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This paper reviews current theoretical and numerical approaches to optimization
problems governed by partial differential equations (PDEs) that depend on random
variables or random fields. Such problems arise in many engineering, science,
economics and societal decision-making tasks. This paper focuses on problems in
which the governing PDEs are parametrized by the random variables/fields, and the
decisions are made at the beginning and are not revised once uncertainty is revealed.
Examples of such problems are presented to motivate the topic of this paper, and to
illustrate the impact of different ways to model uncertainty in the formulations of the
optimization problem and their impact on the solution. A linear–quadratic elliptic
optimal control problem is used to provide a detailed discussion of the set-up for the
risk-neutral optimization problem formulation, study the existence and characteriza-
tion of its solution, and survey numerical methods for computing it. Different ways
to model uncertainty in the PDE-constrained optimization problem are surveyed
in an abstract setting, including risk measures, distributionally robust optimization
formulations, probabilistic functions and chance constraints, and stochastic orders.
Furthermore, approximation-based optimization approaches and stochastic methods
for the solution of the large-scale PDE-constrained optimization problems under
uncertainty are described. Some possible future research directions are outlined.
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1. Introduction
Optimization problems constrained by ordinary differential equations (ODEs) or
partial differential equations (PDEs) arise in many decision-making tasks in en-
gineering, science and economics. Examples include flow control and shape
optimization (e.g. Gunzburger 2003, Conti et al. 2011, Dambrine, Dapogny and
Harbrecht 2015, Geihe, Lenz, Rumpf and Schultz 2013, Mohammadi and Piron-
neau 2004, Schulz and Schillings 2013, Royset, Bonfiglio, Vernengo and Brizzolara
2017), topological design for additively manufactured systems (e.g. Bendsøe and
Sigmund 2003, Lazarov, Schevenels and Sigmund 2012a,b, Zhou, Lazarov and
Sigmund 2014) and optimal resource allocation in oil field and gas pipeline op-
erations (e.g. Carter and Rachford Jr 2003, Brouwer and Jansen 2004, Zandvliet,
Van Essen and Brouwer 2008, Bangerth et al. 2006). In these applications, uncer-
tainty is pervasive, arising from environmental variability, unknown system inputs
and coefficients, variability in the execution of the decision, and unverifiable mod-
elling assumptions. Often a decision needs to be made before the uncertainty is
revealed, leading to deterministic decision variables, such as the system control or
design, that do not anticipate the unobserved realization. This class of problems
can be broadly modelled as stochastic programs (albeit infinite-dimensional) with
underlying differential equation constraints. This paper focuses on the current
theoretical and numerical treatment of optimization problems governed by PDEs
depending on random variables.1

In these optimization problems, the underlying system is described by PDEs that
depend on uncertain inputs/coefficients and on deterministic optimization variables
that model the user’s decision. The PDE is often called the state equation, and its
solution is called the state. Given a realization of the random variables and given an
instance of the optimization variables, the underlying PDE can be solved by standard
methods for deterministic PDEs. In addition to the governing PDE, we also have
a scalar-valued ‘cost’ or ‘loss’ function, which depends on the PDE solution and,
perhaps, on the optimization variables and additional random variables. Here, cost

1 More generally, the governing PDE could depend on random fields, but to focus our initial
discussion, we assume dependence on random variables.
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or loss does not necessarily correspond to a monetary cost or loss, but is a scalar
quantification of the under-performance of the system. For example, if the goal is
to steer the state to a desired state, the distance between the actual and the desired
state would be the cost or loss. Given optimization variables, each realization of
random variables gives a realized cost of the system. The goal of the optimization
is to determine optimization variables that in some sense minimize the cost over all
possible realizations of the random variables. For example, one could determine
optimization variables that minimize the expected cost. More generally, one may
also have constraints on the states and/or controls. If the constraints depend on
the states, they correspondingly depend on the random variables. Consequently,
one must determine optimization variables that, in an appropriate sense, satisfy the
random constraints. The basic mathematical formulation of such problems, along
with their analysis and numerical solution, is the subject of this paper.

The optimization research that is the focus of this paper lies at the intersection of
several active research areas: stochastic programming/optimization under uncer-
tainty (see e.g. Birge and Louveaux 2011, Ruszczynski and Shapiro 2003, Shapiro,
Dentcheva and Ruszczyński 2014), (deterministic) PDE-constrained optimization
(see e.g. Hinze, Pinnau, Ulbrich and Ulbrich 2009) and numerical solution of PDEs
with random parameters and uncertainty quantification of PDEs (see e.g. Gunzbur-
ger, Webster and Zhang 2014). However, the formulation and efficient solution of
the optimization problems in this paper requires techniques that are typically not
considered in any of the above areas alone. For example, the existence of solutions
of the state equation, its dependence on the random variable and its differentiability
properties with respect to the optimization variable are not covered in stochastic
programming. The numerical solution of these problems requires discretization of
the PDE in space (or space and time) and often also optimization variables, which
in control and design applications are functions in infinite-dimensional spaces. For
example, by varying the spatial discretization, we can construct discretizations with
different levels of fidelity and computational cost that can be integrated with dis-
cretization/sampling of the random parameter to achieve substantial speed-ups in
the solution of the optimization problems. Such approaches are not considered in
stochastic programming. While many such techniques originated in the solution of
PDEs with random parameters and uncertainty quantification of PDEs, their use in
PDE-constrained optimization under uncertainty requires important modifications
to successfully integrate them into the optimization beyond their straightforward
use as PDE solvers.

In the optimization problems studied in this paper, the governing PDEs are para-
metrized by random variables, that is, given a realization of the random variables,
the PDE is deterministic. Later, we will use optimization problems governed by
stationary PDEs as examples, but there are many optimization problems of this type
that are governed by time-dependent PDEs, for example optimization of instation-
ary heating processes, where the uncertainty enters through the time-independent
material properties. In the time-dependent case, the PDEs we consider are also
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called random PDEs; see Smith (2014, Section 4.7). These random PDEs are
fundamentally different from stochastic PDEs, which are crucial for modelling
other important problems, but require completely different analysis and solution
approaches; see e.g. Smith (2014, Section 4.7) and Lord, Powell and Shardlow
(2014, Chapters 8 and 9). Moreover, in the optimization problems studied in this
paper, the decisions are made at the beginning and are not revised. This is different
from multistage stochastic programs studied, for example, in Birge and Louveaux
(2011), Pflug and Pichler (2014) and Shapiro et al. (2014), or stochastic optimal
control problems studied in Fabbri, Gozzi and Świech (2017) and Kushner and
Dupuis (2001), where decisions are made in stages or over time, incorporating
the information about uncertainties revealed in previous stages or times. Note,
however, that the problem class we consider includes optimal control problems
governed by time-dependent PDEs and with time-dependent controls, such as the
control of an instationary heating process where the uncertainty enters through the
time-independent material properties, and once the process is started, no informa-
tion about the uncertainty is collected to update the controls. Multistage problems
are interesting and important, but because of their increased computational cost,
they have not yet been considered for more general PDE-constrained problems.

This paper is organized as follows. To motivate the topic of this paper, we present
three examples in Section 2 to illustrate the impact of different ways to model the
uncertainty in the formulations of the optimization problem and its impact on the
solution. In Section 3 we use a linear–quadratic elliptic optimal control problem
to discuss in detail the set-up of the risk-neutral optimization problem formula-
tion, study the existence and characterization of its solution, and survey numerical
methods for computing this solution. Different ways to model uncertainty in the
PDE-constrained optimization problem are surveyed in an abstract setting in Sec-
tion 4, including risk measures, distributionally robust optimization formulations,
probabilistic functions and chance constraints, and stochastic orders. Section 5 de-
scribes approximation-based optimization approaches and stochastic methods used
to solve PDE-constrained optimization problems. The research on the topic of this
paper is rapidly evolving, and some possible extensions and future directions are
outlined in Section 6.

Notation

In the following, we summarize basic notation used in this paper.

General vector spaces. For a normed vector space V , we denote the norm on V
by ∥ · ∥V . The dual of a normed vector space V is denoted by V∗, and ⟨·, ·⟩V∗,V
denotes the duality product between V∗ and V . Specifically, for a bounded linear
functional ℓ ∈ V∗, we have ⟨ℓ, 𝑣⟩V∗,V = ℓ(𝑣). When V is a Hilbert space, we denote
the associated inner product by ⟨·, ·⟩V . Given a Hilbert space V and a non-empty,
closed and convex subset S ⊂ V , the projection of 𝑣 ∈ V onto the subset S is
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uniquely defined and is given by

projS(𝑣) B arg min
𝑣′∈S

∥𝑣 − 𝑣′∥V .

See e.g. Bauschke and Combettes (2017, Theorem 3.16). In addition, when V is a
Hilbert space, the normal cone to a subset S ⊂ V at a point 𝑣 ∈ V is

𝑁S(𝑣) B

{
{𝜂 ∈ V | ⟨𝜂, 𝑣′ − 𝑣⟩V ≤ 0 ∀ 𝑣′ ∈ S} if 𝑣 ∈ S,
∅ if 𝑣 ∉ S.

(1.1)

Function spaces. Given a domain 𝐷 ⊂ R𝑛 with boundary 𝜕𝐷, we use 𝐿 𝑝(𝐷),
𝑝 ≥ 1 or 𝑝 = ∞ to denote the usual Lebesgue spaces, and 𝑊 𝑘, 𝑝(𝐷), 𝑝 ≥ 1
or 𝑝 = ∞ and 𝑘 ∈ N to denote Sobolev spaces of 𝑘-times weakly differentiable
functions. In the case 𝑝 = 2, we set 𝐻𝑘(𝐷) = 𝑊 𝑘,2(𝐷). These spaces are equipped
with their usual norms, which are denoted by ∥ · ∥𝐿𝑝(𝐷), ∥ · ∥𝑊𝑘,𝑝(𝐷) or ∥ · ∥𝐻𝑘(𝐷).
The space 𝐻1

0(𝐷) is the space of all functions in 𝐻1(𝐷) that are zero (in the trace
sense) on the boundary 𝜕𝐷. For more details of these spaces, see e.g. Adams and
Fournier (2003) or Brenner and Scott (2008).

Let (Ω,F , P) be a complete probability space, where Ω is the set of outcomes,
F ⊂ 2Ω is a 𝜎-algebra of events, and P : F → [0, 1] is a probability measure.
Given a Banach space Y , we define the Bochner spaces

𝐿
𝑞

P(Ω,Y) ≔
{
𝑣 : Ω→ Y

�� 𝑣 is strongly measurable and∫
Ω

∥𝑦(𝜔)∥𝑞Y dP(𝜔) < ∞
}

for 𝑞 ∈ [1,∞), and

𝐿∞P (Ω,Y) ≔
{
𝑣 : Ω→ Y

�� 𝑣 is strongly measurable and

P − ess sup
𝜔∈Ω

∥𝑦(𝜔)∥Y < ∞
}
.

When Y = R, we simplify notation to 𝐿 𝑝P (Ω,R) = 𝐿 𝑝P (Ω).

Probability and statistics. Given a random variable 𝑋 defined on (Ω,F , P), we
denote the cumulative distribution function (CDF) associated with 𝑋 by

Ψ𝑋(𝑡) ≔ P({𝜔 ∈ Ω | 𝑋(𝜔) ≤ 𝑡}) = P(𝑋 ≤ 𝑡).

We further denote the associated quantile function by 𝑞𝑋(𝛽) ≔ Ψ−1
𝑋

(𝛽). In addition,
we denote the expectation of an integrable random variable 𝑋 ∈ 𝐿1

P(Ω) by

E[𝑋] ≔
∫
Ω

𝑋(𝜔) dP(𝜔)
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and its variance, if 𝑋 ∈ 𝐿2
P(Ω), by

V[𝑋] ≔ E[(𝑋 − E[𝑋])2] .
Often we consider a vector 𝝃 : (Ω,F) → (Ξ,BΞ) of random variables, where

Ξ ⊂ R𝑀 is a non-empty set and BΞ is the Borel 𝜎-algebra on Ξ. The distribution
(or law) of 𝝃 on the 𝜎-algebra 𝜎(𝝃) = {𝝃−1(𝐵) | 𝐵 ∈ BΞ} is P𝜉 = P ◦ 𝝃−1. We
use bold font 𝝃 to denote the vector of random variables and corresponding normal
font 𝜉 to denote a realization of 𝝃, i.e. 𝜉 = 𝝃(𝜔) for some 𝜔 ∈ Ω. Furthermore, we
use 𝝃(𝑚) to denote the 𝑚th component of 𝝃, and 𝜉𝑖 to denote the 𝑖th sample of 𝝃.

Shapiro et al. (2014, Chapter 7) summarize background material on probability
and other topics relevant to stochastic programming.

2. Example optimization problems
This section describes three example optimization problems to illustrate the im-
pact of random parameters in the PDE constraints on the computed solution, and
the impact of different ways to model the uncertainty in the formulations of the
optimization problem. The deterministic versions of the example problems in this
section or related problems are studied in the books by Bendsøe and Sigmund
(2003), Gunzburger (2003), Hinze et al. (2009), Litvinov (2000), Lions (1971) and
Tröltzsch (2010).

2.1. Elliptic optimal control problem

Our first example is an elliptic optimal control problem. The spatial domain is
𝐷 = (0, 1) × (0, 1) with control boundary 𝜕𝐷𝑐 = {0} × [0, 1] and Neumann
boundary 𝜕𝐷𝑛 = 𝜕𝐷 \ 𝜕𝐷𝑐. Given parametrized coefficient functions

𝜅(𝑥, 𝜉) =

{
𝜉(1), 𝑥 ∈ [0, 1] × [0, 0.6),
𝜉(2), 𝑥 ∈ [0, 1] × [0.6, 1],

𝑐(𝑥) =
(

1
𝜉(3)

)
,

𝑓 (𝑥, 𝜉) = 20 exp
(
− (𝑥1 − 𝜉(4))2

0.1

)
exp
(
− (𝑥2 − 𝜉(5))2

0.1

)
,

with 𝜉 =
(
𝜉(1), 𝜉(2), 𝜉(3), 𝜉(4), 𝜉(5))⊤ and a function 𝑢 ∈ 𝐻1(𝜕𝐷𝑐), we consider the

linear elliptic PDE

−∇ · (𝜅(𝑥, 𝜉)∇𝑦(𝑥, 𝜉)) + 𝑐(𝑥, 𝜉) · ∇𝑦(𝑥, 𝜉) = 𝑓 (𝑥, 𝜉), 𝑥 ∈ 𝐷, (2.1a)
𝑦(𝑥, 𝜉) = 𝑢(𝑥), 𝑥 ∈ 𝜕𝐷𝑐, (2.1b)

(𝜅(𝑥, 𝜉)∇𝑦(𝑥, 𝜉)) · 𝑛(𝑥) = 0, 𝑥 ∈ 𝜕𝐷𝑛. (2.1c)

For demonstration, we set the components of 𝜉 to be

𝜉(1) = 0.3, 𝜉(2) = 0.8, 𝜉(3) = 0.1, 𝜉(4) = 0.25, 𝜉(5) = 0.45. (2.2)

Figure 2.1 depicts a finite-element approximation of the solution of (2.1) with 𝑢 ≡ 0
and parameter 𝜉 in (2.2). All results shown in this section are computed using
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(a) (b)

Figure 2.1. (a) Solution 𝑦 of (2.1) with 𝑢 ≡ 0 and parameter 𝜉 in (2.2). (b) Slices
𝑦(𝑥1, 𝑥2) of the solution at 𝑥2 = 0.4, 0.5, 0.6.

piecewise linear finite elements on a uniform triangulation obtained by dividing
the domain 𝐷 into squares of size ℎ × ℎ, ℎ = 1/30, and then dividing each square
into two triangles.

Now assume that we want to compute 𝑢 ∈ 𝐻1(𝜕𝐷𝑐) such that the resulting
solution 𝑦(𝑢; ·, 𝜉) of (2.1) is ideally below a target, here chosen to be 1, in the
observation region 𝐷𝑜 = [0.4, 0.6] × [0.4, 0.6] (red square in Figure 2.1(a)). We
quantify how much 𝑦(𝑢; ·, 𝜉) exceeds the target in 𝐷𝑜 using

1
2

∫
𝐷𝑜

(𝑦(𝑢; 𝑥, 𝜉) − 1)2
+ d𝑥,

where 𝑧+ = max{𝑧, 0}. We add a term (𝛼/2)∥𝑢∥2
𝐻1(𝜕𝐷𝑐) that penalizes the use of

large controls. Here, 𝛼 > 0 is the penalty parameter, and we set 𝛼 = 10−2. This
leads to the optimization problem

min
𝑢∈𝐻1(𝜕𝐷𝑐)

1
2

∫
𝐷𝑜

(𝑦(𝑢; 𝑥, 𝜉) − 1)2
+ d𝑥 + 10−2

2
∥𝑢∥2

𝐻1(𝜕𝐷𝑐), (2.3)

where 𝑦(𝑢; ·, 𝜉) is the solution of (2.1) given 𝑢 and 𝜉 in (2.2). The function 𝑢 is
referred to as the control, the corresponding solution 𝑦(𝑢; ·, 𝜉) of (2.1) is called the
state, and the PDE (2.1) is called the state equation. Optimal control problems of
the type (2.3) with given parameter 𝜉 and numerical methods for their solution are
analysed in the books by Hinze et al. (2009) and Tröltzsch (2010), for example.

The deterministic optimal control problem (2.3) has a unique solution 𝑢∗ and
the optimal state 𝑦(𝑢∗; ·, 𝜉) is shown in Figure 2.2. The optimal control is shown
in Figure 2.6 below. The optimal control moved the state closer to the target in
the observation region 𝐷𝑜 = [0.4, 0.6] × [0.4, 0.6] (red square in Figure 2.2(a)).
However, this is only true if the control is applied to (2.1) with 𝜉 in (2.2). In this
survey we are interested in the case where the parameter is not deterministic but is
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(a) (b)

Figure 2.2. (a) The optimal state 𝑦(𝑢∗; ·, 𝜉) with parameter 𝜉 in (2.2). (b) Slices
𝑦(𝑢∗; 𝑥1, 𝑥2, 𝜉) of the optimal state at 𝑥2 = 0.4, 0.5, 0.6.

Figure 2.3. Slices at 𝑥2 = 0.4, 0.5, 0.6 of the solution 𝑦(𝑢∗; 𝑥1, 𝑥2, 𝜉) of (2.1) with
the optimal control 𝑢∗ computed as the solution of the deterministic problem (2.3)
and 10 samples of 𝝃.

a realization of a random variable 𝝃 =
(
𝝃(1), 𝝃(2), 𝝃(3), 𝝃(4), 𝝃(5))⊤, with

𝝃(1) ∼ 𝑈(0.2, 0.4), 𝝃(2) ∼ 𝑈(0.7, 0.9), 𝝃(3) ∼ 𝑈(0.0, 0.2),
𝝃(4) ∼ 𝑈(0.1, 0.4), 𝝃(5) ∼ 𝑈(0.3, 0.6).

(2.4)

If we compute the optimal control as the solution of the deterministic problem (2.3)
with a fixed parameter 𝜉 in (2.2), and then apply this optimal control to the state
equation (2.1) with samples of 𝝃, we obtain the results in Figure 2.3. The optimal
control computed with fixed 𝜉 can perform poorly if applied with different values
of the parameter. Thus the randomness in the parameter must be incorporated into
the computation of the control. Note that we are interested in one control that is
applied to all possible outcomes of the random variable 𝝃. This is needed when we
must decide on the control before the uncertainty is revealed.
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Figure 2.4. Slices at 𝑥2 = 0.4, 0.5, 0.6 of the solution 𝑦(𝑢∗; 𝑥1, 𝑥2, 𝜉) of (2.1) with
the optimal control 𝑢∗ computed as the solution of the risk-neutral problem (2.6)
and 10 samples of 𝝃.

We consider 𝝃 as in (2.4), and we set Ξ = [0.2, 0.4] × [0.7, 0.9] × [0, 0.2] ×
[0.1, 0.4] × [0.3, 0.6] and density 𝜌(𝜉) ≡ 105/72. Given a control 𝑢 ∈ 𝐻1(𝜕𝐷𝑐),
we again consider the objective function

1
2

∫
𝐷𝑜

(𝑦(𝑢; 𝑥, 𝜉) − 1)2
+ d𝑥 + 10−2

2
∥𝑢∥2

𝐻1(𝜕𝐷𝑐), (2.5)

where 𝑦(𝑢; ·, 𝜉) solves (2.1), but now we consider (2.5) for all 𝜉 ∈ Ξ. We want
to compute a control 𝑢 that makes (2.5) small in some sense for all 𝜉 ∈ Ξ. Since
now, for given 𝑢 ∈ 𝐻1(𝜕𝐷𝑐), (2.5) is a function in 𝜉 ∈ Ξ, we need to quantify its
size. One possibility is to take its expected value. This leads to the optimal control
problem

min
𝑢∈𝐻1(𝜕𝐷𝑐)

∫
Ξ

𝜌(𝜉)
[
1
2

∫
𝐷𝑜

(𝑦(𝑢; 𝑥, 𝜉) − 1)2
+ d𝑥

]
d𝜉 + 10−2

2
∥𝑢∥2

𝐻1(𝜕𝐷𝑐), (2.6)

where 𝑦(𝑢; ·, ·) solves (2.1). The formulation (2.6) using the expected value is also
known as the risk-neutral formulation of the optimal control problem. The problem
(2.6) has a unique solution. We use a sample average approximation with 𝑁 = 100
Monte Carlo samples to compute an approximation of the optimal control. We will
discuss this and other solution methods in later sections. The computed control
is shown in Figure 2.6 below. We compute the solution of the state equation
(2.1) with 𝑢 given by the solution 𝑢∗ of (2.6) and with the same 10 samples of
𝝃 used to generate Figure 2.3. Cross-sections of the solution 𝑦(𝑢∗; 𝑥1, 𝑥2, 𝜉) at
𝑥2 = 0.4, 0.5, 0.6 are shown in Figure 2.4.

In this example and for the 10 samples of 𝝃 used, there is little difference between
Figures 2.3 and 2.4. In particular, if the optimal control 𝑢∗ is computed as the
solution of the risk-neutral problem (2.6), samples 𝑦(𝑢∗; ·, 𝜉) of the corresponding
state can be significantly larger than the target.
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𝑥

pdf

𝑞𝑋(𝛽)

AVaR𝛽(𝑋)

Figure 2.5. Schematic of the average value-at-risk. The label 𝑞𝑋(𝛽) denotes the 𝛽-
quantile or value-at-risk of the random variable 𝑋 , while the average of the shaded
region is AVaR𝛽(𝑋).

In some applications, for example if 𝑦(𝑢; ·, 𝜉) represents the concentration of
a substance, it may be more harmful if 𝑦(𝑢; ·, 𝜉) greatly exceeds the target than
if 𝑦(𝑢; ·, 𝜉) barely exceeds the target. In these cases it is beneficial to compute a
control 𝑢∗ so that the (1 − 𝛽) × 100% of the worst cases are minimized in some
sense. This can be quantified, for example, using the average value-at-risk (AVaR).
For a random variable 𝑋 ∈ 𝐿1

P(Ω) and a confidence level 𝛽 ∈ (0, 1), the average
value-at-risk is defined by

AVaR𝛽(𝑋) B min
𝑡∈R

{
𝑡 + 1

1 − 𝛽E[max{0, 𝑋 − 𝑡}]
}
. (2.7)

For continuous random variables 𝑋 , AVaR𝛽(𝑋) is the average of the (1− 𝛽)×100%
largest outcomes of 𝑋 , thus providing a measure of the distribution tail weight
as depicted in Figure 2.5. AVaR and other risk measures will be discussed in
Section 4.1.

We apply AVaR to

𝑋 =
1
2

∫
𝐷𝑜

(𝑦(𝑢; 𝑥, 𝝃) − 1)2
+ d𝑥.

This leads to the optimization problem

min
𝑢∈𝐻1(𝜕𝐷𝑐)

AVaR𝛽
[
1
2

∫
𝐷𝑜

(𝑦(𝑢; 𝑥, 𝝃) − 1)2
+ d𝑥

]
+ 10−2

2
∥𝑢∥2

𝐻1(𝜕𝐷𝑐). (2.8)

We choose 𝛽 = 0.95, reflecting that we are concerned with mitigating the highest
5% of outcomes. The optimal control is shown in Figure 2.6. Again, we compute
the solution of the state equation (2.1) with 𝑢 given by the solution 𝑢∗ of (2.8) and
using the same 10 samples of 𝝃 used to generate Figure 2.3. Figure 2.7 depicts
cross-sections of the solution 𝑦(𝑢∗; 𝑥1, 𝑥2, 𝜉) at 𝑥2 = 0.4, 0.5, 0.6. Comparing
Figures 2.4 and 2.7 shows that when AVaR is used to compute the optimal control,
most samples 𝑦(𝑢∗; ·, 𝜉) of the corresponding state are below or close to the target.
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Figure 2.6. Optimal controls computed using the deterministic problem (2.3), the
risk-neutral problem (2.6) and the risk-averse problem (2.8).

Figure 2.7. Slices at 𝑥2 = 0.4, 0.5, 0.6 of the solution 𝑦(𝑢∗; 𝑥1, 𝑥2, 𝜉) of (2.1) with
the optimal control 𝑢∗ computed as the solution of the AVaR problem (2.8) and 10
samples of 𝝃.

2.2. Optimal control of thermally convected flow

The example in this section is motivated by the transport process in high-pressure
chemical vapour deposition (CVD) reactors, which can be modelled using the
Boussinesq flow equations; see e.g. Ito and Ravindran (1998, Section 5.2). In
particular, hot wall CVD reactors heat the walls of the reaction chamber, producing
more uniform temperature and deposition profiles. In this example, we describe
an optimal control problem for the Boussinesq flow equations, drawing inspiration
from the control of hot wall CVD reactors.

Consider the domain depicted in Figure 2.8, where 𝐷 = (0, 1)3, inflow boundary
Γ𝑖 = [1/3, 2/3] × {(1, 1)}, outflow boundary Γ𝑜 = ([0, 1/3] ∪ [2/3, 1]) × {(1, 1)},
reactor bottom Γ𝑏 = [0, 1] × {0} × [0, 1] and side walls (i.e. control boundaries)
Γ𝑐 = ({0, 1} × [0, 1]2) ∪ ([0, 1]2 × {0, 1}). The Boussinesq flow equations on this
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Γ𝑖Γ𝑜 Γ𝑜

Γ𝑐

Γ𝑏

Γ𝑐

Γ𝑐

Figure 2.8. The physical domain for the three-dimensional CVD control problem.
The blue faces denote the outflow boundaries, the green face denotes the inflow
boundary and the red face denotes the substrate boundary. The remaining faces are
the control boundaries.

domain are

−𝜇Δ𝑣 + (𝑣 · ∇)𝑣 + ∇𝑝 + 𝜂𝑇𝑔 = 0 in 𝐷, (2.9a)
∇ · 𝑣 = 0 in 𝐷, (2.9b)

−𝜅Δ𝑇 + 𝑣 · ∇𝑇 = 0 in 𝐷, (2.9c)
𝑣 − 𝑣𝑖 = 0, 𝑇 = 0 on Γ𝑖 , (2.9d)
𝑣 − 𝑣𝑜 = 0, 𝜅∇𝑇 · 𝑛 = 0 on Γ𝑜, (2.9e)

𝑣 = 0, 𝑇 − 𝑇𝑏 = 0 on Γ𝑏, (2.9f)
𝑣 = 0, 𝜅∇𝑇 · 𝑛 + ℎ(𝑢 − 𝑇) = 0 on Γ𝑐, (2.9g)

Here, 𝑔 denotes the acceleration due to gravity, 𝜇 is the kinematic viscosity, 𝜂 is the
coefficient of thermal expansion, 𝜅 is the thermal conductivity,𝑇𝑏 is the bottom wall
temperature, and ℎ is the convection coefficient. Aside from 𝑔, these coefficients
are often uncertain. The coefficients 𝜇, 𝜂 and 𝜅 satisfy the following relationships:

𝜇 =
1

Re
, 𝜂 = 𝜇2Gr and 𝜅 =

𝜇

Pr
,

where Re is the Reynolds number, Gr is the Grashof number and Pr is the Prandtl
number. For this demonstration, 𝑣𝑖 and 𝑣𝑜 are deterministic, Re, Gr and Pr are
random variables, and we model the uncertainty in ℎ and 𝑇𝑏 using products of
truncated Karhunen–Loève (KL) expansions of Brownian bridge random processes,
each with 10 terms, resulting in the 53-dimensional random vector 𝝃.

