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Decidability problem for exponential
equations in finitely presented groups

Oleg Bogopolski and Aleksander Ivanov

Abstract. We study the following decision problem: given an exponential equation a1 gx1
1 a2 gx2

2 . . .
an gxn

n = 1 over a recursively presented group G, decide if it has a solution with all x i inZ. We construct
a finitely presented group G where this problem is decidable for equations with one variable and is
undecidable for equations with two variables. We also study functions estimating possible solutions
of such an equation through the lengths of its coefficients with respect to a given generating set of G.
Another result concerns Turing degrees of some natural fragments of the above problem.

1 Introduction

An exponential equation over a group G is an equation of the form

a1 gx1
1 a2 gx2

2 . . . an gxn
n = 1,(1.1)

where a1 , g1 , . . . , an , gn are elements from G and x1 , . . . , xn are variables which take
values in Z. We always assume that G is given by a recursive presentation ⟨X ∣R⟩. In
this paper, we study the exponential equations problem (briefly EE-problem), which is
the following decision problem:

Given an exponential equation over G, decide if it has a solution, which is a tuple
of integers.

The study of exponential equations in groups was initiated by Myasnikov, Nikolaev,
and Ushakov in [17], where they showed that the EE-problem is algorithmically
decidable in any hyperbolic group G. According to [11], it is in LogCFL, a subclass
of P. The study of problems related to the EE-problem and its complexity in various
families of groups has become a very active area of investigations that uses methods
of geometric and combinatorial group theory, automata, complexity theory, recursive
functions, and logic (see [4–7, 9–13, 16]).

We mention results of Lohrey and Zetzsche on right-angled Artin groups and
on virtually special groups [12], of Mishchenko and Treier on nilpotent groups [16],
and of Dudkin, Treyer, Lohrey, and Zetzsche on Baumslag–Solitar groups BS(n, m)
(see [4, 13]). König, Lohrey, and Zetzsche studied in [9] the EE-problem for the
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Heisenberg group H3(Z) and its direct products. Continuing the line of [17], Lohrey
described solutions of exponential equations in hyperbolic groups (see [11]). Bier and
Bogopolski showed in [1] that if G is a relatively hyperbolic group with respect to a
finite collection of subgroups {H1 , . . . , Hn}, then the EE-problem for G reduces to
the EE-problems for H i ’s, provided some natural assumptions are satisfied.

In this paper, we study the EE-problem and its complexity in general, i.e., not
focusing on a specific class of groups. For the forthcoming discussion, it is convenient
to introduce the following definition.

Definition 1.1 Let G be a group, and let n be a fixed natural number. The EE[n]-
problem for G is the following problem: given an exponential equation over G with n
variables, decide if it has a solution or not.

By WP(G) and CP(G), we denote the word and the conjugacy problems for G,
respectively. Sometimes we omit G in these notations. We have the following relations
among these decision problems:

WP⇐ EE[1] ⇐ EE[2] ⇐ ⋅ ⋅ ⋅ ⇐
∞
∪
i=1

EE[i] (= EE).

The first implication follows from the equivalence g = 1⇔ (∃z ∈ Z) (g = 1z); the
other implications are obvious. Note that the EE [1]-problem, i.e., the problem about
the solvability of equations of kind ax = b, is called the power problem (see [15, 20]).
McCool proved in [15] that the implication WP⇒ EE[1] is not valid in general in
the class of recursively presented groups. Ol’shanskii and Sapir have found a finitely
presented example with decidable CP and undecidable EE[1] (see Theorem 1.3(2) in
[21]). This motivated us to raise the following problem.

Problem 1 For any n ∈ N /{0}, construct a finitely presented group G with decidable
EE[n] and undecidable EE[n + 1].

The main result of this paper is the solution of Problem 1 for n = 1.

Theorem A There exists a finitely presented group with decidable EE[1] and undecid-
able EE[2]. Moreover, this group has decidable conjugacy problem.

This theorem is proved in Sections 2 and 3.
The next issue concerns estimation of possible solutions of exponential equations

over G = ⟨X ∣R⟩ by recursive functions on lengths of coefficients of these equations
with respect to the generating set X. The motivation comes from the fact that this
is a usual way to solve such equations. In Proposition 4.5, we show that primitive
recursive functions are not sufficient for this aim. More information about the
complexity of estimating functions for some interesting classes of groups can be found
in Remarks 4.6 and 4.7.

In Section 5, we introduce decision problems EE[g , Gn] and EE[G , g], which can
be considered as fragments of EE [n] for G. We show that these fragments can have
diverse recursively enumerable (r.e.) Turing degrees in the same finitely presented
group. From a quite general Theorem 5.3, we deduce the following statement.
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Theorem B There exists a finitely presented torsion-free group G with decidable
conjugacy problem and undecidable EE[1] such that any r.e. Turing degree is realized as
the Turing degree of the problem EE[g , G] for appropriate g ∈ G.

We use methods from combinatorial group theory and some standard facts from
computability theory. We also use variants of Higman embeddings developed by
Ol’shanskii and Sapir in [18]–[20]. In the places where arguments are of computability
theory flavor, we follow the terminology of [22] (in particular, we write “computable”
instead of “recursive”). In the remaining parts of the paper, we keep the traditions of
algorithmic group theory [14].

The following remark is not only a warning that some terminology used in
this paper differs from that by other authors, but it also leads to an interesting
mathematical problem.

