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SOME RESULTS ON WEAK COVERING CONDITIONS 

RAYMOND F. GITTINGS 

1. Introduction. A space X is called countdbly metacompact {countably 
paracompact) if every countable open cover has a point finite (locally finite) 
open refinement. According to Hodel [5], a space X is called countably sub­
paracompact if every countable open cover has a a-discrete closed refinement. 
It is well-known (see Mansfield [10] and Dowker [4]) that in normal spaces 
all of the preceding notions are equivalent. Also, according to Hodel [5], a 
countably subparacompact space is countably metacompact and the reverse 
implication is false. 

In Section 2 we define in a natural way the concept of a countably #-refinable 
space and show that these spaces turn out to be exactly the countably meta­
compact spaces. In Section 3 we discuss ze/A-spaces and show that every wA-
space is countably metacompact but not necessarily countably paracompact 
nor countably subparacompact. This result is compared with Ishii's result on 
wM-spaces in [7]. Finally, in Section 4 we give a new characterization of 
countably subparacompact spaces using ^--cushioned refinements. 

Unless otherwise stated, no separation axioms are assumed; however 
normal spaces are assumed to be T\. The set of positive integers is denoted by 
N. 

2. Countably 0-refinable spaces. Let °tt be a collection in a space X and 
let x G X. We mean by ord(x, °tt), the number of members of °tt which 
contain x. 

A space X is 6-refinable [13] if, for every open cover % of X, there is a se­
quence {&'n : n G N) of open refinements of °ll such that, if x G X, there is 
an n(x) G N such that ord(x, @n(X)) is finite. Such a sequence is called a 
6-refinement of °U'. 

Definition 2.1. A space X is called countably 6-refinable if every countable 
open cover has a ^-refinement. 

Clearly every countably metacompact space is countably 0-refinable and, 
as the following result shows, the reverse implication is also valid. 

THEOREM 2.2. For a space X, the following conditions are equivalent: 
(a) X is countably metacompact. 
(b) X is countably 6-refinable. 
(c) If {Fn : n G N) is a decreasing sequence of closed subsets of X with 
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Dn=i Fn = 0, there is a sequence \Gn : n G N] of Gô-sets in X such that Gn D Fn 

for alln e N and flSU Gn = 0. 
(d) If \Fn: n £ N] is a decreasing sequence of closed subsets of X with 

nST=i Fn = 0, there is a sequence {Un : n G N] of open sets in X such that Un D 
Fn for all n d N and Hn=i Un = 0. 

Proof, (a) => (b) is obvious. 
(b) => (c). Suppose X is countably 0-refinable and let {Fn : n G iV} be a 

decreasing sequence of closed sets such that Dn=i Fn = 0. Let ^ = {X — 
Fn : n G JV}. Then ^ is a countable open cover of X and hence has a ^-refine­
ment {Yn : n G N}. Put Gnj = St(Fn,^,} and Gn = n ? - i Gnj. Then each 
Gw is a Gs-set and Gw D Fn. We assert that HS=i Gn = 0. If not, there is an 
x G X such that x G HS=i Gn. Choose jo such that ord(x ,^^ 0 ) < oo, say 
o r d ( x , ^ J o ) = k. Then there are sets Vi, . . . , Vk Ç^J0 such that x G Vt and 
x G V G ^ o for F ^ 7 i , i = l , 2 , . . J . Now, for each i, there is an nt G iV 
such that F j C ^ - ^ - . If w e put w = maxj^i, . . . , nk}, then F* C X — Fn 

for i = 1, 2, . . . , &. But x G G^0 and thus there exists a F G ^^ with x G F 
and F H f » ^ 0. Since x G F, V = Vt for some i = 1, . . . , k and thus 
V C X — Fn which is a contradiction. 

(c) => (d). Let {i^ : w G iV} be a decreasing sequence of closed subsets of X. 
By (b) there is a sequence {Gn : n G N) of G«-sets satisfying G„ D Fn for all 
n (z N and OSLi Gn = 0. Put Gn = Pl7=i ^W where each Gnj is open in X. 
For ^ ^ 1, define 

Un = p | {G<, : 1 ^ i ^ » and 1 ^ j ^ n). 

Then clearly each C/w is open, Un 3 i^ and Piï=i Î/» = 0. 
(d) => (a) is due to Ishikawa [8]. 

Since every 0-refinable space is countably 0-refinable, we have: 

COROLLARY 2.3. Every 6-refinable space is countably metacompact. 

It is interesting to note that although the concepts of 0-refinability and 
metacompactness are equivalent when restricted to countable open covers this 
equivalence does not hold in general. Clearly every metacompact space is 
0-refinable but there are many examples of non-metacompact, 0-refinable 
spaces. In fact, Bing's Example H is a normal subparacompact space (and 
thus a 0-refinable space) which is not metacompact. This example was noted 
by Burke in [3]. 

3. ze;A-spaces and weak covering conditions. Let X be a space and 
{tf/n : n G N) a sequence of open covers of X subject to one of the following 
conditions: 

(A) If xn G St(x, &n) for n = 1, 2, . . . , then the sequence (xn) has a 
cluster point. 
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(B) If xn G St2(x, tf/n) for n = 1, 2, . . . , then the sequence (xn) has a 
cluster point. 

(C) If xn G St(x, &n) for n = 1 , 2 , . . . , then x is a cluster point of the 
sequence (xn). 

A space is called a wA-space [1] if it satisfies (A) and a wM-space [7] if it 
satisfies (B). Clearly (C) is an equivalent formulation of developable spaces. 
It is immediate that every wM-space and every developable space is a wA-space. 