One possible goal in operating CVD reactors is to promote uniform deposition
by minimizing the vorticity within the reactor. To achieve this, we will control the
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(a) uncontrolled (b) risk-neutral (c) risk-averse

Figure 2.9. Velocity and pressure fields for the uncontrolled system (a), the risk-
neutral controlled system (b), and the risk-averse controlled system (c).

thermal flux on the side walls. Given a risk measure R(·) such as R(·) = E[·] or
R(·) = AVaR𝛽(·), we formulate the control problem as

min
𝑢∈U

R
(

1
2

∫
𝐷

(∇ × 𝑣(𝑢; ·, 𝝃))(𝑥) d𝑥
)
+ 𝛼

2

∫
Γ𝑐

|𝑢(𝑥)|2 d𝑥,

where

𝑦(𝑢) = (𝑣(𝑢), 𝑝(𝑢), 𝑇(𝑢))
= (𝑣, 𝑝, 𝑇) ∈ 𝐿2

P(Ω, 𝐻
1(𝐷))3 × 𝐿2

P(Ω, 𝐿
2(𝐷)) × 𝐿2

P(Ω, 𝐻
1(𝐷))

solves the weak form of the Boussinesq flow equations (2.9) for almost all realiza-
tions of the random vector 𝝃.

We discretized this problem using second-order finite elements for the velocity
and temperature fields, and first-order finite elements for the pressure field on
a uniform hexahedral mesh, resulting in a discretized system with 𝑂(104) state
variables per sample. We used 𝑁 = 80 Monte Carlo samples. Figure 2.9 depicts
the velocity (arrows) and pressure (colours) fields when no control (i.e. 𝑢 = 0) is
applied, when the optimal risk neutral (i.e. R(·) = E[·]) control is applied, and
when the optimal risk-averse control is applied. For the risk-averse solution, we
employed the entropic risk measure

R(𝑋) = 𝜎−1 logE[exp(𝜎𝑋)], 𝜎 > 0,

with 𝜎 = 2, which arises from considerations in expected utility theory. Both the
risk-neutral and risk-averse controls reduce the variability in the system by a factor
of about 2.5 when compared with the uncontrolled system. Furthermore, both
risk-neutral and entropic risk significantly reduce the magnitude of the vorticity
by approximately 2.3-fold. This fact can also be qualitatively seen in Figure 2.9,
noting that the magnitude of the vorticity is significantly smaller in the controlled
systems.
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2.3. Topology optimization

Recent advances in additive manufacturing have drastically increased design pos-
sibilities, giving topology optimization a central role in engineering design. See
Bendsøe and Sigmund (2003) for an overview of topology optimization. The
archetypal topology optimization problem is to place material in some domain
𝐷 ⊂ R𝑑 , 𝑑 = 2, 3, to minimize the compliance, or equivalently maximize the stiff-
ness, of the resulting component whose displacements satisfy the linear elasticity
equations

−∇ · (E(𝑢) : 𝜀) = 𝑓 in 𝐷, (2.10a)
𝜀 = 1

2 (∇𝑦 + ∇𝑦⊤) in 𝐷, (2.10b)
𝜀𝑛 = 𝑇 on Γ𝑡 , (2.10c)
𝑦 = 0 on Γ𝑑 . (2.10d)

Here, 𝑢 ∈ 𝐿2(𝐷) is the optimization variable, which represents the material dis-
tribution (i.e. 𝑢(𝑥) = 0 signifies no material and 𝑢(𝑥) = 1 signifies material at 𝑥),
𝑓 : 𝐷 → R𝑑 is a volumetric load, Γ𝑑 ⊂ 𝜕𝐷 denotes the segment of the boundary
where the elastic body is fixed, Γ𝑡 = 𝜕𝐷 \ Γ𝑑 denotes the traction boundary, and
𝑇 : Γ𝑡 → R𝑑 is a traction load. To obtain a material distribution, 𝑢, that is nearly
binary and that respects a minimal length scale, it is common to employ a mater-
ial model like the solid isotropic material with penalization (SIMP) model and a
density filter such as the volume-preserving Helmholtz filter described in Lazarov
and Sigmund (2011). In this setting, the material tensor E(𝑢) takes the form

E(𝑢) = (𝜌min + (𝜌max − 𝜌min)F(𝑢)3)E0,

where 0 < 𝜌min < 𝜌max, E0 is a nominal material tensor, and 𝑧 = F(𝑢) ∈ 𝐻1(𝐷)
solves the weak form of the elliptic PDE

−𝑟2Δ𝑧 + 𝑧 = 𝑢 in 𝐷,
∇𝑧 · 𝑛 = 0 on 𝜕𝐷.

(2.11)

Here, 𝑟 > 0 dictates the length scale of the optimal design.
Given a volume fraction 𝑣0 ∈ (0, 1), the compliance minimization problem is

formulated as

min
𝑢∈𝐿2(𝐷)

∫
𝐷

𝑓 (𝑥) · 𝑦(𝑢; 𝑥) d𝑥 +
∫
Γ𝑡

𝑇(𝑥) · 𝑦(𝑢; 𝑥) d𝑥 (2.12a)

subject to
∫
𝐷

𝑢(𝑥) d𝑥 ≤ 𝑣0 |𝐷 |, 0 ≤ 𝑢 ≤ 1 a.e. (2.12b)

where the displacements 𝑦 = 𝑦(𝑢) ∈ 𝐻1
Γ𝑑

(𝐷)𝑑 solve the weak form of the linear
elasticity equations (2.10). The objective function in (2.12a) is the compliance of
the structure defined by 𝑢, and the first constraint in (2.12b) ensures that its volume
is no more than (𝑣0 × 100)% of the total volume of the domain 𝐷.
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?

Figure 2.10. Topology optimization problem set-up. The random loads are depicted
by the red arrows.

To ensure a reliable design, one must account for uncertainties in (2.12), which
may arise from manufacturing variabilities, uncertain external loading scenarios,
and unknown internal loads such as residual stresses introduced by the additive
manufacturing process. For this example we consider (2.12) with𝐷 = (0, 1)×(0, 2),
Γ𝑑 = [0, 1] × {0} and Γ𝑡 = [0, 1/8] ∪ [7/8, 1] × {2}, where the internal load is
zero (i.e. 𝑓 ≡ 0) and the traction force is given by

𝑇(𝑥, 𝜉) =


(
𝜉(1) cos

(
𝜉(2)), 𝜉(1) sin

(
𝜉(2)))⊤ if 𝑥1 ∈ [0, 1/8] and 𝑥2 = 2,(

𝜉(3) cos
(
𝜉(4)), 𝜉(3) sin

(
𝜉(4)))⊤ if 𝑥1 ∈ [7/8, 1] and 𝑥2 = 2,

(0, 0)⊤ otherwise.

Here, 𝝃 =
(
𝝃(1), 𝝃(2), 𝝃(3), 𝝃(4)) is a uniformly distributed random vector. The

magnitude and angle of the left traction load
(
𝝃(1), 𝝃(2)) are uniformly distributed

on [0.25, 1.75] × [225◦, 315◦], while the magnitude and angle of the right load(
𝝃(3), 𝝃(4)) are uniformly distributed on [0.75, 1.25] × [245◦, 295◦]. Figure 2.10

depicts a schematic of the physical domain 𝐷 and the traction load 𝑇 . The thick
arrows correspond to the upper and lower angle bounds whereas the lengths of the
arrows correspond to the maximum magnitudes. As in Sections 2.1 and 2.2, we
often ensure that the computed density 𝑢 produces a reliable design by minimizing
a conservative measure of risk such as the AVaR (2.7). Employing AVaR within
our topology optimization problem yields the risk-averse optimization problem

min
𝑢∈𝐿2(𝐷)

AVaR𝛽
(∫

Γ𝑡

𝑇(𝑥, 𝝃) · 𝑦(𝑢; 𝑥, 𝝃) d𝑥
)

(2.13a)

subject to
∫
𝐷

𝑢(𝑥) d𝑥 ≤ 𝑣0 |𝐷 |, 0 ≤ 𝑢 ≤ 1 a.e. (2.13b)

where the displacements 𝑦 = 𝑦(𝑢) ∈ 𝐿2
P(Ω; (𝐻1

Γ𝑑
(𝐷))𝑑) solve the weak form of the

linear elasticity equations (2.10) for almost all realizations of the uncertain traction
load 𝑇(·, 𝝃).
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(a) deterministic (b) risk-neutral (c) risk-averse

Figure 2.11. Optimal designs for deterministic, risk-neutral and risk-averse topo-
logy optimization.

We discretized the elastic displacements 𝑦 in (2.10) and the filtered density
variables F(𝑢) in (2.11) using continuous piecewise bilinear finite elements defined
on a uniform quadrilateral mesh. We further discretize the density variable 𝑢
using a piecewise constant ansatz on the same mesh. This results in a discretized
problem with 𝑂(104) discretized density variables and 𝑂(104) state variables per
sample. We set the material tensor E0 to the plain stress tensor with Young’s
modulus 200 gigapascals and Poisson ratio 0.29, which are common values for
steel at room temperature. We further set the volume fraction 𝑣0 = 0.5, the
filter radius 𝑟 = 0.1, the minimum and maximum densities 𝜌min = 10−4 and
𝜌max = 1, respectively, and the AVaR confidence level 𝛽 = 0.95. We consider three
formulations: the deterministic mean-value formulation in which the random vector
𝝃 is replaced by its mean value, i.e. E[𝝃] = (1, 270◦, 1, 270◦); the risk-neutral
formulation in which AVaR𝛽 in (2.13) is replaced by the expectation E; and the
risk-averse formulation (2.13). We approximate the expectation in the risk-neutral
and risk-averse formulations using sample average approximation with 1000 Monte
Carlo samples. Figure 2.11 depicts the computed densities for the three problem
formulations. Intuitively, the deterministic design places material in the direction
of the single deterministic load given by the mean value E[𝝃] = (1, 270◦, 1, 270◦)
of the uncertain parameters 𝝃. The risk-neutral and risk-averse designs differ
considerably from the deterministic mean-value design, accounting for the various
loading scenarios modelled by 𝑇(·, 𝝃).

3. Model problem
In this section we use a linear–quadratic elliptic optimal control problem to discuss
the risk-neutral optimization problem formulation, study the existence and charac-
terization of its solution, and survey numerical methods for its solution. This model
problem class has been studied extensively in the literature. The deterministic
versions of this model problem and related problems are studied in the books by
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Hinze et al. (2009), Lions (1971), Quarteroni (2009) and Tröltzsch (2010). The
purpose of this section is to provide an introduction to PDE-constrained optimiz-
ation under uncertainty, to highlight some issues that need to be addressed when
moving from deterministic problems to ones governed by PDEs with random para-
meters, and to describe solution approaches using a simple model problem and the
– arguably easiest to tackle – risk-neutral formulation of the optimization problem.

3.1. Problem with deterministic parameters

3.1.1. State equation
The control and state spaces are the Hilbert spaces U and V , respectively. Given a
control 𝑢 ∈ U , the state 𝑦 ∈ V satisfies the variational equation

𝑎(𝑦, 𝜑) + 𝑏(𝑢, 𝜑) = ℓ(𝜑) for all 𝜑 ∈ V , (3.1)

where

𝑎 : V × V → R (3.2a)

is aV-coercive and continuous bilinear form. In other words, there exist 0 < 𝑎min ≤
𝑎max such that

𝑎min∥𝑦∥2V ≤ 𝑎(𝑦, 𝑦) and |𝑎(𝑦, 𝜑)| ≤ 𝑎max ∥𝑦∥V ∥𝜑∥V for all 𝑦, 𝜑 ∈ V .
(3.2b)

Further,

𝑏 : U × V → R (3.2c)

is a continuous bilinear form, that is, there exists 0 < 𝑏max such that

|𝑏(𝑢, 𝜑)| ≤ 𝑏max ∥𝑢∥U ∥𝜑∥V for all 𝑢 ∈ U , 𝜑 ∈ V , (3.2d)

and ℓ ∈ V∗ is a bounded linear form on V . The variational equation (3.1) can be
equivalently written as a linear operator equation,

𝐴𝑦 + 𝐵𝑢 = ℓ in V∗, (3.3)

where 𝐴 ∈ L(V ,V∗) and 𝐵 ∈ L(U ,V∗) are defined by

⟨𝐴𝑦, 𝜑⟩V∗,V = 𝑎(𝑦, 𝜑), ⟨𝐵𝑢, 𝜑⟩V∗,V = 𝑏(𝑢, 𝜑) for all 𝑦, 𝜑 ∈ V , 𝑢 ∈ U .
Because 𝑎 is V-coercive, the linear operator 𝐴 is continuously invertible:

𝐴−1 ∈ L(V∗,V).

The Lax–Milgram theorem (see e.g. Brenner and Scott 2008, Theorem 2.7.7)
gives the following existence and uniqueness result.

Theorem 3.1. If V and U are Hilbert spaces, 𝑎 : V × V → R, 𝑏 : U × V → R are
bilinear forms satisfying (3.2), and ℓ ∈ V∗, then for every 𝑢 ∈ U the variational
equation (3.1) has a unique solution 𝑦(𝑢) ∈ V , and this solution satisfies

∥𝑦(𝑢)∥V ≤ 𝑎−1
min(∥ℓ∥V∗ + 𝑏max∥𝑢∥U ) for all 𝑢 ∈ U .
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An example for (3.1) is given by the following elliptic diffusion equation.

Example 3.2. Given a bounded domain 𝐷 ⊂ R𝑛 with boundary 𝜕𝐷, given func-
tions

𝑓 ∈ 𝐿2(𝐷), 𝜅 ∈ 𝐿∞(𝐷), (3.4a)

such that

𝜅max ≥ 𝜅(𝑥) ≥ 𝜅min > 0 a.e. in 𝐷, (3.4b)

and given 𝑢 ∈ 𝐿2(𝐷), consider the elliptic PDE

−∇ · (𝜅(𝑥)∇𝑦(𝑥)) = 𝑓 (𝑥) + 𝑢(𝑥), 𝑥 ∈ 𝐷, (3.5a)
𝑦(𝑥) = 0, 𝑥 ∈ 𝜕𝐷. (3.5b)

The weak form of the problem (3.5) is as follows: find 𝑦 ∈ 𝐻1
0(𝐷) such that∫

𝐷

𝜅(𝑥)∇𝑦(𝑥)∇𝜑(𝑥) d𝑥 =
∫
𝐷

( 𝑓 (𝑥) + 𝑢(𝑥))𝜑(𝑥) d𝑥 for all 𝜑 ∈ 𝐻1
0(𝐷). (3.6)

If we define V = 𝐻1
0(𝐷) with norm ∥𝜑∥V = ∥∇𝜑∥𝐿2(𝐷), U = 𝐿2(𝐷), the bilinear

forms

𝑎 : 𝐻1
0(𝐷) × 𝐻1

0(𝐷)→ R,

(𝑦, 𝜑) ↦→ 𝑎(𝑦, 𝜑) =
∫
𝐷

𝜅(𝑥)∇𝑦(𝑥) · ∇𝜑(𝑥) d𝑥, (3.7a)

𝑏 : 𝐿2(𝐷) × 𝐻1
0(𝐷)→ R,

(𝑢, 𝜑) ↦→ 𝑏(𝑢, 𝜑) = −
∫
𝐷

𝑢(𝑥)𝜑(𝑥) d𝑥, (3.7b)

and the linear functional

ℓ : 𝐻1
0(𝐷)→ R, ℓ(𝜑) =

∫
𝐷

𝑓 (𝑥)𝜑(𝑥) d𝑥, (3.7c)

then (3.6) can be written as (3.1). Under the conditions (3.4), the bilinear form 𝑎

in (3.7) is 𝐻1
0(𝐷)-coercive and continuous on 𝐻1

0(𝐷) × 𝐻1
0(𝐷),

𝜅min∥𝑦∥2𝐻1
0 (𝐷) ≤ 𝑎(𝑦, 𝑦), |𝑎(𝑦, 𝜑)| ≤ 𝜅max ∥𝑦∥𝐻1

0 (𝐷)∥𝜑∥𝐻1
0 (𝐷)

for all 𝑦, 𝜑 ∈ 𝐻1
0(𝐷). Moreover, the bilinear form 𝑏 in (3.7) is continuous on

𝐿2(𝐷) × 𝐻1
0(𝐷), that is,

|𝑏(𝑢, 𝜑)| ≤ 𝑐𝐷 ∥𝑢∥𝐿2(𝐷)∥𝜑∥𝐻1
0 (𝐷) for all 𝑢 ∈ 𝐿2(𝐷), 𝜑 ∈ 𝐻1

0(𝐷),

where 𝑐𝐷 is the constant in the Poincaré inequality, and ℓ is a bounded linear
functional on 𝐻1

0(𝐷):

|ℓ(𝜑)| ≤ 𝑐𝐷 ∥ 𝑓 ∥𝐿2(𝐷)∥𝜑∥𝐻1
0 (𝐷) for all 𝜑 ∈ 𝐻1

0(𝐷).
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3.1.2. Optimal control problem
The equations (3.1) are called the state equations, and the solution 𝑦(𝑢) is referred
to as the state. In the optimal control setting, we want to find a control 𝑢 ∈ U such
that a ‘cost’ or ‘loss’ of the system modelled by the state equation is minimized.
As described in Section 1, cost or loss do not necessarily correspond to a monetary
cost or loss, but are a scalar quantification of the under-performance of the system.
Note that we write optimization problems as minimization problems. If we want to
maximize the performance of the system, then we can achieve this by minimizing
the negative of the quantification of performance.

The cost is a scalar quantity that depends on the solution 𝑦(𝑢) ∈ V of (3.1) and
possibly also directly on 𝑢 ∈ U , and it is the objective functional (sometimes also
called the cost functional) in the optimal control problem. We consider a quadratic
objective functional

1
2
𝑞(𝑦, 𝑦) + 𝑐(𝑦) + 1

2
𝑟(𝑢, 𝑢), (3.8)

where

𝑞 : V × V → R (3.9a)

is a symmetric, non-negative, continuous bilinear form. In other words, 𝑞(𝑦, 𝜑) =
𝑞(𝜑, 𝑦) for all 𝑦, 𝜑 ∈ V ,

𝑞(𝑦, 𝑦) ≥ 0 for all 𝑦 ∈ V , (3.9b)

and there exists 0 < 𝑞max such that

|𝑞(𝑦, 𝜑)| ≤ 𝑞max ∥𝑦∥V ∥𝜑∥V for all 𝑦, 𝜑 ∈ V . (3.9c)

Further,

𝑟 : U × U → R (3.9d)

is a symmetric, U-coercive and continuous bilinear form, i.e. 𝑟(𝑢, 𝜓) = 𝑟(𝜓, 𝑢) for
all 𝑢, 𝜓 ∈ U , and there exists 0 < 𝑟min ≤ 𝑟max such that

𝑟min∥𝑢∥2U ≤ 𝑟(𝑢, 𝑢) and |𝑟(𝑢, 𝜓)| ≤ 𝑟max ∥𝑢∥U ∥𝜓∥U for all 𝑢, 𝜓 ∈ U , (3.9e)

and 𝑐 is a bounded linear form on V:

𝑐 ∈ V∗. (3.9f)

Our optimal control problem is given by

min
𝑢∈U

1
2
𝑞(𝑦(𝑢), 𝑦(𝑢)) + 𝑐(𝑦(𝑢)) + 1

2
𝑟(𝑢, 𝑢), (3.10)

where 𝑦(𝑢) ∈ V is the solution of the state equation (3.1) given 𝑢 ∈ U .
The problem (3.10) is a convex, elliptic, linear–quadratic optimal control prob-

lem, and such problems are analysed in the books by Lions (1971), Hinze et al.
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(2009), Quarteroni (2009) and Tröltzsch (2010), for example. The objective func-
tion in (3.10) is Fréchet-differentiable, and the Fréchet derivative can be computed
via the adjoint equation approach, as detailed in the following result.

Theorem 3.3. If V and U are Hilbert spaces, 𝑎 : V × V → R, 𝑏 : U × V → R,
𝑞 : V × V → R, 𝑟 : U × U → R are bilinear forms satisfying (3.2) and (3.9), and
ℓ, 𝑐 ∈ V∗, then the objective function in (3.10),

𝑓 : U → R, 𝑢 ↦→ 𝑓 (𝑢) ≔
1
2
𝑞(𝑦(𝑢), 𝑦(𝑢)) + 𝑐(𝑦(𝑢)) + 1

2
𝑟(𝑢, 𝑢), (3.11)

is Fréchet-differentiable and the Fréchet derivative applied to 𝛿𝑢 is

𝑓 ′(𝑢)𝛿𝑢 = 𝑟(𝑢, 𝛿𝑢) + 𝑏(𝛿𝑢, 𝜆), (3.12a)

where 𝜆 ∈ V solves

𝑎(𝜑, 𝜆) + 𝑞(𝑢, 𝜑) = −𝑐(𝜑) for all 𝜑 ∈ V . (3.12b)

Proof. See e.g. Section 1.6.3 in Hinze et al. (2009).

The following result addresses existence, uniqueness and characterization of the
solution of (3.10).

Theorem 3.4. If V and U are Hilbert spaces, 𝑎 : V × V → R, 𝑏 : U × V → R,
𝑞 : V × V → R, 𝑟 : U × U → R are bilinear forms satisfying (3.2) and (3.9), and
ℓ, 𝑐 ∈ V∗, then the optimal control problem (3.10) has a unique solution 𝑢 ∈ U .
Furthermore, 𝑢 ∈ U solves (3.8) if and only if there exist 𝑦 ∈ V and 𝜆 ∈ V such
that 𝑦, 𝑢, 𝜆 solve

𝑎(𝜑, 𝜆) + 𝑞(𝑦, 𝜑) = −𝑐(𝜑) for all 𝜑 ∈ V , (3.13a)
𝑟(𝑢, 𝜓) + 𝑏(𝜓, 𝜆) = 0 for all 𝜓 ∈ U , (3.13b)
𝑎(𝑦, 𝜑) + 𝑏(𝑢, 𝜑) = ℓ(𝜑) for all 𝜑 ∈ V . (3.13c)

Proof. See e.g. Section 1.51 in Hinze et al. (2009).

Because (3.10) is a convex optimization problem, the optimality conditions
(3.13) are necessary and sufficient, and because (3.10) is a linear–quadratic optimal
control problem, the optimality conditions (3.13) are a system of linear variational
equations. The equation (3.13a) is called the adjoint equation, and its solution 𝜆 is
called the adjoint. The equation (3.13c) is just the state equation and its solution 𝑦
is the state.

The following is an example of an optimal control problem governed by the
elliptic diffusion equation in Example 3.2.

Example 3.5. Given a domain 𝐷𝑜 ⊂ 𝐷 and a desired state �̂� ∈ 𝐿2(𝐷0), we
want to find 𝑢 ∈ 𝐿2(𝐷) such that 𝑦(𝑢; ·) is close to �̂� in the 𝐿2 sense, that is, for
our example the cost is 1

2

∫
𝐷𝑜

(𝑦(𝑢; 𝑥) − �̂�(𝑥))2 d𝑥. Rather than just minimizing the
deviation of the state from the desired state, we add a penalty term with parameter
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𝛼 > 0 for the control. Thus our optimal control problem is given by

min
𝑢∈𝐿2(𝐷)

1
2

∫
𝐷𝑜

(𝑦(𝑢; 𝑥) − �̂�(𝑥))2 d𝑥 + 𝛼
2

∫
𝐷

𝑢(𝑥)2 d𝑥, (3.14)

where 𝑦(𝑢; ·) ∈ 𝐻1
0(𝐷) is the solution of (3.6) given 𝑢 ∈ 𝐿2(𝐷).

If we drop the constant
1
2

∫
𝐷𝑜

�̂�(𝑥)2 d𝑥,

the objective functional in (3.14) is a special case of (3.8) with

𝑞(𝑦, 𝜑) =
∫
𝐷𝑜

𝑦(𝑥)𝜑(𝑥) d𝑥,

𝑐(𝑦) = −
∫
𝐷𝑜

𝑦(𝑥)�̂�(𝑥) d𝑥,

𝑟(𝑢, 𝜓) =
∫
𝐷

𝑢(𝑥)𝜓(𝑥) d𝑥.

Application of Theorem 3.4 gives the following result on the existence, uniqueness
and characterization of the solution of (3.14).

Corollary 3.6. If equations (3.7) are satisfied, the optimal control problem (3.14)
has a unique solution 𝑢 ∈ 𝐿2(𝐷). Furthermore, 𝑢 ∈ 𝐿2(𝐷) solves (3.14) if and only
if there exist 𝑦 ∈ 𝐻1

0(𝐷) and 𝜆 ∈ 𝐻1
0(𝐷) such that 𝑦, 𝑢, 𝜆 solve

−∇ · (𝜅(𝑥)∇𝜆(𝑥)) = −(𝑦(𝑥) − �̂�(𝑥)), 𝑥 ∈ 𝐷, (3.15a)
𝜆(𝑥) = 0, 𝑥 ∈ 𝜕𝐷, (3.15b)

𝛼𝑢(𝑥) − 𝜆(𝑥) = 0, 𝑥 ∈ 𝐷, (3.15c)
−∇ · (𝜅(𝑥)∇𝑦(𝑥)) = 𝑓 (𝑥) + 𝑢(𝑥), 𝑥 ∈ 𝐷, (3.15d)

𝑦(𝑥) = 0, 𝑥 ∈ 𝜕𝐷. (3.15e)

3.2. Problem with random parameters

In applications, material parameters or forces may not be known, but are subject
to random variations. In this case, we must compute a control that, in some sense,
minimizes the cost of the system over all variations in material parameters or forces.
To find a suitable formulation for such an optimal control problem, we must first
extend the state equation (3.1) to allow for randomness in the parameters.

3.2.1. State equation
Let V and U be Hilbert spaces and let (Ω,F , P) be a complete probability space.
Furthermore, let B be the Borel 𝜎-algebra on R. Given a realization 𝜔 ∈ Ω, we
consider

𝑎(𝑦, 𝜑, 𝜔) + 𝑏(𝑢, 𝜑, 𝜔) = ℓ(𝜑, 𝜔) for all 𝜑 ∈ V . (3.16)
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In (3.16),

𝑎(·, ·, 𝜔) : V × V → R, 𝑏(·, ·, 𝜔) : U × V → R (3.17a)

are bilinear forms and

ℓ(·, 𝜔) ∈ V∗. (3.17b)

We assume that

for each 𝑦, 𝜑 ∈ V , 𝑢 ∈ U , the functions
𝑎(𝑦, 𝜑, ·), 𝑏(𝑢, 𝜑, ·) : Ω→ R are (F ,B)-measurable. (3.17c)

Moreover, we assume that there exist measurable functions

0 < 𝑎min(𝜔) ≤ 𝑎max(𝜔) and 0 < 𝑏max(𝜔) (3.17d)

such that for a.a. 𝜔 ∈ Ω,

𝑎(𝑦, 𝑦, 𝜔) ≥ 𝑎min(𝜔)∥𝑦∥2V for all 𝑦 ∈ V , (3.17e)
|𝑎(𝑦, 𝜑, 𝜔)| ≤ 𝑎max(𝜔) ∥𝑦∥V ∥𝜑∥V for all 𝑦, 𝜑 ∈ V , (3.17f)
|𝑏(𝑢, 𝜑, 𝜔)| ≤ 𝑏max(𝜔) ∥𝑢∥U ∥𝜑∥V for all 𝑢 ∈ U , 𝜑 ∈ V . (3.17g)

Because of their measurability properties (3.17c), and their continuity properties
(3.17f) and (3.17g), the function 𝑎 : V × V × Ω → R is a Carathéodory function,
and for every 𝑢 ∈ U the function 𝑏(𝑢, ·, ·) : V ×Ω→ R is a Carathéodory function.