Remark 1.2 Using conjugations, one can rewrite the exponential equation (1.1) in
the equivalent form

f z1
1 f z2

2 . . . f zn
n = f0 .(1.2)

In [17], the decision problem for these equations asking about solutions in Z is called
the integer knapsack problem (IKP). The corresponding problem for N instead of
Z is called knapsack problem (KP) in analogy with the optimization problem for
natural numbers. Clearly, decidability of KP(G) implies decidability of IKP(G) (use
inversions f i ↦ f −1

i ). We conjecture that the converse is not valid.

Problem 2 Construct a recursively presented (finitely presented) group G for which
there is an algorithm deciding if a given exponential equation over G has a solution
with components in Z, and there is no algorithm deciding the analogous question about
solutions with components in N.

In our paper, we will often work with equations of the form (1.2) instead of (1.1).

2 A recursively presented group with decidable EE[1] and undecid-
able EE[2]

When G is a group given by a recursive presentation ⟨X ∣ R⟩ and w ∈ G, we denote by
∣w∣X the length of a shortest word in the alphabet X ∪ X−1 representing w. The free
group generated by X is denoted by F(X). The length of u ∈ F(X) with respect to X
will be often written as ∣u∣. A syllable of u is a maximal subword of the form xk , k ∈ Z,
where x ∈ X. When the word u is cyclically reduced, it can be viewed as a cyclic word,
i.e., the set of all cyclic shifts of u.

The main purpose of this section is the following weaker version of Theorem A.

Proposition 2.1 There exists a recursively presented group G such that EE[1] is
decidable, but EE[2] is undecidable.

In the proof of this proposition, we use the following lemmas. The first one is
obvious.

https://doi.org/10.4153/S0008439522000698 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000698


734 O. Bogopolski and A. Ivanov

Lemma 2.2 Let w and u be two nontrivial elements of the free group F(X). If w = uz

for some z ∈ Z, then ∣z∣ ⩽ ∣w∣X .

Lemma 2.3 Let w(a, b, c) be a nonempty reduced cyclic word in F(a, b, c), and let

M =max{∣z∣ ∶ w has a subword of the form az or bz , z ∈ Z}.

Suppose that m > M. Then w(a, b, ambm) ≠ 1 in F(a, b). Moreover, if

w(a, b, ambm) = v(a, b)z ,

for some v(a, b) ∈ F(a, b) and z ∈ Z, then ∣z∣ ⩽ ∣w(a, b, c)∣.

Proof We assume that w contains at least one c or c−1 (otherwise the statement is
obvious).

After substitution c → ambm , the word w is uniquely factorized as w0w1 . . . wk
where every w i with i ∉ {0, k} has one of the following forms for a reduced
u i = u i(a, b):
1. bmu i am ,
2. a−mu i b−m ,
3. bmu i b−m ,
4. a−mu i am .
The word w0 (resp. wk) has the same form except that the initial (final) syllable bm or
a−m (resp. am or b−m) is missing. Note that in cases 3 and 4, the word u i cannot be
empty; otherwise, w would not be reduced.

Since u i contains no exponent larger than M, the reduced normal form red(w i)
for i ∉ {0, k} is as follows. In case 1, it is of the form b . . . a; in case 2, it is of the form
a−1 . . . b−1; and in case 3, it is of the form b . . . b−1 provided u i contains an a-syllable.
When u i does not contain an a-syllable, red(w i) = br , where 1 ≤ ∣r∣ < M. Case 4 is
similar to case 3 (with a instead of b).

Applying this analysis (with natural versions of it in the cases of w0 and wk) and
using the observation that if w i ends with am (resp. b−m) then w i+1 starts with bm

(resp. a−m), we see that

red(w(a, b, ambm)) = red(w0)red(w1) ⋅ ⋯ ⋅ red(wk).

Thus, red(w(a, b, ambm)) has at least two syllables, i.e., it is not empty.
For the second statement of the lemma, we may assume that v(a, b) is cycli-

cally reduced and when it starts with a±1 (resp. b±1), then it ends with b±1 (resp.
a±1). This can be achieved using conjugations. Let n1 be the number of syllables
in red(w(a, b, ambm)), and let n2 be the number of syllables in v(a, b). Then
min(n1 , n2) ⩾ 2 and z = n1/n2 ⩽ n1/2. It remains to note that n1 ⩽ 2∣w(a, b, c)∣. The
latter is valid since, after substitution c → ambm in w, the total number of a-syllables
and b-syllables increases by at most 2k, where k is the number of occurrences of c±1

in w. ∎

Proof of Proposition 2.1 Our construction resembles McCool’s example from [15].
Let f ∶ N→ N be a one-to-one recursive function with nonrecursive range. Consider
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the following infinite presentation:

G = ⟨ ∪
i∈N
{a i , b i , c i} ∣ c f (i) = a i

f (i)b
i
f (i) (i ∈ N)⟩.(2.1)

Let X = ∪
i∈N

X i , where X i = {a i , b i , c i}. Let H i be the subgroup of G generated by X i .
Then

G = ∗
j∈N

H j ,(2.2)

where each H j is free and

rk(H j) =
⎧⎪⎪⎨⎪⎪⎩

2, if j ∈ im f ,
3, if j ∉ im f .

Claim 1 The word problem is decidable for the presentation (2.1).

Proof Using the normal form of an element of the free product (2.2), we reduce
WP(G) to the following problem. Given j ∈ N and given a reduced nonempty word
w(a j , b j , c j), decide whether the corresponding element of H j is trivial or not. The
difficulty is that we do not know whether j ∈ im( f ) or not.

