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This paper is concerned with the study on an open problem of classifying
conformally flat minimal Legendrian submanifolds in the (2n + 1)-dimensional unit
sphere S2"*1 admitting a Sasakian structure (¢, &, 1, g) for n > 3, motivated by the
classification of minimal Legendrian submanifolds with constant sectional curvature.
First of all, we completely classify such Legendrian submanifolds by assuming that
the tensor K := —oh is semi-parallel, which is introduced as a natural extension of
C-parallel second fundamental form h. Secondly, such submanifolds have also been
determined under the condition that the Ricci tensor is semi-parallel, generalizing
the Einstein condition. Finally, as direct consequences, new characterizations of the
Calabi torus are presented.
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1. Introduction

The study on both extrinsic and intrinsic geometry of submanifolds in the unit
sphere is always an interesting topic, in which the classification research under suit-
able geometric conditions plays a significant role and has attracted many geometers.
It is well known that, as a real hypersurface of the complex Euclidean space C*t1,
the unit sphere S?**! of dimension (2n + 1) naturally admits a Sasakian structure
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(, &, m, g) (cf. [30]). Moreover, an m-dimensional submanifold M™ in S?"*! is
said to be C-totally real (or equivalently, integral ) if the contact form n of S?7+!
vanishes when it is restricted to M™, namely n(X) = 0 for any X € TM™. In par-
ticular, we call a C-totally real submanifold M™ Legendrian if it meets the smallest
possible codimension, that is to say, m = n (cf. [33]), and related to the classifica-
tion of such submanifolds in S?"**!, many results have been established in the last
few decades, see e.g. [2, 9, 16-19, 23, 24, 27-29, 31, 36].

Recently, sharpening a theorem of Yamaguchi-Kon-Tkawa [34], Cheng—He—Hu
[7] gave a complete classification of all the n-dimensional minimal Legendrian sub-
manifolds in Sasakian space forms with constant sectional curvature, from which it
follows that

THEOREM 1.1 cf. [7]. Let M™ (n > 2) be a minimal Legendrian submanifold in the
unit sphere S 1 with constant sectional curvature. Then, either M™ is the totally
geodesic sphere, or M™ 1is the flat Clifford torus.

Regarding theorem 1.1, we see that a Legendrian submanifold M"™ in the unit
sphere S?"*1 is called minimal if its mean curvature H vanishes identically, while
the Clifford torus is given by the immersion 7" — S?"*! with the parameterization
asin (1.2) of [7], where T" = S* x --- x St and S is a circle of radius 1. It was shown
by direct calculation that the Clifford torus is a minimal Legendrian submanifold
with flat induced metric.

It is worth mentioning that various attempts to generalize the above theorem
have been made by geometers under suitable extrinsic and intrinsic conditions.
For instance, except the examples in theorem 1.1, Xing—Zhai [33] obtained new
ones constructed by the Calabi product (cf. [22]), when classifying n-dimensional
minimal Legendrian submanifolds with C-parallel second fundamental form in cases
n = 3, 4, where the second fundamental form h of M™ — S2"*+1 is called C-parallel
if it satisfies V€h = 0 on M™. Moreover, compact minimal Legendrian submanifolds
in the unit sphere S?**! with non-negative sectional curvature have been studied by
Dillen—Vrancken [8] for n = 3 and Zhai-Zhang [38] for n = 4, and were completely
classified by Cheng—Hu [5] for n > 5. Meanwhile, a condition on the Ricci tensor Ric
called parallel Ricci tensor, i.e. VRic = 0 with V being the Levi-Civita connection,
has been applied by Hu-Li-Xing [12] to successfully classify natural subclasses
of such minimal Legendrian submanifolds in S?"*! for n = 3, 4, where it is clear
that the parallel Ricci tensor is a natural extension of the Einstein condition, i.e.
Ric = kg with k a constant and g the induced metric. In particular, during this
process, there is always an open problem that can be stated as follows:

Problem. Classify conformally flat minimal Legendrian submanifolds in the unit
sphere S?"*! for n > 3.

Some facts about the above problem are as follows. First of all, a Riemannian
manifold (M™, g) is said to be conformally flat if there exists a coordinate chart
{(Uq, ¢a); @ € A} covering M™ such that (¢, 1)*g = pads? for each o € A, where
ds? denotes the Euclidean metric on R™ and p, is a positive function defined on
R™. It is well known that a Riemannian surface is always conformally flat. In higher
dimensions, (M", g) of dimension n > 4 is conformally flat if and only if its Weyl
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curvature tensor vanishes identically, while (M3, g) is conformally flat if and only
if its Schouten tensor is a Codazzi tensor, where the Weyl curvature tensor of M3
vanishes automatically.

Next, as a conformally flat minimal Legendrian submanifold in the unit sphere
S§?7+1 with non-constant sectional curvature, the Calabi torus was characterized on
the pinching conditions of the sectional curvature by Dillen—Vrancken [8], the Ricci
tensor by Hu-Xing [14], and the scalar curvature by Luo—Sun [25], Luo—Sun—Yin
[26], respectively.

EXAMPLE 1.2. The Calabi torus in the unit sphere S?"! (cf. [26]).

Let v = (71, 72) : St — S3 € C? be a Legendrian curve, defined by

n i n 1 —iv/n
() = (1/n+1e(1/mt’\/n+1e ft>, (1.1)

and ¢ : S"7! — §?7~1 C C" the totally geodesic Legendrian sphere for n > 3. Then
fty) = (mo,72) : St x §*71 — §"+ c C (1.2)

is a minimal Legendrian immersion and f(S! x S*~1) is called the Calabi torus.

In this paper, towards the above problem, we study the classification of confor-
mally flat minimal Legendrian submanifolds in S?"*! under some suitable extrinsic
and intrinsic conditions. As the first of our main results, motivated by above results,
we completely classify such submanifolds with semi-parallel tensor K, namely
R- K =0 with R being the Riemannian curvature tensor, as a generalization of
C-parallel second fundamental form, where K : TM"™ x TM™ — TM™ is a (1, 2)-
tensor defined by K := —ph satisfying h(X,Y) = ¢oK(X,Y) for any X, Y € TM"
(see § 2.3 for details).

THEOREM 1.3. Let M™ (n > 3) be a conformally flat minimal Legendrian subman-
ifold in the unit sphere S*" 1. If M™ is of semi-parallel tensor K, then it is locally
congruent to one of the following three examples:

(a) M™ is the totally geodesic sphere;
(b) M™ is the flat Clifford torus;
(¢c) M™ is the Calabi torus.

REMARK 1.4. In order to generalize theorem 1.1, Hu-Li-Xing [12] investigated
minimal Legendrian submanifolds in S?”*! with Einstein-induced metric and veri-
fied that each of such submanifolds must be of constant sectional curvature in case
of n =4.

Recall that, for an n-dimensional Riemannian manifold (M™, g), the traceless
Ricci tensor Ric of M is defined by Ric(X, Y) = Ric(X,Y) — (n — 1)xg(X, Y)
for X, Y € TM", where Ric and x are the Ricci tensor and normalized scalar
curvature of M", respectively. Let ||Ric|| be the tensorial norm of Ric with respect
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to the metric g. Applying theorem 1.3, we can prove the following two rigidity
theorems.

COROLLARY 1.5. Let M"™ (n > 3) be a minimal Legendrian submanifold in the unit
sphere ST with semi-parallel tensor K. Then, for its traceless Ricci tensor Ric,
it holds the pointwise inequality:

(n—=2)(n+1)

Ric|? €
[Ric|l .

Sx, (1.3)
where S and x are the squared norm of the second fundamental form and the nor-
malized scalar curvature of M™, respectively. Moreover, the equality in (1.3) holds
identically if and only if M™ is locally congruent to one of the examples (a)-(c) as
in theorem 1.3.

COROLLARY 1.6. Let M™ (n > 3) be a closed minimal Legendrian submanifold in
the unit sphere S+l with vanishing Weyl curvature tensor. Then, for its traceless
Ricci tensor Ric, it holds the integral inequality:

n—2)(n+1)

o2 dVa > ¢ AVasn 1.4
IRl avig > SR [ svavie, (14)

where S and x are the squared norm of the second fundamental form and the nor-
malized scalar curvature of M™, respectively. Moreover, the equality in (1.4) holds if
and only if M™ is locally congruent to one of the examples (a)—(c) as in theorem 1.3.

On the contrary, for the Riemannian manifold (M™, g), its Ricci tensor Ric is
said to be semi-parallel if and only if R - Ric = 0 on M™. This condition is obviously
weaker than that of parallel Ricci tensor, as stated above. Then, the second main
result of this paper can be given by

THEOREM 1.7. Let M™ (n > 3) be a conformally flat minimal Legendrian subman-
ifold in the unit sphere S*"*1. If M™ is of semi-parallel Ricci tensor, then it is
locally congruent to one of the following three cases:

(a) M™ is the totally geodesic sphere;
(b) M™ is the flat Clifford torus;
(¢) M™ is the Calabi torus.