Analogously to the deterministic case, the parametrized variational equation
(3.16) can be equivalently written as a parametrized linear operator equation

𝐴(𝜔)𝑦(𝜔) + 𝐵(𝜔)𝑢 = ℓ(𝜔) in V∗, (3.18)

where for a.a. 𝜔 ∈ Ω the operators 𝐴(𝜔) ∈ L(V ,V∗) and 𝐵(𝜔) ∈ L(U ,V∗) are
defined by

⟨𝐴(𝜔)𝑦, 𝜑⟩V∗,V = 𝑎(𝑦, 𝜑, 𝜔), ⟨𝐵(𝜔)𝑢, 𝜑⟩V∗,V = 𝑏(𝑢, 𝜑, 𝜔)

for all 𝑦, 𝜑 ∈ V , 𝑢 ∈ U . Because of (3.17d),

𝐴(𝜔)−1 ∈ L(V∗,V) for a.a. 𝜔 ∈ Ω.

If (3.17) is satisfied, Theorem 3.1 guarantees that for every 𝑢 ∈ U and for
a.a. 𝜔 ∈ Ω the parametrized variational equation (3.16) has a unique solution
𝑦(𝑢;𝜔) ∈ V . However, we need measurability and integrability properties of
the function 𝑦(𝑢; ·) : Ω → V , which will require additional conditions. There
are two possible avenues: we can consider variational equations in the Hilbert
space 𝐿2

P(Ω,V), or we can consider the parametrized equation (3.16). We will
consider both approaches below. In either case, we assume that V is a separable
Hilbert space. In this case, the Carathéodory functions 𝑎 : V × V × Ω → R and
𝑏(𝑢, ·, ·) : V ×Ω→ R, 𝑢 ∈ U , are jointly measurable; see e.g. Aliprantis and Border
(2006, Lemma 4.51).
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To establish a variational equation in the Hilbert space 𝐿2
P(Ω,V), we assume that

ess inf
𝜔∈Ω

𝑎min(𝜔) > 0, (3.19a)

𝑎max ∈ 𝐿∞P (Ω), 𝑏max ∈ 𝐿2
P(Ω), (3.19b)

and

ℓ ∈ 𝐿2
P(Ω,V

∗). (3.19c)

Given a control 𝑢 ∈ U , we seek the solution 𝑦 ∈ 𝐿2
P(Ω,V) of the variational

equation ∫
Ω

𝑎(𝑦(𝜔), 𝜑(𝜔), 𝜔) dP(𝜔) +
∫
Ω

𝑏(𝑢, 𝜑(𝜔), 𝜔) dP(𝜔)

=

∫
Ω

ℓ(𝜑(𝜔), 𝜔) dP(𝜔) for all 𝜑 ∈ 𝐿2
P(Ω,V). (3.20)

Under the conditions (3.17) and (3.19),

𝐿2
P(Ω,V) × 𝐿2

P(Ω,V) ∋ (𝑦, 𝜑) ↦→
∫
Ω

𝑎(𝑦(𝜔), 𝜑(𝜔), 𝜔) dP(𝜔)

is a bounded, 𝐿2
P(Ω,V)-coercive bilinear form, and

U × 𝐿2
P(Ω,V) ∋ (𝑢, 𝜑) ↦→

∫
Ω

𝑏(𝑢, 𝜑(𝜔), 𝜔) dP(𝜔)

is a bounded bilinear form.
We can again apply the Lax–Milgram theorem (see e.g. Brenner and Scott 2008,

Theorem 2.7.7), now applied with the Hilbert space 𝐿2
P(Ω,V), to establish the

following existence and uniqueness result, which is analogous to Theorem 3.1.

Theorem 3.7. If V is a separable Hilbert space, if U is a Hilbert space, and if
the bilinear forms 𝑎, 𝑏 and linear form ℓ satisfy (3.17) and (3.19), then for every
𝑢 ∈ U the variational equation (3.20) has a unique solution 𝑦(𝑢) ∈ 𝐿2

P(Ω,V), and
this solution satisfies

∥𝑦(𝑢)∥𝐿2
P
(Ω,V) ≤

1
ess inf𝜔∈Ω 𝑎min

(
∥ℓ∥𝐿2

P
(Ω,V∗)+ ∥𝑏max∥𝐿∞

P
(Ω)∥𝑢∥U

)
for all 𝑢 ∈ U .

Under the assumptions of Theorem 3.7, the solution 𝑦(𝑢) ∈ 𝐿2
P(Ω,V) of (3.20)

also satisfies (3.16) for a.a. 𝜔 ∈ Ω, that is,

𝑎(𝑦(𝑢;𝜔), 𝜑, 𝜔) + 𝑏(𝑢, 𝜑, 𝜔) = ℓ(𝜑, 𝜔) for all 𝜑 ∈ V , a.a. 𝜔 ∈ Ω. (3.21)

This can be seen as follows. Selecting test functions 𝜑(𝜔) = 𝜙 𝜒𝐸(𝜔), where 𝜙 ∈ V
and 𝜒𝐸 is the indicator function for the set 𝐸 ∈ F , the variational equality (3.20)
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becomes ∫
𝐸

𝑎(𝑦(𝑢;𝜔), 𝜙, 𝜔) dP(𝜔) +
∫
𝐸

𝑏(𝑢, 𝜙, 𝜔) dP(𝜔)

=

∫
𝐸

ℓ(𝜙, 𝜔) dP(𝜔) for all 𝜙 ∈ V , 𝐸 ∈ F . (3.22)

If (3.17) and (3.19) hold, the integrands in (3.22) are in 𝐿1
P(Ω) for any given 𝜙 ∈ V ,

and therefore (3.22) implies that 𝑦(𝑢;𝜔) satisfies (3.21) (see e.g. Folland 1999,
Proposition 2.23).

The existence result in Theorem 3.7 requires that 𝑎min is uniformly bounded
away from zero in the sense of (3.19a). This assumption is too strong in some
applications. For example, for a parametrized system (3.16) resulting from an
elliptic PDE with log-normally distributed diffusion coefficient, this assumption is
not valid. See e.g. Babuška, Nobile and Tempone (2007) or Charrier, Scheichl and
Teckentrup (2013), and Example 3.9 below.

As mentioned earlier, if (3.17) is satisfied, Theorem 3.1 guarantees that for every
𝑢 ∈ U and for a.a.𝜔 ∈ Ω, the parametrized variational equation (3.16) has a unique
solution 𝑦(𝑢;𝜔) ∈ V , and that this solution satisfies

∥𝑦(𝑢, 𝜔)∥V ≤ 𝑎min(𝜔)−1(∥ℓ(𝜔)∥V∗ + 𝑏max(𝜔)∥𝑢∥U ) for all 𝑢 ∈ U . (3.23)

To prove that 𝜔 ↦→ 𝑦(𝑢, 𝜔) is measurable, we show that it is the limit of measurable
functions. Let 𝑢 ∈ U be given. To simplify the notation, we temporarily drop the
dependence of the solution on 𝑢 and let 𝑦(𝜔) ∈ V denote the solution of (3.16).

Assume that (3.17), (3.19b) and (3.19c) hold. We consider (3.20) with the
bilinear form 𝑎 replaced by

𝑎𝑛(·, ·, 𝜔) ≔ 𝑎(·, ·, 𝜔) + 1
𝑛
⟨·, ·⟩V : V × V → R.

For all 𝜔 ∈ Ω, this bilinear form satisfies

𝑎𝑛(𝑦, 𝑦, 𝜔) ≥ (𝑎min(𝜔) + 1/𝑛)∥𝑦∥2V for all 𝑦 ∈ V , (3.24a)
|𝑎𝑛(𝑦, 𝜑, 𝜔)| ≤ (𝑎max(𝜔) + 1/𝑛) ∥𝑦∥V ∥𝜑∥V for all 𝑦, 𝜑 ∈ V . (3.24b)

Because ess inf𝜔∈Ω(𝑎min(𝜔) + 1/𝑛) ≥ 1/𝑛 > 0, Theorem 3.7 guarantees the exist-
ence of a unique solution 𝑦𝑛 ∈ 𝐿2

P(Ω,V) of the variational equation (3.20) with 𝑎
replaced by 𝑎𝑛. Moreover, this solution satisfies

𝑎𝑛(𝑦𝑛(𝜔), 𝜑, 𝜔) + 𝑏(𝑢, 𝜑, 𝜔) = ℓ(𝜑, 𝜔) for all 𝜑 ∈ V , a.a. 𝜔 ∈ Ω. (3.25)

For a.a. 𝜔 the solution 𝑦𝑛(𝜔) of (3.25) and the solution 𝑦(𝜔) of (3.16) satisfy

𝑎𝑛(𝑦𝑛(𝜔) − 𝑦(𝜔), 𝜑, 𝜔) = 𝑎𝑛(𝑦𝑛(𝜔), 𝜑, 𝜔) − 𝑎𝑛(𝑦(𝜔), 𝜑, 𝜔)
= ℓ(𝜑, 𝜔) − 𝑏(𝑢, 𝜑, 𝜔) − 𝑎𝑛(𝑦(𝜔), 𝜑, 𝜔)
= 𝑎(𝑦(𝜔), 𝜑, 𝜔) − 𝑎𝑛(𝑦(𝜔), 𝜑, 𝜔)
= 𝑛−1⟨𝑦(𝜔), 𝜑⟩V .
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Inserting 𝜑 = 𝑦𝑛(𝜔) − 𝑦(𝜔) and using (3.24a) implies

∥𝑦𝑛(𝜔) − 𝑦(𝜔)∥V ≤
1
𝑛

(𝑎min(𝜔) + 1/𝑛)−1∥𝑦(𝜔)∥V .

Hence lim𝑛→∞ 𝑦𝑛(𝜔) = 𝑦(𝜔) for a.a. 𝜔, which implies that 𝑦 is measurable (see
e.g. Aliprantis and Border 2006, Lemma 4.29).

As in Babuška et al. (2007, Lemma 1.2), we can now use the measurability of
the solution of 𝑦(𝑢;𝜔) (3.16) and the bound (3.23) to establish a moment estimate.

Theorem 3.8. If V is a separable Hilbert space, if U is a Hilbert space, and if
the bilinear forms 𝑎, 𝑏 and linear form ℓ satisfy (3.17) (3.19b) and (3.19c), then
for every 𝑢 ∈ U the pointwise variational equation (3.16) has a unique solution
𝑦(𝑢;𝜔), and 𝜔 ↦→ 𝑦(𝑢;𝜔) is measurable.

Let 𝑝, 𝑞 ≥ 1 with 1/𝑝 + 1/𝑞 = 1 and 𝑘 ∈ N. If in addition ℓ ∈ 𝐿𝑘𝑝P (Ω,V∗),
𝑏max ∈ 𝐿𝑘𝑝P (Ω) and 𝑎−1

min ∈ 𝐿
𝑘𝑞

P (Ω), then the unique solution of (3.16) satisfies
𝑦(𝑢; ·) ∈ 𝐿𝑘P(Ω,V), and∫

Ω

∥𝑦(𝑢;𝜔)∥𝑘V dP(𝜔) ≤
(∫

Ω

(
1

𝑎min(𝜔)

)𝑘𝑞
dP(𝜔)

)1/𝑞

×
(∫

Ω

(∥ℓ(𝜔)∥V∗ + 𝑏max(𝜔)∥𝑢∥U )𝑘𝑝 dP(𝜔)
)1/𝑝

.

Theorem 3.7 is a special case of Theorem 3.8 if (3.19a) holds and we choose
𝑝 = 1, 𝑞 = ∞, 𝑘 = 2.

Example 3.9. An example of (3.16) is the elliptic PDE

−∇ · (𝜅(𝑥, 𝜔)∇𝑦(𝑥, 𝜔)) = 𝑓 (𝑥, 𝜔) + 𝑢(𝑥), 𝑥 ∈ 𝐷, 𝜔 ∈ Ω, (3.26a)
𝑦(𝑥, 𝜔) = 0, 𝑥 ∈ 𝜕𝐷, 𝜔 ∈ Ω, (3.26b)

where

𝑢 ∈ 𝐿2(𝐷), 𝑓 ∈ 𝐿2
P(Ω, 𝐿

2(𝐷)), 𝜅 ∈ 𝐿∞P (Ω, 𝐿∞(𝐷)), (3.27a)

and there exist measurable functions 𝜅min and 𝜅max such that

𝜅max(𝜔) ≥ 𝜅(𝑥, 𝜔) ≥ 𝜅min(𝜔) > 0, 𝑥 ∈ 𝐷, a.a. 𝜔 ∈ Ω. (3.27b)

Given a realization 𝜔 ∈ Ω, the weak form of the problem (3.26) is as follows: find
𝑦(·, 𝜔) ∈ 𝐻1

0(𝐷) such that∫
𝐷

𝜅(𝑥, 𝜔)∇𝑦(𝑥, 𝜔)∇𝜑(𝑥) d𝑥 (3.28)

=

∫
𝐷

( 𝑓 (𝑥, 𝜔) + 𝑢(𝑥))𝜑(𝑥) d𝑥 for all 𝜑 ∈ 𝐻1
0(𝐷). (3.29)
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The parametrized weak form (3.28) is a special case of (3.16) with V = 𝐻1
0(𝐷),

U = 𝐿2(𝐷),

𝑎(·, ·, 𝜔) : 𝐻1
0(𝐷) × 𝐻1

0(𝐷)→ R,

(𝑦, 𝜑) ↦→ 𝑎(𝑦, 𝜑, 𝜔) =
∫
𝐷

𝜅(𝑥, 𝜔)∇𝑦(𝑥) · ∇𝜑(𝑥) d𝑥, (3.30a)

𝑏(·, ·, 𝜔) : 𝐿2(𝐷) × 𝐻1
0(𝐷)→ R,

(𝑢, 𝜑) ↦→ 𝑏(𝑢, 𝜑, 𝜔) = −
∫
𝐷

𝑢(𝑥)𝜑(𝑥) d𝑥 (3.30b)

and

ℓ(·, 𝜔) : 𝐻1
0(𝐷)→ R, ℓ(𝜑, 𝜔) =

∫
𝐷

𝑓 (𝑥, 𝜔)𝜑(𝑥) d𝑥, 𝜑 ∈ 𝐻1
0(𝐷). (3.30c)

In this example, the bilinear form (3.30) does not depend on 𝜔, but in general it
can.

Under the conditions (3.27), the bilinear forms 𝑎(·, ·, 𝜔), 𝑏(·, ·, 𝜔) in (3.30)
satisfy (3.17e), (3.17f) and (3.17g) with 𝑎min = 𝜅min, 𝑎max = 𝜅max and 𝑏max = 𝑐𝐷 ,
where 𝑐𝐷 is the constant in the Poincaré inequality, and ℓ(·, 𝜔) ∈ 𝐻−1(𝐷), ℓ ∈
𝐿2
P(Ω, 𝐻

−1(𝐷)).
Now consider a lognormally distributed 𝜅,

𝜅(𝑥, 𝜔) = exp

(
𝑀∑︁
𝑚=1

𝑏(𝑚)(𝑥) 𝝃(𝑚)(𝜔)

)
, (3.31)

where 𝑏(𝑚) ∈ 𝐿∞(𝐷), 𝑚 = 1, . . . , 𝑀 and 𝝃(𝑚) ∼ 𝑁(0, 1), 𝑚 = 1, . . . , 𝑀 , are
independent and identically distributed (i.i.d.). With this diffusivity, (3.27) holds,
but the bilinear form (3.30a) does not satisfy (3.19a). However, as in Example 1 in
Babuška et al. (2007), one can select the lower bound

𝜅min(𝜔) = exp

(
−

𝑀∑︁
𝑚=1
∥𝑏(𝑚)∥𝐿∞(𝐷) |𝝃(𝑚)(𝜔)|

)
,

which for all 𝑘 ∈ N and 1 < 𝑞 < ∞ satisfies 𝜅−1
min ∈ 𝐿

𝑘𝑞

P (Ω). Hence, if 𝑓 ∈
𝐿
𝑘(1+𝜖 )
P (Ω, 𝐿2(𝐷)) for some 𝜖 > 0, Theorem 3.8 guarantees the existence of a

unique solution 𝑦(𝑢; ·) ∈ 𝐿𝑘P(Ω, 𝐻
1
0(Ω)) of (3.28).

3.2.2. Optimal control problem
Now we turn to the extension of the optimal control problem (3.10). Let 𝑟 again be
given as in (3.9), but now 𝑞 and 𝑐 can depend on 𝜔. For 𝜔 ∈ Ω, let

𝑞(·, ·, 𝜔) : V × V → R and 𝑐(·, 𝜔) ∈ V∗ (3.32a)

be such that 𝑞(𝑦, 𝜑, 𝜔) = 𝑞(𝜑, 𝑦, 𝜔) for all 𝑦, 𝜑 ∈ V . Moreover, we assume that

𝑞(𝑦, 𝜑, ·) : Ω→ R is (F ,B)-measurable for all 𝑦, 𝜑 ∈ V , (3.32b)
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and that there exists a measurable function 𝑞max(𝜔) ≥ 0 such that for a.a. 𝜔 ∈ Ω,

𝑞(𝑦, 𝑦, 𝜔) ≥ 0 for all 𝑦 ∈ V , (3.32c)
|𝑞(𝑦, 𝜑, 𝜔)| ≤ 𝑞max(𝜔) ∥𝑦∥V ∥𝜑∥V for all 𝑦, 𝜑 ∈ V . (3.32d)

Finally, we also assume

𝑞max ∈ 𝐿∞P (Ω), 𝑐 ∈ 𝐿2
P(Ω,V

∗). (3.33)

Given a realization 𝜔 ∈ Ω, let 𝑦(𝑢;𝜔) ∈ V be the solution of (3.16). The cost
functional is now 1

2𝑞(𝑦(𝑢;𝜔), 𝑦(𝑢;𝜔), 𝜔) + 𝑐(𝑦(𝑢;𝜔), 𝜔) + 1
2𝑟(𝑢, 𝑢) instead of (3.8)

in the deterministic case. Again, we sometimes call this functional the cost or
the loss, but, as in Section 3.1.2, cost or loss do not necessarily correspond to
monetary cost or loss, but are a scalar quantification of the under-performance of
the system given a realization 𝜔 ∈ Ω. Since we must decide on our control before
the realization 𝜔 ∈ Ω is known, we must consider the cost for all 𝜔 ∈ Ω, that is,
we must consider

𝜔 ↦→ 1
2
𝑞(𝑦(𝑢;𝜔), 𝑦(𝑢;𝜔), 𝜔) + 𝑐(𝑦(𝑢;𝜔), 𝜔) + 1

2
𝑟(𝑢, 𝑢). (3.34)

Under the assumptions (3.32), 𝑞 : V × V × Ω → R and 𝑐 : V × Ω → R are
Carathéodory functions and are jointly measurable; see e.g. Aliprantis and Border
(2006, Lemma 4.51). Thus (3.34) is measurable, i.e. a random variable in 𝜔 on
(Ω,F , P). To construct an objective function from this random variable, we need
to ‘scalarize’ it.

If (3.32), (3.33) hold and the solution of (3.16) satisfies 𝑦(𝑢; ·) ∈ 𝐿2
P(Ω,V), then

(3.34) is integrable and we can use the expected value of (3.34) as our objective
function, that is, we can minimize the expected cost. This leads to the problem

min
𝑢∈U

∫
Ω

1
2
𝑞(𝑦(𝑢;𝜔), 𝑦(𝑢;𝜔), 𝜔) + 𝑐(𝑦(𝑢;𝜔), 𝜔) dP(𝜔) + 1

2
𝑟(𝑢, 𝑢), (3.35)

where 𝑦(𝑢;𝜔) is the solution of (3.16). The problem (3.35) is a linear–quadratic
optimal control problem with controls in 𝑢 ∈ U and states 𝑦 ∈ 𝐿2

P(Ω,V).
The control 𝑢 ∈ U is deterministic because we need to decide on the control

before the uncertainty is revealed, i.e. before the outcome 𝜔 ∈ Ω is known. In
(3.35) we compute the control by minimizing the expected cost but, as we have
seen in Section 2 and will further discuss in Section 4, scalarizations of (3.34)
other than the expected value are often preferable.

The first term in the objective function in (3.35) involves the following maps.
The first map is the control-to-state map

𝑆 : U → 𝐿2
P(Ω,V), (3.36a)

𝑢 ↦→ 𝑦(𝑢; ·), (3.36b)
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where 𝑦(𝑢;𝜔) solves (3.16). The second map is

𝐽 : V ×Ω→ R, (3.37a)

(𝑦, 𝜔) ↦→ 1
2
𝑞(𝑦, 𝑦, 𝜔) + 𝑐(𝑦, 𝜔), (3.37b)

and the associated map

J : 𝐿2
P(Ω,V)→ 𝐿1

P(Ω), (3.38a)
𝑦 ↦→ [J (𝑦)](·) = 𝐽(𝑦(·), ·), (3.38b)

which defines the cost function. The final map is the expected value

R : 𝐿1
P(Ω)→ R (3.39a)

𝝃 ↦→ E[𝝃] =
∫
Ω

𝝃(𝜔) dP(𝜔), (3.39b)

which is used to scalarize the cost function. With these maps, the objective function
(3.35) can be written as

min
𝑢∈U

R(J (𝑆(𝑢))) + 1
2
𝑟(𝑢, 𝑢). (3.40)

As we will see in Section 4, this problem structure arises often, although with more
involved versions of the maps 𝑆, J and R.

The Fréchet derivatives of the maps 𝑆 and J play an important role in the
solution of (3.40), and we will discuss Fréchet differentiability of (3.36), (3.37)
and (3.38) next. Because (3.16) is affine linear in 𝑦 and 𝑢, and (3.37) is quadratic
in 𝑦, establishing Fréchet differentiability is fairly straightforward. However, there
are differences between Fréchet differentiability of the underlying maps at a given
𝜔 ∈ Ω and the maps into/on 𝐿2

P(Ω,V). Establishing Fréchet differentiability of the
latter maps requires additional assumptions.

Lemma 3.10. For 𝜔 ∈ Ω and 𝑢 ∈ U , let 𝑦(𝑢;𝜔) ∈ V denote the solution of
(3.16).

If (3.17) holds, then for a.a. 𝜔 ∈ Ω the map U ∋ 𝑢 ↦→ 𝑦(𝑢;𝜔) ∈ V is Fréchet-
differentiable on U and the Fréchet derivative 𝑤(𝜔) = 𝑦𝑢(𝑢;𝜔)𝛿𝑢 is the solution of

𝑎(𝑤(𝜔), 𝜑, 𝜔) + 𝑏(𝛿𝑢, 𝜑, 𝜔) = 0 for all 𝜑 ∈ V . (3.41)

If the assumptions of Theorem 3.8 are satisfied with 𝑘 = 2, then the control-to-
state map (3.36) is Fréchet-differentiable on U and the Fréchet derivative 𝑆′(𝑢)𝛿𝑢 =

𝑦𝑢(𝑢; ·)𝛿𝑢 is computed pointwise for 𝜔 ∈ Ω as the solution of (3.41).

Proof. Fréchet differentiability ofU ∋ 𝑢 ↦→ 𝑦(𝑢;𝜔) ∈ V , for given𝜔 ∈ Ω, follows
because 𝑒(𝜔) = 𝑦(𝑢 + 𝛿𝑢, 𝜔) − 𝑦(𝑢;𝜔) − 𝑦𝑢(𝑢;𝜔)𝛿𝑢 satisfies 𝑎(𝑒(𝜔), 𝜑, 𝜔) = 0 for
all 𝜑 ∈ V , which implies 𝑒(𝜔) = 0 in V , and because the solution of (3.41)
satisfies ∥𝑦𝑢(𝑢, 𝜔)𝛿𝑢∥V ≤ 𝑎min(𝜔)−1𝑏max(𝜔)∥𝛿𝑢∥U for all 𝛿𝑢 ∈ U (cf. (3.23)),
which implies that U ∋ 𝛿𝑢 ↦→ 𝑦𝑢(𝑢;𝜔)𝛿𝑢 ∈ V is a bounded linear operator.
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If the assumptions of Theorem 3.8 are satisfied with 𝑘 = 2, then one can use the
same arguments used to prove Theorem 3.8 to show that, for all 𝛿𝑢 ∈ U , the unique
solution of (3.41) satisfies 𝑤(·) = 𝑦𝑢(𝑢; ·)𝛿𝑢 ∈ 𝐿𝑘P(Ω,V) and∫

Ω

∥𝑦𝑢(𝑢; ·) 𝛿𝑢∥2V dP(𝜔) ≤
(∫

Ω

(
1

𝑎min(𝜔)

)2𝑞
dP(𝜔)

)1/𝑞

×
(∫

Ω

𝑏max(𝜔)2𝑝 dP(𝜔)
)1/𝑝

∥𝛿𝑢∥2U ,

that is, 𝑆′(𝑢) ∈ L(U , 𝐿2
P(Ω,V)). Since (3.16) is affine linear in 𝑦 and 𝑢, 𝑆(𝑢 + 𝛿𝑢) =

𝑆(𝑢) + 𝑆′(𝑢)𝛿𝑢.

Lemma 3.11. If (3.32) holds, then (3.37) is Fréchet-differentiable in 𝑦 on V ×Ω,
and the partial Fréchet derivative with respect to 𝑦 is

𝐽𝑦(𝑦, 𝜔)𝛿𝑦 = 𝑞(𝑦, 𝛿𝑦, 𝜔) + 𝑐(𝛿𝑦, 𝜔).

If (3.32) and (3.33) hold, then (3.38) is Fréchet-differentiable and the Fréchet
derivative is

[J𝑦(𝑦) 𝛿𝑦](·) = 𝐽𝑦(𝑦(·), ·) 𝛿𝑦(·).

Proof. The Fréchet differentiability of (3.37) with respect to 𝑦 follows immedi-
ately from

𝐽(𝑦 + 𝛿𝑦, 𝜔) − 𝐽(𝑦, 𝜔) − 𝐽𝑦(𝑦, 𝜔)𝛿𝑦 =
1
2
𝑞(𝛿𝑦, 𝛿𝑦, 𝜔) ≤ 𝑞max(𝜔)

2
∥𝛿𝑦∥2V

and the fact that 𝐽𝑦(𝑦, 𝜔) ∈ V∗ if (3.32) holds. Fréchet differentiability of (3.38)
follows from∫

Ω

��[J (𝑦 + 𝛿𝑦)](𝜔) − [J (𝑦)](𝜔) − [J𝑦(𝑦) 𝛿𝑦](𝜔)
�� dP(𝜔)

=

∫
Ω

����12𝑞((𝛿𝑦)(𝜔), (𝛿𝑦)(𝜔), 𝜔)
���� dP(𝜔) ≤

∥𝑞max∥𝐿∞
P

(Ω)

2

∫
Ω

∥(𝛿𝑦)(𝜔)∥2V dP(𝜔)

and the fact that J𝑦(𝑦) ∈ L(𝐿2
P(Ω,V), 𝐿1

P(Ω)) if (3.32) and (3.33) hold.

