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Abstract

We obtain exact formulas for the cumulative distribution function of the variance-gamma distribution,
as infinite series involving the modified Bessel function of the second kind and the modified Lommel
function of the first kind. From these formulas, we deduce exact formulas for the cumulative distribution
function of the product of two correlated zero-mean normal random variables.
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1. Introduction

The variance-gamma (VG) distribution with parameters ν > −1/2, 0 ≤ |β| < α, μ ∈ R,
denoted by VG(ν,α, β, μ), has probability density function (PDF)

p(x) = Meβ(x−μ)|x − μ|νKν(α|x − μ|), x ∈ R, (1.1)

where the normalising constant is given by

M = Mν,α,β =
(α2 − β2)ν+1/2

√
π(2α)νΓ(ν + 1/2)

,

and Kν(x) is a modified Bessel function of the second kind (see the Appendix for a
definition). The parameters have the following interpretation: ν is a shape parameter,
α is a scale parameter, β is a skewness parameter and μ is a location parameter. Other
names include the Bessel function distribution [14], the McKay Type II distribution [9]
and the generalised Laplace distribution [11, Section 4.1]. Alternative parametrisations
are given in [5, 11, 12]. Interest in the VG distribution dates as far back as 1929
when the VG PDF (1.1) arose as the PDF of the sample covariance for a random
sample drawn from a bivariate normal population [18]. The VG distribution was
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introduced into the financial literature in the seminal works [12, 13], and has recently
found application in probability theory as a natural limit distribution [1, 5]. Further
application areas and distributional properties can be found in the survey [3] and the
book [11].

In this paper, we fill in an obvious gap in the literature by deriving exact formulas
for the cumulative distribution function (CDF) of the VG distribution that hold for the
full range of parameter values. Our formulas are expressed as infinite series involving
the modified Bessel function of the second kind and the modified Lommel function
of the first kind (defined in the Appendix). Despite being widely used in financial
modelling and other applications areas, exact formulas had only previously been given
for the symmetric case β = 0 [10] and for the case ν ∈ {1/2, 3/2, 5/2, . . .} [16], in which
case the modified Bessel function Kν(x) in the PDF (1.1) takes an elementary form
(see Equation (A.3)).

As the product of two correlated zero-mean normal random variables, and more
generally the sum of n ≥ 1 independent copies of such random variables, are VG
distributed [6], we immediately deduce exact formulas for the CDFs of these dis-
tributions. These distributions also have numerous applications, dating back to [2]
in 1936; for an overview of application areas and distributional properties, see [8].
Since the work in [2], the problem of finding the exact PDF of these distributions has
received much interest; see [15] for an overview of the contributions in the literature.
We thus contribute to the next natural problem of finding exact formulas for the CDF.
Formulas for the CDF for the case when n ≥ 2 is an even integer have been obtained
by [8] (in this case the PDF takes an elementary form, which is again a consequence of
Equation (A.3)). In this paper, we obtain formulas for the CDF that hold for all n ≥ 1,
which includes the important case n = 1 for the distribution of a single product of two
correlated zero-mean normal random variables.

2. Results and proofs

The following theorem is the main result of this paper. Let FX(x) = P(X ≤ x) denote
the CDF of X ∼ VG(ν,α, β, μ). Also, for μ ≥ ν > −1/2, let

Gμ,ν(x) = x(Kν(x)t̃μ−1,ν−1(x) + Kν−1(x)t̃μ,ν(x)), (2.1)

G̃μ,ν(x) = 1 − Gμ,ν(x), (2.2)

where t̃μ,ν(x) is a normalisation of the modified Lommel function of the first kind
tμ,ν(x), defined in the Appendix. In interpreting the formulas in the theorem, it should
be noted that, for fixed μ ≥ ν > −1/2, Gμ,ν(x) (G̃μ,ν(x)) is an increasing (decreasing)
function of x on (0,∞) satisfying 0 < Gμ,ν(x) < 1 and 0 < G̃μ,x(x) < 1 for x > 0 (see
the Appendix). One of the formulas in the theorem is also expressed in terms of the
hypergeometric function, which is defined in the Appendix. We also let sgn(x) denote
the sign function: sgn(x) = 1 for x > 0, sgn(0) = 0, sgn(x) = −1 for x < 0.
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TABLE 1. P(Y ≤ 0) for Y ∼ VG(ν, 1, β, 0).

