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ABSTRACT. Driven, dissipative MHD fluids often seem to undergo relaxation processes. 
After a turbulent formation phase, a geometrically simpler and less disordered configuration 
emerges. The best known example is the laboratory reversed-field pinch ( R F P ) ; similar field 
topologies have been proposed for solar prominences and astrophysical "flux ropes." In a 
transient situation, the more rapid decay of kinetic and magnetic energy relative to magnetic 
helicity provides a mechanism for generating an MHD configuration with several similarities 
to observed RFP states. (This is the Taylor hypothesis, not unrelated to turbulent inverse 
magnetic cascades.) For the driven steady state, however, all quantities are supplied at the 
same time-averaged rate at which they are dissipated, by definition; nothing decays relative 
to anything else. Some other unifying principle, beyond "minimum energy" or "selective 
decay," seems necessary to describe the results of driven, steady-state MHD computations. 
We have been attempting to adapt the principle of minimum energy dissipation rate to 
MHD. It is a 19th century principle that achieved some success in hydrodynamics and 
separately in dissipative electrodynamics. 

Suppose that a particle is trapped around the minimum of a potential well and at the 
same time experiences a velocity-dependent frictional energy loss. Eventually, the particle 
will come to rest at the minimum of the well with zero kinetic energy. This is the simplest 
example of a "minimum energy state," established subject to a constraint. 

Minimum energy states, in more elaborate guises, appear all over physics. States of 
minimum energy, subject to constraints and boundary conditions, have played a role in ideal 
magnetohydrodynamic (MHD) stability theory. More recently, Taylor [1,2] has argued that 
the laboratory toroidal Z pinch ("screw pinch") should relax to a state of minimum energy 
compatible with approximate conservation of magnetic helicity. Minimum energy states 
have also been used as a basis for describing solar prominences. 

Some physical justification for relaxation to states of minimum energy can be given 
for MHD in the context of the decaying initial value problem for isolated systems. The 
arguments involve the more rapid turbulent decay of energy, relative to magnetic helicity, 
or "cross" helicity, or whatever other ideal invariants might decay less rapidly because of 
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tendencies to being transferred preferentially to the long-wavelength end of the spectrum 

However, the minimum energy formulation seems to be useful mainly for discussing 
decaying initial-value situations. Its implications come to seem doubtful in driven, steady-
state situations in which the excitation of the system is balanced by dissipation. To take 
the example again of a particle trapped in a potential well, it will clearly r ot settle into its 
minimum energy state if it is continually acted on by some external for^e. Rather, it will 
stay on the average at some finite level above its minimum possible energy at a place where 
its rate of absorption of energy from the external force will be on the average balanced by 
its rate of frictional energy loss. It cannot go to a "minimum energy" state. 

Driven, dissipative conditions are often closer to the realities of high-Reynolds-number 
or high-Lundquist-number MHD fluids than is the model of initially-excited, isolated decay. 
This is true both in the laboratory and on the sun. Driving mechanisms can be voltage 
drops, pressure drops, or mechanical agitation such as thermal convection. The dissipation 
is resistive and viscous. The question arises as to whether there is a variational principle 
that is as useful for the driven, steady-state problem as the minimum energy principle is 
for isolated mechanical systems, particularly for fluids and magnetofluids. 

We are not completely sure of the answer, but we think there is. It is the principle of 
minimum energy dissipation rate. It seems to have been first formulated by Kirchoff, who 
asked the following question. 

Given a rigid electrical conductor of fixed non-uniform electrical conductivity a ( x ) with 
the electrostatic potential $ ( x ) fixed over a closed surface, how will the electric current 
density j ( x ) distribute itself inside the surface? The equation of continuity relates the 
electric charge density pe to j : 

For either a steady state or a time average, the dpe/dt drops out and we are left with 
V • j = 0. However, j = - < r ( x ) V $ ( x ) . Making this substitution, the differential equation 

then determines $ ( x ) and j ( x ) , given $ ( x ) over the surface. Notice that Eq. (2) is exactly 
the Euler-Lagrange equation that one would have gotten if one had set out to minimize the 
total Ohmic energy dissipation rate J? J 7 

where the integral runs over the volume interior to the surface over which $ is given. 