From now on, we consider w(a j , b j , c j) as a nonempty reduced cyclic word in
F(a j , b j , c j). Let M be the maximum of absolute values of exponents of a j and b j in
the word w(a j , b j , c j).

First, we verify whether there exists m ⩽ M with j = f (m) or not. If such m exists,
we substitute am

j bm
j for c j in w(a j , b j , c j) and verify whether the resulting word is

trivial in F(a j , b j) or not. This can be done effectively.
We claim that, in the remaining cases, the word w is nontrivial in G. Indeed, if

j ∉ im f , then H j ≅ F(a j , b j , c j), and hence w(a j , b j , c j) is nontrivial in H j . If
j = f (m) for some m > M, then w(a j , b j , c j) = w(a j , b j , am

j bm
j ) is nontrivial in

F(a j , b j) by Lemma 2.3. ∎

Claim 2 The group G has undecidable EE[2].

Proof The equation ck = ax
k by

k is solvable if and only if k = f (i) for some i (in this
case, x = y = i is the unique solution). Since the set im( f ) is not recursive, we cannot
recognize whether such i exists or not. Therefore, we cannot recognize the existence
of such x and y. ∎

Claim 3 The group G has decidable EE[1].

Proof Consider an exponential equation

u = vz ,(2.3)

where u and v are nontrivial words in the alphabet X = ∪
i∈N

X i . In order to decide if it
is solvable, we may assume that u ≠ 1 and v ≠ 1 in G. ∎
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We write v = v1v2 . . . v�, where v i is a word in the alphabet Xλ(i) for some λ(i),
i = 1, . . . , �, and λ( j) ≠ λ( j + 1) for j = 1, . . . , � − 1. Moreover (using decidability of
WP(G)), we assume that each v i represents a nontrivial element of Hλ(i). Using
conjugation, we may additionally assume that λ(1) ≠ λ(�) if � > 1. Analogously, we
write u = u1u2 . . . uk . Note that v1 and u1 (resp. v� and uk) belong to the same
subgroupH j .

Suppose that � > 1. Then a necessary condition for solvability of equation (2.3) is
k > 1. If this condition is fulfilled, then any possible solution z of equation (2.3) satisfies
∣z∣ = k/�, and the existence of a solution z can be verified using decidability of WP(G).

Let � = 1. Then a necessary condition for solvability of equation (2.3) is k = 1. Thus,
we assume that u, v are words in the alphabet X j for some j. We want to solve the
equation

u(a j , b j , c j) = v(a j , b j , c j)z .(2.4)

Without loss of generality, we assume that u(a j , b j , c j) is a reduced cyclic word. Let
M be the maximum of absolute values of exponents of a j and b j in u(a j , b j , c j).

First, we check whether some m ∈ {1, . . . , M} satisfies f (m) = j. If such m is found,
equation (2.4) takes the form

u(a j , b j , am
j bm

j ) = v(a j , b j , am
j bm

j )
z ,

and the solvability of this equation can be verified with the help of Lemma 2.2.
If no such m exists, then either j ∉ im f , or j = f (m) for some m > M. We claim

that, in these cases, the absolute value of a possible solution z of equation (2.4) does
not exceed the length of the word u(a j , b j , c j) in F(a j , b j , c j). Indeed, if j ∉ im f , then
H j is the free group with basis {a j , b j , c j}, and the claim follows from Lemma 2.2. If
j ∈ im f , then the claim follows from Lemma 2.3.

Using the estimation for ∣z∣ and decidability of WP(G), we can verify whether
equation (2.4) has a solution. ∎

Remark 2.4 One can show that the group G constructed in the proof of Proposi-
tion 2.1 has solvable conjugacy problem. However, we do not need this for the proof
of Theorem A.

3 Proof of Theorem A

Below, we deduce Theorem A from Proposition 2.1 and the following result of
Ol’shanskii and Sapir.

Theorem 3.1 (See [20, Theorem 1]) Every countable group G = ⟨x1 , x2 , . . . ∣R⟩ with
solvable power problem is embeddable into a 2-generated finitely presented group
G = ⟨y1 , y2 ∣R⟩ with solvable conjugacy and power problems.

Remark 3.2 In this remark, we recall the main steps of the proof of Theorem 3.1.
We do this to make clear that the embedding φ ∶ G → G constructed in the proof of
this theorem is computable. This means that there exists an algorithm, which, given

https://doi.org/10.4153/S0008439522000698 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000698


Decidability problem for exponential equations in finitely presented groups 737

i ∈ N, expresses x i as a word in y1 and y2. Furthermore, these steps will be also used
in arguments of Sections 4 and 5.

Four steps in the construction of Ol’shanskii and Sapir. Before we start, observe that
any countable group G = ⟨x1 , x2 , . . . ∣R⟩ with solvable power problem has solvable
word problem; hence, it admits a recursive presentation. Thus, we may assume that
the given presentation of G is recursive. Moreover, the solvability of power problem
implies the solvability of order problem (there exists an algorithm which computes
orders of elements).

Step 1. In [3], Collins noticed that if H is a recursively presented group with solvable
power problem and a, b are two elements in H of the same order, then the HNN
extension Ha ,b = ⟨H, t ∣ t−1at = b⟩ has solvable power problem.

Using a sequence of HNN extensions of this type, G can be embedded into
a recursively presented group G1 with solvable power problem where every two
elements of the same order are conjugate. Thus, the conjugacy problem in G1 is
decidable. Moreover, the constructed embedding φ1 ∶ G → G1 (the identity map on
the generators of G) is computable.