REMARK 1.8. By means of theorem 1.7 and the calculations given in § 3, we see
that, for the conformally flat minimal Legendrian submanifolds in S+, the Ricci
tensor Ric is semi-parallel if and only if it is parallel, although such equivalence
does not hold for general Riemannian manifolds.

Finally, we further prove the following result, by which we can complete the
proofs of theorems 1.3 and 1.7, respectively.

THEOREM 1.9. Let M™ (n > 3) be a minimal Legendrian submanifold in the unit
sphere S If (M™, g) is locally isometric to a Riemannian product I x My =
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(I x My, dt?> @ go), where I C R, g is the induced metric on M™ and (Ms, g2) has
constant sectional curvature ¢ # 0, then M™ is locally congruent to the Calabi torus.

The outline of this paper is as follows: in § 2, we give a brief review of the
local theory of Legendrian submanifolds in the unit sphere S?* ™! with the Sasakian
structure (p, &, 1, g), and then collect necessary material on the conformally flat
structure of Riemannian manifolds. For better illustrating our results, we compute
in § 3 the invariants of Calabi torus with details. Section 4 is dedicated to studying
the properties of Legendrian submanifolds under some certain geometric conditions.
In § 5, applying these properties, we complete the proofs of theorems 1.3-1.9 and
corollaries 1.5 and 1.6.

2. Preliminaries

In this section, we first collect some necessary material on Sasakian structure
(p, €, 1, g) of the unit sphere S>**! that can be regarded as a Sasakian space form
with constant p-sectional curvature 1. Then, we briefly review the local theory of
Legendrian submanifolds in S?"*!. Finally, some basic notions and facts relative to
conformally flat structure of Riemannian manifolds are presented for later use. For
more details, we refer to [12, 17, 32] and the monographs [3, 35].

2.1. Sasakian structure (¢, &, 1, g) of the unit sphere S?"+1!

As a real hypersurface of the complex Euclidean space C"*! with canonical com-
plex structure .J, the (2n + 1)-dimensional unit sphere S?"*! naturally admits a
Sasakian structure (o, &, 1, g): € = JN is the structure vector field with the unit
normal vector field N of the inclusion S?**+1 < C"*!: ¢ is the induced metric on
St (X)) = g(X, €) and pX = JX — (JX, N)N for any tangent vector field X
on $?"*1 where (-, -) denotes the standard Hermitian metric on C"*!. In particu-
lar, for any tangent vector fields X, Y on S?"*1 the Sasakian structure (¢, &, 0, g)
of S?"+1 satisfies the following properties:

9(pX,9Y) = g(X,Y) — n(X)n(Y),

=0, n(pX)=0, rank(p)=2n,

P’X = =X +7(X)§, dn(X,Y) = g(X,9Y),
Vxé=—pX, (Vxp)V =g(X,Y){-n(Y)X,

(2.1)

where V is the Levi-Civita connection with respect to the induced metric g on
S2n+1.

2.2. Local theory of Legendrian submanifolds in the unit sphere S?7+1

Let M™ be a Legendrian submanifold in the unit sphere S?"*!, i.e. the contact
form 7 restricted to M™ vanishes. Consequently, £ is a normal vector field over M™.
Denote by N a unit normal vector field along M™, and by U, X, Y, Z the tangent
vector fields on M™ in the subsequent paragraphs. Then, we have the Gauss and
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Weingarten formulas:
VxY =VxY +h(X,Y), VxN=—-AxX + V%N, (2.2)

where V is the Levi-Civita connection of the induced metric on M™, still denoted
by g, h (resp. Ay) is the second fundamental form (resp. the shape operator with
respect to N) of M™ — S?*!1 and V< is the normal connection in the normal
bundle 7+ M™. Then, by means of (2.2) it can be verified that

g(h(X,Y),N)=g(AnNX,Y). (2.3)

Note from the facts n(X) = 0 and dn(X, Y) = g(X, ¢Y) that ¢ maps the tangent
vector fields of M™ to the normal vector fields in 7+ M™. Applying (2.2), we further
have

VxpY = oVxY +g(X,Y)E, AuxY = —ph(X,Y) = Ay X, (2.4)
and thus g(h(X, Y), ¢Z) is totally symmetric in X, Y, and Z:
g(W(X,Y),0Z) = g(h(X, Z),0Y) = g(h(Y, Z), pX). (2.5)
It follows from (2.1), (2.3), and the Weingarten formula that
9(h(X,Y),§) = g(AcX,Y) = 0. (2.6)

Moreover, the equations of Gauss, Ricci, and Codazzi are respectively given by

RX.Y)Z=g(Y,Z)X — g(X,2)Y + [Apx, Apv]Z, (2.7)
RYX,Y)pZ = ¢[Ayx, Ay Z, (2.8)
(?h)(X, Y, Z) = (?h)(Y, X, 7), (2.9)

where, by definitions:

[Aq:Xv AwY] = A«/JXAwY - AsoYAsaXv

R(X,Y)Z =VxVyZ -VyVxZ— Vixv4,
RY(X,Y)pZ = VxVyoZ — VyVx¢pZ — Vix y 197,
(?h)(X, Y, Z) = V)L(h(Y, Z)—h(VxY,Z)—-hY,VxZ).

From now on, we assume that M" is a minimal Legendrian submanifold in the
sphere S?"*!1 unless otherwise stated. Contracting the Gauss equation (2.7) twice,
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we have

nin—1x=nn-1)-8, S=|h|? (2.10)

where y is the normalized scalar curvature and | - ||? denotes the squared norm

relative to the metric g. Furthermore, the Ricci identity reads:

(V2h)(U,X,Y, Z) — (V*h)(X,U,Y,Z) = (R-h)(U,X,Y, Z)

= RY(U, X)h(Y,Z) — h(R(U, XY, Z) — h(Y,R(U, X)Z), (2.11)

where R is the curvature tensor of the Van der Waerden—Bortolotti connection and

(V2h)(U,X,Y,Z) =V§((Vh)(X,Y, Z)) = (Vh)(VuX,Y, Z)

2.12
As usual, the so-called local Legendre frame {ey, ..., e, €1+, ..., €px, €2p11}
along M™ can be chosen such that, restricted to M™, the vector fields ey, es, ..., e,
are orthonormal and tangent to M"™, whereas {e1« = peq, ..., €px = @€y, €241 =
¢} are the orthonormal normal vector fields of M™ in S?"*1. In the sequel, we shall
make the following convention on range of indices:

Lk tmp=1....n; «af=1,...,n+1,
LR m pt=n+1,....2n; " =a+n,0"=0F+n.

Set hf; = g(h(e;, €j), pey) and h?j”“ = g(h(e;, €;), ean+1). Denote by h%} and
h% ‘m
respectively. Let Rijpe = g(R(e;, €j)er, ;) and Rija-p = g(R*(es, €j)eps, €q+)
be the components of the curvature tensors of V and V+. Denote by R;; =
> x 9(R(ei, ep)er, €5) the components of the Ricci tensor of g. As M™ is minimal

in S2"*1 it is known from (2.5)-(2.9) that

the first and the second covariant derivatives of h% with respect to V,

Rijkz:&kaje—awéjHZ( BT — R RTE ), Rigkeansny =0, (2.13)

Rij=(n—1)0i; — Y hiphfy, Rijgere = Z( R — hi ), (2.14)
k.l

hE = hl, = hi;, RETI =0, he, = Z,”,Zh =0. (2.15)

In this situation, the Ricci identity (2.11) can be rewritten as follows:

zg lp z] pl - Z hm]erlp + Z h mﬂp + Z h?j Répﬁ*a*- (216)
B

Finally, the following uniqueness theorem for the Legendrian submanifolds in the
unit sphere S?**! is also needed.
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THEOREM 2.1 (cf. [12]). Let f and f: M™ — S be two Legendrian immersions
of a connected manifold M™ into the unit sphere St with the second fundamental
forms h and h, respectively. Assume that

g(f*X,f*Y)Zg(f*X,f*Y), g(h(X,Y),Lpf*Z)Zg(B(X,Y),ng*Z), (2'17)

where X, Y, Z are any tangent vector fields on M™. Then there exists an isometry
7 of St such that f = 7o f.

