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INTRODUCTION

Mathematical analysis of factual epidemiological information is only slowly
gaining recognition as a useful, and frequently preferable, method in the interpre-
tation of epidemiological phenomena. In spite of a large amount of information on
the epidemiology of yaws becoming available from large-scale eradication cam-
paigns against yaws, much remains unclear. This is particularly true with respect
to precise epidemiological parameters, such as the infection rate, which are vital
for the planning of long-term surveillance of yaws in places where the prevalence
of the disease has been brought down to a low level.

Periodic epidemic spread of endemic disease or long-term persistence of infectious
diseases in populations in which otherwise the endemicity level would appear to be
below the threshold level constitutes a puzzling aspect in epidemiology.

In this paper a mathematical analysis is employed to elucidate one epidemio-
logical factor in yaws in a tropical area and to demonstrate the importance of a
seemingly unrelated disease in changing the epidemiological pattern.

One of the authors (J.L.d.V.) investigated in 1957 an epidemic of yaws among
children 10 years of age and youngert in a village of Netherlands New Guinea.
The epidemic was of particular interest in that during it an epidemic of chickenpox
broke out among the same population. Furthermore, it occurred a year and a half
after a control survey during which total mass treatment (Hackett & Guthe,
1956 ; Report, 1960) had been applied in a WHO-UNICEF assisted yaws control
campaign. Moreover, the spread of the disease was much faster than that normally
found in yaws in Netherlands New Guinea (Kranendonk, 1958); there being a
spectacular increase in the number of yaws cases in the month following the chicken-
pox epidemic. It was inferred that the chickenpox predisposed these children to
become infected with yaws. This conjecture has some medical validity since:

(1) The incubation period of yaws is 20-30 days, usually assumed as 3 weeks

* Present address: RACD, WHO Regional Office for South East Asia, World Health House,
Indraprastha Road, New Delhi 1, India.

t In holo-endemic areas, the percentage of infected children at age 5 is 95 %, (Kranendonk,
1958) and in general the susceptibles are exhausted at age 6 (Soetopo & Wasito, 1953).
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(Turner & Hollander, 1957 ; Hackett, 1963), a time-gap consistent with the interval
between the peaks of the chicken-pox and yaws epidemics;

(2) The spirochete causing yaws (T'reponema pertenue) requires a portal of entry
(Hackett, 1960) which might be provided by the skin eruptions caused by the
chickenpox;

(3) The infection with chickenpox could cause increased susceptibility to yaws
by stimulation of steroid production (Turner & Hollander, 1957).

This paper is concerned with advancing statistical and mathematical arguments
relating to two specific aspects of these epidemics, namely:

(1) The children who had chickenpox were more likely to contract yaws in the
month following the chicken-pox epidemic.

(2) The chicken-pox epidemic accelerated the yaws epidemic; that is, more cases
of yaws were found than would otherwise have been the case.

The latter point is investigated using a mathematical model for a simple deter-
ministic epidemic. A wider analysis relating to more general aspects of the epi-
demic is in preparation.

THE YAWS EPIDEMIC

Between August 1956 and February 1957 there was an epidemic of yaws among
children 10 years of age and younger of Jongsu Besar in Netherlands New Guinea.
In October of 1956 an epidemic of chickenpox occurred among the same popula-
tion. The incidence of yaws by month was recorded retrospectively by one of the
authors (J.L.d.V.) and is given in Table 1. In this table the children are also
divided into two groups as to their previous history of yaws. This history is based
on the information from accompanying parents and on the presence or absence of
scars from infectious lesions, the latter being the arbiter when present. Absence of
detectable scars and positive history is noted as positive, mainly because early
infectious yaws does not always leave scars on healing.

A marked peak of the yaws epidemic is noted in November, the month following
the chickenpox epidemic. Later the epidemic gradually builds up in an epidemio-

Table 1. Course of yaws epidemic according to yaws history

New yaws cases
A

r R
Negative Positive
history history
Month of yaws of yaws Total
Aug. 1956 1 0 1
Sept. 1956 1 0 1
Oct. 1956 0 0 0
Nov. 1956 11 2 13
Dec. 1956 2 0 2
Jan. 1957 3 1 4
Feb. 1957 8 2 10
Unknown but 3 2 5
after Nov. ’56

Total cases 29 7 36
No. uninfected 26 41 67
Totals 55 48 103
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logical pattern typical for yaws to a second peak in February. At this point mass
treatment with long-acting penicillin (PAM) brought an end to the epidemic.