Lemma 3.12. If the assumptions of Theorem 3.8 are satisfied with 𝑘 = 2, and if
(3.32), (3.33) hold, then the composition J ◦ 𝑆 of the maps (3.36) and (3.38) is
Fréchet-differentiable and the Fréchet derivative is

[J𝑦(𝑆(𝑢)) 𝑆′(𝑢)𝛿𝑢](·) = 𝑞(𝑦(𝑢; ·), 𝑦𝑢(𝑢; ·)𝛿𝑢, ·) + 𝑐(𝑦𝑢(𝑢; ·)𝛿𝑢, ·) (3.42a)
= 𝑏(𝛿𝑢, 𝜆(·), ·), (3.42b)

where 𝜆 ∈ 𝐿1
P(Ω,V) is computed pointwise as the solution of

𝑎(𝜑, 𝜆(𝜔), 𝜔) + 𝑞(𝑦(𝑢;𝜔), 𝜑, 𝜔) = −𝑐(𝜑, 𝜔) for all 𝜑 ∈ V , a.a. 𝜔 ∈ Ω. (3.43)

If in addition 𝑎−1
min ∈ 𝐿

∞
P (Ω), then the solution 𝜆 of (3.43) satisfies 𝜆 ∈ 𝐿2

P(Ω,V).
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Proof. The Fréchet differentiability ofJ ◦𝑆 and (3.42a) follow from Lemmas 3.10
and 3.11.

To prove (3.42b) we first show that 𝜆 defined as the pointwise solution of (3.43)
satisfies 𝜆 ∈ 𝐿1

P(Ω,V). Note that 𝑎−1
min ∈ 𝐿

2𝑞
P (Ω) ⊂ 𝐿2

P(Ω). Because 𝑐 ∈ 𝐿2
P(Ω,V

∗)
and 𝑦(𝑢; ·) ∈ 𝐿2

P(Ω,V), one can apply the same arguments used to prove The-
orem 3.8 to (3.43) (with 𝑘 = 1, 𝑝 = 𝑞 = 2) to show that the pointwise variational
equation (3.43) has a unique solution 𝜆(𝜔), that 𝜔 ↦→ 𝜆(𝜔) is measurable, and that∫

Ω

∥𝜆(𝜔)∥V dP(𝜔) ≤
(∫

Ω

(
1

𝑎min(𝜔)

)2
dP(𝜔)

)1/2

×
(∫

Ω

(∥𝑐(·, 𝜔)∥V∗ + 𝑞max(𝜔)∥𝑦(𝑢;𝜔)∥V )2 dP(𝜔)
)1/2

.

Inserting 𝜑 = 𝑦𝑢(𝑢;𝜔)𝛿𝑢 in (3.43) and 𝜑 = 𝜆(𝜔) in (3.41) implies

𝑞(𝑦(𝑢;𝜔), 𝑦𝑢(𝑢;𝜔)𝛿𝑢, 𝜔) + 𝑐(𝑦𝑢(𝑢;𝜔)𝛿𝑢, 𝜔) = 𝑏(𝛿𝑢, 𝜆(𝜔), 𝜔),

which yields (3.42b).
If, in addition, 𝑎−1

min ∈ 𝐿
∞
P (Ω), then we can apply the arguments used to prove

Theorem 3.8 to (3.43) with 𝑘 = 2, 𝑝 = 1, 𝑞 = ∞ to show that 𝜆 ∈ 𝐿2
P(Ω,V). In

fact, in this case we can also apply the techniques used to prove Theorem 3.7.

Weak lower semicontinuity of the objective function in (3.35) (or the equivalent
representation in (3.40)) is important for the existence of solutions of (3.35). If the
assumptions of Theorem 3.8 are satisfied with 𝑘 = 2 and if (3.32) and (3.33) hold,
then the function U ∋ 𝑢 ↦→ R(J (𝑆(𝑢))) with 𝑆, J and R given by (3.36), (3.38)
and (3.39) is convex and continuous (even Fréchet-differentiable). Moreover, if
𝑟 satisfies the conditions (3.9d) and (3.9e), then U ∋ 𝑢 ↦→ 𝑟(𝑢, 𝑢) is convex and
continuous. Since a convex and continuous functional on a normed space is weakly
lower semicontinuous (see e.g. Ekeland and Temam 1999, Section 2.2, or Jahn
2007, Section 2.2), the objective function in (3.35) (or its equivalent representation
in (3.40)) is weakly lower semicontinuous.

Lemma 3.13. If the assumptions of Theorem 3.8 are satisfied with 𝑘 = 2 and if
(3.9d), (3.9e), (3.32) and (3.33) hold, then the function

𝑓 : U → R, 𝑢 ↦→ 𝑓 (𝑢) ≔ R(J (𝑆(𝑢))) + 1
2
𝑟(𝑢, 𝑢)

is weakly lower semicontinuous.

One can prove the following existence and uniqueness result.

Theorem 3.14. If the assumptions of Theorem 3.8 are satisfied with 𝑘 = 2, and
if (3.9d), (3.9e), (3.32) and (3.33) hold, then the optimal control problem (3.35)
has a unique solution 𝑢 ∈ U . Moreover, 𝑢 ∈ U solves (3.35) if and only if there
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exist 𝑦 ∈ 𝐿2
P(Ω,V) and 𝜆 ∈ 𝐿1

P(Ω,V) such that 𝑦, 𝑢, 𝜆 solve

𝑎(𝜑, 𝜆(𝜔), 𝜔) + 𝑞(𝑦(𝜔), 𝜑, 𝜔) = −𝑐(𝜑, 𝜔) for all 𝜑 ∈ V , a.a. 𝜔 ∈ Ω, (3.44a)∫
Ω

𝑏(𝜓, 𝜆(𝜔), 𝜔) dP(𝜔) + 𝑟(𝑢, 𝜓) = 0 for all 𝜓 ∈ U , (3.44b)

𝑎(𝑦(𝜔), 𝜑, 𝜔) + 𝑏(𝑢, 𝜑, 𝜔) = ℓ(𝜑, 𝜔) for all 𝜑 ∈ V , a.a. 𝜔 ∈ Ω. (3.44c)

Proof. The conditions (3.9d) and (3.9e) imply R(J (𝑆(𝑢))) + 1
2𝑟(𝑢, 𝑢) → ∞ as

∥𝑢∥U →∞. Together with the weak lower semicontinuity, it implies the existence
of a solution. Strict convexity of the objective function implies uniqueness. Since
the function is convex and Fréchet-differentiable, 𝑢 ∈ U solves (3.35) if and only
if the Fréchet derivative of the objective function at 𝑢 ∈ U is zero, which by
Lemma 3.12 and linearity of the expected value is equivalent to (3.44).

The following example is an extension of Example 3.5.

Example 3.15. Consider the state equation in Example 3.9, and assume that for
𝑢 ∈ 𝐿2(𝐷) the state equation (3.28) has a unique solution 𝑦(𝑢; ·) ∈ 𝐿2

P(Ω, 𝐻
1
0(𝐷)).

Given a function 𝜂 ∈ 𝐿∞P (Ω, 𝐿∞(𝐷)) with 𝜂 ≥ 0 a.e. in 𝐷 ×Ω, we want to solve

min
𝑢∈𝐿2(𝐷)

∫
Ω

1
2

∫
𝐷

𝜂(𝑥, 𝜔)(𝑦(𝑢; 𝑥, 𝜔) − �̂�(𝑥))2 d𝑥 dP(𝜔) + 𝛼
2

∫
𝐷

𝑢(𝑥)2 d𝑥, (3.45)

where 𝑦(𝑢; ·) ∈ 𝐿2
P(Ω, 𝐻

1
0(𝐷)) is the unique solution of (3.28) given 𝑢 ∈ 𝐿2(𝐷).

If we drop the constant
1
2

∫
Ω

∫
𝐷

𝜂(𝑥, 𝜔)�̂�(𝑥)2 d𝑥 dP(𝜔),

the objective functional in (3.14) is a special case of (3.8) with

𝑞(𝑦, 𝜑, 𝜔) =
∫
Ω

∫
𝐷

𝜂(𝑥, 𝜔)𝑦(𝑥, 𝜔)𝜑(𝑥, 𝜔) d𝑥 dP(𝜔),

𝑐(𝑦, 𝜔) = −
∫
Ω

∫
𝐷

𝜂(𝑥, 𝜔)𝑦(𝑥, 𝜔)�̂�(𝑥) d𝑥 dP(𝜔),

and 𝑟(𝑢, 𝜓) =
∫
𝐷
𝑢(𝑥)𝜓(𝑥) d𝑥. Application of Theorem 3.14 gives the following

result on the existence, uniqueness and characterization of the solution of (3.45).

Corollary 3.16. If the assumptions in Example 3.9 are satisfied with 𝑘 = 2, the
optimal control problem (3.14) has a unique solution 𝑢 ∈ 𝐿2(𝐷). Furthermore,
𝑢 ∈ 𝐿2(𝐷) solves (3.14) if and only if there exist 𝑦 ∈ 𝐿2

P(Ω, 𝐻
1
0(𝐷)) and 𝜆 ∈

𝐿1
P(Ω, 𝐻

1
0(𝐷)) such that 𝑦, 𝑢, 𝜆 solve

−∇ · (𝜅(𝑥, 𝜔)∇𝜆(𝑥, 𝜔)) = −𝜂(𝑥, 𝜔)(𝑦(𝑥, 𝜔) − �̂�(𝑥)), 𝑥 ∈ 𝐷, a.a. 𝜔 ∈ Ω, (3.46a)
𝜆(𝑥, 𝜔) = 0, 𝑥 ∈ 𝜕𝐷, a.a. 𝜔 ∈ Ω, (3.46b)∫

Ω

𝜆(𝑥, 𝜔) dP(𝜔) = 𝛼𝑢(𝑥), 𝑥 ∈ 𝐷, (3.46c)
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−∇ · (𝜅(𝑥, 𝜔)∇𝑦(𝑥, 𝜔)) = 𝑓 (𝑥, 𝜔) + 𝑢(𝑥), 𝑥 ∈ 𝐷, a.a. 𝜔 ∈ Ω, (3.46d)

𝑦(𝑥, 𝜔) = 0, 𝑥 ∈ 𝜕𝐷, a.a. 𝜔 ∈ Ω. (3.46e)

3.3. Problems with finite noise

Often the linear and bilinear forms in (3.48) do not depend on𝜔 directly but through
a finite-dimensional vector of random variables 𝝃. This is the case for the example
problems in Section 2 and also for the example (3.26) with (3.31). The results from
the previous Section 3.2 immediately translate to this setting. We collect the main
results here for easier referencing.

As in the previous section, let (Ω,F , P) be a complete probability space. Fur-
thermore, let Ξ ⊂ R𝑀 be a non-empty set, let BΞ be the Borel 𝜎-algebra on Ξ,
and let 𝝃 : (Ω,F) → (Ξ,BΞ) be a vector of random variables with distribution
P𝜉 = P ◦ 𝝃−1 on the sigma algebra 𝜎(𝝃) = {𝝃−1(𝐵) | 𝐵 ∈ BΞ}.

Because 𝝃 is a vector of 𝑀 random variables, this set-up is also referred to as the
finite-noise case, or we say that the problem satisfies the finite-noise assumption.
Sometimes we can approximate problems of the type considered in Section 3.3 by
a problem with finite noise. For example, a series representation of the diffusivity
coefficient,

𝜅(𝑥, 𝜔) = 𝜅(𝑥) +
∑︁
𝑚≥1

𝜅(𝑚)(𝑥) 𝝃(𝑚)(𝜔), (3.47)

and of the right-hand side 𝑓 , e.g. via the Karhunen–Loève expansion, can allow us
to reformulate elliptic PDE (3.26) as a problem in parameters {𝜉(𝑚)}𝑚≥1. Then,
under suitable assumptions on the coefficient functions, a truncation of these series
representations for 𝜅 and 𝑓 allow us to approximate the elliptic PDE (3.26) by one
with finite noise. Such approaches are analysed in the papers by Cohen, DeVore and
Schwab (2010) and Cohen and DeVore (2015), among others, for the approximation
of PDEs. However, we note that in the optimization context, error estimates for
an approximation of the state equation are not enough. In addition, one must also
derive estimates for the corresponding approximation of the adjoint equation. In
the case of the Example 3.15, one must analyse finite-noise approximations of the
state equation (3.46d), (3.46e) and of the adjoint equation (3.46a), (3.46b).

The set-up of the finite-noise version of the optimal control problem (3.35) is
fairly straightforward, and the existence, differentiability and optimality condi-
tion results from Section 3.2.2 hold with (Ω,F , P) replaced by (Ξ,BΞ, P

𝜉 ). We
summarize the set-up and the main results for easier referencing later.

In the finite-noise case, the set-up of the state equation and the optimal control
problem is as follows. For 𝜉 ∈ Ξ, let ℓ(·, 𝜉) ∈ V∗, and let 𝑎(·, ·, 𝜉) : V ×V → R and
𝑏(·, ·, 𝜉) : U × V → R be bilinear forms such that

for each 𝑦, 𝜑 ∈ V , 𝑢 ∈ U , the functions

𝑎(𝑦, 𝜑, ·), 𝑏(𝑢, 𝜑, ·) : 𝜉 → R are (BΞ,B)-measurable, (3.48a)
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and such that there exist measurable functions 0 < 𝑎min(𝜉) ≤ 𝑎max(𝜉) and 0 <

𝑏max(𝜉) with

𝑎(𝑦, 𝑦, 𝜉) ≥ 𝑎min(𝜉)∥𝑦∥2V for all 𝑦 ∈ V , a.a. 𝜉 ∈ Ξ, (3.48b)
|𝑎(𝑦, 𝜑, 𝜉)| ≤ 𝑎max(𝜉) ∥𝑦∥V ∥𝜑∥V for all 𝑦, 𝜑 ∈ V , a.a. 𝜉 ∈ Ξ, (3.48c)
|𝑏(𝑢, 𝜑, 𝜉)| ≤ 𝑏max(𝜉) ∥𝑢∥U ∥𝜑∥V for all 𝑢 ∈ U , 𝜑 ∈ V , a.a. 𝜉 ∈ Ξ. (3.48d)

We now consider the state equation

𝑎(𝑦, 𝜑, 𝜉) + 𝑏(𝑢, 𝜑, 𝜉) = ℓ(𝜑, 𝜉) for all 𝜑 ∈ V , a.a. 𝜉 ∈ Ξ. (3.49)

There is an existence result analogous to Theorem 3.8. We state it for the case
𝑘 = 2.

Theorem 3.17. Let 𝑝, 𝑞 ≥ 1 with 1/𝑝 + 1/𝑞 = 1. If V is a separable Hilbert
space, if U is a Hilbert space, and if the bilinear forms 𝑎, 𝑏 and linear form ℓ satisfy
(3.48) and 𝑎max ∈ 𝐿∞P𝜉 (Ξ), 𝑎−1

min ∈ 𝐿
2𝑞
P𝜉

(Ξ), 𝑏max ∈ 𝐿2𝑝
P𝜉

(Ξ) and ℓ ∈ 𝐿2𝑝
P𝜉

(Ξ,V∗), then
for every 𝑢 ∈ U , the pointwise variational equation (3.49) has a unique solution
𝑦(𝑢; 𝜉), and this solution satisfies 𝑦(𝑢; ·) ∈ 𝐿2

P𝜉
(Ξ,V).

The objective function in the optimal control problem now involves the following
bilinear and linear forms. Let 𝑟 again be given as in (3.9), 𝑐 ∈ 𝐿2

P𝜉
(Ξ,V∗), and for

𝜉 ∈ Ξ, let 𝑞(·, ·, 𝜉) : V × V → R be such that 𝑞(𝑦, 𝜑, 𝜉) = 𝑞(𝜑, 𝑦, 𝜉) for all 𝑦, 𝜑 ∈ V
and

𝑞(𝑦, 𝜑, ·) : 𝜉 → R is (BΞ,B)-measurable for all 𝑦, 𝜑 ∈ V . (3.50a)

Moreover, assume that there exists 𝑞max ∈ 𝐿∞P𝜉 (Ξ) such that for all 𝜉 ∈ Ξ,

0 ≤ 𝑞(𝑦, 𝑦, 𝜉) and |𝑞(𝑦, 𝜑, 𝜉)| ≤ 𝑞max(𝜉) ∥𝑦∥V ∥𝜑∥V for all 𝑦, 𝜑 ∈ V .
(3.50b)

This leads to the optimal control problem

min
𝑢∈U

∫
Ξ

1
2
𝑞(𝑦(𝑢; 𝜉), 𝑦(𝑢; 𝜉), 𝜉) + 𝑐(𝑦(𝑢; 𝜉), 𝜉) dP𝜉 (𝜉) + 1

2
𝑟(𝑢, 𝑢), (3.51)

where 𝑦(𝑢; 𝜉) is the solution of (3.49). If Theorem 3.17 and (3.50) hold, the
objective function in (3.51) is well-defined for each 𝑢 ∈ U .

Analogously to Theorem 3.14, one can prove the following existence and unique-
ness result.

Theorem 3.18. If the assumptions of Theorem 3.17 are satisfied and if (3.9d),
(3.9e) and (3.50) hold, then the optimal control problem (3.51) has a unique solution

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000029
Downloaded from https://www.cambridge.org/core. IP address: 10.3.50.30, on 15 Jul 2025 at 11:59:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000029
https://www.cambridge.org/core


524 M. Heinkenschloss and D. P. Kouri

𝑢 ∈ U . Moreover, 𝑢 ∈ U solves (3.51) if and only if there exist 𝑦 ∈ 𝐿2
P𝜉

(Ξ,V) and
𝜆 ∈ 𝐿1

P𝜉
(Ξ,V) such that 𝑦, 𝑢, 𝜆 solve

𝑎(𝜑, 𝜆(𝜉), 𝜉) + 𝑞(𝑦(𝜉), 𝜑, 𝜉) = −𝑐(𝜑, 𝜉) for all 𝜑 ∈ V , a.a. 𝜉 ∈ Ξ, (3.52a)∫
Ξ

𝑏(𝜓, 𝜆(𝜉), 𝜉) dP𝜉 (𝜉) + 𝑟(𝑢, 𝜓) = 0 for all 𝜓 ∈ U , (3.52b)

𝑎(𝑦(𝜉), 𝜑, 𝜉) + 𝑏(𝑢, 𝜑, 𝜉) = ℓ(𝜑, 𝜉) for all 𝜑 ∈ V , a.a. 𝜉 ∈ Ξ. (3.52c)

We note that under the assumptions of Theorem 3.18, the objective function

𝑓 (𝑢) =
∫
Ξ

1
2
𝑞(𝑦(𝑢; 𝜉), 𝑦(𝑢; 𝜉), 𝜉) + 𝑐(𝑦(𝑢; 𝜉), 𝜉) dP𝜉 (𝜉) + 1

2
𝑟(𝑢, 𝑢)

in (3.51) is Fréchet-differentiable and

𝑓 ′(𝑢)𝛿𝑢 =

∫
Ξ

𝑏(𝛿𝑢, 𝜆(𝜉), 𝜉) dP𝜉 (𝜉) + 𝑟(𝑢, 𝛿𝑢) for all 𝛿𝑢 ∈ U ,

where 𝜆 is the solution of the adjoint equation (3.52a).

3.4. Problems with random control

We have focused thus far on PDE-constrained optimization under uncertainty,
where the controls or, more generally, the decisions must be determined before the
uncertainty is revealed. In this case the control 𝑢 ∈ U is deterministic, and only the
state depends on the random parameter 𝑦(𝑢; ·) ∈ 𝐿 𝑝P (Ω,V) for some 𝑝 ≥ 1.

Some authors have considered the case where the control is also allowed to
depend on the random parameter. In this setting, controls parametrized by random
parameters are computed, and once the uncertainty is revealed, the control instance
corresponding to the realized uncertainty is applied. This problem is easier to solve
and eliminates several of the problem formulation issues and resulting numerical
challenges that are the focus of this paper.

In the context of the model problem in Section 3.2, the problem set-up with
random controls is as follows. Let V be a separable Hilbert space, let U be a
Hilbert space, the bilinear forms 𝑎, 𝑏 and linear form ℓ satisfy (3.17), (3.19), the
bilinear form 𝑞 and linear form 𝑐 satisfy (3.32), (3.33), and let 𝑟 be given as follows.
For 𝜔 ∈ Ω, let

𝑟(·, ·, 𝜔) : U × U → R (3.53a)

be such that 𝑟(𝑢, 𝜓, 𝜔) = 𝑟(𝜓, 𝑢, 𝜔) for all 𝑢, 𝜓 ∈ U . Moreover, assume that

𝑟(𝑦, 𝜑, ·) : Ω→ R is (F ,B)-measurable for all 𝑢, 𝜓 ∈ U (3.53b)

and that there exist functions 𝑟min, 𝑟max that are positive a.e., that satisfy

𝑟−1
min, 𝑟max ∈ 𝐿∞P (Ω), (3.53c)
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and, for a.a. 𝜔 ∈ Ω,

𝑟(𝑢, 𝑢, 𝜔) ≥ 𝑟min(𝜔) ∥𝑢∥2U for all 𝑢 ∈ U , (3.53d)
|𝑟(𝑢, 𝜓, 𝜔)| ≤ 𝑟max(𝜔) ∥𝑢∥U ∥𝜓∥U for all 𝑢, 𝜓 ∈ U . (3.53e)

Given a control 𝑢 ∈ 𝐿2
P(Ω,U), the state equation is given as follows. Compute

the solution 𝑦 ∈ 𝐿2
P(Ω,V) of the variational equation∫

Ω

𝑎(𝑦(𝜔), 𝜑(𝜔), 𝜔) dP(𝜔) +
∫
Ω

𝑏(𝑢(𝜔), 𝜑(𝜔), 𝜔) dP(𝜔)

=

∫
Ω

ℓ(𝜑(𝜔), 𝜔) dP(𝜔) for all 𝜑 ∈ 𝐿2
P(Ω,V). (3.54)

If (3.17), (3.19) hold, then, by the Lax–Milgram theorem, for every 𝑢 ∈ 𝐿2
P(Ω,U),

the state equation (3.54) has a unique solution 𝑦(𝑢) ∈ 𝐿2
P(Ω,V). Similar to our

discussion in Section 3.4, this solution also satisfies

𝑎(𝑦(𝑢;𝜔), 𝜑, 𝜔) + 𝑏(𝑢(𝜔), 𝜑, 𝜔) = ℓ(𝜑, 𝜔) for all 𝜑 ∈ V , a.a. 𝜔 ∈ Ω. (3.55)

Instead of (3.20) we now consider

𝜔 ↦→ 1
2
𝑞(𝑦(𝑢;𝜔), 𝑦(𝑢;𝜔), 𝜔) + 𝑐(𝑦(𝑢;𝜔), 𝜔) + 1

2
𝑟(𝑢(𝜔), 𝑢(𝜔), 𝜔), (3.56)

where 𝑦(𝑢) solves (3.54). Since 𝑢 ∈ 𝐿2
P(Ω,U) and 𝑦(𝑢) ∈ 𝐿2

P(Ω,V), the random
variable (3.56) is integrable, and we can minimize the expectation of the cost (3.56).
This leads to the problem

min
𝑢∈𝐿2

P
(Ω,U )

∫
Ω

1
2
𝑞(𝑦(𝑢;𝜔), 𝑦(𝑢;𝜔), 𝜔) + 𝑐(𝑦(𝑢;𝜔), 𝜔) dP(𝜔)

+
∫
Ω

1
2
𝑟(𝑢(𝜔), 𝑢(𝜔), 𝜔) dP(𝜔), (3.57)

where 𝑦(𝑢) solves (3.54). Alternatively, one could also consider a family of optimal
control problems parametrized by 𝜔 ∈ Ω,

min
𝑢(𝜔)∈U

1
2
𝑞(𝑦(𝑢;𝜔), 𝑦(𝑢;𝜔), 𝜔) + 𝑐(𝑦(𝑢;𝜔), 𝜔) + 1

2
𝑟(𝑢(𝜔), 𝑢(𝜔), 𝜔). (3.58)

The equivalence between (3.57) and (3.58) follows because the objective function
is Carathéodory (hence, a normal integrand), U is a separable Hilbert space and
𝐿2
P(Ω,V) is decomposable. See e.g. the proof of Theorem 2 in Rockafellar (1971)

for general details on interchanging the integral and minimization operations.
The necessary and sufficient optimality conditions for (3.57) or (3.58) now lead

to

𝑎(𝜑, 𝜆(𝜔), 𝜔) + 𝑞(𝑦(𝜔), 𝜑, 𝜔) = −𝑐(𝜑, 𝜔) for all 𝜑 ∈ V , a.a. 𝜔 ∈ Ω, (3.59a)
𝑏(𝜓, 𝜆(𝜔), 𝜔) + 𝑟(𝑢(𝜔), 𝜓, 𝜔) = 0 for all 𝜓 ∈ U , a.a. 𝜔 ∈ Ω, (3.59b)
𝑎(𝑦(𝜔), 𝜑, 𝜔) + 𝑏(𝑢(𝜔), 𝜑, 𝜔) = ℓ(𝜑, 𝜔) for all 𝜑 ∈ V , a.a. 𝜔 ∈ Ω. (3.59c)
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We now have to compute a control 𝑢 ∈ 𝐿2
P(Ω,U), but in contrast to (3.44) the

optimality conditions (3.59) decouple across 𝜔. This makes the problem (3.35)
computationally easier to solve.

As mentioned before, in this problem setting we compute a control 𝑢(𝜔) for
all possible realizations 𝜔 ∈ Ω. Then, once the realization 𝜔 ∈ Ω is observed,
we apply the corresponding control 𝑢(𝜔). This eliminates many of the problem
formulation issues and the need for the efficient solution of the chosen optimization
problem formulation we have to address when a deterministic control must be
computed before the uncertainty is revealed. These problem formulations and
corresponding solution methods are the focus of this paper.

We will not consider problems where the control depends on 𝜔 ∈ Ω, and we
refer to the literature for further discussions of numerical methods for this problem
class; see e.g. the papers by Borzı̀ (2010), Tiesler, Kirby, Xiu and Preusser (2012),
Rosseel and Wells (2012), Chen and Quarteroni (2014), Chen, Quarteroni and
Rozza (2016) Benner, Onwunta and Stoll (2016) and Ahmad Ali, Ullmann and
Hinze (2017).

3.5. Discretization

3.5.1. Discretization of the problem with deterministic parameters
To solve the optimal control problem (3.10), we need to discretize it. Discretizations
of (3.10) typically build on discretizations of the underlying state equation (3.1), but
additional requirements are needed. There are two fundamental approaches to the
discretization of optimal control problems: discretize-then-optimize and optimize-
then-discretize. See also Chapter 3 of Hinze et al. (2009) or Section 16.12 of
Quarteroni (2009). Next we describe both approaches in the context of the optimal
control model problem (3.10).

In the discretize-then-optimize approach, we first discretize the optimal control
problem (3.10) to approximate it by a finite-dimensional optimization problem,
and then we solve this finite-dimensional optimization problem. Specifically, the
control space is replaced by a finite-dimensional space. Next, given a control from
this finite-dimensional control space, the state equation (3.1) is approximated, and
finally the objective function (3.8) is approximated based on the choices for the
control and state discretizations. For PDE-constrained optimal control problems,
the discretization of optimal control problem (3.10) typically builds on a discret-
ization of the underlying state equation (3.1). We mention finite-element and
discontinuous Galerkin discretizations, but other methods have also been used.