Step 2. In [18], Ol’shanskii suggested the following construction for embedding of
countable groups into 2-generated groups. Let H = ⟨x1 , x2 , . . . ∣R⟩ be any countable
group. Denote by R1 the set of words in the alphabet {a, b} obtained by substituting
the word

A i = a100b i a101b i . . . a199b i

for every x i in every word from R. It was shown in [18] that the map x i ↦ A i , i ∈ N,
extends to an embedding of H into H1 = ⟨a, b ∣R1⟩. Lemmas 10 and 11 of [20] say that
if the group H has decidable word or conjugacy problem or power problem, then the
same problem is decidable for the group H1.

Applying this construction, we obtain a computable embedding φ2 ∶ G1 → G2,
where G2 = ⟨a, b ∣R2⟩ is 2-generated, recursively presented, and has solvable power
and conjugacy problems.

Step 3. Lemma 12 of [20] says that this G2 can be embedded into a finitely presented
group G3 = ⟨a, b, c1 , . . . , cn ∣R3⟩ with solvable power and conjugacy problems. This
embedding extends the identity map a ↦ a, b ↦ b, which is obviously computable.

The corresponding embedding was first described in [19]. We indicate that G2 and
G3 play the roles of K and H in [19].

Step 4. Using the construction from Step 2 once more, we embed G3 into a
2-generated finitely presented group G = ⟨y1 , y2 ∣R⟩ with solvable conjugacy and
power problems.

Since the embeddings at all steps are computable, their composition φ ∶ G → G is
computable as well.

Proof of Theorem A By Proposition 2.1, there is a recursively presented group G
with decidable EE[1] and undecidable EE[2]. Using Theorem 3.1 and Remark 3.2,
we obtain a computable embedding φ ∶ G → G, where G is finitely presented and
has decidable EE[1]. Since φ is computable, undecidability of EE[2] for G implies
undecidability of EE[2] for G.
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Indeed, consider an arbitrary equation g0 = gx
1 g y

2 with g0 , g1 , g2 ∈ G written as
words in the generators of G. Using computability of φ, we can write φ(g0), φ(g1),
φ(g2) as words in the generators of G. The equation φ(g0) = φ(g1)x φ(g2)y has
the same solutions as the original one. If we could decide whether this equation is
solvable, we could decide whether the original equation is solvable. However, EE[2]
is undecidable for G. Hence, it is undecidable for G. ∎

Remark 3.3 The Knapsack counterpart of EE[2] is also undecidable in G.

4 Estimating functions for solutions of exponential equations

Let G be a group generated by a set X. For any finite tuple ḡ = (g0 , . . . , gn) of elements
of G, the∞-norm of this tuple is the number

∥ḡ∥X =max{∣g0∣X , . . . , ∣gn ∣X}.

In the case where G = Z and X = {1}, we omit X and write ∥ḡ∥.

Definition 4.1 Let G be a group generated by a set X. A function f ∶ N→ N is called
an EE[n]-estimating function for G (with respect to X) if for any exponential equation
g0 = gz1

1 ⋅ ⋯ ⋅ gzn
n over G with nonempty set of solutions, there exists a solution

k̄ = (k1 , . . . , kn) with

∥k̄∥ ⩽ f (∥(g0 , . . . , gn)∥X).

Remark 4.2 Let G be a group, and let X and Y be two generating sets of G. Suppose
that

sup
y∈Y
∣y∣X < ∞.

If there exists a (recursive) EE[n]-estimating function for G with respect to X, then
there exists a (recursive) EE[n]-estimating function for G with respect to Y.

The following lemma relates decidability of EE[n] in G and existence of a total
recursive EE[n]-estimating function. It is a counterpart of the fact that a group G with
a finite generating set X has solvable WP if and only if the Dehn function of G with
respect to X is total recursive.

Lemma 4.3 Let G be a group generated by a finite set X. For any n ∈ N, the following
two conditions are equivalent.
(1) EE[n] is decidable in G.
(2) WP(G) is decidable, and there exists a total recursive EE[n]-estimating function

for G with respect to X.

Proof (1) ⇒ (2). Suppose that EE[n] is decidable in G. Then, clearly, WP(G) is
decidable. Now, we define the desired function f ∶ N→ N at arbitrary point m ∈ N in
four steps.
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(1) Let B(m) be the set of all tuples ḡ = (g0 , g1 , . . . , gn) of words in the alphabet
X satisfying ∥ḡ∥X ⩽ m. Since X is finite, the set B(m) is finite and we can
compute it.

(2) Let B(m)′ be the subset of B(m) consisting of the tuples ḡ = (g0 , g1 , . . . , gn)
for which the equation g0 = gx1

1 ⋅ ⋯ ⋅ gxn
n has a solution. We can compute B(m)′

using decidability of EE[n] in G. Note (1, . . . , 1) ∈ B(m)′.
(3) For each tuple ḡ ∈ B(m)′, we can find some solution k̄ = (k1 , . . . , kn) of the

equation g0 = gz1
1 ⋅ ⋯ ⋅ gzn

n using an effective enumeration of n-tuples of integers
and the decidability of WP(G). We denote this solution by k̄(ḡ). When ḡ = 1̄,
we put k̄(ḡ) = 1̄.