The answer to Kirchoff's question is that j ( x ) arranges itself in such a way as to 

minimize the energy dissipation rate. Note that the given constrained value of $ ( x ) over 

the boundary is the constraint that gives individual cases their content. This is essentially 

a rigorous proof. 

Somewhat less rigorous, but still correct, is the application of the minimum dissipa-

tion rate principle to viscous fluid flows in hydrodynamics [11] made later by Helmholtz, 

Korteweg, and Lord Rayleigh. If one minimizes the viscous energy dissipation rate Ru, 

[3-8]. 

V • (<r(x)V$(x)) = 0 (2) 

(3) 

(4) 
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where u> = V x v is the vorticity of a uniform incompressible fluid, p. is its viscosity, and po 
and v are its density and kinematic viscosity, one is quickly led to the elementary steady 
flows. Plane Poiseuille flow, pipe flow, plane Couette flow, rotating Couette flow are all 
derivable by miiuiiiizmg Ru subject io the relevant boundary conditions. (For the case of 
moving boundaries, Rw differs from the dissipation rate expressed as an integral involving 
the rate-of-strain tensor by an integral whose first variation vanishes for trial functions 
6 v ( x ) which vanish on the boundary, so that minimizing Ru is still minunizing the energy 
dissipation rate.) As in the electric current case, it is the boundary constraints that give 
individual cases their content. 

It came t o seem natural to us to re-examine driven, dissipative MHD from the point of 
view of minimum-dissipation-rate principles. In a familiar set of dimensionless variables, the 
relevant integral to be minimized for incompressible, resistive, viscous MHD is (77 = a~l) 

R = Rv + Rj = J(vu>2+m2)d3x, (5) 

subject t o appropriate constraints. We have been particularly interested [12-15] in the case 
of voltage-driven cylinders of magnetically-supported MHD fluid with periodically-identified 
ends ( to simulate toroidal periodicity). This situation is one for which extensive numerical 
computations due t o Dahlburg, et al. [16-18] and Theobald, et al. [19] have for some time 
been accumulating evidence that only in some respects did minimum-energy predictions 
seem to represent what happened, and that a fundamental revision was in order. 

Noteworthy among the previously unexplained features, that could not be squared with 
the minimum energy predictions, were: (1) a strong spatial dependence of the ratio | j | / | B | 
(here, B is the magnetic field and j = V x B in the relaxed, approximately force-free state); 
(2) a persistent helical contribution to j and B , in addition to the (larger) approximately 
axisymmetric components; and (3) a persistent kinetic energy of flow, at the level of a few 
percent, also tending to be helically distributed over space. These results had been around 
for some time before we found any way to get at them analytically. 

The principal difficulty in minimizing the dissipation rate R (or, for that matter, in 
minimizing the energy, if anyone still feels that that is what he should do) is the role played 
by the Ohm's law, which for MHD can be written in the equivalent forms 

— = V x [ v x B - r ; j ] (6) 

E = E 0 + V $ = - v x B + 7/j. (7) 

Here, E is the (dimensionless) electric field, En is its spatial average, $ is a scalar potential 
determined by 

V 2 $ = - V - ( v x B ) (8) 

if the resistivity 77 is spatially uniform. 

Eq. (6) , or (7) , is the source of whatever constraints apply to this system beyond 
simple boundary conditions, including all those involving global magnetic helicity or its 
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rate of supply. But it is much more than that. Since $ = $ ( v , B ) as a consequence 
of Eq. (8) , Eq. (7) is in effect a pointwise constraint relating v, B and V x B at every 
point in space. Its complexity precludes elimination of either v or B in favor of the other 
and substitution into i t . Most importantly, Eq. (7) mandates a finite now velocity v for 
all states except the relatively uninteresting one of uniform j = Eo/rj. This v is not the 
fancy, statistically-distributed small-scale turbulence invoked in the "alpha effect," it is 
macroscopic and present in the simplest cases. It requires a sort of zerotli-order revision in 
our ideas of what an MHD equilibrium can be. It may devalue, forever, the ideal, cylindrical 
equilibria with zero-flow, axisymmetric current distributions j = (0, J<p(r), jz(r)) that have 
been such a preoccupation in much of MHD. 