2.3. Equivalent properties of parallel or semi-parallel tensor K

Recall that, for the Legendrian submanifold M™ in the unit sphere S?"*1!, its
second fundamental form h is said to be parallel if Vh = 0 on M", and as a direct
generalization, h is said to be semi-parallel if R-h =0 on M™, where R denotes
the curvature tensor corresponding to the Van der Waerden—Bortolotti connection.
For the latter one, it is easy to see from the Ricci identity (2.11) that, for tangent
vector fields U, X, Y, Z on M",

(V2h)(U, X, Y, Z) = (V2h)(X,U,Y, 2), (2.18)
which, under the Legendre frame {ey, ..., ey, €1+, ..., €y, €ap41} on M™, is
equivalent to

iajffp - %tplf’ (2.19)

where 1 <4, j, f,p<nanda”=a+nforl<a<n+l. B
In addition, associated with V and &, a covariant differentiation V¢ can be defined
such that it acts on h as

(VEh)(X,Y, Z) = (Vh)(X,Y, Z) — g(h(Y, Z), pX)E. (2.20)

Under the Legendre frame on M", setting (Vh)(ex, e;, €;) = >, Bf;}keg* and

(VE, (VER))(eq, eire5) = ((VE)h)(ep, easeie) = Y hE pene, (2.21)
k

we obtain the following relations (cf. [17]):

R =h g B g =l — h 0k, RIT = 2RE (2.22)

ij,k? ij,lp ij,6p ij,lp ij,p°

In particular, h is called C-parallel if it satisfies VEh =0 on M™.

For our purposes, we introduce the (1, 2)-tensor K : TM"™ x TM"™ — TM™
defined by K := —ph satisfying h(X,Y) = pK(X,Y). A straightforward calcu-
lation shows that

LEMMA 2.2. For the tensor K of the Legendrian submanifold M™ in S*™+1, we
have

(1) KExY =K(X,Y)=A,xY and g(K(X,Y), Z) is totally symmetric;
(2) M™ is minimal if and only if trace Kx =0 for any X € TM™;
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(3) (VE)(X,Y, 2)=(VE)(Y, X, Z) for any X, Y, Z € TM";

(4) the Ricci identity for the tensor K is given by

(V2K)U,X,Y, Z) — (V2 K)(X,U,Y,Z) = (R- K)(U, X,Y, Z)
= R(U,X)K(Y, Z) — K(R(U,X)Y, Z) — K(Y, R(U, X) Z),

where (V2K)(U, X, Y, Z) = (Vu(VK))(X, Y, Z) for any U, X,Y, Z €
TM™.

Furthermore, it can be checked by using (2.20) and (2.21) that

(VER)(X,Y, Z) = o(VE)(X,Y, Z),

(V?h)(U,X,Y, Z) — (V*)*h)(X,U,Y, Z) = o(R- K)(U, X,Y, Z). (229
Consequently, VK = 0 if and only if V¢h =0, and R - K = 0 if and only if
(V$)2h)(U,X,Y, Z) = (V*)’h)(X,U.Y, Z), (2.24)
which, under the Legendre frame {eq, ..., en, €1+, ..., €p=, €app1} on M", is
equivalent to
hfj*fp = B?j*,pf (2.25)

Here, we shall call the tensor K parallel (resp. semi-parallel) if VK =0 (resp.
R-K =0) holds on M™.

LEMMA 2.3. Let M™ (n > 2) be a Legendrian submanifold in the unit sphere S>"*1.
Then, M™ is of C-parallel second fundamental form if and only if VK =0 on M™,
where V denotes the Levi-Civita connection, and M™ satisfies equation (2.24) if and
only if R- K =0 on M™, where R denotes the curvature tensor of the connection V.

Assume that the tensor K of Legendrian submanifold M™ does not vanish at some
point & € M™. We shall consider U, M™ = {v € T, M™ | g(v, v) = 1} and then define
a function F on U,M"™ by F(u):= g(K(u, u), u) = g(Apuu, u) for uve U,M™.
Since U, M™ is compact, there exists a unit vector e; € U, M™ at which the function
F(u) attains an absolute maximum, denoted by A; and A\; > 0. As a result, it holds
that:

g(Kee1,u) =0, g(Keer,e1)>229(Keu,u), ul e, ueUM™. (2.26)

LEMMA 2.4 (cf. [12]; Lemma 5.1 and Corollary 5.1 of [11]). There exists an
orthonormal basis {e1, ..., en} of T, M™ so that K., e; = \je; for 1 <i < n, where
A1 is the mazimum value of F' on Uy M™. Also, Ay = 2A; fori = 2, and if \i = 2]
for some j > 2, then F'(e;) = 0. Moreover, for a unit vector u € T, M™, if K,u=
Au, then X is an extremal value of the function F on Uy M™.

https://doi.org/10.1017/prm.2024.57 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.57

10 C. Li, C. Xing and J. Yin
2.4. Conformally flat Riemannian manifolds and product manifolds

Let (M™, g) be an n-dimensional connected Riemannian manifold with the nor-
malized scalar curvature x and the Levi-Civita connection V of the metric g. The
Schouten tensor P of (1, 1)-type defined by

. Q nx .
P_n_2—2(n_2)1d (2.27)

is a self-adjoint operator with respect to the metric g, where @ and id denote the
Ricci operator and the identity transformation, respectively. By definition there
holds:

9(X,QY) =Ric(X,Y) = g(QX,Y), (2.28)

where Ric denotes the Ricci tensor of M™ and X, Y are vector fields tangent to
M™.

Recall that (M™, g) is said to be conformally flat if around each point of M™
there exists a neighbourhood which can be conformally immersed into the Euclidean
space R™. When n > 4, it is known that (M", g) is conformally flat if and only if
its Weyl curvature tensor vanishes. In this situation, the curvature tensor R of g
can be rewritten as below:

R(X,Y)Z = g(Y,2)PX — g(X,Z)PY + g(PY,Z)X — g(PX,2)Y,  (2.29)

where X, Y, Z are tangent vector fields of M™, and the Schouten tensor P is
Codazzi, i.e.:

(VxP)Y = (VyP)X. (2.30)

When n =3, we should remark that the Weyl curvature tensor vanishes auto-
matically, and (M3, g) is conformally flat if and only if P is a Codazzi tensor
as above.

Moreover, the Ricci tensor Ric of M™ is called parallel or semi-parallel if it
satisfies VRic = 0 or R - Ric = 0. In the latter case, by definition one has:

(R-Ric)(X,Y) = R(X,Y)Ric = VxVyRic — VyVxRic — V[x yjRic. (2.31)
In addition, we call the Riemannian manifold (M", g) quasi-Einstein if its Ricci
operator () admits exactly two distinct eigenvalues at each point, one of which is
simple, and the traceless Ricci tensor Ric of M™ is defined by
Ric(X,Y) = Ric(X,Y) — (n — 1)xg(X,Y). (2.32)
Finally, we recall the following theorem for later use.
THEOREM 2.5 (cf. Theorem 3.7 of [4]). Let (M™, g) = (I x Ma, dt*> @ g2) be a Rie-

mannian product, where I C R and dim My > 2. Then, (M™, g) is conformally flat
if and only if (Ma, g2) is a space form of constant curvature.
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3. Geometric invariants of the Calabi torus

In [25], Luo and Sun have made some calculations about the Calabi torus in the
unit sphere S?"*!. In this section, in order to obtain the exact knowledge about
the Calabi torus, we compute its geometric invariants with more details.

PROPOSITION 3.1. The Calabi torus in the unit sphere S?" 1 with the immersion
gwen by f as in example 1.2 is indeed a minimal Legendrian submanifold with C-
parallel second fundamental form and conformally flat induced metric for n > 3,
satisfying the identity:

(n—2)(n+1)

Ric|” =
IR -

SXs (3.1)

where Ric is the traceless Ricci tensor, S is the squared norm of the second fun-
damental form, and x is the normalized scalar curvature. In particular, the Calabi
torus is quasi-Einstein and its Ricci tensor is parallel with respect to the Levi-Civita
connection.

Proof. Note from the induced metric of f(¢, y) : S x S~ — §¥+1 c Cntl:
“(g) = (A1) + ——[(dy1)% + - - - + (dy,)?
Filg) = (d)” + = [(dyn)” + -+ (dyn)7]

that f is an isometric immersion, where y = (yi, ..., y,) € S""} CR" and
Z?:l y? = 1. Adopting the following local reparametrization:

(Y1,Y2, -, Yn) = (sin by, cosby sinby, ..., cosby cosly - cosb,_scosb, 1),

we obtain a local orthonormal frame {e;}? ; on f(S! x S?~1) =: M™ with respect
to the metric g, satisfying the relations:

n+1

ft91a

n—2
n—+1 1 n—+1 1
e3 = cos” Oife,, ..., en =1/ I | cos™ O fo, .-
" L=

As the unit sphere S?"*1 admits a natural Sasakian structure (p, &, 1, g), by
definition we see that n(e;) = 0 for 1 < ¢ < n and thus f is a Legendrian immersion.