Discretization of the control space U and of the state equation (3.1) leads to a
linear system

Ay + Bu = b, (3.60)

where y ∈ R𝑛𝑦 represents the discretized state, u ∈ R𝑛𝑢 represents the discretized
control, and A ∈ R𝑛𝑦×𝑛𝑦 , B ∈ R𝑛𝑦×𝑛𝑢 , b ∈ R𝑛𝑦 . For example, in a conforming
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Galerkin finite-element approximation, we construct

Uℎ = span{𝜓1, . . . , 𝜓𝑛𝑢} ⊂ U , Vℎ = span{𝜑1, . . . , 𝜑𝑛𝑦 } ⊂ V , (3.61a)

approximate the control and the state by

𝑢ℎ =

𝑛𝑢∑︁
𝑖=1

u𝑖𝜓𝑖 , 𝑦ℎ =

𝑛𝑦∑︁
𝑖=1

y𝑖𝜑𝑖 , (3.61b)

and replace (3.1) with

𝑎(𝑦ℎ, 𝜑) + 𝑏(𝑢ℎ, 𝜑) = ℓ(𝜑) for all 𝜑 ∈ Vℎ . (3.62a)

This leads to (3.60) with

A𝑖 𝑗 = 𝑎(𝜑 𝑗 , 𝜑𝑖), 𝑖, 𝑗 = 1, . . . , 𝑛𝑦 ,
B𝑖 𝑗 = 𝑏(𝜓 𝑗 , 𝜑𝑖), 𝑖 = 1, . . . , 𝑛𝑦 , 𝑗 = 1, . . . , 𝑛𝑢,
b𝑖 = ℓ(𝜑𝑖), 𝑖 = 1, . . . , 𝑛𝑦 .

(3.62b)

The assumptions (3.2) imply invertibility of A ∈ R𝑛𝑦×𝑛𝑦 .
The state and control space discretizations lead to the following discretization of

the objective function (3.8),
1
2

y⊤Q y + c⊤y + 1
2

u⊤R u, (3.63)

where Q = Q⊤ ∈ R𝑛𝑦×𝑛𝑦 , R = R⊤ ∈ R𝑛𝑢×𝑛𝑢 , c ∈ R𝑛𝑦 , and, as before, y ∈ R𝑛𝑦 ,
u ∈ R𝑛𝑢 represent the discretized state and control, respectively. For example,
inserting the Galerkin discretization (3.61) into (3.8) leads to (3.63) with

Q𝑖 𝑗 = 𝑞(𝜑𝑖 , 𝜑 𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛𝑦 , R𝑖 𝑗 = 𝑟(𝜓𝑖 , 𝜓 𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛𝑢,

and c𝑖 = 𝑐(𝜑𝑖), 𝑖 = 1, . . . , 𝑛𝑦 . The assumptions (3.9) on the bilinear forms 𝑞 and
𝑟 imply that Q ∈ R𝑛𝑦×𝑛𝑦 is symmetric positive semidefinite and R ∈ R𝑛𝑢×𝑛𝑢 is
symmetric positive definite.

For a general discretization, if the matrix A ∈ R𝑛𝑦×𝑛𝑦 in (3.60) is invertible, then
the control-to-state map is

y(u) = A−1(b − Bu).

The discretization of the optimal control problem (3.10) is given as

min
u∈R𝑛𝑢

1
2

u⊤(B⊤A−⊤Q A−1B + R) u − (B⊤A−⊤(c +Q A−1b))⊤u (3.64)

+ 1
2

b⊤A−⊤Q A−1b + c⊤A−1b.

If A ∈ R𝑛𝑦×𝑛𝑦 is invertible, Q ∈ R𝑛𝑦×𝑛𝑦 is symmetric positive semidefinite
and R ∈ R𝑛𝑦×𝑛𝑢 is symmetric positive definite, then (3.64) is a strongly convex
quadratic optimization problem. Standard results from quadratic optimization,
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found in Section 16 of Nocedal and Wright (2006), for example, give the following
theorem.

Theorem 3.19. Let A ∈ R𝑛𝑦×𝑛𝑦 be invertible, let Q ∈ R𝑛𝑦×𝑛𝑦 be symmetric
positive semidefinite and let R ∈ R𝑛𝑦×𝑛𝑢 be symmetric positive definite. The
problem (3.64) has a unique solution u ∈ R𝑛𝑢 . Moreover, u ∈ R𝑛𝑢 solves (3.64) if
and only if

(B⊤A−⊤Q A−1B + R) u = B⊤A−⊤(c +Q A−1b), (3.65)

and if and only if there exists y ∈ R𝑛𝑦 and 𝝀 ∈ R𝑛𝑦 such thatQ 0 A⊤
0 R B⊤
A B 0

y
u
𝝀

 =

−c
0
b

. (3.66)

The system (3.65) is the Schur complement of (3.66).
An advantage of the discretize-then-optimize approach is that it always leads

to a symmetric matrix in the optimality system (3.66), which is beneficial for its
solution.

The quadratic problem (3.64) can be solved using, for example, the (precondi-
tioned) conjugate gradient method. Alternatively, one can also solve the system
of necessary and sufficient optimality conditions (3.66). The system (3.66) is also
known as a Karush–Kuhn–Tucker (KKT) system, a special case of a saddle point
problem that arises in optimization. The iterative solution of KKT systems such
as (3.66) has been extensively researched, and many efficient methods exist; see
e.g. Benzi, Golub and Liesen (2005), Borzı̀ and Schulz (2009, 2012), Pearson and
Pestana (2020) and Wathen (2015).

For a discretization error analysis of the discretize-then-optimize approach, we
need to interpret the first equation in (3.66), that is,

A⊤𝝀 +Qy = −c, (3.67)

as a discretization of the adjoint equation (3.13a), and 𝝀 ∈ R𝑛𝑦 as a representation
of a discretization of the adjoint variable 𝜆 ∈ V . For example, if the Galerkin
discretization (3.61), (3.62) is used, (3.67) is equivalent to

𝑎(𝜑, 𝜆ℎ) + 𝑞(𝑦ℎ, 𝜑) = −𝑐(𝜑) for all 𝜑 ∈ Vℎ, (3.68a)

where

𝜆ℎ =

𝑛𝑦∑︁
𝑖=1

𝝀𝑖𝜑𝑖 ∈ Vℎ . (3.68b)

Equation (3.68) is the Galerkin discretization of the adjoint equation (3.13a). In
general, however, the interpretation of (3.67) as a discretization of the adjoint
equation (3.13a) may be less straightforward. In particular, (3.67) may result in
a non-standard adjoint equation discretization that is of lower accuracy than the
underlying discretization of the state equation. This is, for example, the case for
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some stabilized finite-element discretizations applied to advection-dominated prob-
lems (see e.g. Collis and Heinkenschloss 2002) or for some discontinuous Galerkin
methods (see Leykekhman 2012). If the adjoint equation (3.13a) discretization cor-
responding to (3.67) is of lower accuracy than the underlying discretization of the
state equation, the discretization error is typically limited by this lower accuracy.

Discretization error analysis for Galerkin finite-element discretizations (3.61),
(3.62), (3.68) of the optimal control model problem (3.10) are given, for example, in
the book by Hinze et al. (2009, Chapter 3). For example, for the discretization of the
optimal control problem (3.14) with 𝐷𝑜 = 𝐷 using piecewise linear finite elements,
which satisfy Assumption 3.1 of Hinze et al. (2009) for the state and the control,
Hinze et al. (2009, Theorem 3.5) prove the following estimate. Suppose 𝑢 ∈ 𝐿2(𝐷)
solves the optimal control problem (3.14), 𝑦(𝑢) ∈ 𝐻1

0(𝐷) is the corresponding
state, 𝑢ℎ ∈ Uℎ ⊂ 𝐿2(𝐷) solves the finite-element discretization of the optimal
control problem, and 𝑦ℎ(𝑢ℎ) ∈ Vℎ ⊂ 𝐻1

0(𝐷) is the corresponding solution of the
finite-element discretization of the state equation. Then there exists 𝑐 > 0 such that

∥𝑢 − 𝑢ℎ∥𝐿2(𝐷) + ℎ∥𝑦(𝑢) − 𝑦ℎ(𝑢ℎ)∥𝐻1
0 (𝐷) ≤ 𝑐ℎ2(∥𝑦(𝑢)∥𝐿2(𝐷) + ∥𝑢∥𝐿2(𝐷)). (3.69)

In the optimize-then-discretize approach applied to the optimal control model
problem (3.10), we approximate each equation in the optimality system (3.13)
individually. This leads to a systemQ̃ 0 Ã⊤

0 R B⊤
A B 0

y
u
𝝀

 =

−c
0
b

, (3.70)

where, in general, A⊤ ≠ Ã⊤ and Q̃ may not be symmetric. This is, for example,
the case when we apply streamline upwind/Petrov Galerkin (SUPG) stabilized
finite elements to an optimal control problem (3.10) governed by an advection–
diffusion equation (see e.g. Collis and Heinkenschloss 2002, Heinkenschloss and
Leykekhman 2010, or Quarteroni 2009, Section 16.13), or we apply some dis-
continuous Galerkin methods (see e.g. Leykekhman 2012 and Leykekhman and
Heinkenschloss 2012). The system matrix in (3.70) is invertible, provided the
conditions (3.2) and (3.9) are satisfied for the optimal control problem and the
discretization is sufficiently fine. However, since the system matrix in (3.70) is not
symmetric, the iterative solution of (3.70) may be more expensive than the solution
of (3.66) given the same discretization sizes. Because each equation in the optim-
ality system (3.13) is discretized individually, these individual discretizations de-
termine the overall discretization error. In particular, the optimize-then-discretize
approach tends to have better approximation properties. However, the price is the
lack of symmetry of (3.70).

The optimize-then-discretize approach also makes a difference when control
constraints are present. In this case the equation corresponding to (3.13b) suggests
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a discretization of the controls 𝑢 that is derived from the discretization of the
adjoint 𝜆 and the control constraints. Hinze (2005) shows that this implied control
discretization, termed variational discretization, leads to a control discretization
error of higher order. See also Hinze et al. (2009, Chapter 3).

For the linear–quadratic model problem (3.10), the optimality conditions (3.13)
are necessary and sufficient and are a system of linear equations. This is no longer
true for general nonlinear problems, and the numerical solution of optimal control
problems using optimize-then-discretize becomes more involved. Examples are
discussed by Gunzburger (2003, Chapter 4).

Ideally, we choose a discretization for which the discretize-then-optimize and
optimize-then-discretize approaches commute. As shown above, this is the case for
a standard Galerkin discretization (3.61), (3.62), (3.68). It is also true for several
discontinuous Galerkin methods; see e.g. Leykekhman (2012).

Finally, adaptive approximations have been investigated where the problem dis-
cretization is not fixed, but is refined based on estimates of the discretization error
between the solution of the current discretized problem and the true solution.
Such adaptive discretizations are discussed in Becker et al. (2007), Becker, Kapp
and Rannacher (2000), Dedé and Quarteroni (2005) and Hintermüller and Hoppe
(2008), for example.

3.5.2. Discretization of the problem with random parameters
A numerical solution of the optimization problems (3.35) and (3.51) requires
discretization in V , U , but also in Ω or Ξ. We focus on the problem (3.51) and on
the discretization in Ξ. Some of the approaches discussed in this section do not
require a finite-noise assumption and could be applied to (3.35). In other cases,
optimization problems can be approximated by problems with finite noise; see the
discussion at the beginning of Section 3.3.

Given a control 𝑢 ∈ U , discretization methods for the state equation (3.49) are
discussed in the overview paper by Gunzburger et al. (2014) and in the books
by Xiu (2010) and Lord et al. (2014, Chapter 9). Specifically, multilevel and
multi-fidelity Monte Carlo methods (see e.g. Giles 2015, Krumscheid and Nobile
2018, Teckentrup, Scheichl, Giles and Ullmann 2013, Peherstorfer, Willcox and
Gunzburger 2016, 2018, Peherstorfer 2019), multilevel and multi-fidelity quasi-
Monte Carlo methods (see e.g. Dick, Kuo and Sloan 2013, Kuo and Nuyens
2016, Kuo et al. 2017), sparse-grid methods (see e.g. Bungartz and Griebel 2004,
Griebel 2006, Garcke and Griebel 2013) or polynomial expansions (see e.g. Xiu
2010, Eldred 2011) can be used to approximate the objective function in (3.51)
for a given 𝑢 ∈ U . However, as in the case of deterministic optimal control
problems, it is not sufficient for a discretization of (3.51) to only approximate the
state equation (3.49) and the objective function: it also needs to approximate the
adjoint equation (3.52a) and the equation (3.52b), which defines the gradient of the
objective function in (3.51).
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We also note that the expectation

E[𝑏(𝜓, 𝜆(𝝃), 𝝃)] =
∫
Ξ

𝑏(𝜓, 𝜆(𝜉), 𝜉) dP𝜉 (𝜉)

in (3.52b) couples the optimality system across 𝜉 ∈ Ξ. This coupling arises because
a deterministic control 𝑢 ∈ U has to be computed as the solution of (3.51) before
the uncertainty is revealed.

For a given control𝑢 ∈ U , the objective function in (3.51) involves the expectation
of the function

𝐹 = J ◦ 𝑆 : U → 𝐿1
P𝜉

(Ξ), (3.71a)

𝑢 ↦→ [𝐹(𝑢)](·) = 1
2
𝑞(𝑦(𝑢; ·), 𝑦(𝑢; ·), ·) + 𝑐(𝑦(𝑢; ·), ·), (3.71b)

where 𝑦(𝑢; 𝜉) solves (3.49). Monte Carlo, quasi-Monte Carlo, multilevel/multi-
fidelity Monte Carlo and sparse-grid methods approximate

E[𝐹(𝑢)] =
∫
Ξ

[𝐹(𝑢)](𝜉) dP𝜉 (𝜉)

≈
𝑁∑︁
𝑖=1

𝜁𝑖 [𝐹ℎ𝑖 (𝑢)](𝜉𝑖)

≔

𝑁∑︁
𝑖=1

𝜁𝑖

(
1
2
𝑞(𝑦ℎ𝑖 (𝑢; 𝜉𝑖), 𝑦ℎ𝑖 (𝑢; 𝜉𝑖), 𝜉𝑖) + 𝑐(𝑦ℎ𝑖 (𝑢; 𝜉𝑖), 𝜉𝑖)

)
, (3.72)

where 𝜁𝑖 ∈ R and 𝑦ℎ𝑖 (𝑢; 𝜉𝑖) is an approximation of the solution of (3.49) at
𝜉 = 𝜉𝑖 . For example, if the Galerkin discretization (3.61) with Vℎ replaced by
Vℎ𝑖 = span{𝜑(𝑖)

1 , . . . , 𝜑
(𝑖)
𝑛𝑦,𝑖 } ⊂ V is used for the state space, then 𝑦ℎ𝑖 (𝑢; 𝜉𝑖) ∈ Vℎ𝑖

solves (3.62) with 𝑢ℎ = 𝑢. In general, the subspace Vℎ𝑖 ⊂ V can depend on the
sample. If, in addition, the Galerkin discretization (3.61) is used for the control,
then the algebraic representation of 𝑦ℎ𝑖 (𝑢ℎ; 𝜉𝑖) at a control 𝑢ℎ ∈ Uℎ is given by

y𝑖(u) = A−1
𝑖 (b𝑖 − B𝑖u),

and the algebraic representation of (3.72) at a control 𝑢ℎ ∈ Uℎ is

𝑁∑︁
𝑖=1

𝜁𝑖

(
1
2

u⊤B⊤𝑖 A−⊤𝑖 Q𝑖A−1
𝑖 B𝑖 u − (B⊤𝑖 A−⊤𝑖 (c𝑖 +Q𝑖A−1

𝑖 b𝑖))⊤u
)

+
𝑁∑︁
𝑖=1

𝜁𝑖

(
1
2

b⊤𝑖 A−⊤𝑖 Q𝑖A−1
𝑖 b𝑖 + c⊤𝑖 A−1

𝑖 b𝑖
)
. (3.73)
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Given a discretization Uℎ ⊂ U of the control space, the discretization of the
optimal control problem (3.51) corresponding to (3.72) is given by

min
𝑢ℎ∈Uℎ

𝑁∑︁
𝑖=1

𝜁𝑖

(
1
2
𝑞(𝑦ℎ𝑖 (𝑢ℎ; 𝜉𝑖), 𝑦ℎ𝑖 (𝑢ℎ; 𝜉𝑖), 𝜉𝑖) + 𝑐(𝑦ℎ𝑖 (𝑢ℎ; 𝜉𝑖), 𝜉𝑖)

)
+ 1

2
𝑟(𝑢ℎ, 𝑢ℎ).

(3.74)

If we use the Galerkin discretization (3.61), (3.62) with Vℎ replaced by

Vℎ𝑖 = span
{
𝜑

(𝑖)
1 , . . . , 𝜑

(𝑖)
𝑛𝑦,𝑖

}
⊂ V ,

the algebraic representation of (3.74) is given by

min
u∈R𝑛𝑢

𝑁∑︁
𝑖=1

𝜁𝑖

(
1
2

u⊤B⊤𝑖 A−⊤𝑖 Q𝑖A−1
𝑖 B𝑖 u − (B⊤𝑖 A−⊤𝑖 (c𝑖 +Q𝑖A−1

𝑖 b𝑖))⊤u
)

+ 1
2

u⊤R u +
𝑁∑︁
𝑖=1

𝜁𝑖

(
1
2

b⊤𝑖 A−⊤𝑖 Q𝑖A−1
𝑖 b𝑖 + c⊤𝑖 A−1

𝑖 b𝑖
)
. (3.75)

The approximations (3.74), (3.75) are sample average approximations (SAA) of
the optimal control problem (3.51). The difference between SAA for finite-dimen-
sional stochastic optimization problems (see e.g. Shapiro et al. 2014, Chapter 5) is
that an SAA of (3.51) also involves a discretization of the underlying state equation
(3.49) for a given sample 𝜉 = 𝜉𝑖 . Typically, hierarchies of discretizations with
different approximation properties and computational costs are available. More
generally, different computational models of the state equation (3.49) may be
available that yield different approximation fidelities at different computational
costs, for example by approximating the physics or by applying reduced-order
models. This is strategically used in the overall approximation (3.72) and typically
leads to large gains in the computational efficiency of the solution of (3.51).

Monte Carlo and quasi-Monte Carlo methods. Monte Carlo and quasi-Monte Carlo
methods are equal-weight quadrature methods, i.e. 𝜁𝑖 = 1/𝑁 . In the execution of
the Monte Carlo method, we draw 𝑁 i.i.d. sample points 𝜉1, . . . , 𝜉𝑁 ∈ Ξ and
approximate

E[𝐹(𝑢)] ≈ E[𝐹ℎ(𝑢)]

≈ 1
𝑁

𝑁∑︁
𝑖=1
[𝐹ℎ(𝑢)](𝜉𝑖)

≔
1
𝑁

𝑁∑︁
𝑖=1

(
1
2
𝑞(𝑦ℎ(𝑢; 𝜉𝑖), 𝑦ℎ(𝑢; 𝜉𝑖), 𝜉𝑖) + 𝑐(𝑦ℎ(𝑢; 𝜉𝑖), 𝜉𝑖)

)
, (3.76)

where 𝑦ℎ(𝑢; 𝜉𝑖) is an approximation of the solution of (3.49) at 𝜉 = 𝜉𝑖 . Here
the same approximation is used for all samples. For example, if the Galerkin
discretization (3.61) is used for the state space, then 𝑦ℎ(𝑢; 𝜉𝑖) ∈ Vℎ solves (3.62)
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with 𝑢ℎ = 𝑢. To analyse the Monte Carlo error, we consider the random variable
𝑁−1 ∑𝑁

𝑖=1 [𝐹ℎ(𝑢)](𝝃𝑖), where 𝝃1, . . . , 𝝃𝑁 are i.i.d. random variables. The right-
hand side in (3.76) is a realization of this random variable. The expected value
of 𝑁−1 ∑𝑁

𝑖=1 [𝐹ℎ(𝑢)](𝝃𝑖) is E[𝐹ℎ(𝑢)] and its variance is V[𝐹ℎ(𝑢)]/𝑁 . The stand-
ard error estimates for the Monte Carlo method (Dick et al. 2013, Section 2.2,
Gunzburger et al. 2014, Section 3.3.2) applied to (3.76) for a fixed 𝑢 ∈ U give

E

[(
E[𝐹ℎ(𝑢)] − 1

𝑁

𝑁∑︁
𝑖=1
[𝐹ℎ(𝑢)](𝝃𝑖)

)2 ]
≤ 1
𝑁
V[𝐹ℎ(𝑢)], (3.77a)

and, by the Chebyshev inequality,

P

( ����E[𝐹ℎ(𝑢)] − 1
𝑁

𝑁∑︁
𝑖=1
[𝐹ℎ(𝑢)](𝝃𝑖)

���� ≥ 𝜖)≤ V[𝐹ℎ(𝑢)]
𝜖2𝑁

, (3.77b)

where V[𝐹ℎ(𝑢)] is the variance of 𝐹ℎ(𝑢). Estimates for the error between 𝐹(𝑢) and
𝐹ℎ(𝑢) can be used to derive analogous error bounds between E[𝐹(𝑢)] and

1
𝑁

𝑁∑︁
𝑖=1
[𝐹ℎ(𝑢)](𝝃𝑖).

Unfortunately, error estimates of the type (3.77) for fixed 𝑢 ∈ U are not sufficient
to analyse the error between the solutions 𝑢 ∈ U and 𝑢ℎ,𝑁 ∈ Uℎ of the optimal
control problems (3.51) and (3.74). For finite-dimensional problems, the error
between the solution of a stochastic optimization problem and its Monte Carlo
SAA approximation is analysed in Shapiro et al. (2014, Chapter 5). Recent work
by Milz (2023a,b,c), Milz and Ulbrich (2024) and Römisch and Surowiec (2024)
provides analyses for classes of PDE-constrained optimization problems. For
example, for a linear quadratic optimal control problem similar to the one in
Example 3.15, and controls approximated by piecewise constant finite elements
and states approximated by piecewise linear finite elements, Milz (2023b) proves
that

E
[
∥𝑢ℎ,𝑁 − 𝑢∥2𝐿2(𝐷)

]
≤ 𝑐1ℎ

2 + 𝑐2/𝑁, (3.78a)

and that for each 𝛿 ∈ (0, 1), with probability 1 − 𝛿,

∥𝑢ℎ,𝑁 − 𝑢∥𝐿2(𝐷) ≤ 𝑐1ℎ + 𝑐2
√︁

2 ln(2/𝛿)/𝑁, (3.78b)

where 𝑢 ∈ U is the solution of (3.51) and 𝑢ℎ,𝑁 ∈ Uℎ is the solution of (3.74),
and 𝑐1, 𝑐2, 𝑐1, 𝑐2 are deterministic problem-dependent parameters. We note that
the finite-noise assumption is not needed for this analysis, and the Monte Carlo
discretization can be applied to (3.35).

To improve on the 𝑂(1/
√
𝑁) convergence rate of Monte Carlo methods, quasi-

Monte Carlo methods generate quadrature points deterministically but still use
equal weights 𝜁𝑖 = 1/𝑁 . Guth et al. (2021) use a finite-element discretization in
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space and quasi-Monte Carlo rule in the random variables to obtain an SAA discret-
ization (3.74) of a linear–quadratic optimal control problem similar to the one in
Example 3.15. The quasi-Monte Carlo rule used is based on shifted rank-one lattice
rules. It is assumed that the diffusivity (𝜅 in Example 3.15) has a Karhunen–Loève-
type expansion, and assumptions on the coefficient functions in this expansion are
made that allow a finite-noise approximation by truncation. The quasi-Monte Carlo
method is then applied to discretize the finite-noise approximation in the random
variables and a finite element approximation is used to discretize in space. Error
estimates between the solution 𝑢 ∈ U of (3.51) and the solution 𝑢ℎ,𝑁 ,𝑀 ∈ Uℎ
of (3.74) (with a truncation of the expansion of the diffusion coefficient after 𝑀
terms) are provided. The numerical results show a nearly 𝑂(1/𝑁) convergence
with respect to the number of quadrature points.

Multilevel/multi-fidelity Monte Carlo. Monte Carlo error estimates of the type
(3.77) depend on the variance V[𝐹ℎ(𝑢)]/𝑁 of the estimator 𝑁−1 ∑𝑁

𝑖=1 [𝐹ℎ(𝑢)](𝝃𝑖).
Multilevel/multi-fidelity Monte Carlo methods use models 𝐹ℎℓ (𝑢), ℓ = 0, . . . , 𝐿,
of different levels/fidelities and of different computational costs to compute an
unbiased estimator with lower variance than the Monte Carlo estimator using
only the high-fidelity model 𝐹ℎ0(𝑢), and with computational cost equal to the
computational cost of the Monte Carlo estimator using only the high-fidelity model.
We assume that 𝐹ℎ0(𝑢) is the high fidelity model and 𝐹ℎ𝐿 (𝑢) is the lowest fidelity
model.

Next, we describe the multilevel Monte Carlo method and refer to the literature
for multi-fidelity Monte Carlo methods. By linearity of the expected value,

E[𝐹ℎ0(𝑢)] = E[𝐹ℎ0(𝑢)] +
𝐿∑︁
ℓ=1
E[𝐹ℎℓ (𝑢) − 𝐹ℎℓ−1(𝑢)] .

Estimators for the quantities on the right-hand side are

1
𝑁0

𝑁0∑︁
𝑖=1
[𝐹ℎ0(𝑢)](𝝃𝑖,0),

1
𝑁ℓ

𝑁ℓ∑︁
𝑖=1
[𝐹ℎℓ (𝑢)](𝝃𝑖,ℓ) − [𝐹ℎℓ−1(𝑢)](𝝃𝑖,ℓ), ℓ = 1, . . . , 𝐿,

where 𝝃1,0, . . . , 𝝃𝑁0,0, . . . , 𝝃1,𝐿 , . . . , 𝝃𝑁𝐿 ,𝐿 are i.i.d. random variables. The estim-
ator of E[𝐹ℎ0(𝑢)] is

𝑄N [𝐹ℎ0(𝑢)] ≔ 1
𝑁0

𝑁0∑︁
𝑖=1
[𝐹ℎ0(𝑢)](𝝃𝑖,0)+

𝐿∑︁
ℓ=1

1
𝑁ℓ

𝑁ℓ∑︁
𝑖=1
[𝐹ℎℓ (𝑢)](𝝃𝑖,ℓ)− [𝐹ℎℓ−1(𝑢)](𝝃𝑖,ℓ),

(3.79)
where N = (𝑁0, . . . , 𝑁𝐿). The estimator (3.79) is unbiased, E[𝑄N [𝐹ℎ0(𝑢)]] =
E[𝐹ℎ0(𝑢)], and has variance

V[𝑄N [𝐹ℎ0(𝑢)]] = 1
𝑁0
V[𝐹ℎ0(𝑢)] +

𝐿∑︁
ℓ=1

1
𝑁ℓ
V[𝐹ℎℓ (𝑢) − 𝐹ℎℓ−1(𝑢)] . (3.80)
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From estimates of the variances V[𝐹ℎ0(𝑢)], V[𝐹ℎℓ (𝑢) − 𝐹ℎℓ−1(𝑢)], ℓ = 1, . . . , 𝐿,
which in the multilevel case can be obtained from estimates of the state solution
𝑦ℎℓ (𝑢, 𝜉) error at different discretization levels, and from costs of sampling the
objective 𝐹ℎℓ (𝑢) at different discretization levels, one can determine sample sizes
N = (𝑁0, . . . , 𝑁𝐿) so that the variance (3.80) is below a certain tolerance, and one
can compute the corresponding cost of applying the estimator (3.79); for details,
see e.g. the papers by Giles (2015), Gunzburger et al. (2014), Krumscheid and
Nobile (2018) and Teckentrup et al. (2013).