If one takes the hydrodynamic point of view that ideal equilibria are only physically 
significant if they can be approached as a limit, as the small but finite dissipation coefficients 
approach zero, then Ohm's law calls into question most of the ideal axisymmetric zero-flow 
equilibria that have been proposed. It turns out to be rather difficult to construct resistive 

MHD equilibria which obey not only force balance according to the equation of motion, but 
also flux balance as required by Eqs. (6) and (7) , with small but non-zero rj. The reason, 
not at all unfamiliar in hydrodynamics, is that n multiplies the highest spatial derivative of 
B in the problem. 

It has been possible [13-15] to construct some solutions to the full set of MHD equations 
which obey Eqs. (6) and (7) as well as the dv/dt equation with viscosity. The solutions so far 
are perturbation-theoretic. The small parameter is the ratio of helical to the axisymmetric 
parts of j and B . The solutions go through second order in this ratio. Graphically [13], they 
look in many respects like the results of the MHD computations [16-19] in their principal 
features. The agreement is better at not too high values of the pinch ratio 0 , as might 
be expected. The analytical solutions, like the numerical computations, are lengthy, and it 
is not our purpose to reproduce them here, but to direct attention to the original papers. 
Further extensions, including predictions of the amplitudes of the helical components, will 
be reported elsewhere [20]. 

D i s c u s s i o n 

What are the implications of these considerations for solar physics? Perhaps their immediate 
impact is not great, since the quantities being revised, such as the aforementioned helical 
v and B contributions, are likely out of reach observationally in the solar context in the 
immediate future. Perhaps of more value is a reminder of how little of what passes for 
magnetohydrodynamic theory is really on very solid ground. In all astrophysics, there is 
a tendency to concentrate on the observations and to regard MHD as a consumer regards 
an off-the-shelf product. Like all consumers, the observer would like to believe the product 
he is buying has been thoroughly tested and is reliable. Nobody wants to hear that the 
propositions of MHD theory, which have been repeated so many times, are shaky ones about 
which the buyer had better beware. But that is, probably, the case. It did not need to be 
this way. For a small fraction of the expense of the many observations, a little investment 
in internally-diagnosable laboratory MHD would have left us far ahead of where we are at 
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present. We would at least know whether or not to expect flows in pinch situations! 

A c k n o w l e d g e m e n t s 

This work was supported in part by NASA Grant NAG-W-710 and U.S. Department of 
Energy Grant DE-FG02-85ER53194. 

R e f e r e n c e s 

1. Taylor, J.B. (1974) Relaxation of toroidal plasmas and generation of reverse magnetic 

fields, Phys. Rev. Lett, 3 3 , 1139. 

2. Taylor, J.B. (1986) Relaxation and magnetic reconnection in plasmas, Revs. Mod. 

Phys. 5 8 , 741. 

3. Montgomery, D. , Turner, L. and Vahala, G. (1978) Three-dimensional MHD turbulence 

in cylindrical geometry, Phys. Fluids, 2 1 , 757. 

4. Matthaeus, W.H. and Montgomery, D. (1980) Selective decay hypothesis at high me-

chanical and magnetic Reynolds numbers, Proc. Int. Conf. on Nonlinear Dynamics, 

Ann. NY Acad. Sci., 3 5 7 , 203. 

5. Riyopoulos, S., Bondeson, A. and Montgomery, D. (1982) Relaxation toward states of 

minimum energy in a compact torus, Phys. Fluids, 2 5 , 107. 

6. Ting, A.C. , Matthaeus, W.H. and Montgomery, D. (1986) Turbulent relaxation pro-

cesses in magnetohydrodynamics, Phys. Fluids, 2 9 , 3261. 

7. Dahlburg, J.P., Montgomery, D . , Doolen, G.D. and Turner, L. (1987) Turbulent relax-

ation of a confined magnetofluid to a force-free state, J. Plasma Phys., 3 7 , 299. 