β\ν −0.25 0 0.5 1 2 3 5

0.05 0.4905 0.4841 0.4750 0.4682 0.4576 0.4492 0.4356
0.1 0.4809 0.4681 0.4500 0.4364 0.4155 0.3990 0.3726
0.25 0.4516 0.4196 0.3750 0.3425 0.2944 0.2582 0.2050
0.5 0.3978 0.3333 0.2500 0.1955 0.1266 0.0852 0.0409
0.75 0.3271 0.2301 0.1250 0.0721 0.0261 0.0100 0.0016

THEOREM 2.1. Let X ∼ VG(ν,α, β, μ), where ν > −1/2, 0 ≤ |β| < α, μ ∈ R. Then, for
x ≥ μ,

FX(x) = 1 − (1 − β2/α2)ν+1/2

2
√
πΓ(ν + 1/2)

∞∑
k=0

1
k!

(2β
α

)k
Γ

(k + 1
2

)
Γ

(
ν +

k + 1
2

)
G̃ν+k,ν(α(x − μ)),

(2.3)

and, for x < μ,

FX(x) =
(1 − β2/α2)ν+1/2

2
√
πΓ(ν + 1/2)

∞∑
k=0

(−1)k

k!

(2β
α

)k
Γ

(k + 1
2

)
Γ

(
ν +

k + 1
2

)
G̃ν+k,ν(−α(x − μ)).

(2.4)

Moreover, the following formula is valid for all x ∈ R:

FX(x) =
1
2
− Γ(ν + 1)
√
πΓ(ν + 1/2)

β

α

(
1 − β

2

α2

)ν+1/2

2F1

(
1, ν + 1;

3
2

;
β2

α2

)

+
(1 − β2/α2)ν+1/2

2
√
πΓ(ν + 1/2)

∞∑
k=0

(sgn(x))k+1

k!

(2β
α

)k
Γ

(k + 1
2

)
Γ

(
ν +

k + 1
2

)
Gν+k,ν(α|x − μ|).

(2.5)

REMARK 2.2. (1) Let X ∼ VG(ν,α, β, μ), where ν > −1/2, 0 ≤ |β| < α, μ ∈ R. The
probability P(X ≤ μ) takes a particularly simple form:

P(X ≤ μ) = 1
2
− Γ(ν + 1)
√
πΓ(ν + 1/2)

β

α

(
1 − β

2

α2

)ν+1/2

2F1

(
1, ν + 1;

3
2

;
β2

α2

)
.

We used Mathematica to calculate this probability for the case α = 1 and μ = 0, for
a range of values of ν and β; the results are reported in Table 1. We only considered
positive values of β due to the fact that if Y ∼ VG(ν, 1, β, 0), then −Y ∼ VG(ν, 1,−β, 0)
(see [3, Section 2.1]). We observe from Table 1 that the probability P(Y ≤ 0) decreases
as the skewness parameter β increases and as the shape parameter ν increases.
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(2) The CDF takes a simpler form when β = 0. Suppose that X ∼ VG(ν,α, 0, μ).
Then applying (A.4) to (2.5) yields the following formula for the CDF of X: for x ∈ R,

FX(x) =
1
2
+
α(x − μ)

2
[Kν(α|x − μ|)Lν−1(α|x − μ|) + Lν(α|x − μ|)Kν−1(α|x − μ|)],

where Lν(x) is a modified Struve function of the first kind (see [17, Ch. 11] for a
definition and properties). Other formulas for the special case β = 0 are given by [10].