The estimator (3.79) is of the form (3.72), but it involves positive and negative
weights 𝜁𝑖 . The same is true when multi-fidelity Monte Carlo methods are used.
As a consequence, the discretized optimal control problem (3.74) obtained with a
multilevel/multi-fidelity Monte Carlo method using samples chosen a priori and
kept fixed for all 𝑢ℎ may not be convex. For these discretizations, there are currently
no error estimates like (3.78) for single-level Monte Carlo.

Sparse grids. We assume that 𝝃 = (𝝃(1), . . . , 𝝃(𝑀)) with 𝝃(𝑚) : Ω → Ξ𝑚 ⊆ R and
Ξ = Ξ1 × · · · × Ξ𝑀 , and that 𝝃 has the joint Lebesgue density 𝜌 = 𝜌1 ⊗ · · · ⊗ 𝜌𝑀
with 𝜌𝑚 : Ξ𝑚 → [0,∞). Under this assumption, the expectation of 𝐹(𝑢) can be
written as∫

Ξ

[𝐹(𝑢)](𝜉) dP𝜉 (𝜉)

=

∫
Ξ

𝜌(𝜉)[𝐹(𝑢)](𝜉) d𝜉

=

∫
Ξ1

𝜌1
(
𝜉(1)) . . .∫

Ξ𝑀

𝜌𝑀
(
𝜉(𝑀))[𝐹(𝑢)]

(
𝜉(1), . . . , 𝜉(𝑀)) d𝜉(𝑀) . . . d𝜉(1).

(3.81)

In principle, the integrals over Ξ = Ξ1 × · · · ×Ξ𝑀 in (3.81) can be approximated by
tensor product quadrature rules based on one-dimensional quadrature. However,
even for small 𝑀 > 1, this naive approach leads to a huge number of quadrature
points in Ξ.

Sparse-grid quadrature operators are constructed from one-dimensional quad-
rature operators. For 𝑚 = 1, . . . , 𝑀 , let {E𝑖𝑚}𝑖≥1 denote a sequence of one-
dimensional quadrature operators built on the quadrature points N 𝑖

𝑚 ⊂ Ξ𝑚 such
that E𝑖𝑚 is exact for polynomials of degree up to 𝑑𝑖𝑚 − 1, where {𝑑𝑖𝑚}∞𝑖=1 ⊂ N is an
increasing sequence, and

E𝑖𝑚 [𝑋] → E𝑚 [𝑋] ≔
∫
Ξ𝑚

𝜌𝑚(𝜉(𝑚)) 𝑋(𝜉(𝑚)) d𝜉(𝑚) as 𝑖 →∞

for sufficiently regular 𝑋 ∈ 𝐶0
𝜌𝑚

(Ξ𝑚). Define the one-dimensional difference
quadrature operators

Δ1
𝑚 ≔ E1

𝑚 and Δ𝑖𝑚 ≔ E𝑖𝑚 − E𝑖−1
𝑚 for 𝑖 ≥ 2.
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The idea behind sparse grids is that for smooth functions, some of the increments
Δ𝑖𝑚 are small and can be dropped. To define the 𝑀-dimensional quadrature rule
on Ξ = Ξ1 × · · · × Ξ𝑀 , let i = (𝑖1, . . . , 𝑖𝑀 ) be a multi-index and let I ⊂ N𝑀+ be a
finite multi-index set, where N+ = {1, 2, . . .}. The general sparse-grid quadrature
operator is defined as

EI ≔
∑︁
i∈I

(
Δ
𝑖1
1 ⊗ · · · ⊗ Δ

𝑖𝑀
𝑀

)
. (3.82)

If
I = {(𝑖1, . . . , 𝑖𝑀 ) ∈ N+ | 𝑖𝑚 ≤ 𝐿, 𝑚 = 1, . . . , 𝑀},

then EI =
(
E𝐿1 ⊗ · · · ⊗ E

𝐿
𝑀

)
is just a standard tensor product quadrature rule.

However, for smooth functions, some of the increments Δ𝑖𝑚 are small and can
be dropped without substantially increasing the quadrature error. For example, a
popular choice due to Smolyak (1963) is

I =

{
(𝑖1, . . . , 𝑖𝑀 ) ∈ N+

���� 𝑀∑︁
𝑚=1

𝑖𝑚 ≤ 𝐿 + 𝑀 − 1

}
.

Gerstner and Griebel (2003) compute I adaptively.
Applied to (3.81), the sparse-grid approximation is∫

Ξ

𝜌(𝜉)[𝐹(𝑢)](𝜉) d𝜉 ≈ EI [𝐹(𝑢)] =
∑︁
i∈I

(
Δ
𝑖1
1 ⊗ · · · ⊗ Δ

𝑖𝑀
𝑀

)
[𝐹(𝑢)] . (3.83)

Gerstner and Griebel (1998, Section 4.4) collect estimates for the error����∫
Ξ

𝜌(𝜉)[𝐹(𝑢)](𝜉) d𝜉 − EI [𝐹(𝑢)]
����

depending on the smoothness of the function 𝜉 ↦→ [𝐹(𝑢)](𝜉) and on the one-
dimensional quadrature used.

The quadrature rule in (3.83) is expressed via one-dimensional difference quad-
rature operators Δ𝑖𝑚. If the index set I ⊂ N𝑀+ is admissible in the sense that for all
i = (𝑖1, . . . , 𝑖𝑀 ) ∈ I,

j = ( 𝑗1, . . . , 𝑗𝑀 ) ∈ N𝑀+ and 𝑗𝑚 ≤ 𝑖𝑚 for all 𝑚 = 1, . . . , 𝑀 =⇒ j ∈ I,

then we can use the so-called combination technique to write (3.83) as

EI [𝐹(𝑢)] =
∑︁
i∈I

(
Δ
𝑖1
1 ⊗ · · · ⊗ Δ

𝑖𝑀
𝑀

)
[𝐹(𝑢)] =

𝑁∑︁
𝑖=1

𝜁𝑖 [𝐹𝑖(𝑢)](𝜉𝑖). (3.84)

The sparse-grid quadrature points 𝜉1, . . . , 𝜉𝑁 ∈ Ξ ⊂ R𝑀 required to evaluate
EI (the sparse grid associated with I) and the sparse-grid quadrature weights
𝜁1, . . . , 𝜁𝑁 ∈ R are computed from the original one-dimensional quadrature for-
mulas; see e.g. Gerstner and Griebel (1998).
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Some of the weights 𝜁𝑖 in the sparse-grid approximation (3.84) are negative.
As a consequence, the discretized optimal control problem (3.74) obtained with a
sparse-grid approximation (3.84) and sparse grid chosen a priori and kept fixed
for all 𝑢ℎ may not be convex. However, numerical experiments suggest that for
sufficiently fine sparse grids, the discretized problem is convex. If the sparse-grid
discretized problem has a solution, then Kouri (2012, Section 3.4.1, 2014, page 62)
proves a bound for the error ∥𝑢 − 𝑢ℎ,I ∥𝐿2(𝐷) between the solution 𝑢 of the infinite-
dimensional optimal control problem (3.51) and the solution 𝑢ℎ,I of the sparse-grid
discretized optimal control problem (3.74).

Optimal control combination technique. If the expectation is of the form (3.81) with
small 𝑀 , one can use standard tensor quadrature rules with positive weights. This
leads to a discretized optimal control problem (3.74) with positive weights, and this
problem has a unique solution. One can then consider different discretization levels
in different dimensions, e.g. for the integrals

∫
Ξ𝑚
𝜌𝑚(𝜉(𝑚)) . . . d𝜉(𝑚) in the different

components of the vector of random variables. Each level requires the solution of
an optimal control problem. The solution at the finest level can be written using
telescoping sums of differences of controls. Some of these differences will be small
and can be eliminated. Nobile and Vanzan (2024) use error and computational work
estimates to determine which differences of controls to eliminate and write the sum
of the remaining differences as weighted sums of controls, each obtained as the
solution of discretized optimal control problem (3.74) with select tensor quadrature
rules and spatial grids. It is important to note that here the combination technique
is applied to sequences of optimal controls. This is different from sparse-grid
approximations where sparse grids and recombinations are applied to a single
optimal control problem.

Discretized optimal control problem. Once the samples 𝜉𝑖 ∈ Ξ, the weights 𝜁𝑖 ∈ R
and the state approximations 𝑦ℎ𝑖 (𝑢ℎ; 𝜉𝑖) are chosen, the discretized SAA problem
(3.74), a large-scale finite-dimensional quadratic optimization problem (3.75), has
to be solved. Analogously to Theorem 3.19, we have the following result on the ex-
istence, uniqueness and characterization of the solution of (3.75). Note that unless
all 𝜁𝑖 are non-negative, symmetric positive semidefiniteness of the Q𝑖 ∈ R𝑛𝑦,𝑖×𝑛𝑦,𝑖 ,
𝑖 = 1, . . . , 𝑁 , and symmetric positive definiteness of R ∈ R𝑛𝑢×𝑛𝑢 are not enough
to ensure the positive definiteness of the Hessian R + ∑𝑁

𝑖=1 𝜁𝑖B
⊤
𝑖

A−⊤
𝑖

Q𝑖A−1
𝑖

B𝑖 in
(3.75). Therefore positive definiteness of the Hessian needs to be assumed.

Theorem 3.20. Let the matrices A𝑖 ∈ R𝑛𝑦,𝑖×𝑛𝑦,𝑖 , 𝑖 = 1, . . . , 𝑁 , be invertible, let
R ∈ R𝑛𝑢×𝑛𝑢 be symmetric positive definite, and let R+∑𝑁

𝑖=1 𝜁𝑖B
⊤
𝑖

A−⊤
𝑖

Q𝑖A−1
𝑖

B𝑖 be
symmetric positive definite. The problem (3.75) has a unique solution u ∈ R𝑛𝑢 .
Moreover, u ∈ R𝑛𝑢 solves (3.75) if and only if(

𝑁∑︁
𝑖=1

𝜁𝑖B⊤𝑖 A−⊤𝑖 Q𝑖A−1
𝑖 B𝑖 + R

)
u =

𝑁∑︁
𝑖=1

𝜁𝑖B⊤𝑖 A−⊤𝑖
(
c𝑖 +Q𝑖A−1

𝑖 b𝑖
)

(3.85)
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and if and only if there exist

®y =

 y1
...

y𝑁

, ®𝝀 =

 𝝀1
...

𝝀𝑁

,
such that  ®Q 0 ®A⊤

0 R ®B⊤
®A ®B 0


®yu
®𝝀

 =

−®c0
®b

, (3.86)

where

®A =

𝜁1A1
. . .

𝜁𝑁A𝑁

, ®Q =

𝜁1Q1
. . .

𝜁𝑁Q𝑁

, ®B =

 𝜁1B1
...

𝜁𝑁B𝑁


and

®b =
(
𝜁1b⊤1 , . . . , 𝜁𝑁b⊤𝑁

)⊤
, ®c =

(
𝜁1c⊤1 , . . . , 𝜁𝑁c⊤𝑁

)⊤
.

The system (3.85) is the Schur complement of (3.86). Given u ∈ R𝑛𝑢 , the
y𝑖 , 𝝀𝑖 , ∈ R𝑛𝑦,𝑖 in (3.86) represent Galerkin approximations of the solutions 𝑦(𝑢ℎ, 𝜉𝑖)
and 𝜆(𝑢ℎ, 𝜉𝑖) of (3.52a), (3.52c) at 𝜉 = 𝜉𝑖 , 𝑢 = 𝑢ℎ, respectively.

Once a discretization is determined, the quadratic problem (3.74) or its equivalent
representation (3.75) can be solved using the (preconditioned) conjugate gradient
(CG) method, for example. If the Hessian R+∑𝑁

𝑖=1 𝜁𝑖B
⊤
𝑖

A−⊤
𝑖

Q𝑖A−1
𝑖

B𝑖 has negative
eigenvalues, the objective function in (3.75) is unbounded from below and (3.75)
does not have a solution. In this case, the CG method will detect a direction v of
negative curvature, v⊤

(
R+∑𝑁

𝑖=1 𝜁𝑖B
⊤
𝑖

A−⊤
𝑖

Q𝑖A−1
𝑖

B𝑖
)
v < 0, and terminate, provided

the CG stopping tolerance is sufficiently small.
If the assumptions of Theorem 3.20 hold, one can also solve the system (3.86)

of the necessary and sufficient optimality conditions. The matrix in (3.86) has a
similar structure to the matrix in (3.66), except that ®Q is only positive semidefinite
if all weights 𝜁𝑖 are non-negative and all matrices Q𝑖 ∈ R𝑛𝑦,𝑖×𝑛𝑦,𝑖 , 𝑖 = 1, . . . , 𝑁 , are
symmetric positive semidefinite. Block preconditioned Krylov subspace methods
developed for (3.66) can be extended to (3.86). Examples of such a preconditioned
Krylov subspace approach are given in Kouri and Ridzal (2018, Section 5.2) and
Nobile and Vanzan (2023). Ciaramella, Nobile and Vanzan (2024) analyse a
multigrid algorithm to solve (3.86), where the number of samples 𝑁 is fixed and a
sequence of spatial meshes are used to discretize the problem in U , V .

The discretization approaches discussed in this section fall into the discretize-
then-optimize category. Optimize-then-discretize approaches have been used as
well, and we will discuss these together with optimization methods in the next
section.
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3.6. Optimization

We describe optimization methods for the solution of the optimal control problem
(3.51). However, many of these methods could also be applied to (3.35). The
optimal control problem (3.51) is of the form

min
𝑢∈U
E[𝐹(𝑢)] + ℘(𝑢), (3.87)

where 𝐹 = J ◦ 𝑆 is the composition of the control-to-state map 𝑆 : U → 𝐿2
P𝜉

(Ξ,V)
and the objective function map J : 𝐿2

P𝜉
(Ξ,V) → 𝐿1

P𝜉
(Ξ) defined analogously to

(3.36) and (3.38), respectively, and ℘(𝑢) = 1
2𝑟(𝑢, 𝑢). Under the assumptions of

Theorem 3.18, the objective function 𝑓 (·) ≔ E[𝐹(·)] + ℘(·) : U → R in (3.87) is
Fréchet-differentiable.

Optimization methods for the solution of the optimal control problem (3.51)
can be roughly classified into two classes: approximation methods and stochastic
approximation methods. Approximation methods are based on discretizations of
the optimal control problem, and range from discretize-then-optimize approaches
to optimize-then-discretize approaches. Typically, different discretizations, both
for V and U and for the expectation, are integrated for computational efficiency.
Stochastic approximation methods use the fact that computationally inexpensive
estimators for the gradient of the objective function are available, and use them
in a stochastic gradient method. The gradient of the objective function in (3.51)
involves the computation of an expectation, and in a stochastic gradient method, a
sample-based approximation (often using only one sample) is used. A numerical
realization of the stochastic gradient method also involves a discretization in V ,
which leads to a bias in the final gradient estimator – a bias that can be controlled
by adjusting the discretization level.

Approximation methods. In the discretize-then-optimize approach, the optimal
control problem (3.51) is discretized and approximated by (3.74), and the dis-
cretized problem is solved. Often, however, the discretization level needed to
ensure that the solution of (3.74) is a good enough approximation of the solution of
(3.51) is not known a priori. Once an approximate solution of (3.74) is computed,
its quality is assessed. If needed, the discretization is refined to obtain a better
approximation of the solution of (3.51). Even if an appropriate approximation can
be determined a priori, different levels of coarser discretizations can be used to
compute approximate solutions at lower computational cost or to approximately
solve subproblems in the optimization algorithm applied to the fine discretization.
Approaches that use different spatial (or spatial and temporal) discretization levels
have been used successfully in deterministic PDE-constrained optimization. See
e.g. the papers by Nash (2000), Lewis and Nash (2005), Gratton, Sartenaer and
Toint (2008), Ziems and Ulbrich (2011) and Borzı̀ and Schulz (2012), which have
been extended to the solution of optimal control problems such as (3.51). Specific-
ally, Kouri (2014) uses sparse-grid stochastic collocation with different levels to
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extend the MG/OPT approach from Nash (2000) and Lewis and Nash (2005). Here
levels are defined in terms of the sparse-grid quadrature, while the discretization
for V and U is constant. Van Barel and Vandewalle (2021) use an MG/OPT-
type algorithm based on the multilevel Monte Carlo estimator (3.79) of E[𝐹ℎ0(𝑢)].
Specifically, the spatial discretizations and samples used in the multilevel Monte
Carlo estimator (3.79) of the fine-level objective E[𝐹ℎ0(𝑢)] is computed so that
the gradient has a desired root-mean-square error. These spatial discretizations
and samples are then used as the fine-level discretization of the optimal control
problem The coarser-level approximations of this fine-level discretization are also
of the type (3.79), but are constructed by limiting the highest level, i.e. using levels
ℓ = 𝑘, . . . , 𝐿 (recall that in (3.79) ℓ = 0 is the finest level and ℓ = 𝐿 the coarsest),
and using only a fraction 𝑞𝑘𝑁ℓ , ℓ = 𝑘, . . . , 𝐿, 𝑞 ∈ (0, 1), of the samples used in
fine-level discretization (3.79).

The previous approaches solve a discretization or a sequence of discretizations of
the optimal control problem and are therefore discretize-then-optimize approaches.
Alternatively, we can also use optimize-then-discretize approaches. One way to
do this is to use trust-region or line-search optimization algorithms, such as those
described in Kouri, Heinkenschloss, Ridzal and van Bloemen Waanders (2013,
2014) and Grundvig and Heinkenschloss (2024), which employ objective function
models with tunable accuracy. Given an iterate 𝑢𝑘 , these optimization algorithms
generate a model𝑚𝑘 of the objective function (3.87). The model fidelity is adjusted
based on the progress of the optimization algorithm. These trust-region and line-
search optimization algorithms only use the objective function models 𝑚𝑘 , but
generate iterates so that lim inf𝑘→∞ ∥∇ 𝑓 (𝑢𝑘)∥U = 0 or lim𝑘→∞ ∥∇ 𝑓 (𝑢𝑘)∥U = 0.
We will provide details of a trust-region algorithm in Section 5.1.1. In the context of
solving the risk-neutral PDE-constrained optimization problem under uncertainty
(3.87), the model 𝑚𝑘 is generated by a discretization of the objective function at
𝑢𝑘 , as discussed in Section 3.5.2.

Stochastic approximation. Under the assumptions of Theorem 3.18, the objective
function in (3.87) is Fréchet-differentiable, and the derivative applied to a direction
𝛿𝑢 ∈ U is

∫
Ξ
𝑏(𝛿𝑢, 𝜆(𝜉), 𝜉) dP𝜉 (𝜉)+𝑟(𝑢, 𝛿𝑢). The gradient of the objective function

in (3.87), ∇E[𝐹(𝑢)] + ∇℘(𝑢), is the Riesz representation of the derivative, and is
defined by∫

Ξ

𝑏(𝛿𝑢, 𝜆(𝜉), 𝜉) dP𝜉 (𝜉) + 𝑟(𝑢, 𝛿𝑢) = ⟨∇E[𝐹(𝑢)] + ∇℘(𝑢), 𝛿𝑢⟩U for all 𝛿𝑢 ∈ U .
(3.88)

A gradient method applied to (3.87) generates a sequence of iterates

𝑢𝑘+1 = 𝑢𝑘 − 𝛾𝑘∇ 𝑓 (𝑢𝑘) (3.89)

with a suitable step size 𝛾𝑘 > 0, typically chosen such that 𝑓 (𝑢𝑘+1) is sufficiently
smaller than 𝑓 (𝑢𝑘). Specifically,

𝑓 (𝑢𝑘+1) ≤ 𝑓 (𝑢𝑘) + 𝑐𝛾𝑘 ∥∇ 𝑓 (𝑢𝑘)∥2U (3.90)
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for some 𝑐 ∈ (0, 1), typically 𝑐 = 10−4; see e.g. the books by Dennis Jr and Schnabel
(1996, Chapter 6) and Nocedal and Wright (2006, Chapter 3).

One issue when using a gradient method for the solution of (3.87) is that each
objective function evaluation and each gradient evaluation involves an expectation,
that is, it requires integration over all 𝜉, which is expensive. In their basic form,
stochastic gradient methods avoid this expense by replacing the gradient ∇ 𝑓 (𝑢𝑘)
with a stochastic function 𝐺(𝑢𝑘 , 𝜉𝑘) such that E[𝐺(𝑢𝑘 , 𝜉𝑘)] ≈ ∇E[𝐹(𝑢)] and then
generate a sequence of iterates

𝑢𝑘+1 = 𝑢𝑘 − 𝛾𝑘(𝐺(𝑢𝑘 , 𝜉𝑘) + ∇℘(𝑢𝑘)) (3.91)

with step size 𝛾𝑘 > 0. Since 𝐺(𝑢𝑘 , 𝜉𝑘) is a stochastic function, the iterates 𝑢𝑘 are
now random variables. The stochastic gradient method does not access the function
𝑓 . In particular, there is no monotonicity in function values like (3.90). We will
provide details in Section 5.2. In practice, 𝐺(𝑢𝑘 , 𝜉𝑘) is computed by replacing the
expected value in (3.88) by just using one randomly selected sample, that is,

𝑏(𝛿𝑢, 𝜆(𝜉𝑘), 𝜉𝑘) + 𝑟(𝑢𝑘 , 𝛿𝑢) = ⟨𝐺(𝑢𝑘 , 𝜉𝑘) + ∇℘(𝑢𝑘), 𝛿𝑢⟩U for all 𝛿𝑢 ∈ U , (3.92)

or by using the mean of a small number of randomly selected samples.
Geiersbach and Wollner (2020) analysed and applied a stochastic gradient

method to solve problems like the one in Example 3.15 (with control constraints)
using an adaptive finite-element discretization to solve state and adjoint equations.
For implementation, the stochastic gradient method (3.91) with (3.92) still requires
discretizations inV andU , and this discretization introduces a bias in the discretized
stochastic gradient (additional bias is introduced if the discretized state and adjoint
equations needed to compute the discrete version of 𝐺(𝑢𝑘 , 𝜉𝑘) are solved iterat-
ively and therefore inexactly). This bias is controlled by adapting the finite-element
discretization. Martin, Krumscheid and Nobile (2021) provide convergence and
complexity results of the stochastic gradient method with minibatch and constant
as well as variable mesh-size finite-element discretizations applied to the problem
essentially equal to the one in Example 3.15. Van Barel and Vandewalle (2019)
use multilevel Monte Carlo methods to compute estimates of the gradient, and use
them in a nonlinear conjugate gradient method to solve a problem similar to the one
in Example 3.15 but with an additional variance term in the objective. This is not
a stochastic gradient method and no convergence analysis exists, but this method
can be seen as a stochastic approximation method if samples used in the multilevel
Monte Carlo methods are varied between iterations.

We will discuss stochastic methods more broadly in Section 5.2.

3.7. Extensions

We have used a linear–quadratic elliptic optimal control problem to discuss the risk-
neutral optimization problem formulation, study the existence and characterization
of its solution, and survey numerical methods for its solution. The solution of
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PDE-constrained optimization problems under uncertainty quickly becomes even
more involved when aspects of the problem are changed.

If the state equation is not linear in the states and controls, a theory for existence
and uniqueness of the state equation has to be developed, together with regularity
and integrability of the control-to-state map 𝑆 that allows the application of the
expected value or of risk measures. Moreover, the Fréchet differentiability of the
control-to-state map has to be proved. These investigations are guided by the
theory of the corresponding deterministic problem with state space V , but, as we
have already seen in the case of the model problem, additional assumptions are
needed for the analysis in a state space 𝐿𝑞P(Ω,V) for some 𝑞 ≥ 1. Moreover, if
the state equation is not linear in states and controls, the control-to-state map 𝑆
is nonlinear. As a consequence, the function 𝐹 = J ◦ 𝑆 arising in the objective
function is no longer convex, and therefore the optimization problem is no longer
convex. This impacts optimization algorithms and discretization error estimates,
even in the deterministic case.

In this section we have only considered the risk-neutral formulation of the model
problem, in which the expected value of 𝐹 = J ◦ 𝑆 is minimized together with
a penalty of the control (see (3.40)). As seen in the examples in Section 2,
other risk measures such as AVaR lead to better results. However, many such
risk measures are non-differentiable, which impacts solutions of these risk-averse
problems. Instead of using risk measures, one can consider other formulations to
include uncertainty in the optimization formulation, such as chance constraints or
dominance constraints. However, these lead to additional challenges in the analysis
of the resulting problem and its numerical solution.

If the underlying deterministic optimal control problem has state-dependent
constraints, then in the extension to PDEs with uncertain parameters, these state-
dependent constraints will be parametrized by the random parameter. We have
to model how the resulting constraints will be incorporated into the optimization
formulation. Should the state constraints hold in expectation, should they hold
almost surely, or should some risk measure be applied? Again, the formulation
impacts the analysis of the resulting problem formulation and its solution.

In the following sections we will discuss some of these extensions.

4. Problem formulation
Let Uad ⊆ U encapsulate deterministic constraints on the optimization variables.
The problems described in Section 2 can be formulated as the optimization problem

min R(𝐹(𝑢)) + ℘(𝑢), (4.1a)
subject to 𝐺(𝑢) ≤ 𝐵, (4.1b)

𝑢 ∈ Uad, (4.1c)

where 𝐹 : U → 𝐿
𝑝

P (Ω) is an uncertain cost function, ℘ : U → R is a deterministic
cost function, 𝐺 : U → 𝐿𝑟P(Ω) is an uncertain constraint function, 𝐵 ∈ 𝐿𝑟P(Ω)
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is a benchmark random variable, and R : 𝐿 𝑝P (Ω) → R is a risk measure. As in
Section 3.2.2, in PDE-constrained optimization, the function 𝐹 is given as the
composition of a cost function J with the control-to-state map 𝑆, 𝐹 = J ◦ 𝑆. The
constraint function 𝐺 may have a similar representation.

In order to make sense of (4.1), R must scalarize the random function 𝐹 for
example using risk measures that model the stakeholder’s aversion to risk. In
contrast, the random constraint 𝐺(𝑢) ≤ 𝐵 can be understood in various ways. For
example, we can require that 𝐺(𝑢) ≤ 𝐵 holds almost surely (i.e. with probability
one) or with some probability less than one. We could also employ stochastic
orders to define this constraint.

4.1. Risk measures

When uncertainties are present in applications, the resulting random objective
function no longer quantifies a loss but rather the possibility of loss, which is
often referred to as risk. In this setting, a critical question arises: How do we
reformulate our objective function to (perhaps, conservatively) quantify this risk?
If the uncertainties are well characterized, we can employ functionals called risk
measures. Commonly used in financial mathematics, risk measures are statistics
that inherit the units of the underlying random objective function and are used to
model risk preference. We will discuss risk measures applied to a generic random
variable 𝑋 ∈ 𝐿 𝑝P (Ω). We sometimes refer to 𝑋 as a cost or a loss, but, as in earlier
sections, 𝑋 can be a scalar quantification of the under-performance of a system and
may not represent a monetary cost or loss.

Coherent risk measures, introduced by Artzner, Delbaen, Eber and Heath (1999),
have garnered much recent attention in PDE-constrained optimization. A function
R : 𝐿 𝑝P (Ω) → R is a coherent risk measure if it satisfies the following properties.
For all 𝑋, 𝑋 ′ ∈ 𝐿 𝑝P (Ω) and 𝑡 ∈ R:

(R1) Subadditivity. R(𝑋 + 𝑋 ′) ≤ R(𝑋) +R(𝑋 ′).
(R2) Monotonicity. If 𝑋 ≤ 𝑋 ′ a.s., then R(𝑋) ≤ R(𝑋 ′).
(R3) Translation equivariance. R(𝑋 + 𝑡) = R(𝑋) + 𝑡.
(R4) Positive homogeneity. If 𝑡 ≥ 0, then R(𝑡𝑋) = 𝑡R(𝑋).