Denote by h the second fundamental form of f : S' x S*~! — §27*1 Then, direct
calculations by using the Gauss formula show that (cf. [12]):

€1 = —fh €y =

(3.2)

1 sind
Vee; = /0t i g jci<n
Hk lcosek
/ 1 0 3.3
n+ Z sinfp_ e, 3<i<n, (3.3)
k 1cos9k
Ve, €5 =0, otherwise,
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where V denotes the Levi-Civita connection of the metric g, and
L\/ﬁl@eh h(ei,e;) = —%gpei, h(ei,e;) = —%52']'80617 2<i,j < n.
(3.4)
It is obvious that such an immersion f is minimal. Combining with (3.3) and
(3.4), we further conclude from (2.4) and (2.20) that (V&h)(e;, €;, ex) = 0 holds
for 1 <4, j, k < n, i.e. the immersion f is of C-parallel second fundamental form.
For the Riemannian curvature tensor of M™, applying (3.3) again, we easily get:

R(e1,e;)er = R(er,e;)e; = R(ej,ej)er =0,

1 (3.5)
nt (6]keb_5Lk‘e])7 2 gla]vk < n.

h(ei,e1) =

R(e;,ej)er =

Therefore, we obtain from (3.4) and (3.5) that

(n—2)(n+1)

Ric(eq, e1) = Ric(er,e;) =0, Ric(e;,e5) = .

0ijs

-1 2 -2 1
g= e = 2=DexD 20D i,
n n
and then (3.1) follows from (2.32). On the contrary, it is also known from (3.6) that
(n—2)(n+1)

Q61 = O7 Qei = €4, 2< < n, (37)
n

which shows that (M™, g) is quasi-Einstein. Moreover, with the help of (2.27),
we conclude that both (2.29) and (2.30) hold. Consequently, the Weyl curvature
tensor of M™ vanishes and its Schouten tensor is Codazzi, meaning that (M™, g)
is conformally flat. Finally, making use of (3.3) and (3.7), we calculate that:

(vﬁlQ)el = (vﬁlQ)e’i = (v€iQ>el = (VEiQ)ej = 07 2 < Z’j < n. (38)
From this, it is easily seen that Ric is parallel with respect to the Levi-Civita
connection V, and hence we have completed the proof of proposition 3.1. 0

4. Properties of the Legendrian submanifolds in the unit sphere S2"+1!

In this section, before completing the proofs of the main results, we will investigate
the properties of the Legendrian submanifolds in the unit sphere S?**! under some
certain geometric conditions.

4.1. Minimal Legendrian submanifolds

For our purposes, we first calculate the Laplacian of .S to derive the following:

LEMMA 4.1. Let M™ (n > 2) be a minimal Legendrian submanifold in the unit
sphere S 1. Then, it holds the identity:

1 _
SAS8 = IVEAI* — | Rie||* — |[Ric]|* + n(n® - 1)x, (4.1)

where |Rie||? denotes the squared norm of the Riemannian curvature tensor with
respect to the metric g on M™. Moreover, if it is of semi-parallel tensor K, we
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further have:

n(n —1)Ax + 2||V*h||? = 0, (4.2)
n(n® —1)x = |[Rie||* + ||Ric||*. (4.3)
Proof. Choose the local Legendre frame {ej, ..., e, €1+, ..., €nx, €241} along

M™ as in §2. By definition, we have

%AS: ;A(Z(hg*f) =Y () + Zha AR (4.4)

1,5, i,9,0, 1,7,
Applying the Ricci identity (2.16), we deduce from (2.15) that
Ang; Z W =Y hije
[
- Z Bt + Z e Bomije + Z Wi Bmee + D Wiy Riegrar (45

4,8

- Z hﬁﬁ KY + Z hmﬁmeé + Z himRm] + Z hzl R]Zm ot
This together with (2.13)—(2.15) yields that

Zh" Ah“ = Z hf;hﬁingije‘*‘ Z h?j*h%*Rﬂmk

s i,7,k,l,m i,5,k,l,m
ij, J o J (4.6)
+ > R R Ry — S.
i,J,k,m
To go on from (4.6), we make use of the relation
> MR Ripmk=— > WS Rimje=— > hE hE Rpige, (47)

4,7,k 0,m i,7,k,l,m i,7,k,4,m

and (2.13) to calculate that:

Z hf;hw:éRmvﬂ + Z h uz Rjomr = — Z (Rvimﬂ)2 +2n(n — 1)x.

i,7,k,l,m i,7,k,0,m i,5,0,m
(4.8)
On the contrary, with the help of (2.14), it is easily seen that:
> R Ry == (Ri)? +n(n—1)x. (4.9)

,J,k,m i,J

Substituting (4.8) and (4.9) into (4.6), we then conclude that:

Z ha Aha = Z (Rijkg)Q - Z(R”)Q + n(n2 - 1>X - S. (410)

4,J,a i,,k,4 .3
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5

As b7t = b} and Rf

i = h¥, for any i, j, k, £, it follows that

ZJZ -
Z (h%,E)Q = Z 1] Z Z = ||?§h”2 + Sa (411)
5,4, i,k 0 ,5,¢

and thus we obtain (4.1) by substituting (4.10) and (4.11) into (4.4) immediately.
Now, if assuming that M™ has semi-parallel tensor K, then

0= hzg Ip z] pl - Z hm] lefp + Z hlmijgp + Z hzg R"Lkelﬁ (412)

where we used h¥, = hE, — h 6y, and 7S T = 2k . Similarly, we obtain that
DR ARG == > b ki (GjmOe = didem) = =5, (4.13)
4,7, i3,k 4,m

which combining with (4.11) shows that

1 _

FAS = [ Veh|2. (4.14)
This gives (4.2) by (2.10), and substituting (4.14) into (4.1) finally yields (4.3). O

REMARK 4.2. It is known from (4.2) that, for closed minimal Legendrian sub-
manifolds or minimal Legendrian submanifolds with constant scalar curvature in
S27*1 with n > 2, the semi-parallelism of tensor K and the C-parallelism of second
fundamental form are equivalent.

Furthermore, recalling the components of the Weyl curvature tensor W of M™
satisfy
1 nx
Wijke = Rijie — m((sikRﬂ +0jeRik — 0ieRjr — 0juRie) + m(éik(sﬂ — 0iedjn),

(4.15)
we have the following expression for n > 3 (cf. [15, 32]):

4 2n2(n — 1)
Rie||? = |[W]|* + ——=||Ric|]? = =——2% 4.16
IRiell? = [ W12 + 2 Rief? - 22Dz (1.16)
where [[W|[2 =32, . . ,(Wijke)?. From R; = Rij — (n — 1)x6i;, it is easy to see that
[Ric||? = ||Ric||® + n(n — 1)*x% (4.17)

Here, Ric is the traceless part of Ric and ||Ric||? = Zi’j(éi‘j)Q. From the combi-
nation of (2.10), (4.16), and (4.17), we then derive by using (4.1) the following
result:

PROPOSITION 4.3. Let M™ (n > 3) be a minimal Legendrian submanifold in the
unit sphere S?" 1. Then, it holds the identity:

n—+2

1 _
FAS = [[VER]* = [W][* = — [IRicl|* + (n + 1) Sx. (4.18)
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Conformally flat minimal Legendrian submanifolds 15
4.2. Conformally flat Legendrian submanifolds
Assume that M™ (n > 3) is a conformally flat Legendrian submanifold in the

unit sphere S2"*1. Then, we shall prove that

LEMMA 4.4. Let M™ (n > 3) be a conformally flat Legendrian submanifold in the
unit sphere S2"t1. Then, for the tensor K and Schouten tensor P of M™, it holds
that

S (9(U,Z)K(PX,Y) - g(X,Z)K(PU,Y)
vx.Y (4.19)
+9(PX,K(Y,Z))U — g(PU,K(Y, Z))X) = 0,

where U, X, Y, Z are vector fields tangent to M"™ and & denotes the cyclic
summation.

Proof. We begin with taking the covariant derivative of the Codazzi equation for
K along a vector field U tangent to M™:

(V2K) U, XY, Z) — (V?K)(U,Y, X, Z) = (VG)(U,X,Y, Z) =0, (4.20)

where, according to lemma 2.2 (3), G(X,Y, Z) = (VK)(X,Y, Z) — (VK)(Y,
X, Z) = 0 for tangent vector fields X, Y, Z on M™. It is obvious from (4.20) that

Ugy((v2K)(U, X,Y,Z) — (V?K)(U,Y, X, Z)) = 0. (4.21)

Furthermore, direct calculations by using the Ricci identity show that

0= & (VK)(U,X,Y,Z)— (V*K)(U,Y,X,2))

U,X,Y
= US,Y“VQK)(U’ X,Y,Z) = (V’K)(X,U,Y, 2)) (4.22)
= & (RU.X)K(Y.Z) - K(R(U,X)Y.Z) ~ K(Y.R(U.X)Z)).