PROOF. To ease notation, we set μ = 0; the general case follows from a simple
translation. Suppose first that x ≥ 0. Using formula (1.1) for the VG PDF, the power
series expansion of the exponential function and interchanging the order of integration
and summation gives

FX(x) = 1 −M
∫ ∞

x
eβttνKν(αt) dt = 1 −M

∞∑
k=0

βk

k!

∫ ∞
x

tν+kKν(αt) dt.

Evaluating the integrals using the integral formula (A.11) yields formula (2.3).
Now suppose x < 0. Arguing as before, we obtain

FX(x) = M
∫ x

−∞
eβt(−t)νKν(−αt) dt = M

∞∑
k=0

βk

k!

∫ x

−∞
(−1)k(−t)ν+kKν(−αt) dt

= M
∞∑

k=0

(−β)k

k!

∫ ∞
−x

yν+kKν(αy) dy, (2.6)

and evaluating the integrals in (2.6) using (A.11) yields formula (2.4).
We now derive formula (2.5). Let x ∈ R. Proceeding as before,

FX(x) = FX(0) +Msgn(x)
∫ x

0
eβt |t|νKν(α|t|) dt

= FX(0) +Msgn(x)
∞∑

k=0

βk

k!

∫ x

0
(−1)k|t|ν+kKν(α|t|) dt

= FX(0) +M
∞∑

k=0

βk

k!
(sgn(x))k+1

∫ |x|
0

tν+kKν(αt) dt. (2.7)

The integrals in (2.7) can be evaluated using the integral formula (A.10) and it remains
to compute FX(0).

Applying formula (2.4) with x = 0 and using limx→0 G̃ν+k,ν(x) = 1 (readily obtained
by applying the limiting forms (A.5) and (A.7)) yields

FX(0) =
(1 − β2/α2)ν+1/2

2
√
πΓ(ν + 1/2)

∞∑
k=0

(−1)k

k!

(2β
α

)k
Γ

(k + 1
2

)
Γ

(
ν +

k + 1
2

)

=
(1 − β2/α2)ν+1/2

2
√
πΓ(ν + 1/2)

(S1 + S2), (2.8)
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where

S1 =

∞∑
k=0

1
(2k)!

(2β
α

)2k
Γ

(
k +

1
2

)
Γ

(
ν + k +

1
2

)
,

S2 = −
∞∑

k=0

1
(2k + 1)!

(2β
α

)2k+1
k! Γ(ν + k + 1).

On calculating (2k)!= Γ(2k + 1) using the formula Γ(2x) = π−1/222x−1Γ(x)Γ(x + 1/2)
(see [17, Section 5.5(iii)]) and applying the standard formula (u)k = Γ(u + k)/Γ(u),
we obtain

S1 =
√
πΓ(ν + 1/2)

∞∑
k=0

(ν + 1/2)k

k!

(
β

α

)2k
=

√
πΓ(ν + 1/2)

(1 − β2/α2)ν+1/2 , (2.9)

where we evaluated the sum using the generalised binomial theorem. Using similar
considerations, we can express S2 in the hypergeometric form (A.1), which yields

S2 = −
2β
α
Γ(ν + 1)2F1

(
1, ν + 1;

3
2

;
β2

α2

)
. (2.10)

Substituting formulas (2.9) and (2.10) into (2.8) now yields formula (2.5). �

We now let (U, V) be a bivariate normal random vector having zero mean vector,
variances (σ2

U ,σ2
V ) and correlation coefficient ρ. Let Z = UV be the product of these

correlated normal random variables, and let s = σUσV . We also introduce the mean
Zn = n−1(Z1 + Z2 + · · · + Zn), where Z1, Z2, . . . , Zn are independent copies of Z. It was
noted in [4] that Z is VG distributed, and more generally it was shown in [6] that

Zn ∼ VG
(n − 1

2
,

n
s(1 − ρ2)

,
nρ

s(1 − ρ2)
, 0
)
. (2.11)

On combining (2.11) with (2.3), (2.4) and (2.5), we obtain the following formulas for
the CDF of Zn; formulas for the CDF of Z are obtained by letting n = 1.