Conditions (R1) and (R4) are equivalent to R being convex and positively homo-
geneous. Consequently, (R1) is often replaced by:

(R1′)Convexity. If 𝑡 ∈ [0, 1], then R(𝑡𝑋 + (1 − 𝑡)𝑋 ′) ≤ 𝑡R(𝑋) + (1 − 𝑡)R(𝑋 ′).

In financial applications, subadditivity (R1) incentivizes diversification or de-
centralization of risk. For general applications, monotonicity (R2) is a natural
condition ensuring that risk is decreased if the overall loss is decreased. When com-
bined with (R4), translation equivariance (R3) ensures that deterministic quantities
are risk-free (i.e. R(𝑡) = 𝑡 for all 𝑡 ∈ R). Finally, positive homogeneity (R4) enables
consistent change of units.
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Föllmer and Schied (2010) refer to R : 𝐿 𝑝P (Ω)→ R that satisfies (R2) and (R3)
as a monetary risk measure, and a monetary risk measure that satisfies (R1′) as a
convex risk measure. A basic approach to constructing risk measures is through
acceptance sets, as in Föllmer and Schied (2002). Let A ⊆ 𝐿 𝑝P (Ω) denote a set of
acceptable random outcomes. For a random variable 𝑋 ∈ 𝐿 𝑝P (Ω), the risk measure
RA associated with the acceptance set A is defined as the smallest value 𝑚 such
that 𝑋 − 𝑚 is acceptable, that is,

RA(𝑋) = inf{𝑚 ∈ R | 𝑋 − 𝑚 ∈ A}.

If the acceptance set A satisfies

A ∩ R ≠ ∅, (4.2a)
inf{𝑚 ∈ R | 𝑋 − 𝑚 ∈ A} > −∞ for all 𝑋 ∈ 𝐿 𝑝P (Ω), (4.2b)
𝑋 ∈ A, 𝑋 ′ ∈ 𝐿 𝑝P (Ω), 𝑋 ′ ≥ 𝑋 a.s. =⇒ 𝑋 ′ ∈ A, (4.2c)

then RA is a monetary risk measure. In addition, if A is convex, then RA is a
convex risk measure and if A is a convex cone, then RA is coherent. Furthermore,
a risk measure R is coherent if and only if there exists R = RA, where A is a
convex cone satisfying (4.2). In this case,

A = {𝑋 ∈ 𝐿 𝑝P (Ω) | R(𝑋) ≤ 0}.

Ben-Tal and Teboulle (2007) introduce another useful approach for constructing risk
measures based on expected utility theory called optimized certainty equivalents.
Optimized certainty equivalent risk measures have the form

R(𝑋) = inf
𝑡∈R
{𝑡 − U(𝑡 − 𝑋)}, (4.3)

where U : 𝐿 𝑝P (Ω) → R is an expected utility function; see von Neumann and
Morgenstern (2007). Commonly, U is concave, monotonic and satisfies U(0) = 0.

Coherent risk measures satisfy numerous desirable properties. For example, (R2)
and (R1′) ensure that R is continuous (see Shapiro et al. 2014, Proposition 6.6),
and consequently the Fenchel–Moreau theorem (see e.g. Ekeland and Temam 1999,
Proposition 4) ensures that

R(𝑋) = sup
𝜃∈𝐿𝑞

P
(Ω)
{E[𝜃𝑋] −R∗(𝜃)}, (4.4)

where 1/𝑝 + 1/𝑞 = 1 and R∗ : 𝐿𝑞P(Ω) → (−∞, +∞] is the Legendre–Fenchel
transformation of R, that is,

R∗(𝜃) = sup
𝑋∈𝐿𝑝

P
(Ω)
{E[𝜃𝑋] −R(𝑋)}.

Recall that R∗ is proper, lower semicontinuous and convex (see the discussion in
Ekeland and Temam 1999, page 18), and so its effective domain

domR∗ = {𝜃 ∈ 𝐿𝑞P(Ω) | R∗(𝜃) < +∞}
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is non-empty, closed and convex. In addition, if (R2) holds, then 𝜃 ∈ domR∗
if and only if 𝜃 ≥ 0 a.s., and if (R3) holds, then 𝜃 ∈ domR∗ if and only if
E[𝜃] = 1. In particular, if R is a convex risk measure, then domR∗ consists of
probability density functions in 𝐿𝑞P(Ω). Finally, when (R4) holds, R∗(𝜃) = 0 for
all 𝜃 ∈ domR∗. In fact, R is a coherent risk measure if and only if there exists
a non-empty, closed and convex subset 𝔄 ⊆ 𝐿

𝑞

P(Ω), sometimes called the risk
envelope, satisfying

𝜃 ∈ 𝔄 =⇒ 𝜃 ≥ 0 a.s. and E[𝜃] = 1

such that
R(𝑋) = sup

𝜃∈𝔄
E[𝜃𝑋], (4.5)

in which case 𝔄 = domR∗; see Theorems 6.5 and 6.7 in Shapiro et al. (2014) for
more details.

Perhaps a more fundamental property for risk measures is law invariance. Two
random variables are distributionally equivalent, denoted 𝑋 𝐷∼ 𝑋 ′, if their CDFs
are equal, i.e. Ψ𝑋(𝑡) = Ψ𝑋′(𝑡) for all 𝑡 ∈ R. Using this definition, a risk measure R
is law-invariant if

𝑋
𝐷∼ 𝑋 ′ =⇒ R(𝑋) = R(𝑋 ′) (4.6)

for any two random variables 𝑋, 𝑋 ′ ∈ 𝐿 𝑝P (Ω). In particular, a law-invariant risk
measure is a function of the distribution, not the values, of a random variable.
A fundamental law-invariant, coherent risk measure is the average value-at-risk2

(AVaR) (see e.g. Rockafellar and Uryasev 2002, Uryasev and Rockafellar 2001),
which is defined for a random variable 𝑋 ∈ 𝐿 𝑝P (Ω) as

AVaR𝛽(𝑋) B
1

1 − 𝛽

∫ 1

𝛽

𝑞𝑋(𝑠) d𝑠 (4.7)

for fixed confidence level 𝛽 ∈ [0, 1), where 𝑞𝑋(·) is the quantile function of the
random variable 𝑋 .3 For continuous random variables 𝑋 , AVaR𝛽(𝑋) is the average
of the (1 − 𝛽) × 100% largest outcomes of 𝑋 . See also Figure 2.5. Moreover,
AVaR is a fundamental building block of law-invariant, coherent risk measures.
In particular, if (Ω,F , P) is non-atomic and R is law-invariant and coherent, then
there exists a set of probability measures 𝔐 on [0, 1) for which

R(𝑋) = sup
𝜇∈𝔐

∫ 1

0
AVaR1−𝑠(𝑋) d𝜇(𝑠). (4.8)

Equation (4.8) is referred to as the Kusuoka representation of R.

2 Also called conditional value-at-risk, expected shortfall, expected tail loss and superquantile.
3 The quantile function is sometimes called the value-at-risk.
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Example 4.1 (average value-at-risk). As we have already discussed, AVaR (4.7)
is a law-invariant, coherent risk measure. As shown in Rockafellar and Uryasev
(2002), AVaR can be equivalently written as

R(𝑋) = AVaR𝛽(𝑋) = inf
𝑡∈R

{
𝑡 + 1

1 − 𝛽E[max{0, 𝑋 − 𝑡}]
}

(4.9)

for 𝛽 ∈ (0, 1). The representation (4.9) is particularly useful in optimization,
and this representation of AVaR was used in optimization problems discussed in
Sections 2.1 and 2.3. Specifically, if 𝑋 = 𝐹(𝑢), then min𝑢∈Uad AVaR𝛽(𝐹(𝑢)) + ℘(𝑢)
is equivalent to

min
𝑡∈R, 𝑢∈Uad

{
𝑡 + 1

1 − 𝛽E[max{0, 𝐹(𝑢) − 𝑡}] + ℘(𝑢)
}
. (4.10)

It is worth noting that AVaR at 𝛽 = 0 is AVaR0(𝑋) = E[𝑋], and its limit as 𝛽→ 1
is

lim
𝛽↑1

AVaR𝛽(𝑋) = ess sup 𝑋.

For a continuously distributed random variable 𝑋 , AVaR𝛽(𝑋) is the expectation of
𝑋 conditioned on the event

{𝜔 ∈ Ω | 𝑋(𝜔) > 𝑞𝑋(𝛽)}.

Informally, AVaR𝛽(𝑋) is the 𝛽-tail average of 𝑋 . Since AVaR is coherent, it has
the biconjugate representation (4.5) with risk envelope

domR∗ = {𝜃 ∈ 𝐿∞P (Ω) | E[𝜃] = 1, 0 ≤ 𝜃 ≤ (1 − 𝛼)−1 a.s.}.

Krokhmal (2007) extended AVaR to account for higher-order tail moments, intro-
ducing the higher-moment coherent risk measure (HMCR),

R(𝑋) = inf
𝑡∈R

{
𝑡 + 1

1 − 𝛽E[max{0, 𝑋 − 𝑡}𝑝]1/𝑝
}
,

with 𝑝 ∈ (1,∞). Like AVaR, HMCR is a law-invariant coherent risk measure and
has the biconjugate representation (4.5) with risk envelope

domR∗ =
{
𝜃 ∈ 𝐿𝑞P(Ω) | E[𝜃] = 1, 𝜃 ≥ 0 a.s., ∥𝜃∥𝐿𝑞

P
(Ω) ≤

1
1 − 𝛼

}
,

where 1/𝑝 + 1/𝑞 = 1. See Section 5.3.1 in Cheridito and Li (2009) for more
information on HMCR.

Example 4.2 (mean-plus-deviation). The mean-plus-deviation risk measure, as
used in the pioneering portfolio optimization work of Markowitz (1952), is com-
monly used in engineering applications because of its simple and intuitive nature.
This risk measure, given by

R(𝑋) = E[𝑋] + 𝑐E[|𝑋 − E[𝑋] |𝑝]1/𝑝, 𝑐 > 0
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for 𝑝 ∈ [1,∞), is law-invariant and satisfies (R1), (R3) and (R4), but is not mono-
tonic. This can lead to paradoxical scenarios in which one value of the objective
function is always smaller than the other but has larger risk. Example 6.62 in Sha-
piro et al. (2014) is a simple example of this situation. The lack of monotonicity
results from the equal penalization of deviations above and below the expected
value, which can be fixed using the mean-plus-semideviation risk measure, for
example

R(𝑋) = E[𝑋] + 𝑐E[max{0, 𝑋 − E[𝑋]}𝑝]1/𝑝, 𝑐 ∈ [0, 1] .

The mean-plus-semideviation is monotonic and hence coherent, yielding the rep-
resentation (4.5) with risk envelope

domR∗ = {𝜃 ∈ 𝐿𝑞P(Ω) | 𝜃 = 1 + 𝜃′ − E[𝜃′], ∥𝜃′∥𝐿𝑞
P

(Ω) ≤ 𝑐, 𝜃′ ≥ 0 a.s.},

where 1/𝑝 + 1/𝑞 = 1.

Example 4.3 (entropic risk). The entropic risk measure is the certainty equival-
ent associated with the exponential utility function 𝑣(𝑡) = exp(𝜎𝑡), that is,

R(𝑋) = 𝜎−1 log(E[exp(𝜎𝑋)]), 𝜎 > 0. (4.11)

In particular, if a stakeholder with utility function 𝑣 is presented a random outcome
𝑋 , then R(𝑋) = 𝑣−1(E[𝑣(𝑋)]) is the certain amount for which they remain uncon-
cerned with the outcome. See Ben-Tal and Teboulle (2007) for more discussion
of the various types of certainty equivalents. Interestingly, the entropic risk is
also the optimized certainty equivalent (4.3) associated with the exponential utility
function. The entropic risk is convex, monotonic and translation-equivariant, but
is not positively homogeneous and therefore not coherent. The natural domain for
the entropic risk measure is 𝐿∞P (Ω), which significantly complicates the analysis
of R since its topological dual space is a space of measures. To overcome this
challenge, we typically consider 𝐿∞P (Ω) equipped with the weak∗ topology paired
with 𝐿1

P(Ω) equipped with the norm topology. See Section 6.3 of Shapiro et al.
(2014) for a discussion of the theoretical challenges associated with essentially
bounded random variables. The entropic risk measure was used in the optimal
control of a thermally convected flow in Section 2.2.

We conclude this section with a discussion of risk-averse optimization problems.
Let U be a reflexive Banach space, let Uad ⊆ U , let V be a reflexive Banach space,
and consider the problem

min R(𝐹(𝑢)) + ℘(𝑢), (4.12a)
subject to 𝑢 ∈ Uad, (4.12b)

where, similar to (3.36)–(3.40), 𝐹 = J ◦ 𝑆 is the composition of a control-to-state
map

𝑆 : U → 𝐿2
P(Ω,V) (4.13)
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and an objective function map

J : 𝐿2
P(Ω,V)→ 𝐿

𝑝

P (Ω), (4.14)

and whereR : 𝐿 𝑝P (Ω)→ R is a proper, closed, convex and monotonic risk measure,
and ℘ : U → R is proper, closed and convex. Kouri and Surowiec (2018) prove the
existence of a solution of (4.12) and optimality conditions for (4.12) under fairly
general assumptions on 𝑆, J , R and ℘. Convexity of R and the relationship (4.5)
play an important role in the optimality conditions. Additional results for PDE-
constrained optimization problems governed by a semilinear elliptic PDE, i.e.
where the control-to-state map (4.13) corresponds to the solution of a semilinear
elliptic PDE, are given in Kouri and Surowiec (2020b). These results generalize
those in Section 3.2 to semilinear elliptic PDE and proper, closed, convex and
monotonic risk measures R. Subdifferentials of R are used in the optimality
conditions in Kouri and Surowiec (2018, 2020b), because, in contrast to the risk-
neutral formulation discussed in Section 3, coherent risk measures are generally
not Fréchet-differentiable. In fact, Kouri and Surowiec (2020a, Theorem 1) prove
the following result.

Theorem 4.4. Let R : 𝐿 𝑝P (Ω) → R be a coherent risk measure with 𝑝 ∈ [1,∞).
Then R is Fréchet-differentiable if and only if there exists 𝜃 ∈ 𝐿𝑞P(Ω) with 1/𝑝 +
1/𝑞 = 1 such that 𝜃 ≥ 0, E[𝜃] = 1, and R(𝑋) = E[𝜃𝑋] for all 𝑋 ∈ 𝐿 𝑝P (Ω).

Consequently, only linear coherent risk measures are Fréchet-differentiable. The
lack of Fréchet differentiability also complicates the numerical solution of (4.12)
and (4.1). We will return to this issue in Section 5.1.3.

4.2. Distributionally robust

Distributionally robust optimization (DRO) models the situation when the under-
lying probabilistic characterization of the uncertainty – encapsulated by the prob-
ability measure P – is uncertain. For example, this is the case when certain
coefficients of the PDE are estimated from data using robust Bayesian inference;
see Berger (1994). To produce solutions that are resilient to this uncertainty, DRO
minimizes the worst-case expectation over a set of probability measures 𝔓 defined
on the measurable space (Ω,F). Relating this to (4.1), DRO employs functionals
R given by

R(𝑋) = sup
𝑃∈𝔓

∫
Ω

𝑋(𝜔) d𝑃(𝜔) = sup
𝑃∈𝔓
E𝑃 [𝑋] . (4.15)

In view of (4.5), DRO is a generalization of coherent risk-averse optimization.
In particular, given a coherent risk measure and associated risk envelope 𝔄, the
associated uncertainty set is

𝔓 = {𝑃 : F → [0, 1] | ∃ 𝜃 ∈ 𝔄 such that d𝑃 = 𝜃 dP}.
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On the other hand, if 𝔓 consists of probability measures that are absolutely con-
tinuous with respect to P, then the associated DRO R in (4.15) is a coherent risk
measure. For example, given a 𝜙-divergence 𝐷(·∥·) (such as the Kullback–Leibler,
Hellinger, or 𝜒2, 𝛼 divergence) and a tolerance 𝜏 > 0, we can define 𝔓 to consist of
all probability measures that are absolutely continuous with respect to P (denoted
𝑃 ≪ P) that satisfy

𝐷(𝑃∥P) ≤ 𝜏.

For a given scalar function 𝜙 : [0, +∞) → (−∞, +∞] satisfying 𝜙(𝑡) < +∞ for all
𝑡 > 0, 𝜙(1) = 0 and 𝜙(0) = lim𝑡→0+ 𝜙(𝑡), the associated 𝜙-divergences are given by

𝐷(𝑃∥P) = E[𝜙(d𝑃/dP)] .

In this setting we can rewriteR as an optimization problem over two scalar variables

R(𝑋) = inf
𝜆∈R, 𝜇≥0

{𝜏𝜇 + 𝜆 + E[(𝜇𝜙)∗(𝑋 − 𝜆)]}, (4.16)

where (𝜇𝜙)∗(𝑡) = sup𝑠∈R{𝑠𝑡−(𝜇𝜙)(𝑠)} is the Fenchel conjugate of (𝜇𝜙) (see Shapiro
2017).

Perhaps a more fundamental approach to defining the uncertainty set 𝔓 – first
used by Scarf (1958) – is through moment matching. Given 𝐾 ∈ N real-valued
measurable functions 𝜓𝑘 : Ω → R and scalars 𝑚𝑘 ∈ R for 𝑘 = 1, . . . , 𝐾 , the
moment-matching uncertainty set is defined as

𝔓 = {𝑃 : F → [0, 1] | 𝑃(Ω) = 1, E𝑃 [𝜓𝑘] ≤ 𝑚𝑘 , 𝑘 = 1, . . . , 𝐾}.

Owing to classical results on the problem of moments by Rogosinski (1958), there
exists a maximizing probability measure in (4.15) with a moment-matching un-
certainty set that is supported on at most 𝐾 + 1 points (see Propositions 6.66 and
Theorem 7.37 in Shapiro et al. 2014), which enables the reformulation

R(𝑋) =


max

𝜔1,...,𝜔𝐾+1∈Ω
𝑝∈R𝐾+1+

𝐾+1∑︁
ℓ=1

𝑝ℓ𝑋(𝜔ℓ)

subject to
𝐾+1∑︁
ℓ=1

𝑝ℓ𝜓𝑘(𝜔ℓ) ≤ 𝑚𝑘 , 𝑘 = 1, . . . , 𝐾,
𝐾+1∑︁
ℓ=1

𝑝ℓ = 1.

(4.17)

DRO formulations of PDE-constrained optimization under uncertainty have been
considered by various authors; see e.g. Kolvenbach, Lass and Ulbrich (2018), Kouri
(2017) and Kouri and Shapiro (2018). As discussed, when the uncertainty set 𝔓
consists of probability measures that are absolutely continuous with respect to P,
the associated function R is a coherent risk measure and the methods employed
for risk-averse optimization apply. For example, we can employ (4.16) to rewrite
the min-max problem as a minimization problem over an augmented optimization
space, analogously to the AVaR case (4.10). Moreover, we can apply the discussion
at the end of Section 4.1 concerning the existence of solutions of risk-averse
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optimization problems and optimality conditions. However, for more general 𝔓,
such as the moment-matching uncertainty set, solving a min-max problem involving
a generally non-concave inner maximization problem, as in (4.17), is inevitable.
In an attempt to make general DRO tractable for PDE-constrained optimization,
Kouri (2017) introduces a convergent approximation for 𝔓 that simplifies the
maximization problem defining R, requiring the solution of a linear program to
evaluate R in the case of (4.17).

4.3. Probabilistic functions and chance constraints

An analogous approach to risk measures is to use probabilistic functions of the
form

𝑝𝐹(𝑢) = P(𝐹(𝑢) > 𝐹(𝑢0)) and 𝑝𝐺(𝑢) = P(𝐺(𝑢) > 𝐵),

where 𝑢0 ∈ U is a benchmark optimization variable. The probabilistic objective
function 𝑝𝐹 and chance constraints of the form

𝑝𝐺(𝑢) ≤ 1 − 𝛼

for fixed 𝛼 ∈ (0, 1) are popular because they are intuitive. However, multiple
complications exist for probabilistic functions. For example, 𝑝𝐹 and 𝑝𝐺 are
generally not differentiable or convex even if 𝐹 and𝐺 are. Even worse, 𝑝𝐹 and 𝑝𝐺
need not be continuous; see e.g. Uryasev (1994, 1995, 2000).

An approach that overcomes these challenges is the buffered probability intro-
duced by Rockafellar and Royset (2010). Roughly speaking, the buffered probab-
ility that a random variable 𝑋 exceeds a threshold 𝑥 is the probability that the tail
weight of 𝑋 exceeds 𝑥. Mathematically, this is defined as

bPOE𝑥(𝑋) = 1 − 𝛽, where 𝛽 ∈ [0, 1) solves 𝑥 = AVaR𝛽(𝑋).

In some applications, the buffered probability is preferred over 𝑝𝐹 or 𝑝𝐺 because
it not only quantifies the probability of exceeding the prescribed threshold but also
encodes the magnitudes of the events in excess of the threshold. Furthermore, the
buffered probability has many desirable properties. Mafusalov and Uryasev (2018)
show that it is monotonic, quasi-convex and lower semicontinuous. In fact, the
buffered probability is the smallest upper bound for the probability over all such
functions. In particular,

𝑝𝐹(𝑢) ≤ bPOE0(𝐹(𝑢) − 𝐹(𝑢0)) and 𝑝𝐺(𝑢) ≤ bPOE0(𝐺(𝑢) − 𝐵).

Mafusalov and Uryasev (2018, Proposition 2.2) show that, analogous to the
average value-at-risk, evaluating the buffered probability requires the solution of a
one-dimensional minimization problem:

bPOE𝑥(𝑋) = min
𝑡≥0
E[max{0, 𝑡(𝑋 − 𝑥) + 1}] . (4.18)

Additionally, the relationship between the buffered probability and the average
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value-at-risk enables us to equivalently reformulate a constraint on the buffered
probability to a constraint on the average value-at-risk, that is,

bPOE𝑥(𝐺(𝑢) − 𝐵) ≤ 1 − 𝛼 ⇐⇒ AVaR𝛼(𝐺(𝑢) − 𝐵) ≤ 0.

The latter constraint has the benefit that if𝐺 is convex, then 𝑢 ↦→ AVaR𝛼(𝐺(𝑢)−𝐵)
is also convex. Although the buffered probability has many convenient mathe-
matical properties, it is often not differentiable. When derivatives are required,
one can instead use the higher-moment buffered probability introduced in Kouri
(2019).

Although intuitive, the use of probability and buffered probability constraints in
PDE-constrained optimization is limited. This has to do with the theoretical and
numerical intricacies associated with these constraints. For initial results on these
fronts; see Chaudhuri et al. (2022), Kouri (2019) and Kouri, Staudigl and Surowiec
(2023).

The constraints (4.1b) involve scalar-valued functions. In PDE-constrained op-
timization, one could also consider pointwise constraints on the PDE solution.
Probabilistic or almost sure formulations of such pointwise state constraints have
recently been discussed in Geiersbach and Henrion (2024), Geiersbach, Henrion
and Pérez-Aros (2025) and Geiersbach and Hintermüller (2022).

4.4. Stochastic orders

As discussed, the inequality𝐺(𝑥) ≤ 𝐵 can be understood in various ways including
almost surely or employing a preference order using an expected utility function
U, i.e. U(𝐺(𝑥)) ≤ U(𝐵), or a risk measure R, i.e. R(𝐺(𝑥)) ≤ R(𝐵).

Related to preference orders is the notion of stochastic orders; see e.g. Levy
(1992) for a survey of stochastic orders and dominance. A random variable 𝑋
dominates another random variable 𝑋 ′ with respect to the first stochastic order,
denoted 𝑋 ⪰(1) 𝑋

′, if the CDFs Ψ𝑋 and Ψ𝑋′ associated with 𝑋 and 𝑋 ′ satisfy

Ψ𝑋(𝑡) ≤ Ψ𝑋′(𝑡) for all 𝑡 ∈ R. (4.19)

Relating first-order stochastic dominance to preference orders using utility func-
tions, (4.19) is equivalent to

E[𝑣(𝑋)] ≤ E[𝑣(𝑋 ′)] (4.20)

for all non-decreasing functions 𝑣 : R→ R for which the expectation exists. On the
other hand, 𝑋 dominates 𝑋 ′ with respect to the second stochastic order, denoted
𝑋 ⪰(2) 𝑋

′, if ∫ 𝑡

−∞
Ψ𝑋(𝑠) d𝑠 ≤

∫ 𝑡

−∞
Ψ𝑋′(𝑠) d𝑠 for all 𝑡 ∈ R, (4.21)

which is equivalent to the condition

E[(𝑡 − 𝑋)+] ≤ E[(𝑡 − 𝑋 ′)+] for all 𝑡 ∈ R. (4.22)
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As gleaned from the second-order stochastic dominance condition (4.22), the
second stochastic order requires the left tail of 𝑋 to be smaller than that of 𝑋 ′. In
many applications we are instead interested in comparing the right tails of 𝑋 and
𝑋 ′, which is achieved using the increasing convex order. In particular, 𝑋 dominates
𝑋 ′ in the increasing convex order, denoted 𝑋 ⪰icx 𝑋

′, if

E[𝑣(𝑋)] ≥ E[𝑣(𝑋 ′)], (4.23)

for all non-decreasing convex functions 𝑣 : R→ R for which the expectation exists.
Relating this back to the second stochastic order, we have that 𝑋 ⪰icx 𝑋

′ if and
only if −𝑋 ′ ⪰(2) −𝑋 .

Stochastic orders and risk measures are closely related. Suppose that (Ω,F , P)
is non-atomic and R is law-invariant. Theorem 6.50 in Shapiro et al. (2014) shows
that if 𝑋 ⪰(1) 𝑋

′, then R(𝑋) ≥ R(𝑋 ′) if and only if R satisfies the monotonicity
condition (R2). Similarly, Theorem 6.51 in Shapiro et al. (2014) shows that if R
is a convex risk measure (i.e. it satisfies (R1′), (R2) and (R3)), then 𝑋 ⪰icx 𝑋 ′

implies R(𝑋) ≥ R(𝑋 ′). These relationships indicate that stochastic orders impart
additional risk aversion when compared with preference orders based on monetary
risk measures. For more information on stochastic dominance constraints, see
Dentcheva and Ruszczyński (2003).

Recently, Conti, Rumpf, Schultz and Tölkes (2018) employed stochastic dom-
inance constraints on compliance for elastic topology optimization to compute
minimum volume designs. Stochastic dominance constraints were also used by
Jakeman, Kouri and Huerta (2022) to build reliable surrogate models for engineer-
ing applications.

5. Optimization methods
There are two fundamentally different approaches to solving the optimization prob-
lem (4.1): approximation-based approaches and stochastic methods. Approxima-
tion-based approaches either first discretize the stochastic objective function and
constraints using e.g. polynomial approximations or sample average approximation.
They then solve the resulting deterministic problem, or integrate discretization-
based models with optimization algorithms applied to the infinite-dimensional
setting, or some combination. In contrast, stochastic methods, such as stochastic
approximation, use stochastic estimators of the gradient to converge to a solution
of the original problem.