(4) Finally, we set f (m) to be the maximum of ∥k̄(ḡ)∥ over all ḡ ∈ B(m)′.
The function f is total recursive and satisfies Definition 4.1.
(2) ⇒ (1). Consider an exponential equation g0 = gz1

1 ⋅ ⋯ ⋅ gzn
n over G. To decide

whether this equation has a solution, we verify whether the equality g0 = gk1
1 ⋅ ⋯ ⋅ gkn

n
holds for at least one tuple k̄ = (k1 , . . . , kn) ∈ Zn with ∥k̄∥ ⩽ f (∥ḡ∥X). The verification
for a concrete tuple k̄ can be done using WP(G). ∎

Remark 4.4 In [8], Kharlampovich constructed a group G which is finitely pre-
sented in the variety xm = 1 and has undecidable word problem. By Lemma 4.3, EE[n]
is undecidable for each n. On the other hand, the constant function f (k) = m, k ∈ N,
is a total recursive EE[n]-estimating function for G.

The following proposition shows that there is a finitely presented group with
decidable EE[1]which does not have a primitive recursive EE[1]-estimating function.

Proposition 4.5 There exists a finitely presented group G = ⟨X∣R⟩ with decidable
EE[1], and there exists a collection of elements (cn)n∈N of G such that the following
holds.
(1) For any n, the equation c1 = cx

n has a unique solution, say kn ; this solution is
positive.

(2) There is no primitive recursive function f such that kn ⩽ f (max{∣cn ∣X , ∣c1∣X}).

Proof We enumerate all primitive recursive functions g1 , g2 , . . . and, for any n ∈ N,
we define a function fn ∶ N→ N by the rule

fn(x) =
n
∑
i=1

x
∑
j=1

g i( j), x ∈ N.

Clearly, fn is primitive recursive, nondecreasing, gn ⩽ fn , and fn ⩽ fn+1. Finally, we
define a function F ∶ N→ N by the rule

F(n) = n!( fn(100n + 14950) + 1).

Clearly, F is recursive. We also define rational numbers c1 = 1 and cn = 1
F(n) for n ⩾ 2.

Then we fix a recursive presentation (written multiplicatively) for the group (Q,+):

⟨{q ∶ q ∈ Q} ∣CQ⟩,
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where CQ is the Cayley table for Q. Note that c1 , c2 , . . . appear in this presentation
and the equalities cF(n)

n = c1(n, m ∈ N) follow from CQ. We may assume that they are
in CQ. It is clear that EE[1] is decidable for this presentation. By the choice of F(n),
the elements c1 , c2 , . . . generate Q. By some obvious transformations, we obtain a
recursive presentation of Q in the form

⟨c1 , c2 , . . . ∣R0⟩,

so that EE[1] is decidable. We embed Q into a finitely presented group G3 by the
Ol’shanskii–Sapir construction, which we described in Steps 1–4 in Section 3. Note
that since Q has decidable conjugacy problem, we do not need to do Step 1. Thus, we
start with Step 2, where we use the following map.
• Let φ2 map each c i to the word a100b i a101b i . . . a199b i (of length 100i + 14950),

i ∈ N.
By Step 2, φ2 extends to an embedding φ2 ∶ Q→ G2, where the group

G2 = ⟨a, b ∣R2⟩ is 2-generated, recursively presented, and has solvable power and
conjugacy problems. Then we only apply Step 3. By this step, the map a ↦ a, b ↦ b
extends to an embedding φ3 ∶ G2 → G3, where G3 = ⟨X∣R3⟩ is a finite presentation
with solvable power and conjugacy problems, and {a, b} ⊆ X. We set G = G3.

The statement (1) is valid: for any n, the equation cx
n = c1 has a unique solution,

namely kn = F(n). To prove statement (2), we first observe that

max{∣cn ∣X , ∣c1∣X} ⩽max{∣cn ∣{a ,b}, ∣c1∣{a ,b}} ⩽ 100n + 14950.(4.1)

Suppose that statement (2) is not valid, i.e., there exists a primitive recursive function
gm such that

kn ⩽ gm(max{∣cn ∣X , ∣c1∣X})(4.2)

for any n. Using that gm ⩽ fm and that fm is nondecreasing, we deduce from (4.1) and
(4.2) that

F(n) ⩽ fm(100n + 14950)

for any n. In particular, F(m) ⩽ fm(100m + 14950). This contradicts the definition
of F. ∎

Remark 4.6 Theorem 4.2 in [13] states that the KP in the Baumslag–Solitar group
BS(1, 2) is NP-computable, but the EE[3]-estimation function for this group can-
not be essentially smaller than the doubly exponential function. This statement
can be considered as a counterpart of Proposition 4.5 at the level of polynomial
computability.

Remark 4.7 However, for hyperbolic groups, EE[n]-estimating functions can be
chosen to be linear for any n (a polynomial estimation was known earlier; see [17]).
This follows from the preprint [1] of the first-named author and Bier. It is proved in
[1] that similar linearity result holds for acylindrically hyperbolic groups in the case
of loxodromic coefficients g i .
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5 Restricted versions of EE[n]

We introduce two new algorithmic problems which can be considered as fragments
of EE[n]. Informally we call them the left and the right fragments of EE[n]. We show
that these fragments can take diverse computational complexities for the same finitely
presented group (see Theorem B).

5.1 Definitions and observations

Below, we assume that G is given by a recursive presentation and X is the correspond-
ing set of generators.

Definition 5.1 (1) Let g1 , . . . , gn ∈ G. By EE[G , g1 , . . . , gn], we denote the set of all
g ∈ G such that the equation g = gz1

1 ⋅ ⋯ ⋅ gzn
n has a solution which is a tuple of integers.

(2) For a fixed g ∈ G, let EE[g , Gn] be the set consisting of all tuples (g1 , . . . , gn) ∈ Gn

such that the equation g = gz1
1 ⋅ ⋯ ⋅ gzn

n has a solution which is a tuple of integers.