Table 2 records the monthly incidence of yaws among children 10 years and
younger by the chickenpox infection status. It is noted that 12 of the 13 cases of
yaws in November had chickenpox in October while of the 14 cases in January and
February only 3 were of the chickenpox group.

Table 2. Course of yaws epidemic in children aged 10 years or less
according to chickenpox history

Yaws cases in:

Total — A -
Chickenpox no. of Aug.— Jan.— Total
status children Oct. Nov. Dec. Feb. Unknown Yaws
Yes 50 2 12 1 3 1 19
No 49 0 1 1 11 1 14
Unknown 4 —_— — — — 3 3
Total 103 2 13 2 14 5 36

Except for five individuals among the total population of the village, all the
chickenpox cases occurred in October. The five exceptional cases involved only
two children who were 10 years of age or younger. One of these had chickenpox in
September and already had a positive history of yaws. The second had chickenpox
in November and had a negative history of yaws. None of the five contracted yaws
during 1956 or 1957.

PRELIMINARY STATISTICAL ANALYSES

We shall consider first whether the chickenpox group had a significantly higher
incidence of yaws in November than did those without chickenpox. There were 48
susceptibles among the former group in November of which 12 contracted yaws,
for an incidence rate of 259, (see Table 2). On the other hand only 1 of 49 sus-
ceptibles in the non-chickenpox group contracted yaws in November for a rate
of less than 29,. This difference is highly significant (3 = 11-02, P < 0-001).
Turning to the incidences in January and February, we find 8-6 9, incidence of
yaws among the chickenpox group (3 of the 35 remaining susceptibles), but 23-49
incidence of yaws among the non-chickenpox group. This difference approaches
significance (x2 = 3-12, P = 0-08). These results indicate a strong short-term
association between chickenpox and yaws. These statistical tests should be adjusted
to take into account the third variable of classification, the yaws history. Since the
history status turns out to be distributed about proportionately between the other
two classes, these conclusions are sustained by more sophisticated statistical tests
which take into account the yaws history.

We turn to Table 1 to consider whether the distribution of cases could be des-
cribed by a random processrather than the more mathematical model which we shall
later consider. The simplest random model would be a Poisson process, for which
the mean and variance are the same. We find for the distribution of cases by month
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(excluding the unknown category) that the sample mean Z = 31/7 = 4-43, while
the sample variance s> = 25-62. The Lexis ratio is s?/Z = 5-78, a highly significant
departure from randomness (x% = 6(s%/%) = 34-71, P < 0-001). Since we are
concerned particularly with the month of November, we shall compare the inei-
dence of yaws in that month with the preceding months. The rate of cases per
month for August to October inclusive is 2/3, while for November it is 13. Assum-
ing Poisson variation for these months, we may test this difference by an F statistic
(Cox, 1953) for which we find F(5, 27) = 16-2, P < 0-001. Taken together these
results indicate these data cannot be adequately described by a Poisson process
and that the month of November is exceptional when compared to the previous
course of the epidemic.

REVIEW OF THE MATHEMATICAL MODEL

Bailey (1957) discusses a deterministic model for a simple epidemic with no
removal which is ‘approximately applicable to the sort of situation where (a) the
disease is highly infectious but not sufficiently serious for cases to be withdrawn by
death or isolation, and (b) no infective becomes clear of infection during the main
part of the epidemic’. Yaws qualifies as a suitable disease for this model.

Let X(t) be the number of susceptibles in the population at time ¢ and let Y (¢)
be the corresponding number of infectives. The basic model assumes the incidence
is proportional to the product of the number of infectives and the number of
susceptibles (i.e. the number of possible pairwise contacts). This is the ‘homo-
geneous mixing’ postulate and is mathematically written

av(y)
el B Y () X(t), (1)

where £ is a constant infection rate. We solve equation (1) subject to the boundary
conditions, Y(0) = 1 and X(0) = n; that is, we assume initially one infective and
n susceptibles in a population of size n+ 1, which remains constant during the
course of the epidemic. The resulting solution in terms of Y(t) is the logistic (or

autocatalytic) curve,
n+1

Yl) = {5 emn (2)
This equation may also be written in the form*
1 nY(t) _
L) = o~ [n+l—Y(t)] = pt. (3)

L(¢) will be called the logit at time . We note that the logit graphs linearly against
time and thus provides a simple test of the model. It is also of interest to note that
dY(t)/dt, the epidemic curve, is a bell-shaped curve with maximum at

tmax, = (In)[[B(n+1)], (4)
the time at which the incidence of the disease is the greatest.