8. Montgomery, D. and Phillips, L. (1989) MHD turbulence, relaxation processes and 

variational principles, Physica, D 3 7 , 215. 

9. Kirchoff, G.D. (1848) in Ann. Phys., 7 5 , 189. 

10. Jaynes, E.T. (1980) The minimum entropy production principle, Ann. Rev. Phys. 

Chem., 3 1 , 579. 

11. Lamb, H. (1945) Hydrodynamics, 6th ed., Dover, New York, pp. 617-619. 

12. Montgomery, D. and Phillips, L. (1988) Minimum dissipation rates in magnetohydro-

dynamics, Phys. Rev. A 3 8 , 2953. 

13. Montgomery, D . , Phillips, L. and Theobald, M.L. (1989) Helical, dissipative, magneto-

hydrodynamic states with flow, Phys. Rev., A 4 0 , 1515. 

14. Montgomery, D. (1989) Relaxed states in driven, dissipative magnetohydrodynamics: 

helical distortions and vortex pairs, to appear in Trends in Theoretical Physics, Vo l . 

I, ed. by P.J. Ellis and Y . C . Tang, (Addison-Wesley, New York). 

15. Montgomery, D. (1990) Minimum dissipation states and vortical flow in MHD, to ap-

pear in Proc. 1989 IUTAM Symposium, H.K. Moffatt, Ed. (Cambridge University 

press, Cambridge, UK) . 

16. Dahlburg, J.P., Montgomery, D. , Doolen, G.D. and Matthaeus, W.H. (1986) Large-

scale disruptions in a current-carrying magnetofluid, J. Plasma Phys., 3 5 , 1. 

17. Dahlburg, J.P., Montgomery, D. , Doolen, G.D. and Turner, L. (1986) Turbulent relax-

ation to a force-free field-reversed state, Phys. Rev. Lett, 5 7 , 428. 

18. Dahlburg, J.P., Montgomery, D. , Doolen, G.D. and Turner, L. (1988) Driven steady-

state RFP computations, J. Plasma Phys., 4 0 , 39. 

https://doi.org/10.1017/S0074180900087969 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900087969


220 

19. Theobald, M.L., Montgomery, D., Doolen, G.D. and Dahlburg, J.P. (1989) Sawtooth 
oscillations about helical current channels, Phys. Fluids, B l 766. 

20. Montgomery, D., Chen, H. and Shan, X, to be published. 

https://doi.org/10.1017/S0074180900087969 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900087969


221 

DISCUSSION 

VAN BALLEGOOIJEN: How does the velocity scale with magnetic diffusivity Cn)? Is 
the scaling linear? 

MONTGOMERY: We do not really know in any comprehensive sense. There is not any 
velocity, for example, until the applied electric field Eo crosses a threshold, E c . Just above 
that, the rms velocity seems to go linearly with r^l2 but it is also multiplied by (En-Ep), in 
the expression we have been able to calculate. E c itself depends on magnetic diffusivity, 
though, so the answer does not appear to be too simple. 

HEYVAERTS: Has it been possible to recognize any sign of intrinsic stochasticity of field 
lines in your numerical solutions? 

MONTGOMERY: No, not a great deal. We have made only a few attempts to track field 
lines the requisite large number of times around the torus and make Poincar6-type plots of 
their interesections with planes of constant z. The results of one such attempt appear in 
Figs.8 of Phvs.FluidsBl. 766 (1989), which to me, at least, look pretty regular. I 
sometimes feel that the question of "where the field lines go" receives too much emphasis in 
MHD, mostly for historical reasons. If one is concerned with a population of hot electrons 
trying to escape from a tokamak, then it is needed information. But if MHD alone is one's 
concern, all the same information is available in the various fields (h,(x.,t), j(x.,t), y_(x.,t), 
A£x,t) etc. as functions of space and time. These are what the computer provides, and it is 
a relatively straightforward operation to ask it to make 3D perspective plots, contour plots, 
etc., of these various fields. It is a delicate and risky matter to try to follow a turbulent field 
line, which is perhaps why people seldom try in hydrodynamics. Also, when resistivity is 
present, there is no unique way to identify a field line from one time to the next I would 
like to see us declare a moratorium on anthropomorphic speculations about field line 
behaviour. 