Finally, the assertion immediately follows by substituting (2.29) into (4.22). O

REMARK 4.5. The technique used to prove lemma 4.4 is called the T'singhua prin-
ciple, which was first discovered by H. Li, L. Vrancken, and X. Wang (cf. [1]).
Recently, this remarkable principle has been widely applied, and turns out to be
very useful for various purposes, see e.g. [6, 10, 13, 20, 21, 37].

Choosing an orthonormal frame {e;}? ; over M™ such that e; is the eigenvec-
tor field of the Ricci operator @ with u; the corresponding eigenvalue, by (2.27)
we easily see that Pe; = v;e; and v; = p;/(n —2) —nx/(2(n — 2)). Without loss
of generality, we shall suppose that @ has t distinct eigenvalues pg, ..., py with
multiplicities nq, ..., ng, respectively. Let ©(us) (resp. D(v5)) denote the distribu-
tion such that D (us)(x) (resp. D (vs)(x)) is the eigenspace of ug(x) (resp. vs(x)) at
an arbitrary point z € M" for 1 < s < t, and ny + --- + ny = n. For simplicity of
notations, we also make the convention that, for i <t and j >t + 1, if p; = p; we
shall write n; = n;, D(u;) = D (1) and D(v;) = D(v;).
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LEMMA 4.6. Let M™ (n > 3) be a conformally flat Legendrian submanifold in the
unit sphere S?" 1. Then, with respect to the orthonormal frame {e;}*_, on M™ as
above, the tensor K of M™ satisfies the following properties:

(1) If v; # v; and ny, nj > 2, then K(e;, ;) =0;

(2) If ny =1 and n; > 2, then there exist functions /\3- depending on the choice
of vi, vj such that K (e;, e;) = Nye;;
(3) If there are at least two distinct eigenvalues v, vy, such that nj, ny > 2 and

n; =1, then there exists a differentiable function i such that it satisfies that
(I/i — I/j))\} = (Vi — Vk)A}LC = )\7.

Proof. We begin with taking the product of equation (4.19) with vector field V' and
setting U = e, X = ¢;, Y =¢j, Z = ¢, and V = e, to derive the relation:

0= (vi — 1) (K ;0km + K[} Sre)
+ (Vj - Vk)(ka(sim + Kﬂdié) (4.23)
+ (v — vi) (K 05m + K[} 050),

where 1 < i, j, k, £, m <n, and K] := g(K(e;, €j), em).

First of all, we assume that v; # v, = vy, for distinct ¢, j, k, and then e; € D(v;)
and ej, ey, € D(v;) for n; > 2. Taking m # j, k, we therefore obtain from (4.23)
that

K7 0ke — K0 = 0. (4.24)
Taking ¢ =k yields that K7 =0, by which we see that K(e;, e;) € D(v;) for
n; > 2. Similarly, K(e;, e;) € ®(v;) for n; > 2. Combining with the assumption
v; # vj, we can conclude that K(e;, ej) =0 provided that n;, n; > 2. Hence,
we get assertion (1).

Next, if n; = 1 and n; > 2, some e;, € D(v;) different from e; can be chosen to
satisfy v; # v; = vy, for distinct ¢, j, k. In this situation, we take m = k in (4.23) to
deduce that

K+ Kfi0w — K650 = 0. (4.25)
It follows that K}j = K,ik for £ = j, Kfj =0 for ¢ = k, and moreover Kfj =0 for
¢ # j, k. Consequently, assertion (2) follows by putting )\3 = K;j, where )\j does
not depend on the choice of e;, € D(v;).

Finally, for n; =1 and v; # v, with n;, ng > 2, by taking ¢ = j in (4.23) and
applying assertion (1), we easily get:

(vi = V) KL Okm + (v = k) K Bim + (v — v3) (K 0jm + Kjp) = 0. (4.26)

Thus, taking m = k, and noting X! = K, = Kfj and A, = K}, = KE , we further
have

(I/i — I/j))\; = (Vi - Vk) Z = 5\1 (427)

This verifies assertion (3). Hence, lemma 4.6 has been proved. O
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4.3. Conformally flat minimal Legendrian submanifolds with R- K =0

In this subsection, we shall consider that M™ (n > 3) is a conformally flat mini-
mal Legendrian submanifold in the unit sphere S?”*! with semi-parallel tensor K.
Therefore, we obtain from lemma 2.2 (4) that

0=(R-K)(X,Y,Z,U) 4.28
= R(X,Y)K(Z,U) - K(R(X,Y)2,U) — K(Z,R(X,Y)U), -

where X, Y, Z, U are vector fields tangent to M™. According to lemma 2.3, we then
present the following lemma involving the number r of distinct eigenvalues of the
Schouten tensor P of M™.

LEMMA 4.7. Let M™ (n > 3) be a conformally flat minimal Legendrian submanifold
in the unit sphere S*"*1 with R- K = 0. Then, either M™ is of constant sectional
curvature, or it is quasi-Einstein. In the latter case, the Schouten tensor of M™
admits two distinct eigenvalues v1 and vo at each point, where one of them is simple,
such that v; + v = 0.

Proof. First of all, by taking X =e;, Y =e;, Z = ei, and U = e/ in (4.28), we can
apply (2.29) to calculate the relation:

0= (vi +v;)[g(K(ex,ee),e5)ei — g(K (ex, er), ei)e;]
+ (i + ) [0in K (e, e0) — 85 K (€3, )] (4.29)
+ (vi +v;)[0iK (ej, ex) — 50K (es, ex)]-

For k = ¢ =1i# j in (4.29), it is easy to see that:
(vi +v;)g(K(eis i), e5)e; — g(K (e, €i), ei)ej + 2K (ei, €5)] = 0. (4.30)
Taking the inner product of (4.30) with e;, we then deduce from lemma 2.2 that:
(vi +v5)9(K(e;,€:),e5) =0, Vi j. (4.31)
Similarly, interchanging the roles of e; and e; in (4.31) gives
(v; + vi)g(K (e, e5),e) =0, Vi #j. (4.32)
Furthermore, by taking the inner product of (4.30) with e;, we obtain that
(vi +v5)9(K (e ei),ei) =0, Vi#j, (4.33)
which together with (4.30) and (4.31) implies that
(vi +v;)K(eiej) =0, Vi#j. (4.34)
On the contrary, for k =i # j = £ in (4.29), we easily get:

0= (v; +v))[g(K (e, e5), e5)ei — g(K (ei, €5), €:)e;]

(4.35)
+ (vi +vj)[K(ej,¢5) — K(ei, e4)].
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This combining with (4.31) and (4.32) yields that

(vi +vj)[K (e, €;) — K(ej,e;)] =0, Vi#j. (4.36)

Next, we shall continue with the proof here by proving the following three claims.

Claim 1. If v; #0 and n; = 2, then g(K(u, v), w) =0 for any u, v, w € D(v;).

If v; #0 and n; > 2, taking v; = v; and e; = v in (4.33), then we easily con-
clude that g(K(u, u), u) = 0 for any unit vector field u € D(v;). Consequently, the
assertion follows from the symmetry given in lemma 2.2.

Claim 2. If v} # v3, then K(u, v) =0 for any u, v € D(v;) © D(v;).

If v} # 1/]2», it is obvious that (v; +v;)(v; —v;) # 0 and we then obtain from
(4.33) that g(K (u, u), u) = 0 for any unit vector field v € D(v;). From the result of
the symmetry in lemma 2.2, we have K (u, u) ¢ ©(v;). Similarly, g(K (v, v), v) =
0 for any unit vector field v € ®(r;) and thus K(v, v) ¢ D(v;). Moreover, with
the help of (4.34) and (4.36), it can be checked that K(u, v) =0 and K(u, u) =
K(v, v) ¢ D(v;) @ D(v;). When r = 2, claim 2 holds immediately. When r > 3, for
an arbitrary eigenvalue v, different from v; and vj, it is known from v? # ij that
either v; + v, # 0 or vj + v, # 0. In either case, we can apply (4.31) to obtain
K(u, u) = K(v, v) = 0. Hence, claim 2 has been proved.

Claim 3. If r > 2, there exist two distinct eigenvalues v; and v; such that
v; —+ I/j = 0

If > 2, we suppose on the contrary that v; +v; # 0 holds for any v; # v,
namely v? # 1/]2. It then follows from claim 2 that K =0 on M"™ and hence h =0
by definition. This together with the Gauss equation shows that M™ has constant
sectional curvature, which is a contradiction to r > 2, and thus we have verified
claim 3.