* In denotes natural logarithm.
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THE NUMBER OF SUSCEPTIBLES

In order to apply this model we must define a population size for the number of
susceptibles. This size is not obvious and ascertainment of it is a difficulty associ-
ated with fitting other epidemic models {cf. Abbey, 1952). We cannot limit this
population to those with a negative history of yaws since, in fact, seven cases also
occurred in the positive history group. We consider two approaches to determining
an ‘effective population size’.

Assume that the positive history group can be divided into subpopulations of
two discrete types. One subpopulation is wholly resistant to yaws and this does not
contribute to the population of susceptibles. The second subpopulation is of the
same degree of susceptibility as the negative history group in determining the
effective population size. We estimate this size of this second subpopulation by
assuming that the proportion having yaws in this subpopulation should be the
same as that in the negative history group, that is, £2 or 52-79,. All seven yaws
cases would have occurred among the subpopulation and so we can solve back and
find its size, namely 7 x 2§ or about 13. Thus, on the basis of the assumption, the
effective population of susceptibles will be estimated at 55+ 13 = 68.

A second argument assumes that two different infection rates 8, and f, operate
among the negative and positive history groups respectively. If we assume that
Bi/fs = p is large (compared to one) and that the number of cases among the
negative group is small, it is possible to describe the epidemic by a modified form
of (1) wherein #, = £ and the effective population size is

n+l = n1+%+1, , (5)

where n,+1 and n, are the sizes of the negative and positive history groups
respectively. The ratio p may be estimated by

~ _ In(z,/ny)
= ), (6)
In(x,/n,)
where x, and z, are the number of remaining susceptibles in the two populations
at the end of the epidemic.* For this example we find from (6) that
~ l_n 54 —In 26
P = in4s—in41
and the effective population size estimated from (5) to be

48
4-636

= 4-636

n+1 =55+ 65.

As can be shown to be the case under certain conditions, these two arguments
lead to approximately the same results. We shall arbitrarily use sixty-eight as the
effective population size although in the following analyses the qualitative results
are not substantially affected by which of the two numbers is actually used.

* The mathematical details of this argument have been derived by one of the authors
(J.J.G.) and will be published elsewhere.
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APPLICATION OF THE MODEL

In order to apply the model we must distribute the 5 unknown cases in Table 1
among the months after November. We arbitrarily assigned 1 of these to December,
2 to January and 2 to February, arriving at the totals given in Table 3. We shall
see that the critical part of the analysis is invariant with respect to the specific
allocation of these 5 cases among these 3 months. In Table 3 we have denoted the
end of August by ¢ = 0, the end of September by ¢ = 1, etc. The last column of
Table 3 gives monthly estimates of the infection rate given by taking differences
among the adjacent logits, that is, L(t) — L(t—1) = B, a result following from (3).
We note that the infection rate for November is 0-03286 or over three times that

Table 3. The adjusted data and the analysis using the model

New yaws
cases (adj. n+1
Month ¢ totals) Y1) —Y() L{#) B,

Aug. 1956 0 1 1 67 0-00000 —
Sept. 1956 1 1 2 66 0-01041 0-01041
Oct. 1956 2 0 2 66 0-01041 0-00000
Nov. 1956 3 13 15 53 0-04327 0-03286
Dec. 1956 4 3 18 50 0-04681 0-00354
Jan. 1957 5 6 24 44 0-05292 0-00611
Feb. 1957 6 12 36 32 0-06357 0-01065

for any other month. The arithmetic mean of the rates excluding November is
0-00614, while for the first 2 months it is 0-00520 and for the last 3 months it is
0-00677. It is of interest to note that the mean infection rates before and after the
chickenpox epidemic are comparable. We also note that the mean infection rate
between times ¢ and ¢{+a may be alternatively calculated from the formula
B = [L(t+a)— L(t)]/a. Thus the mean infection rate for the months following
November is invariant with respect to the assignment of the unknown cases among
these months.