In [7] Ishii proved the following: 

THEOREM 3.1. (1) Every w M-space is countably paracompact. 
(2) Every normal w M-space is collectionwise normal and countably para­

compact. 

In this section we show that a wA-space is countably metacompact but not 
necessarily countably paracompact. In light of Theorem 3.1 the following 
question seems interesting. 

Question 3.2. Is there an example of a normal wA-space which is not collec­
tionwise normal? 

THEOREM 3.3. Every wA-space is countably metacompact. 

Proof. Let {°Un : n G N} be a sequence of open covers of X satisfying condi­
tion (A). We may assume &n+i < °ttn for all n G N. Let {Fn : n G N) be a 
decreasing collection of closed subsets of x such that PiS=i Fn = 0. For each 
n G N, put Gn = St(Fn, %n). Now clearly Gn D Fn and each Gn is open in X. 
By Theorem 2.2 (d), we need only show PlJ=i Gn = 0. So assume there is an 
x £ X such that x G D"=i Gw. But then, for each n £ N, there exists £/w G ^ ^ 
such that x £ Un and UnC\ Fn ^ Q. For each w, choose x^ G UnC\ Fn. Then 
xw G St(x, ^ w ) and thus the sequence (xn) has a cluster point XQ. But x0 G 
njLi ^w and this is a contradiction. 

We remark that the referee has informed us that Hodel [6] has recently shown 
that every /3-space is countably metacompact. Clearly every wA-space is a 
0-space. 

Since, as was noted in the introduction, every normal countably metacom­
pact space is countably paracompact, we have: 

COROLLARY 3.4. Every normal wA-space is countably paracompact. 

Example 3.5. A wA-space which is not countably paracompact: 
Let co be the first infinite ordinal and 12 the first uncountable ordinal. Let 

X = [0, co] X [0,12] - (co, 12). 
Ishii showed that X is a wA-space; but Shiraki [12] proved that X is not 
countably paracompact. We also note that, according to Theorem 3.1, X is 
not a wM-space. 

Example 3.6. A countably compact T2-space (thus both a wM -space and a 
?#A-space) which is not countably subparacompact: Let R = [0, 12], 5 = 

https://doi.org/10.4153/CJM-1974-107-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-107-5


WEAK COVERING CONDITIONS 1155 

[0,12) and X = R X S. Then X is clearly a countably compact T2-space; 
Kramer [9] has shown tha t this space is not countably subparacompact . In 
fact, if we let H = {(x, Q) : x G S} and K = {(x, x) : x G 5} we have disjoint 
closed subsets of X. I t can be shown tha t {X — H, X — K} is an open cover 
which has no countable closed refinement. I t follows from Theorem 4.1 (iv) 
t h a t X is not countably subparacompact . 

4. A n e w charac ter i za t ion of c o u n t a b l y s u b p a r a c o m p a c t spaces . Let 
3ê be a cover of a space X. A cover ^ is said to be a cushioned refinement of ^ 
if to each [/ G ^ we can assign a B(U) G «a? such t ha t 

U { * 7 : C /e ^ ' } C U {B{U) :Ue<%'} 

for every subcollection °ll' oi %. 

In [3] Burke asks the following question: Is X subparacompact if every 
open cover of X has a (7-cushioned refinement? Although this question seems 
to remain open we show the corresponding result holds for countably subpara­
compact spaces. 

T H E O R E M 4 .1 . For a space X, the following are equivalent. 
(i) Every countable open cover of X has a a-discrete closed refinement (i.e., X 

is countably subparacompact ) . 
(ii) Every countable open cover of X has a a-locally finite closed refinement. 

(iii) Every countable open cover of X has a G-closure preserving closed refine­
ment. 

(iv) Every countable open cover of X has a countable closed refinement. 
(v) Every countable open cover of X has a a-cushioned refinement. 

Proof. T h a t (i) => (ii) => (iii) => (iv) => (v) is obvious, as is (iv) => (i). 
T h u s it suffices to show tha t (v) => (iv). Suppose % = {Un : n = 1 , 2 , . . . } 
is any countable open cover of X and let &~ = U5T=i ^~n be a c-cushioned 
refinement of °tt. Then, for each n, there exists a mapping <j>n :^n —» °lt such 
t h a t if F G J ^ , d>n(F) eW,FC <t>n(F) and 

UlF'.Fe^} C U \<t>n(F) : F G # 7 } 

for a n y ^ V C ^ " « . Define 

G„ = U {FiFe^uMF) = Uj}. 

Since J^t is a cushioned refinement, G a C f/y- T h u s {Gtj : i = 1, 2, . . . , 
j = 1, 2, . . .J is a countable closed refinement of °tt and the proof is complete. 

We remark t h a t the equivalence of (i) - (iv) is not new although (v) seems 
to be a new characterization. In fact, the equivalence of (i) - (iii) appears in 
[11] and the equivalence of (i) - (iv) is s tated in [9]. 

Definition 4.2. A space X is called countably a-paracompact if given a count­
able open cover °tt of X, there is a sequence {&n : n G N) of open covers of 
X such tha t , if x G X , there is an n(x) G iVand U G Qt with St(x, °ttn{x)) C U. 
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Kramer [9] introduced countably o--paracompact spaces and proved the 
following. 

THEOREM 4.3.-4 space X is countably subparacompact if and only if X is 
countably a-paracompact. 

It is worth noting that Burke [2] obtained the equivalence of (i), (ii), (iii) 
and Definition 4.2 for arbitrary open covers (i.e. for subparacompact spaces). 
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