Now, according to claim 3, we denote by v; and v» the two distinct eigenvalues of
P such that v + 9 = 0. In this situation, we further claim that r < 2. Otherwise,
if r >3, then (v; +v1)(v; + v2) # 0 for an arbitrary eigenvalue v; different from
v1 and vo. Therefore, it satisfies that v? # vf and v? # v3, and so we obtain from
claim 2 that:

K(u,u) = K(v,v) = K(w,w) =0, weD(y),

(4.37)
K(u,w)=K(,w)=0, ueD(), veD().

Furthermore, we see that K (u, v) = 0 in terms of the arbitrariness of v;, meaning
that h = 0 identically. This contradiction implies that the number r < 2.

Assume that r = 1. It is obvious that M™ has constant sectional curvature for
n > 3.

Assume that r = 2. We will denote these two distinct eigenvalues of P by vy and
v, whose multiplicities are n; and ns, respectively. Together with claim 3, it follows
that vo = —1; # 0. In what follows, we shall argue by contradiction and suppose
that ny > 2 and np > 2. Let X1, ..., X/ be the orthonormal eigenvector fields of
P that span the distribution ®(v;), i = 1, 2. Thus, we see from claim 1 and (4.36)
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that

g(K(X;,X;'),X;')zo, K(X;’,,X;’,):K(X;,Xi), Vp,qs, i=1,2. (4.38)

q

Since M™ is minimal in S?"*! by means of (4.38) we have

O:ig(K(X +Zg K(X2,X2),0)
pnzll (4.39)
:ZQ(K(X;’X;)’U):nlg(K(Xll’Xll)’v)a UEQ(V2)7
p=1

which implies that g(K (u, u), v) =0 for any u € ®(v1) and v € D(vz). Similarly,
there holds that g(K (v, v), u) =0 and therefore K(u, v) = 0. According to this
and (4.38), we get h = 0 identically, a contradiction to r = 2. Hence, lemma 4.7 has
been proved. O

REMARK 4.8. By checking the proof of lemma 4.7 step by step, we see that the
assertion still holds for n = 3, when the conformally flat condition is replaced by
vanishing Weyl curvature tensor.

4.4. Conformally flat minimal Legendrian submanifolds with R-Q = 0

In this subsection, assuming that M™ (n > 3) is a conformally flat minimal Leg-
endrian submanifold in the unit sphere S?"*! such that the Ricci tensor Ric is
semi-parallel, by definition we have

0= (R-Ric)(X,Y,U, Z) = (R(X,Y)Ric)(U, Z)
= —Ric(R(X,Y)U, Z) — Ric(U, R(X,Y)Z)
=9(R(X,Y)QZ.U) — g(QR(X,Y)Z,U)
=9(R(X,Y)Q)Z,U) = g((R- Q)(X,Y, 2),U),

(4.40)

where U, X, Y, Z are tangent vector fields on M". This implies that Ric is semi-
parallel if and only if the Ricci operator ) is semi-parallel, i.e. R- Q) = 0.

LEMMA 4.9. Let M™ (n = 3) be a conformally flat minimal Legendrian submanifold
in the unit sphere S+t with R-Q = 0. Then, either M™ is of constant sectional
curvature, or it is quasi-Einstein. In the latter case, the Schouten tensor of M™
admits two distinct eigenvalues v1 and vo at each point, where one of them is simple,
such that v1 + v9 = 0.

Proof. Under the orthonormal frame {e;} ; on M™ as in § 4.2, direct calculations
by using (2.29) yield that

0= g((R(ei, e;)Q)ej, €:)
= (R(el7 e])er7 ) g(QR<ei7 6]‘)6]‘7 ei) (441)
=n-2)vi+v)(v;—v), 1<i#j<n,
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where we used the relation p; — p; = (n — 2)(v; — ;). Consequently, the number r
of distinct eigenvalues of the Schouten tensor P is at most 2, and if » = 1, then we
conclude that M™ has constant sectional curvature.

If » = 2, then we obtain from (4.41) that v + vo = 0 by expressing the two dis-
tinct eigenvalues of P by v1 and vy, respectively. Now, it suffices to prove that either
of 11 and vo must be simple. For this purpose, we shall suppose on the contrary that
n; > 2, where n; is the multiplicity of v; for i = 1, 2. Let {X;}1; (vesp. {Y;}72,)
be the orthonormal frame of ® () (resp. D(v2)). It then follows from lemma 4.6

(1) that
K(X:, X;) €®(1), K(V;,Y;) €D(vs), K(X:,Y;) =0, Vi, j. (4.42)
Applying lemma 2.2 (1), we deduce from the Gauss equation (2.7) that
9(R(X:, Y)Y, X) = 1. (4.43)
Since M™ is conformally flat, it is easy to see from (2.29) that
9(R(X:,Y;)Y;, Xi) = 1 + va, (4.44)
which together with (4.43) yields that
v+ =1 (4.45)

This contradicts with the fact v; + v = 0, and thus lemma 4.9 has been proved. O

4.5. Conformally flat Legendrian submanifolds with quasi-Einstein
metric

In the following, according to lemmas 4.7 and 4.9, we shall deal with the case when
M™ (n > 3) is a conformally flat Legendrian submanifold in S?"*!, such that it is
quasi-Finstein with 17 and v, the distinct eigenvalues of its Schouten tensor, and
D(v1) and D(v2) the corresponding distributions of eigenspace, where vy + v =0
and v is simple. Then, for a unit vector field F; of ®(r;) and an orthonormal
frame {E;}1" 5 of (1), we see from (2.27) and (2.29) that

R(E1, E))Ey = R(Ey, E:)E; = R(E;, E;)Ey = 0,
R(EHE])EIC :2V2(6]kEl_5lkE])’ 2 givjakg’nw

X # 0,

(4.46)

2(n —2)

where we used the facts trQ = n(n — 1)x and v; = p;/(n — 2) —nx/(2(n — 2)) for
i=1,2.

QF; =0, QF; =nxFE;, vy=-v =

LEMMA 4.10. Let M™ (n > 3) be a conformally flat Legendrian submanifold in the
unit sphere S?" 1. Assume that M™ is quasi-Einstein with v1 and vy the distinct
eigenvalues of its Schouten operator such that vy + vo = 0, where vy is simple. Then,
it holds that

VElEl = 0, inEl = —Oin, o =

vy — vy (4.47)
El(a) = 0427 EZ(CV) = Ei(l/l) = Ei(l/g) = 0, 2 < ) S n.
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Proof. For any tangent vector V on M™, we denote by V* the projection of V onto
D(vg) for £ =1, 2, respectively. A straightforward computation shows that
(VEIP)EZ* = El (Vg)Ei + (VQ — Ul)(vElEi)l,

(4.48)
(Vg P)E1 = E;(11)Er + (1 — 1) (Vi E1)?,

where 2 < i < n. As M™ is conformally flat, we have (Vp, P)E; = (Vg,P)E; and
then it follows that:

Er(»)E; — Ei(11) By — (11 — »)[(Vi, E)' + (Vg E1)?] = 0. (4.49)
Multiplying the above equation with F; and further with Ej for k > 2, we easily
get:

Ei(v1) = (1 —12)9(VE, E1, Ei), (4.50)
Er(v2)g(Ei, Bx) = (11 — 12)9(V g, B, Ey), (4.51)

where 2 <4, k < n. Similarly, we deduce from (Vg, P)E; = (Vg, P)E; that
Ei(v2)E; — Ej(1)E; + (1 — »)[(VE,E)' — (Vg E;)'] =0, (4.52)
where 2 < i # j < n, and thus there holds
Bi(v2)Ej — Ej(v2)E; + (v1 — 12)[(VE, Ei)' = (VE,E;)'] =0, (4.53)
which together with the fact 11 # 5 immediately yields that
9(Vi,Ej — Vi, B, B) =0, Ei(n)=0, 2<i#j<n. (4.54)
Next, with the help of 11 # vs, it is easy to see from (4.50) and (4.54) that
Ve By =0, (Vg E; — Vg, E;) € D(v2), Ei(v) = Ei(e) =0, 2<i<n. (4.55)

On the contrary, by applying (4.51) we further have

E
VB = —aF;, o= 212 (4.56)
Vo — 11
Therefore, it can be checked from (4.46), (4.55) and (4.56) that
0 = R(E;, E1)Ey = E1()E; — o*E;
(B, 1) B = B (@) Z (4.57)

0= R(E“ EJ)El = .Ej(Oé).EZ — Ei(a)Ej,
where we made use of the definition of the curvature tensor R for 2 <i # j < n.

Hence, E1(a) = o? and E;(a) = 0 for 2 < i < n. This completes the proof of lemma
4.10. (]
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5. Proofs of the main results

In order to complete the proofs of the main results, we first verify the proposition:

PROPOSITION 5.1. Let M™ (n > 3) be a conformally flat minimal Legendrian sub-
manifold in the unit sphere S*™+1. Then, M"™ is quasi-Einstein with v, and s
the distinct eigenvalues of its Schouten operator such that vy + vy = 0, where 11
is simple, if and only if (M™, g) is locally isometric to a Riemannian product
I x My = (I x My, dt? @ g3), where I CR, g is the induced metric on M™ and
(Ms, g2) has constant sectional curvature ¢ # 0.