We now consider the projection of the epidemic from conditions prevailing before
the chickenpox epidemic apparently accelerated the yaws epidemic. We substitute
the mean infection rate for the first 2 months (0-00520) in (2) and find

68
'O = rereow @

The theoretical and observed epidemics are graphed in Fig. 1, this theoretical
curve being the solid curve. It is noted that the projected epidemic would result in a
total of about eight cases by the end of February, while in fact thirty-six were
observed. These twenty-eight may be regarded as the excess due to the chickenpox
epidemic. We may also use (4) to find the peak of the projected epidemic,

y _ In 67 _
mar- 7 68(0-00520)

or about the end of August 1957. The epidemic was actually ended in March 1957
by the intervention of treatment. Moreover, August 1957 would have produced

11-9,
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only eight new cases, while in fact peaks of thirteen and twelve cases were reached
in November 1956 and February 1957 respectively.

We may also project the equation for the model from conditions prevailing at the
end of November, after which time the effects of the chickenpox epidemic presum-
ably no longer affected the course of the yaws epidemic. We solve (1) subject to
the boundary conditions Y(3) = 15, X(3) = 53 and find

68
Yy = 1+(—§—%)e—68ﬂ(“‘3)'

(8)

T 1 I 1 1 r
.

32 /-
28 |~ / ..1
24 - //' -]

20 / -]

Y(t) (total yaws cases)
N\

12} -

¢t (months)

Fig. 1. The observed and projected courses of the yaws epidemic.
—, Projected from ¢ = 2 (equation 7). - - -, Projected from ¢ = 3 (equation 8).

We let £ in (8) be the mean calculated from the first 2 months (0-00520) and find
the theoretical curve given by the broken line in Fig. 1. We see that this curve
approximately follows the actual course of the epidemic for this period. This reflects
the fact that the average infection rates before and after November are roughly
comparable.

The model as represented by (1) assumes that the population in question is
subject to homogeneous mixing. We count all the possible contacts between
infectives and susceptibles and make the incidence proportional to this number.
This essentially weights all pairwise relationships between the individuals equally.

https://doi.org/10.1017/50022172400040730 Published online by Cambridge University Press


https://doi.org/10.1017/S0022172400040730

438 JouN J. GART AND J. L. DE VRIES

Actually we would expect the individuals in the same household to have more
contact than those, for example, living on opposite ends of the village. The first
two cases in the epidemic of yaws illustrate the case. The second case was a twin
sibling of the first case. The next thirteen cases in November were outside this
household. Thus the observed course of the epidemic might then be used as an
argument against the assumption of homogeneous mixing.

Let us consider this more carefully. The infection rate between twins would
probably be the maximum of any situation. The rate between households (October
and November) should be smaller, but in fact we observe a much larger rate for
November, the month after the chickenpox epidemie. This would argue even more
forcefully for the proposed hypothesis.

Because of the small numbers of cases in the first few months, the projections
based on the model are not too accurate. One of the referees has suggested that the
numbers of cases in the months of November to February inclusive might be
considered to arise from a long, rather flat peak. Testing for homogeneity the
number of cases in these months by using the Lexis ratio test on adjusted data of
Table 3 (13, 3, 6, 12) we find ¥ = 8-12, P < 0-05. However, an arbitrary assign-
ment of the unknown cases could equally well have led to the pattern of cases
13, 5, 6, 10. Then y% = 4-82, P = 0-18. In this case the contrast of the months
of November and February versus December and January leads to

. _ [(13+10)—(5+6)]*
xX: = (85) = 4-24.

Thus the contrast between the two apparent peaks and the intervening months
accounts for a very large part of the variation observed. The P value associated
with the test of this contrast is 0-04, although it must be noted that this contrast,
like the arbitrary assignment, was chosen after the fact.

All these results seem to point to the chickenpox epidemic as a factor in the
acceleration of the yaws epidemic.

SUMMARY

The relationship between chickenpox and yaws epidemics occurring among
children in a village in Netherlands New Guinea is analysed using the mathematical
model for a simple deterministic epidemic. It is shown that the yaws epidemic
accelerated significantly in the month following the chickenpox epidemic, but that
it reverted to its previous rate in the succeeding months. The number of yaws
cases attributable to the influence of the chickenpox is estimated from the pro-
jected course of the yaws epidemic. It is statistically verified that those children
contracting chickenpox were more likely to become yaws cases in the subsequent
month.

These results point to the danger of yaws’s spread being much more rapid among
a population which has recently been subject to an epidemic of chickenpox.

We are grateful to Prof. Philip Sartwell and a referee for useful suggestions.
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