GDP growth by 1 percentage point in the second
quarter.
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