Note that for a tuple of units 1̄, the membership problem for EE[G , 1̄] is equivalent
to the word problem. Decidability of the problem EE[n] is a uniform form of
decidability of all EE[G , ḡ] (resp. EE[g , Gn]). Indeed, if for each g ∈ G there is an
algorithm (provided by the word g in an effective way) which decides the membership
problem for EE[g , Gn], then EE[n] is decidable. The similar statement holds for
problems EE[G , g1 , . . . , gn].

Remark 5.2 Suppose that G is a group given by a recursive presentation. Let g be a
nontrivial element of G. Suppose that EE[G , g] is decidable in G and the order of g is
known. Then WP is decidable in G.

Indeed, in order to determine whether a given h is trivial in G, we first verify
whether h is a power of g. If h is not a power of g, then h /= 1. If h is a power of g, we
start a diagonal computation for verification of the following equalities: h = 1, h = g,
. . . , h = gk , . . .. Here, we use the recursive presentation of G. At some stage, we will
find a number k with h = gk . Since the order of g is known, we can check whether
h = 1 or not.

Given a group G and a natural number n ⩾ 1, how diverse can be algorith-
mic complexities of the problems EE[g , Gn], and EE[G , g1 , . . . , gn], where
g , g1 , . . . , gn run over G? How these complexities are related to the complexity
of the problem EE[n]?

A partial answer to these problems (in the case where G is finitely presented) is
given in Theorem B.

5.2 Example

Let pn denote the nth prime number. For any function F ∶ N→ N2 and any n ∈ N, we
denote (imF)n = {m ∈ N ∣ (n, m) ∈ im(F)} and write F = (F1 , F2).
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Let F ∶ N→ N2 be a total, injective, computable function such that, for any n ∈ N,
we have either (imF)n = ∅ or

pn ∈ (imF)n ⊆ {pk
n ∣ k ∈ N /{0}}.

Thus, all sets (imF)n , n ∈ N, are pairwise disjoint. We put

X = {an ∣ n ∈ N} ∪ {bm ∣m is a power of a prime number, m ≠ 1}

and consider the group with the following recursive presentation:

G = ⟨X ∣R1 ∪R2⟩,(5.1)

where

R1 = {[an , bm] = 1 ∣ n, m ∈ N, m = pk
n forsome k ∈ N /{0}},

R2 = {aF1(n) = bn
F2(n) ∣ n ∈ N}.

Theorem 5.3 For the above defined group G, the following statements are valid.
(1) CP(G), EE[1, G], and EE[G , 1] are decidable.
(2) EE[1] is undecidable for G if the set im (F1) is not computable.
(3) For any fixed g0 ∈ G, the problem EE[g0 , G] (resp. EE[G , g0]) is decidable or

there is a number n such that EE[g0 , G] (resp. EE[G , g0]) is Turing reducible
to (im F)n . Each of these possibilities can be effectively recognized, and the
corresponding number n can be computed.

(4) If n ∈ im F1, then the problem EE[an , G] is computably equivalent to the member-
ship problem for (imF)n .

Proof Before we start to prove these statements, we establish the structure of G.
We decompose X = ∪

i∈N
X i , where

X i = {a i} ∪ {b j ∣ j is a power of p i}.

Let H i be the subgroup of G generated by X i . Then

G = ∗
i∈N

H i .(5.2)

To describe the structure of H i , we first introduce the following subgroups of H i :

H−i = ⟨b j ∣ j is a power of p i satisfying j ∉ (imF)i⟩,

H+i = ⟨b j ∣ j is a power of p i satisfying j ∈ (imF)i⟩.

Then H−i is the free product of all its subgroups ⟨b j⟩, and H+i is the amalgamated
product over ⟨a i⟩ of all its subgroups ⟨b j⟩. Moreover, we have

H i = (⟨a i⟩ ×H−i ) ∗
⟨a i⟩

H+i .(5.3)

Note that ⟨a i⟩ is the center of H i .
Before we start the proof of statement (1), we make the following important

observation.
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Observation. Let a i , b j ∈ X and k ∈ Z /{0}. Then bk
j is a power of a i if and only

if j is a power of p i and there exists a positive divisor d of k such that F(d) = (i , j).
We can recognize the existence of such d since F is computable. If such d exists, then
a i = bd

j and hence ak/d
i = bk

j . ∎

Proof of statement (1) First, we prove that WP(G) is decidable. Using the normal
form of an element of the free product (5.2), we reduce this problem to the following
one. Given i ∈ N and given a cyclically reduced nonempty word as

i w(b̄), where w(b̄)
is over X i /{a i}, decide whether the corresponding element of H i is trivial or not.

We may assume that the word w(b̄) is nonempty. Indeed, otherwise as
i w(b̄) lies

in the cyclic subgroup ⟨a i⟩ of H i and therefore is trivial exactly when s = 0.
Using the above observation, we verify whether some subword bk

j of w(b̄) is a
power of a i or not. If no one such subword is a power of a i , then the element as

i w(b̄)
is nontrivial in the amalgamated product (5.3). Suppose that some subword bk

j of w(b̄)
is a power of a i , say a�

i = bk
j . Since a i lies in the center of H i , we can move this subword

to the left and adjoin to as . After this operation, ∣w(b̄)∣X i /{a i} decreases and we can
proceed by induction. ∎

Now, we show that the conjugacy problem in G is decidable. Using (5.2), we reduce
this problem to the conjugacy problem in the groups H i , i ∈ N. By (5.3), each H i is
an amalgamated product over the center of H i . This fact, the decidability of WP(G),
and a criterion for conjugacy of elements in amalgamated products (see [14, Chapter
IV, Theorem 2.8]), imply that there is a universal algorithm deciding the conjugacy
problem in each H i and hence in G.