BUTT: The appearance of chaos in a magnetic field would depend on the strength of the 
driver. It is possible that the driver you have taken is not strong enough and it is possible 
that you would see the chaos if you take a stronger driver. 

MONTGOMERY: I guess by "chaos in the magnetic field" one might mean two things: (i) 
chaotic Poincar6 plots of magnetic field intersections with a plane of constant z at a fixed 
time; or (ii) chaotic, Lorenz-like, temporal behaviour in the computed expansion 
coefficients for the magnetic field. Let me remark on these separately. 

(i) In Phys. Fluids,BlJ66 (1989) we tried to follow field lines at fixed times and 
make plots of their successive intersections. In those plots (which refer to the "tokamak" 
regime), we could see relatively little indication of "chaos". Chaotic patterns may be more 
likely in the "RFP" regime. It is not easy to design a field-line-tracing algorithm that will 
follow a field line very many times around a torus reliably, in the presence of genuine 3D 
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turbulence. When one of the components is locked away from zero, as in the Strauss 
approximation, it is somewhat easier. But the turbulence is also somewhat suppressed, 
perhaps artificially, by the approximation. 

(2) In / . Plasma Phys. 25,1 (1986), a very low-order truncation of the dynamical 
equations in transform space did, when numerically integrated, yield Lorenz-like, "chaotic" 
behaviour in the phase space. However, as more terms in the expansion were added, and 
the truncation became less severe, the exotic "strange attractor" behaviour went away. 

VENKATAKRISHNAN: How does the kinetic energy of final relaxed state scale with the 
energy input at the boundaries? 

MONTGOMERY: Energy input is something that, unlike magnetic helicity input, is not 
fixed by the boundary conditions we are imposing. It is up to the plasma, which behaves 
as an anomalously resistive element due to the <v x B) opposing the applied electric field, 
and the amount of energy it accepts is not fixed by prescribing the electric field at the wall. 
Roughly speaking, the two quantities go up together, but their basic dependence on a 
prescribable number is better found by asking how both go up as a function of applied 
electric field at the wall, or "toroidal loop voltage". We plan to give an answer to that for 
the "tokamak regime" (pinch ratio 0 < 1) in an urx^oming manuscript 

KRISHAN: You mentioned that the hydrodynamicists made a mistake by neglecting 
viscosity. What are the consequencies of including viscosity? 

MONTGOMERY: There is not much similarity, in hydrodynamics, between the case of 
zero viscosity and very small viscosity; it is a kind of discontinuous limit. When the 
Reynolds' number becomes > 1000 or 2000, turbulence sets in in the presence of velocity 

shear. The instabilities which signal it are intrinsically viscous. Also, since viscosity (like 
resistivity in MHD) multiplies the highest-order spatial derivatives in the problem, its neglect 
changes in fundamental ways the number and kind of boundary conditions required for a 
well-posed problem. There is absolutely no guarantee that, if a zero-viscosity solution can 
be found, there is a similar solution with small but finite viscosity. More often than not, 
there is not. 

HOLLWEG: (i) What do you think the effects of line-tying boundary conditions will be? 

(ii) What is the "Alfv6nicity" of the final relaxed state? 

MONTGOMERY: (i) This is pretty hard to say. For the "line-tied" case, in which the 
magnetic field lines intersect the conducting boundary, a lot more needs to be said in order 
to feel confident that we have a set of boundary conditions that will determine a well-posed 
problem. 

(ii) The ratio of kinetic energy of motion to magnetic energy per unit volume is always 
small for the case we have mostly considered, where there are rigid, conducting boundaries 
and the driving is through applied voltages. Typical numbers would be two to four per 
cent. In the presence of these highly "magnetic" boundary conditions, the kinetic energy 
gets clamped at a fairly low level, and the tendencies toward equipartition at the larger scales 
that might be expected for periodic boundary conditions and no imposed dc magnetic field 
just do not appear. 
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