Proof. First of all, omitting the upper index i = 1 for )\é-, by lemma 4.6 (2) we can
write

K(ElaEl):)\lE17 K(Ela )_>\2 2<]<n? (51)

where Ej is a unit vector field of D(v1) and {E;}}_, is an orthonormal frame of
D(v3). By means of the Gauss equation (2.7) and (4 46), it can be checked that:

0=R(E;,E1)Ey = (1+ M) — \)E;, 2<i<n. (5.2)
Combining with the Codazzi equation for K, we can apply (4.47) to calculate that:
= (VK)(E1, By, Er) — (VK)(E;, Ev, Eq)
= (B1(A2) — a(2Xa — A\1))E; — E;(\)Eq,
= (VE)(E;, Ej, E1) — (VK)(Ej, Ei, Eh)
= E(\M)E; — E;(\)E;, 2<i#j<n

(5.3)

Consequently, E1(A2) = a(2X2 — A1) and E;(A\1) = E;(A2) =0 for all i > 2
Secondly, noting from the minimality of M™ that 0 = trace Ky, = A\ + (n —
1)A2, we solve from (5.2) to obtain that
n—1 N — 1
N
where, replacing F; by —FE; if necessary, we can always assume that A\; > 0. Thus,
a =0 and it then follows from (4.47) that vy, vo are constant and

A1 = (5.4)

Ve, By =0, g(Ve,E;,BE)) =0, 2<i,j<n. (5.5)

Therefore, ®(v1) and D(vz) are both totally geodesic in M™, and so (M™, g) is
locally a Riemannian product manifold I x My, where I C R and M5 is the integral
manifold of D (v2). Let Ry be the Riemannian curvature tensor of Ms. Using (4.46),
we easily get:

g(RQ(E“ Ej)Ej, Ez) = g(R(EZ, Ej)Ej, El) = 2V2, 2 < Z,j < n. (56)

From this, we see that (Ms, g2) has constant sectional curvature 2v5 and go is the
metric of My. As a result, (M™, g) is locally isometric to the Riemannian product
I x My = (I x M, dt? @ g5), where (Ms, go) has constant sectional curvature ¢ =
2V2 75 0.
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Finally, if assuming that (M™, g) is locally isometric to a Riemannian product I x
My = (I x My, dt? & go), where (Ma, go) has constant sectional curvature ¢ # 0,
then

where Fj is a unit vector field tangent to I and {E;}! , is an orthonormal frame
on Ms. Applying (5.7), we can verify the assertion by direct calculation. U

Now, by means of proposition 5.1 we are ready to prove the following theorem:

THEOREM 5.2 (cf. theorem 1.9). Let M™ (n > 3) be a minimal Legendrian sub-
manifold in the unit sphere S*" 1. If (M™, g) is locally isometric to a Riemannian
product I x My = (I x Mo, dt?> @ g3), where I C R, g is the induced metric on M™
and (Ma, g2) has constant sectional curvature ¢ # 0, then M™ is locally congruent
to the Calabi torus.

Proof. According to theorem 2.5, it is known that (M™, g) is conformally flat for
n > 3, and therefore we obtain from proposition 5.1 that M™ is quasi-Einstein
with v and vy the distinct eigenvalues of its Schouten operator such that vy +
vo = 0, where 14 is simple. Let Fy € ©(v1) be a unit vector field and {E;}!, an
orthonormal frame of ©(v7). Here, I C R and M; are the integral manifolds of ©(v1)
and D(v2), respectively. Related to the Schouten tensor P of M™, by calculation
we have

PE, = nEy = —gEl, PE; = nnE; = %El, 2<i<n. (5.8)

Similar argument as in the proof of proposition 5.1 shows that
-1 1
z —FE
vn Vn

1 n
K(E;, E;) = —ﬁaijEl +Y KfEy,, 2<i,j<n,

K(E,Ey) =

Ei, K(E\,E)=—

where Kfj = g(K(E;, Ej), Ey).

Next, we claim that K Z = 0. To verify this, we argue by supposing on the contrary
that there exists some point x € M™ at which Kfj # 0, and then divide the proof
into the following four steps.

Step 1. There exists an orthonormal basis {Y;}'=' of T,My such that the tensor
K of M™ takes the forms:

(n+1) n+1)—nc
K(Y17Y1)_—7X+ +n—1 K(Y1,Y;) = — (n+(n)—1)Y]’
(5.10)
where X := Ey(x), (n+1)—nec>0,and 2<j<n—1.
Since Klkj( x) # 0 for some point x € M", the symmetry of Kfj in all indices

implies that there exists a unit vector Y1 € Uy My :={v e T, Ma|g(v, v) =1},
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which is a compact set, such that the function g¢(K(u, u), u) defined on
U, M attains an absolute maximum «; := g(K (Y7, Y1), Y1) > 0 and therefore
K(Y1, Y1) = —(1/y/n)X + a1Y;. Then, a self-adjoint operator A(Y): T, My —
T, M5 can be defined by

AY) =Ky, Y — g(K(Y1,Y), X)X. (5.11)

It is obvious that A(Y7) = a;Y7. Choosing the unit eigenvectors {Y]};‘;Zl of A
orthogonal to Y7 satisfying A(Y;) = oY}, we can conclude from lemma 2.4 that
a1 > 2aj, where o := g(K (Y1, Y;), Y;). It then follows that

1

N

Therefore, a straightforward calculation by using (2.7) and (2.29) shows that

K(Yl,yl)z X—f—O{l}/l, K(Yl,Yj):anj, 2<]<n—1 (512)

1
21Y; = R(Yj,yl)yl = (nz + oo — OZ?>Y]’7 (5.13)

which together with (5.8) immediately gives

1
"L, 2<j<nt. (5.14)

a? -1+ c—
On the contrary, by the minimality of M™ we easily get:
0=trace Ky, = a1 + s+ -+ ap_1. (5.15)

This combining with (5.14) yields that

(&3 +a3+--+aZ_;)>0. (5.16)

1— =
(n+1)—nc —

Consequently, noting the fact oy > 2a;, we solve from (5.14) and (5.15) to obtain
that

(nrj(—nl)—_l)nc’ Qg = =y 1=— M (5.17)

o= (n=2) n(n—1)

Hence, the assertion of step 1 follows immediately.

Step 2. There exists a vector field Vi on a neighbourhood U of = such that the
tensor K of M™ takes the form:

o 1 _
KW, W) = —%9(V1,V1)E1 + a1V, (5.18)

where o is defined as in (5.17). B
Choose an arbitrary differentiable orthonormal frame {Y}?Z_l1 on a neighbour-
hood U of z € M™ such that Y;(z) =Y;, and define a mapping ¢ : R* 7! x U —
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Rn—l by
go(al,ag,.. yAp—1,T ) (bl,bg,...7bn,1), (519)
where
n—1
b = Za,a]g Y:,Y;), V) —arag, 1<k<n-—1, (5.20)
7,7=1
are regarded as functions on R* ™! x U : by, = bi(ay, as, ..., an—1, &). By means of

(5.10), it is easy to see that bg(1, 0, ..., 0, ) = 0 for all k, and

(n+1) —nc ,
-2 —F———F———>0, k=j=1
(n—2) 1) : i=1
by,
S = D2 (5.21)
da; (1,0,...,0,z) n(n+1) nc;«éO, 2<k=j<n—1,
10,0450, S
0, 1<k#j<n—1
This implies that (9by/da;) is invertible at the point (1, 0, ..., 0, z) € R"~! x U.

Consequently, by the implicit function theorem there exist differentiable functions
{a;(Z) }1<ign—1 which are defined on a neighbourhood U C U of = and satisfy the
relations:

ar(z) =1, ax(x)=--=an_1(x) =0,

i (5.22)
bi(a1 (), a2(2),...,an—1(2),2) =0, 1<k<n—-1, VieU.

Now, we put V; = """ a;¥; and thus Vi(z) = Y;. Finally, we obtain (5.18) by
applying (5.20) and (5.22). Hence, step 2 has been proved.