Decidability of EE[G , 1] follows from decidability of the word problem, and for
decidability of EE[1, G], observe that G is torsion-free.

Proof of statement (2) This statement easily follows from the equivalence

n ∈ imF1 ⇐⇒ an is a power of bpn .

Indeed, if imF1 is not computable, we cannot decide, given n ∈ N, whether the
equation an = bx

pn
has a solution or not. ∎

Proof of statement (3) For a fixed element g0 ∈ G, we study the problem
EE[g0 , G]. Given another element g1 ∈ G, we shall consider the exponential equation

g0 = gz
1 .

We may assume that g0 ≠ 1; otherwise, EE[g0 , G] is decidable since G is torsion-
free and WP(G) is decidable. Having g0 ≠ 1, we may assume that g1 ≠ 1. Standardly,
we assume that g0 and g1 are represented by some words u and v in the alphabet
X = ∪

i∈N
X i . Thus, we consider the following exponential equation in G:

u = vz .(5.4)

We write v = v1v2 . . . v�, where v i is a word in the alphabet Xλ(i) for some λ(i),
i = 1, . . . , �, and λ( j) ≠ λ( j + 1) for j = 1, . . . , � − 1. Moreover, we assume that each
v i represents a nontrivial element of Hλ(i). This can be recognized by decidability
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of WP(G). Using conjugation, we may additionally assume that λ(1) ≠ λ(�) if � > 1.
Analogously, we write u = u1u2 . . . uk . Note that v1 and u1 (resp. v� and uk) belong to
the same subgroup H j .

Suppose that � > 1. Then a necessary condition for solvability of equation (5.4) is
k > 1. If this condition is fulfilled, then any possible solution z of equation (5.4) satisfies
∣z∣ = k/�, and the existence of a solution z can be verified using decidability of WP(G).

Note that until this moment the corresponding algorithm is uniform on u and v.
In the following case, we will call some oracle depending on u.

Suppose that � = 1. Then u ∈ Hn for n = λ(1), and this n can be determined using
the definition of Xn . Using the procedure described in the proof of decidability of
WP(G), we write u in the normal form with respect to the amalgamated product
(5.3), i.e., we write u = as

nbs1
i1

. . . bsr
ir

where, in particular, each bs1
i1

, . . . , bsr
ir

does not have
a subword which is a power of an . By using conjugation, we may additionally assume
that u is cyclically reduced in the sense that i1 ≠ ir if r > 1.

Furthermore, we may now assume that v belongs to Hn too. We also write v in the
normal form with respect to the amalgamated product (5.3), v = at

nbt1
j1

. . . btq
jq

.
If r > 1, then a necessary condition for solvability of equation (5.4) is q > 1. In

this case, any possible solution z of (5.4) satisfies ∣z∣ = r/q, and the existence of the
corresponding z can be verified using decidability of WP(G).

Suppose that r = 1. Then a necessary condition for solvability of (5.4) is q = 1 and
i1 = j1. In this case, we only need to verify the existence of z satisfying (5.4) in the
group ⟨an , b i1⟩. This is the only place where we need the oracle for (imF)n . Verifying
whether pn ∈ (imF)n , we decide if n ∈ imF1. If this happens, we easily compute in the
oracle (imF)n the relation from the presentation (5.1) of the form an = bm

i1
if it exists,

and if it does not exist we recognize this. In the latter case, any possible solution z of
equation (5.4) satisfies ∣z∣ ⩽ ∣u∣Xn . In the former case, ⟨an , b i1⟩ = ⟨b i1⟩. Substituting bm

i1
instead of an both in u and v, we obtain an equation in the cyclic group ⟨b i1⟩, and the
number z can be computed. This gives an algorithm which is computable with respect
to (im F)n .

The case r = 0 is trivial, and we leave it to the reader.
This completes the proof of statement (3) for EE[g0 , G]. The argument for

EE[G , g0] is analogous. ∎

Proof of statement (4) Let n ∈ im F1. The following equivalence recognizes
j ∈ (im F)n under the oracle for EE[an , G]:

j ∈ (im F)n ⇐⇒ j is of the form pk
n and an is a power of b j . ∎

Remark 5.4 Statements (1) and (4) also hold for the corresponding versions of the
KP (where one looks for solutions in N).

Theorem B There exists a finitely presented torsion-free group G with decidable
conjugacy problem and undecidable EE[1] such that any r.e. Turing degree is realized as
the Turing degree of the problem EE[g , G] for appropriate g ∈ G.

Proof First, we construct a recursively presented group G with these properties.
Let φ(x , y) be Kleene’s universal computable function, i.e., it finds the output (if it
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exists) of the Turing machine with index x on input y. Let

W = {(x , z) ∣ ∃y (z = φ(x , y))},

and let Φ ∶ N→ N2 be a total, injective, computable function with im Φ =W . Below,
we use notations introduced at the beginning of this subsection. Obviously, the sets
(im Φ)n , n ∈ N, have all possible r.e. Turing degrees. Now, we extend the set W as
follows:

Ŵ = (W ∪ {(x , 1) ∣ ∃z ∶ (x , z) ∈W}) /{(x , 0) ∣ ∃z ∶ (x , z) ∈W}.