COROLLARY 2.3. Let the previous notations prevail. Then, for x ≥ 0,

FZn
(x)

= 1 − (1 − ρ2)n/2

2
√
πΓ(n/2)

∞∑
k=0

(2ρ)k

k!
Γ

(k + 1
2

)(n + k
2

)
G̃((n−1)/2)+k,(n−1)/2

( nx
s(1 − ρ2)

)
, x ≥ 0,

FZn
(x)

=
(1 − ρ2)n/2

2
√
πΓ(n/2)

∞∑
k=0

(−2ρ)k

k!
Γ

(k + 1
2

)(n + k
2

)
G̃((n−1)/2)+k,(n−1)/2

(
− nx

s(1 − ρ2)

)
, x < 0,

and, for x ∈ R,
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FZn
(x)

=
1
2
− Γ((n + 1)/2)
√
πΓ(n/2)

ρ(1 − ρ2)n/2
2F1

(
1,

n + 1
2

;
3
2

; ρ2
)

+
(1 − ρ2)n/2

2
√
πΓ(n/2)

∞∑
k=0

(sgn(x))k+1 (2ρ)k

k!
Γ

(k + 1
2

)(n + k
2

)
G((n−1)/2)+k,(n−1)/2

( n|x|
s(1 − ρ2)

)
.

In particular,

P(Zn ≤ 0) =
1
2
− Γ((n + 1)/2)
√
πΓ(n/2)

ρ(1 − ρ2)n/2
2F1

(
1,

n + 1
2

;
3
2

; ρ2
)
. (2.12)

REMARK 2.4. On setting n = 1 in (2.12) and using formula (A.2), we obtain

P(Z ≤ 0) =
1
2
− 1
π

sin−1(ρ),

which can also be deduced from the standard result that

P(U ≤ 0, V > 0) = P(U > 0, V ≤ 0) =
1
4
− 1

2π
sin−1(ρ),

for (U, V) a bivariate normal random vector as defined above.

Appendix. Special functions

In this appendix, we define the modified Bessel function of the second kind, the
modified Lommel function of the first kind and the hypergeometric function, and
present some basic properties that are used in this paper. Unless otherwise stated, the
properties listed below can be found in [17]. For the modified Lommel function of the
first kind, formulas (A.4), (A.7) and (A.8) are given in [7], the integral formula (A.9)
can be found in [19], while the results in (A.10)–(A.12) are simple deductions from
other properties listed in this appendix.

The modified Bessel function of the second kind Kν(x) is defined, for ν ∈ R and
x > 0, by

Kν(x) =
∫ ∞

0
e−x cosh(t) cosh(νt) dt.

The generalised hypergeometric function is defined by the power series

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

j=0

(a1)j · · · (ap)j

(b1)j · · · (bq)j

xj

j!
, (A.1)

for |x|< 1, and by analytic continuation elsewhere. Here (u)j = u(u+1) · · · (u + k − 1)
is the ascending factorial. The function 2F1(a, b; c; x) is known as the (Gaussian)
hypergeometric function. We have the special case
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sin 2F1(a, b; c; x) =
sin−1(

√
x)

√
x(1 − x)

(A.2)

(see http://functions.wolfram.com/07.23.03.3098.01).
The modified Lommel function of the first kind is defined by the hypergeometric

series

tμ,ν(x) =
xμ+1

(μ − ν + 1)(μ + ν + 1) 1F2

(
1;
μ − ν + 3

2
,
μ + ν + 3

2
;

x2

4

)

= 2μ−1Γ

(
μ − ν + 1

2

)
Γ

(
μ + ν + 1

2

) ∞∑
k=0

( 1
2 x
)μ+2k+1

Γ
(
k + μ−ν+3

2
)
Γ
(
k + μ+ν+3

2
) .