Step 3. There exists an orthonormal frame {)71-}?;11 on a neighbourhood UcU of
x such that the tensor K of M™ takes the forms:

~ o~ /n+1 /n—i—l —nc~
K(Y17Y1)__7E1+ TL 1 Y17 Tl—l J7
(5.23)

where (n+1) —ne>0and 2 <j<n—1.
For our purposes, we shall verify that the set

1
Am = {6&1 S R|E|V1 S UmMQ, s.t. K(Vl,Vl) =——X + O~Z1V1} (524)

Vn

consists of finite numbers, which are independent of the point x € M™. With the
help of (5.10), we first find that A, is non-empty. Furthermore, for an arbitrary
Ay associated with V) € U, My satisfying K(Vi, Vi) = —(1/y/n)X + &1 V4, we can
define another self-adjoint operator B(Y') : T, My — T,,Ms by

B(Y) := Ky,Y — g(K(V,,Y), X)X, (5.25)

where X := Ej(z). As aresult, B(V1) = &1 V. Let {V} }”_1 be the unit eigenvectors
of B, orthogonal to Vi, with the corresponding eigenvalues {é&;}7— i 2, respectively.
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Then
1

N

In this situation, applying (2.7) and (2.29), we easily get:

K(Vl,Vl)Z X+ a1V, K(Vl,%):dj‘/}, 2<j<n—1 (526)

n+1
=

a3 — a1a; +c— 0, 2<j<n—1, (5.27)

which combining with (n 4+ 1) — nc > 0 implies that there exists an integer 0 < k <
n — 2 such that, if necessary, after renumbering the basis, we have

- N 1 (. o n+1
Qg = =041 == |01 +/a]—4|c— ,
2 n
1 1
st (- -1 (-2

As 0 = trace Ky, = a1 + G + + -+ + Giy—1, it can be checked from (5.28) that

ndl—(n—zk—2)\/&§—4<c—”+l>:0. (5.29)

(5.28)

n

Hence, A, consists of finite numbers that are independent of the point z € M".
According to step 2, we see that [[V1]|(z) =1 for [[Vi]| :=1/g(V1, V1). For this

reason, there exists a neighbourhood U C U of = so that V; does not vanish on U.

Thus, setting Y7 = V1/[|V4||, we derive from (5.18) that

a1

B+ ——-Y1, (5.30)

~ o~ 1
K1) = =2 Bt

vn
where o is defined as in (5.17). As a1 /||Vi]| changes continuously on U, we conclude
that ||V1]|(Z) = ||Vi||(z) = 1 for any Z € U, because A, consists of finite numbers.
Similarly, after taking orthonormal vector fields Yo, ..., Y 1 orthogonal to Y; such
that {}71-}?:_11 forms an orthonormal frame on U, we follow the proof of step 1 to
obtain (5.23) and finally complete the proof of step 3.

Step 4. Show that g(K(E;, Ej), Ey) = Kfj =0 for 2<1,j, k<n.
Direct calculations by using (5.23) shows that

(Vy, K)(Y1,1) = (a1 — 2a2)Vy Y, (5.5
(Vy, K) (Y}, Y1) = auVy. Y — K(Vy, Y}, Y1) — K(Y;, Vg V1),

where a; and ap are defined as in (5.17) and 2 < j < n — 1. Based on the relation

9((Vg, K)(Y1, Y1), Y1) = g((Vy, K)(Y;, Y1), V), (5.32)

we deduce from (5.23) that Vf/lfﬁ =0 and thus (V?IK)()N’J', Y1) =0 for 2<j <
n — 1. Together with the fact oy — 2ap # 0, it is seen from (5.31) that V};jf/l =0

https://doi.org/10.1017/prm.2024.57 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.57

Conformally flat minimal Legendrian submanifolds 27

for all j > 2. By the definition of the curvature tensor, we apply (4.46) and (5.8) to
obtain that

c =2y = g(R(Ya,Y1)Y1, Y2) = 0. (5.33)

This is a contradiction to ¢ # 0 and hence we complete the proof of step 4.
Now, for the orthonormal frame {E;}? ; on M", from (5.9) it follows that

n—1 1
FEi, h(E,E;)=——0F;,
\/5901 (1 ) ¥

NG
1
h(E“EJ) = —%(gij(pEl, 2 < Z,] < n.

Consequently, by applying theorem 2.1 we conclude from (3.4) and (5.34) that M™
is locally congruent to the Calabi torus. U

WEy, Ey) =
(5.34)

5.1. Completion of the proof of theorem 1.3

M™ (n > 3) be a conformally flat minimal Legendrian submanifold in the unit
sphere S?"*! with semi-parallel tensor K. By means of lemma 4.7, we see that
either M™ is of constant sectional curvature, or it is quasi-Einstein with rq and vo
the distinct eigenvalues of its Schouten operator such that vy + v5 = 0, where vy is
simple. In the former case, theorem 1.1 states that M™ is the totally geodesic sphere
or the flat Clifford torus. In the latter case, according to proposition 5.1 and theorem
5.2, we conclude that M™ is locally congruent to the Calabi torus. Conversely, these
calculations in § 3 guarantee that examples (a)—(c) are all conformally flat minimal
Legendrian submanifolds in S?"*+! with semi-parallel tensor K.

5.2. Completion of the proof of corollary 1.5

Let M™ (n > 3) be a minimal Legendrian submanifold in the unit sphere S?7+!
with semi-parallel tensor K. By means of lemma 4.1 and proposition 4.3, we
calculate that

n+2

_ 1 _ ~
IVEh|* = FAS = IVER|1? = [WJ* - mHRlC\P + (n+1)Sx. (5.35)

Consequently, we have

(n+1)Sy = | Ric||?, (5.36)

n+2 ~ 5 9 N+2
PRl 2+ W2 > S
by which we obtain (1.3) and find that the equality holds on M™ if and only if
the Weyl curvature tensor of M™ vanishes identically. When n > 4, the assertion
immediately follows from theorem 1.3 and proposition 3.1. When n = 3, according
to lemma 4.7 and remark 4.8, either M? has constant sectional curvature, or M3 is
quasi-Einstein with 1y and vy the distinct eigenvalues of its Schouten operator so
that v; 4+ vo = 0, where 14 is simple. In the former case, we obtain from theorem
1.1 that M3 is the totally geodesic sphere or the flat Clifford torus. In the latter
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case, by remark 4.8 and claim 1, we deduce from (4.34) and (4.36) that
9(K(E;, Ej), Ey) =0, 2<1i,j,k <3, (5.37)
K(Ei, E;) = K(E;,E;), K(Ei,E;)=0, 2<i#j<3 '

where E} is a unit vector field of ®(v4) and {Ez, E3} is an arbitrary orthonormal
frame of D (v2). As M3 is minimal in S7, we further have

9(K(Ey, Ey), Ey) = —29(K(E;, E;), Er), 2<1i<3,

5.38
g(K(Ey, Ey), Zg ), E) =0, 2<i<3. (5.38)
Therefore, similar calculations as in the proof of proposition 5.1 show that
WEBy, By) = —— By, h(Ey, Fi) = — ——oF;
1,41 \/gSD 1, 1, Lo \/550 79
] (5.39)

V3

Finally, combining with (3.4) and (5.39), we derive from theorem 2.1 that M™ is
locally congruent to the Calabi torus. Conversely, by § 3 these examples (a)—(c) for
n = 3 are all minimal Legendrian submanifolds in S” with semi-parallel tensor K.

5.3. Completion of the proof of corollary 1.6

Let M™ (n > 3) be a closed minimal Legendrian submanifold in the unit sphere
S?"+1 with vanishing Weyl curvature tensor. By calculation we apply (4.18) to
obtain that

n—|—2

fAS—HthHQ HRlc||2 +(n+1)Sxy > HR1C||2 + (n+1)Sy.

(5.40)
Now, by using the compactness of M™, we can integrate inequality (5.40) to obtain
the integral inequality in (1.4), according to the divergence theorem, where the
equality holds on M™ if and only if M™ is of C-parallel second fundamental form,
i.e. VEh = 0, which implies that R - K = 0. When n > 4, the assertion follows from
theorem 1.3 and proposition 3.1 immediately. When n = 3, Theorem 1.3 and (1.5)
of Xing—Zhai [33] state that M3 is locally congruent to one of the examples (a)—(c)
for n = 3. Conversely, by § 3 the examples (a)—(c) for n = 3 are closed minimal
Legendrian submanifolds in S7 with C-parallel second fundamental form.

5.4. Completion of the proof of theorem 1.7

Let M™ (n > 3) be a conformally flat minimal Legendrian submanifold in the
unit sphere S?"*1 with semi-parallel Ricci tensor. Together with (4.40), it then
follows from lemma 4.9 that either M™ has constant sectional curvature, or M™ is
quasi-Einstein with v, and v, the distinct eigenvalues of its Schouten operator such
that v1 + v = 0, where v is simple. In the former case, either M™ is the totally
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geodesic sphere, or M™ is the flat Clifford torus, in terms of theorem 1.1. In the
latter case, applying proposition 5.1 and theorem 5.2, we derive that M™ is locally
congruent to the Calabi torus. Conversely, it is easy to see from proposition 3.1
that examples (a)—(c) are all conformally flat minimal Legendrian submanifolds in
S$?7+1 with semi-parallel Ricci tensor.
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