Let Φ̂ ∶ N→ N2 be a total, injective, computable function with im Φ̂ = Ŵ . We have
(im Φ̂)n = ((im Φ)n /{0}) ∪ {1} for nonempty (im Φ)n and n ∈ N. Therefore, the
sets (im Φ̂)n , n ∈ N, have all possible r.e. Turing degrees as well.

Now, we define a function F ∶ N→ N2 by the formula

F = f ○ Φ̂,

where f ∶ N2 → N2 is the function sending each (n, m) to (n, pm
n ). The function F

satisfies the conditions formulated at the beginning of this subsection, since it is total,
injective, computable, and for any n ∈ N, we have either (im Φ)n = ∅ or

pn ∈ (imF)n ⊆ {pk
n ∣ k ∈ N /{0}}.

Finally, we define a recursively presented group G by formula (5.1) and apply Theo-
rem 5.3. By statements (1) and (2) of this theorem, CP(G) is decidable and EE[1] is
undecidable for G.

The statement of Theorem B about Turing degrees follows from statement (4) of
Theorem 5.3, which says that, for any n ∈ N, the problem EE[an , G] is computably
equivalent to the membership problem for (im F)n . It remains to note that

(im F)n = {pm
n ∣m ∈ (im Φ̂)n};

therefore, these sets have all possible r.e. Turing degrees.
In the second part of the proof, we embed the group G into a finitely presented

group G using Ol’shanskii–Sapir construction explained in Remark 3.2. Note that we
do not need to do Step 1 there since G already has solvable conjugacy problem, and
we do not need to do Step 4 since we do not specially want G to be 2-generated.

Thus, using notations of this remark, we may assume that G = G1 and that we
have embeddings G1 → G2 → G3, where G3 = G. Simplifying notation, we assume
G1 ⩽ G2 ⩽ G3. By this construction, G3 has solvable conjugacy problem if G1 has
solvable conjugacy problem. The latter is valid, and hence G has solvable conjugacy
problem. It remains to prove the following claim. ∎

Claim For any g ∈ G, the problems EE[g , G1] and EE[g , G3] are computationally
equivalent.

Proof The computational equivalence of EE[g , G1] and EE[g , G2] follows from the
proof of Lemma 11 in [20]. (We stress that we use the proof and not the formulation
of this lemma which requires solvability of power problem in G1.) Indeed, given
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an exponential equation g = uz with u ∈ G2, the proof (depending on u) either
recursively reduces this equation to EE[g , G1] or gives a linear upper bound for ∣z∣
in terms of g and u.

The computational equivalence of EE[g , G2] and EE[g , G3] analogously follows
from the proof of Lemma 12 in [20]. ∎

6 Complexity of the problem EE[n]

Applying the approach of [2], we obtain the following proposition.

Proposition 6.1 (1) Detecting a group with decidable EE[n] is Σ0
3 in the class of

recursively presented groups.
(2) The same statement holds for the EE-problem and the KP.

Proof We will use standard terminology from [22]. Kleene’s universal computable
function φ(x , y) will be applied to several families of objects. As usual, these objects
are coded by natural numbers.

Take a computable indexation G i = ⟨X ∣Ri⟩, i ∈ ω, of all recursively presented
groups with respect to generators X = {x1 , x2 , . . .}. Fix an algorithm which for the
input (i , s) outputs the sth equality of the form w = 1 satisfied in G i . We see that the
set of pairs (G i , w), where G i ⊧ (w = 1) with w ∈ F(X), is computably enumerable.
We use the notation

EE[n](G i) = {(w0 , w1 , . . . , wn) ∈ Gn+1
i ∣ ∃z1 . . . zn ∈ Z (w0 = wz1

1 ⋅ ⋯ ⋅w
zn
n )}.

There exists a computable enumeration of the set of pair (G i , w̄) where w̄ =
(w0 , w1 , . . . , wn) belongs to EE[n](G i). Thus, the set

Iw̄ = {G i ∣ (w0 , w1 , . . . , wn) ∈ EE[n](G i)}

is computably enumerable. These sets belong to Σ0
1 . On the other hand, the set

Īw̄ = {G i ∣ (w0 , w1 , . . . , wn) /∈ EE[n](G i)}

belongs to Π0
1 . The property (w0 , w1 , . . . , wn) /∈ EE[n](G i) exactly means that, for

any (s0 , s1 , . . . , sn), the equality w0 = ws1
1 ⋅ ⋯ ⋅wsn

n is not recognized in G i at step ∣s0∣.
Based on these observations, we formulate decidability of EE[n] for G i as follows.

There is a number m ∈ N such that, for any tuple w0 , w1 , . . . , wn ∈ F(X) and
any (s0 , s1 , . . . , sn) ∈ Zn+1, there exist numbers �, k ∈ N such that the following
properties hold:
• The algorithm φ(m, .) applied to the code of w̄ gives the value 0 or 1 at step �.
• The algorithm φ(m, .) applied to the code of w̄ gives the value 0 at step � or the

membership G i ∈ Iw̄ is confirmed at step k of computation.
• The algorithm φ(m, .) applied to the code of w̄ gives the value 1 at step � or the

equality w0 = ws1
1 ⋅ ⋯ ⋅wsn

n is not recognized at step ∣s0∣.

The second statement of the proposition is similar. ∎
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Problem 3 Are EE[n] and the KP Σ0
3-complete in the class of recursively presented

groups?

Acknowledgment The authors are grateful to the referee for very helpful remarks.
In particular, the proof of Lemma 2.3 given in the paper belongs to the referee. It
simplifies the original argument of the authors.
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