In this paper, it will be convenient to work with the following normalisation of the
modified Lommel function of the first kind that was introduced in [7]:

t̃μ,ν(x) =
1

2μ−1Γ
( μ−ν+1

2
)
Γ
( μ+ν+1

2
) tμ,ν(x)

=
1

2μ+1Γ
( μ−ν+3

2
)
Γ
( μ+ν+3

2
) 1F2

(
1;
μ − ν + 3

2
,
μ + ν + 3

2
;

x2

4

)
.

For ν = m + 1/2, m = 0, 1, 2, . . . , the modified Bessel function of the second kind
takes an elementary form:

Km+1/2(x) =
√
π

2x

m∑
j=0

(m + j)!
(m − j)! j!

(2x)−je−x. (A.3)

The modified Struve function of the first kind Lν(x) is a special case of the function
t̃μ,ν(x):

t̃ν,ν(x) = Lν(x). (A.4)

The functions Kν(x) and t̃μ,ν(x) have the following asymptotic behaviour:

Kν(x) ∼
⎧⎪⎪⎨⎪⎪⎩

2|ν|−1Γ(|ν|)x−|ν|, x ↓ 0, ν � 0,
− log x, x ↓ 0, ν = 0,

(A.5)

Kν(x) ∼
√
π

2x
e−x, x→ ∞, ν ∈ R, (A.6)

t̃μ,ν(x) ∼
( 1

2 x
)μ+1

Γ
( μ−ν+3

2
)
Γ
( μ+ν+3

2
) , x ↓ 0, μ > −3, |ν| < μ + 3, (A.7)

t̃μ,ν(x) ∼ ex

√
2πx

, x→ ∞, μ, ν ∈ R. (A.8)

https://doi.org/10.1017/S0004972723001387 Published online by Cambridge University Press

http://functions.wolfram.com/07.23.03.3098.01
https://doi.org/10.1017/S0004972723001387


396 R. E. Gaunt [8]

The functions Kν(x) and t̃μ,ν(x) are linked through the indefinite integral formula∫
xμKν(x) dx = −2μ−1Γ

(
μ − ν + 1

2

)
Γ

(
μ + ν + 1

2

)
Gμ,ν(x), (A.9)

where Gμ,ν(x) is defined as in (2.1). With this indefinite integral formula and the
limiting forms (A.5)–(A.8), we deduce the following integral formulas. For μ ≥ ν >
−1/2, a > 0 and x > 0,∫ x

0
tμKν(at) dt =

2μ−1

aμ
Γ

(
μ − ν + 1

2

)
Γ

(
μ + ν + 1

2

)
Gμ,ν(ax), (A.10)

∫ ∞
x

tμKν(at) dt =
2μ−1

aμ
Γ

(
μ − ν + 1

2

)
Γ

(
μ + ν + 1

2

)
G̃μ,ν(ax), (A.11)

where G̃μ,ν(x) is defined as in (2.2).
Since Kν(x) > 0 for all ν ∈ R, x > 0 and the gamma functions in (A.10) and (A.11)

are positive for μ ≥ ν > −1/2, it follows that, for fixed μ ≥ ν > −1/2, Gμ,ν(x) is an
increasing function of x on (0,∞) with Gμ,ν(x) > 0, and G̃μ,ν(x) is a decreasing function
of x on (0,∞) with G̃μ,ν(x) > 0. Therefore, since G̃μ,ν(x) = 1 − Gμ,ν(x), we deduce that,
for μ ≥ ν > −1/2, x > 0,

0 < Gμ,ν(x) < 1, 0 < G̃μ,ν(x) < 1. (A.12)
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