5.1. Approximation methods

Much of the recent research on approximation methods centres around sample av-
erage approximation (SAA) and its asymptotic properties. Although many authors
have investigated other various approximation techniques, including sparse-grid
quadrature (Kouri et al. 2013, 2014, Kouri 2014, Zahr, Carlberg and Kouri 2019),
polynomial chaos (Rosseel and Wells 2012) and Voronoi-based piecewise constant
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approximations (Zou, Kouri and Aquino 2018, 2022), SAA appears to be the only
truly dimension-independent approach. Moreover, SAA does not suffer from the
additional regularity requirements of polynomial-based approximations, enabling
the solution of coherent risk-averse problems. As mentioned in Section 3.5.2,
Römisch and Surowiec (2024), Milz (2023a,b,c) and Milz and Ulbrich (2024)
establish bounds for the error between the solution of a risk-neutral formulation
of an optimal control problem similar to the one in Example 3.15 and its SAA
approximation. Phelps, Royset and Gong (2016) provide consistency results for
an SAA approximation of a risk-neutral formulation of an optimal control problem
governed by ordinary differential equations.

Given an approximate problem, one can employ any off-the-shelf optimization
algorithm to solve the resulting problem. Although practical, this approach does
not account for the infinite-dimensional nature of PDE-constrained optimization
problems. In particular, there is typically no mechanism for leveraging different
discretization fidelities – a critical and distinguishing feature of PDE-constrained
optimization under uncertainty when compared to traditional stochastic program-
ming. As we have already mentioned in Section 3.6, even if an appropriate ap-
proximation can be determined a priori, different levels of coarser discretizations
can be used to compute approximate solutions at lower computational cost or to
approximately solve subproblems in the optimization algorithm applied to the fine
discretization. We have reviewed approaches in Section 3.6.

In the remainder of this subsection, we discuss trust-region methods with tunable
objective function and gradient approximations and progressive hedging. Lastly,
we discuss the primal–dual risk minimization method that generates a sequence of
smoothed risk measures to solve risk-averse PDE-constrained optimization prob-
lems.

5.1.1. Trust-region methods
Given a Hilbert space U , a closed convex set Uad ⊂ U , 𝐹 : U → 𝐿

𝑝

P (Ω), and
℘ : U → R, we consider

min
𝑢∈Uad

R[𝐹(𝑢)] + ℘(𝑢) (5.1)

with a smooth risk measure R : 𝐿 𝑝P (Ω) → R, e.g. R[·] = E[·] or R given by
the entropic risk (4.11). For the numerical solution of (5.1), R[𝐹(𝑢)] must be
approximated. For example, R[·] = E[·] or (4.11) require an approximation of the
expectation as well as the state equations that enter the evaluation of 𝐹(𝑢). Thus,
in practice, one cannot work directly with the objective function

𝑓 (𝑢) = R[𝐹(𝑢)] + ℘(𝑢), (5.2)

but rather with models 𝑚𝑘 of 𝑓 built around the optimization iterates 𝑢𝑘 . Trust-
region methods provide a powerful framework for model management in optimiz-
ation. Unfortunately this framework is currently only available for a limited class
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of problems, and therefore we restrict our attention to problems of the type

min
𝑢∈Uad

𝑓 (𝑢), (5.3)

when the objective function 𝑓 is bounded below on Uad and is Lipschitz-continu-
ously differentiable on an open set containing Uad. Problem (5.1) is in this class,
provided R[𝐹(·)] + ℘(·) has the desirable smoothness properties. In addition,
approximations of risk-averse optimization problems with smoothed risk measures
are also in this problem class. The latter arise as subproblems in Garreis, Surowiec
and Ulbrich (2021) and Kouri and Surowiec (2016, 2020a, 2022), and in the
subproblem (5.22) discussed later.

Conn, Gould and Toint (2000) provide a comprehensive discussion of trust-
region methods. Our presentation follows Kouri et al. (2014) because they intro-
duce relaxations on model and gradient errors that are important for the practical
implementation of the trust-region algorithm. These relaxations build on earlier
work by Carter (1991, 1993), Heinkenschloss and Vicente (2002) and Ziems (2013).
We assume Lipschitz-continuous differentiability of 𝑓 , but one could consider non-
smooth, but proper, closed and convex ℘(·), as in Baraldi and Kouri (2023, 2024).

At the 𝑘th iteration of the trust-region method, the algorithm requires the con-
struction of a smooth model 𝑚𝑘 of the objective function 𝑓 around the current
iterate 𝑢𝑘 . In the context of (5.1), the model 𝑚𝑘 could be constructed using quad-
rature approximations of R, and discretizations of the state equations that enter in
the evaluation of 𝐹(𝑢𝑘). Often, 𝑚𝑘 is a quadratic function of the form

𝑚𝑘(𝑢) − 𝑚𝑘(𝑢𝑘) = ⟨𝑔𝑘 , 𝑢 − 𝑢𝑘⟩U +
1
2
⟨𝐵𝑘(𝑢 − 𝑢𝑘), 𝑢 − 𝑢𝑘⟩U , (5.4)

where 𝐵𝑘 is a self-adjoint bounded linear operator that encapsulates the curvature
information of 𝑓 at 𝑢𝑘 , and 𝑔𝑘 is an approximation of the gradient ∇ 𝑓 (𝑢𝑘).
Again, in the context of (5.1), the gradient approximation 𝑔𝑘 could be construc-
ted using quadrature approximations of the expected value arising in ∇ 𝑓 (𝑢𝑘) =

∇R[𝐹(𝑢𝑘)] + ∇℘(𝑢𝑘), and discretizations of the state and adjoint equations that
enter the quadrature.

The model 𝑚𝑘 must be computed so that its gradient at 𝑢𝑘 sufficiently agrees
with ∇ 𝑓 (𝑢𝑘). To specify the gradient tolerance, define the norm of the projected
model gradient

ℎ𝑘 B
1
𝑟
∥projUad

(𝑢𝑘 − 𝑟∇𝑚𝑘(𝑢𝑘)) − 𝑢𝑘 ∥U , (5.5)

where 𝑟 > 0 is fixed, and projUad
(·) denotes the metric projection onto Uad. Given

a trust-region radius Δ𝑘 > 0, which the trust-region algorithm will automatically
adapt, we require that the model satisfies

∥∇ 𝑓 (𝑢𝑘) − ∇𝑚𝑘(𝑢𝑘)∥U ≤ 𝜅grad min{ℎ𝑘 ,Δ𝑘}, (5.6)
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for a given positive constant 𝜅grad independent of 𝑘 . If 𝑚𝑘 is given by (5.4),
∇𝑚𝑘(𝑢𝑘) = 𝑔𝑘 . The condition in (5.6) is motivated by the classical inexact gradient
condition introduced in Carter (1991), and stems from Heinkenschloss and Vicente
(2002) and Kouri et al. (2013). In particular, (5.6) can be implemented in practice
without the need to compute/estimate problem-dependent quantities, as shown in
Kouri et al. (2013), for example.

Given the trust-region radius Δ𝑘 > 0 and the model 𝑚𝑘 satisfying (5.6), the
algorithm then computes a trial iterate 𝑢+

𝑘
that approximately solves the trust-region

subproblem

min
𝑢∈Uad

𝑚𝑘(𝑢) subject to ∥𝑢 − 𝑢𝑘 ∥U ≤ Δ𝑘 . (5.7)

The approximate solution 𝑢+
𝑘

of (5.7) must satisfy the so-called fraction of Cauchy
decrease condition, that is, given constants 𝜅rad and 𝜅fcd, independent of 𝑘 , 𝑢+

𝑘
Uad

must satisfy
∥𝑢+𝑘 − 𝑢𝑘 ∥U ≤ 𝜅radΔ𝑘 ,

𝑚𝑘(𝑢𝑘) − 𝑚𝑘(𝑢+𝑘) ≥ 𝜅fcdℎ𝑘 min
{

ℎ𝑘

1 + 𝜔𝑘
,Δ𝑘

}
,

(5.8)

where ℎ𝑘 is given by (5.5) and 𝜔𝑘 is the maximum Fréchet curvature of 𝑚𝑘 over
the trust region:

𝜔𝑘 B sup
{

2
∥𝑠∥U

|𝑚𝑘(𝑢𝑘 + 𝑠) − 𝑚𝑘(𝑢𝑘) − ⟨∇𝑚𝑘(𝑢𝑘), 𝑠⟩U | | 0 < ∥𝑠∥U ≤ 𝜅radΔ𝑘

}
.

When 𝑚𝑘 is the quadratic model (5.4), then 𝜔𝑘 = ∥𝐵𝑘 ∥. Conn et al. (2000,
Chapter 7) discuss several algorithms that compute such a 𝑢+

𝑘
in the unconstrained

case Uad = U , and some of these can be generalized to convex constraints.
Given the trial iterate 𝑢+

𝑘
, the original trust-region algorithm decides whether to

accept the iterate 𝑢+
𝑘

and how to update the trust-region radius Δ𝑘 based on the ratio
between the actual decrease in the model,

ared𝑘 = 𝑓 (𝑢𝑘) − 𝑓 (𝑢+𝑘),

and the predicted decrease by the model,

pred𝑘 B 𝑚𝑘(𝑢𝑘) − 𝑚𝑘(𝑢+𝑘).

Because we want to avoid evaluation of 𝑓 , we replace the actual decrease with a
computed decrease,

cred𝑘 ≈ 𝑓 (𝑢𝑘) − 𝑓 (𝑢+𝑘),

where cred𝑘 is computed using model evaluations. The error between the computed
decrease and the actual decrease, |cred𝑘 − ( 𝑓 (𝑢𝑘)− 𝑓 (𝑢+𝑘))|, needs to be sufficiently
small, and we will specify this in (5.9) below.
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Given parameters 0 < 𝜂1 < 𝜂2 and 0 < 𝛾1 < 1 < 𝛾2, we decide whether or
not to accept the trial iterate and to increase or decrease the trust-region radius as
follows. If

cred𝑘 ≤ 𝜂1 pred𝑘 ,

we reject the trial iterate and decrease the trust-region radius, setting 𝑢𝑘+1 = 𝑢𝑘 and
Δ𝑘+1 = 𝛾1Δ𝑘 . If

cred𝑘 > 𝜂1pred𝑘 ,

we accept the trial iterate, 𝑢𝑘+1 = 𝑢+
𝑘
, and update the trust-region radius according

to

Δ𝑘+1 =

{
Δ𝑘 if cred𝑘 ≤ 𝜂2 pred𝑘 ,
𝛾2Δ𝑘 if cred𝑘 > 𝜂2 pred𝑘 .

As noted before, the computed decrease cred𝑘 is computed using model eval-
uations. We assume there exist positive constants 𝜅obj, 𝜂 < min{𝜂1, 1 − 𝜂2} and
𝜁 > 1, independent of 𝑘 , as well as a positive sequence {𝜃𝑘} with lim𝑘→∞ 𝜃𝑘 = 0
such that

|( 𝑓 (𝑢𝑘) − 𝑓 (𝑢+𝑘)) − cred𝑘 | ≤ 𝜅obj [min{𝜂 pred𝑘 , 𝜃𝑘}]𝜁 . (5.9)

The condition (5.9) is due to Kouri et al. (2014). The conditions (5.6) and (5.9)
are designed so that they can be implemented without knowledge of problem
parameters such as Lipschitz constants. We will comment on applications below.

The trust-region algorithm with function and gradient model is summarized in
Algorithm 1. The following first-order convergence result for Algorithm 1 implies
that for arbitrary initial guess 𝑢1 ∈ Uad, the limit of every convergence subsequence
of the iterates {𝑢𝑘} ⊂ Uad generated by Algorithm 1 is a stationary point of (5.3).

Theorem 5.1. Let U be a Hilbert space and let Uad be non-empty, closed and
convex. If 𝑓 : U → R is bounded below and Lipschitz-continuous Fréchet-
differentiable on an open set containing Uad, and if the Fréchet curvature 𝜔𝑘
of the models 𝑚𝑘 satisfies

∞∑︁
𝑘=1

(1 +max{𝜔1, . . . , 𝜔𝑘})−1 = +∞,

then the sequence of iterates {𝑢𝑘} ⊂ Uad generated by Algorithm 1 satisfies

lim inf
𝑘→∞

1
𝑟
∥projUad

(𝑢𝑘 − 𝑟∇ 𝑓 (𝑢𝑘)) − 𝑢𝑘 ∥U = 0.

The proof of this theorem is a slight modification of the convergence result in
Kouri et al. (2014, Theorem 4.4). Baraldi and Kouri (2023, Theorem 3) prove a
slightly more general version of Theorem 5.1, where their proof is based on the
techniques used in Toint (1988).
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Algorithm 1 Trust-region algorithm with objective function and gradient approx-
imations.
Require: Initial guess 𝑢1 ∈ Uad, initial radius Δ1 > 0, 0 < 𝜂1 < 𝜂2 < 1, and

0 < 𝛾1 < 1 < 𝛾2.
1: for 𝑘 = 1, 2, . . . do
2: Model selection: Choose a model 𝑚𝑘 that satisfies (5.6).
3: Step computation: Compute 𝑢+

𝑘
∈ Uad that satisfies (5.8).

4: Computed reduction: Compute cred𝑘 that satisfies (5.9).
5: Step acceptance and radius update:
6: if cred𝑘 ≤ 𝜂1pred𝑘 then
7: 𝑢𝑘+1 ← 𝑢𝑘
8: Δ𝑘+1 ← 𝛾1Δ𝑘
9: else

10: 𝑢𝑘+1 ← 𝑢+
𝑘

11: if cred𝑘 ≤ 𝜂2 pred𝑘 then
12: Δ𝑘+1 ← Δ𝑘
13: else
14: Δ𝑘+1 ← 𝛾2Δ𝑘
15: end if
16: end if
17: end for

In the context of PDE-constrained optimization under uncertainty, the model
𝑚𝑘 is generated by a discretization of the objective function at 𝑢𝑘 , as discussed
for the model problem in Section 3.5.2. Since both the gradient gradient error
∥∇ 𝑓 (𝑢𝑘) − ∇𝑚𝑘(𝑢𝑘)∥U and the error in the computed decrease cred𝑘 must be
controlled as in (5.6) and (5.9), the fidelity of the discretization must be chosen based
on the objective function and its gradient. Algorithm 1 is deterministic, that is, error
bounds (5.6) and (5.9) are deterministic. This limits the approximation methods
used for the model generation. For example, multilevel/multi-fidelity Monte Carlo
methods cannot be used, because they provide approximations in expectation or in
probability. However, Algorithm 1 could be applied to an SAA of the problem with
a large sample size, where the large sample problem is viewed as the underlying
problem and small(er) sample models are used to compute iterates.

In the context of PDE-constrained optimization under uncertainty, the conditions
(5.6) and (5.9) were used to refine dimension-adaptive sparse-grid discretizations
in Kouri et al. (2013, 2014), Kouri (2014) and Zahr et al. (2019), adaptive reduced-
order models and Voronoi approximations in Zou et al. (2018, 2022) and adaptive
tensor-train approximations in Garreis and Ulbrich (2017).

Bastin, Cirillo and Toint (2006) use a trust-region algorithm to solve a fixed
SAA approximation in stochastic programming and mixed logit regression. They
compute models by dynamically subsampling and employ model error conditions
from Carter (1991) and Conn et al. (2000, Sections 8.4, 10.6). For problem (5.1),
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Bastin et al. (2006) employ the sample variance estimate of the objective function
value, that is,

1
𝑁𝑘 − 1

𝑁𝑘∑︁
𝑛=1

(
𝐹𝑛(𝑢𝑘) −

1
𝑁𝑘

𝑁𝑘∑︁
𝑚=1

𝐹𝑚(𝑢𝑘)

)2

,

and similarly for the gradient, as error estimates to verify their inexactness condi-
tions. Here 𝑁𝑘 is the number of samples used at the 𝑘th iteration and 𝐹𝑛(𝑢𝑘) are
i.i.d. realizations of 𝐹(𝑢𝑘).

There are trust-region-type and line-search-based algorithms for finite-dimen-
sional optimization problems that use stochastic models; see e.g. Bandeira, Schein-
berg and Vicente (2014), Berahas, Cao and Scheinberg (2021) and Curtis, Schein-
berg and Shi (2019). However, they have not yet been applied to PDE-constrained
optimization.

5.1.2. Progressive hedging
Given a Hilbert space U and a closed convex set Uad ⊂ U , we again consider

min
𝑢∈Uad

E[𝐹(𝑢)] + ℘(𝑢). (5.10)

An alternative method for solving (5.10) is the progressive hedging algorithm
introduced by Rockafellar and Wets (1991).

Employing sampling or quadrature to approximate E[𝐹(𝑢)], (5.10) is approxim-
ated as

min
𝑢∈Uad

𝑁∑︁
𝑛=1

𝜁𝑛𝐹𝑛(𝑢) + ℘(𝑢), (5.11)

where 𝐹𝑛(·), 𝑛 = 1, . . . , 𝑁 , is an evaluation or i.i.d. realization of 𝐹(·), and 𝜁𝑛,
𝑛 = 1, . . . , 𝑁 , is the associated probability or weight satisfying

𝜁𝑛 > 0, 𝑛 = 1, . . . , 𝑁, 𝜁1 + . . . + 𝜁𝑁 = 1.

We assume that 𝐹𝑛, 𝑛 = 1, . . . , 𝑁 , and ℘ are Fréchet-differentiable, but this as-
sumption can be relaxed.

The evaluations of 𝐹𝑛(𝑢) and its derivative can be performed concurrently for
each 𝑛. However, the computation of the average value and gradient leads to a
potential communication bottleneck. Progressive hedging overcomes this using
techniques akin to the alternating direction method of multipliers (ADMM). By
introducing new optimizations 𝑢𝑛 that anticipate the realization (𝐹𝑛 +℘)(·), we can
equivalently reformulate (5.11) as

min
𝑁∑︁
𝑛=1

𝜁𝑛(𝐹𝑛(𝑢𝑛) + ℘(𝑢𝑛)) (5.12a)

subject to 𝑢𝑛 = 𝑢, 𝑛 = 1, . . . , 𝑁, (5.12b)
𝑢𝑛 ∈ Uad, 𝑛 = 1, . . . , 𝑁. (5.12c)
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The Lagrange multipliers 𝜆𝑛, 𝑛 = 1, . . . , 𝑁 , associated with (5.12b) satisfy
𝑁∑︁
𝑛=1

𝜁𝑛𝜆𝑛 = 0. (5.13)

The augmented Lagrangian associated with (5.12) is given by
𝑁∑︁
𝑛=1

𝜁𝑛𝐿𝑛(𝑢𝑛, 𝑢, 𝜆𝑛), (5.14a)

where 𝐿𝑛 is the augmented Lagrangian associated with the 𝑛th realization, that is,

𝐿𝑛(𝑢𝑛, 𝑢, 𝜆𝑛) B 𝐹𝑛(𝑢𝑛) + ℘(𝑢𝑛) + ⟨𝜆𝑛, 𝑢𝑛 − 𝑢⟩U +
𝑟

2
∥𝑢𝑛 − 𝑢∥2U , (5.14b)

and 𝑟 > 0 is a penalty parameter.
Given 𝜆𝑘−1

𝑛 , 𝑛 = 1, . . . , 𝑁 , the augmented Lagrangian method solves

min
𝑢𝑛 , 𝑢∈Uad

𝑁∑︁
𝑛=1

𝜁𝑛𝐿𝑛
(
𝑢𝑛, 𝑢, 𝜆

𝑘−1
𝑛

)
, (5.15)

for 𝑢𝑘1 , . . . , 𝑢
𝑘
𝑁
∈ Uad and 𝑢𝑘 ∈ U , and then updates the Lagrange multipliers using

𝜆𝑘𝑛 = 𝜆
𝑘−1
𝑛 + 𝑟

(
𝑢𝑘𝑛 − 𝑢𝑘

)
, 𝑛 = 1, . . . , 𝑁. (5.16)

The subproblem (5.15) still couples across all 𝑢𝑘𝑛 ∈ Uad, 𝑛 = 1, . . . , 𝑁 , 𝑢𝑘 ∈ U .
Progressive hedging overcomes this by first minimizing

𝑁∑︁
𝑛=1

𝜁𝑛𝐿𝑛
(
𝑢𝑛, 𝑢

𝑘−1, 𝜆𝑘−1
𝑛

)
over 𝑢𝑛 ∈ Uad, 𝑛 = 1, . . . , 𝑁 , given 𝑢𝑘−1 ∈ U and 𝜆𝑘−1

𝑛 , 𝑛 = 1, . . . , 𝑁 , satisfying
(5.13), then minimizing

𝑁∑︁
𝑛=1

𝜁𝑛𝐿𝑛
(
𝑢𝑘𝑛, 𝑢, 𝜆

𝑘−1
𝑛

)
over 𝑢 ∈ U to compute 𝑢𝑘 , and finally updating the Lagrange multipliers using
(5.16). The function

𝑁∑︁
𝑛=1

𝜁𝑛𝐿𝑛
(
𝑢𝑛, 𝑢

𝑘−1, 𝜆𝑘−1
𝑛

)
is separable in 𝑢𝑛, 𝑛 = 1, . . . , 𝑁 . Therefore, minimizing this function is equivalent
to the solution of 𝑁 minimization problems

min
𝑢𝑛∈Uad

𝐿𝑛
(
𝑢𝑛, 𝑢

𝑘−1, 𝜆𝑘−1
𝑛

)
. (5.17)
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Algorithm 2 Progressive hedging algorithm.
Require: Initial guess 𝑢0 ∈ U , penalty parameter 𝑟 > 0, multiplier estimates

𝜆0
𝑛 ∈ U , 𝑛 = 1, . . . , 𝑁 , satisfying

∑𝑁
𝑛=1 𝜁𝑛𝜆

0
𝑛 = 0, and a sequence of tolerances

{𝜖𝑘} with 𝜖𝑘 > 0 and
∑∞
𝑘=1 𝜖𝑘 < ∞.

1: for 𝑘 = 1, 2, . . . do
2: For 𝑛 = 1, . . . , 𝑁 , compute an approximate solution 𝑢𝑘𝑛 ∈ Uad of (5.17)

satisfying (5.19).
3: Aggregate 𝑢𝑘𝑛 to compute the implementable solution estimate

𝑢𝑘 ←
𝑁∑︁
𝑛=1

𝜁𝑛𝑢
𝑘
𝑛.

4: Update the multiplier estimates as

𝜆𝑘𝑛 ← 𝜆𝑘−1
𝑛 + 𝑟(𝑢𝑘𝑛 − 𝑢𝑘), 𝑛 = 1, . . . , 𝑁.

5: end for

Given 𝑢𝑘𝑛 ∈ Uad, 𝑛 = 1, . . . , 𝑁 , and 𝜆𝑘−1
𝑛 , 𝑛 = 1, . . . , 𝑁 , satisfying (5.13), the

solution of

min
𝑢∈U

𝑁∑︁
𝑛=1

𝜁𝑛𝐿𝑛
(
𝑢𝑘𝑛, 𝑢, 𝜆

𝑘−1
𝑛

)
is

𝑢𝑘 =

𝑁∑︁
𝑛=1

𝜁𝑛𝑢
𝑘
𝑛. (5.18)

Because 𝑢𝑘𝑛 ∈ Uad, for 𝑛 = 1, . . . , 𝑁 , their convex combination must also be in Uad,
i.e. 𝑢𝑘 ∈ Uad. Finally, note that if 𝜆𝑘−1

𝑛 , 𝑛 = 1, . . . , 𝑁 , satisfy (5.13), 𝑢𝑘𝑛 ∈ Uad,
𝑛 = 1, . . . , 𝑁 , and 𝑢𝑘 is given by (5.18), the new Lagrange multipliers (5.16) also
satisfy (5.13). In practice, the minimization problems (5.17) do not need to be
solved exactly, but we have

inf
𝜂∈𝑁Uad (𝑢𝑘𝑛)

∥∇(𝐹𝑛 + ℘)(𝑢𝑘𝑛) + 𝜆𝑘−1
𝑛 + 𝑟(𝑢𝑘𝑛 − 𝑢𝑘−1) + 𝜂∥U ≤

𝜖𝑘

𝑟
(5.19)

for a suitable 𝜖𝑘 . Here 𝑁Uad(𝑢𝑘𝑛) is the normal cone to Uad at the point 𝑢𝑘𝑛 (cf. (1.1)),
and the left-hand side of (5.19) is zero at a solution of (5.17).

We summarize the progressive hedging algorithm in Algorithm 2. When
(𝐹 + ℘)(·) is convex, Algorithm 2 is a special case of the method of partial inverses
from Spingarn (1983) and more generally Douglas–Rachford splitting, which are
provably convergent in a general Hilbert space. See e.g. Eckstein and Bertse-
kas (1992) for the detailed convergence of Douglas–Rachford splitting. We state
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Algorithm 2 in the next theorem. Note that this result is a corollary of Theorem 2
in Spingarn (1985).

Theorem 5.2. Suppose (𝐹𝑛 + ℘)(·), 𝑛 = 1, . . . , 𝑁 , are convex a.s. and Fréchet-
differentiable, and let {(𝑢𝑘𝑛, 𝑢𝑘 , 𝜆𝑘𝑛)} be the sequence of iterates generated by Algo-
rithm 2 so that

inf
𝜂∈𝑁Uad (𝑢𝑘𝑛)



∇(𝐹𝑛 + ℘)
(
𝑢𝑘𝑛
)
+ 𝜆𝑘−1

𝑛 + 𝑟
(
𝑢𝑘𝑛 − 𝑢𝑘−1) + 𝜂

U ≤ 𝜖𝑘𝑟 with

∞∑︁
𝑘=1

𝜖𝑘 < ∞.

If the sequence {𝑣𝑘} ⊂ [0, +∞) consisting of entries

𝑣𝑘 B

(
𝑁∑︁
𝑛=1

𝜁𝑛∥𝑢𝑘 + 𝜆𝑘𝑛∥2U

)1/2

is bounded, then there exists a minimizer �̄� ∈ Uad to (5.10) for which 𝑢𝑘 ⇀ �̄�.

In finite dimensions, Rockafellar and Wets (1991, Theorem 6.1) extend the
convergence theory to non-convex problems, as long as 𝑢𝑘𝑛 are computed as 𝛿-
locally optimal solutions. In particular, Rockafellar and Wets (1991) prove that {𝑢𝑘}
converges to a stationary point of (5.11). Recently, Rockafellar (2018) extended
Algorithm 2 to solve risk-averse problems using optimized certainty equivalent risk
measures (4.3), and Rockafellar and Uryasev (2020) extended it to minimize the
buffered probability (4.18).

5.1.3. Primal–dual risk minimization
The trust-region method described in Section 5.1.1 requires differentiability of the
objective function 𝑓 , which is often not the case for risk-averse problems; see
Theorem 4.4. To overcome this issue, authors such as Kouri and Surowiec (2016,
2020a) have investigated the use of smoothed risk measures. Although practical,
smoothing techniques lead to approximations of the risk measures and errors in
the optimal solutions, and therefore they require the user to tune parameters in
the smoothed risk measures. To control these errors, Kouri and Surowiec (2022)
introduced the primal–dual risk minimization algorithm. To describe this method,
we consider the risk-averse optimization problem

min
𝑢∈Uad

{ 𝑓 (𝑢) B R[𝐹(𝑢)] + ℘(𝑢)}, (5.20)

where R : 𝐿2
P(Ω) → R is a coherent risk measure. Motivated by augmented

Lagrangian methods, the primal–dual risk minimization algorithm regularizes the
dual form of the risk measure (4.5) with a quadratic penalty, that is,

R𝑘 [𝑋] B max
𝜃∈𝔄

{
E[𝜃𝑋] − 𝑟𝑘

2
∥𝜃 − 𝜃𝑘 ∥2𝐿2

P
(Ω)

}
, (5.21)

where 𝔄 ⊂ 𝐿2
P(Ω), 𝑟𝑘 > 0 is the penalty parameter and 𝜃𝑘 ∈ 𝐿2

P(Ω) is an estimate
of a so-called risk identifier, i.e. a maximizer of (4.5), at the 𝑘th iteration. Note that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000029
Downloaded from https://www.cambridge.org/core. IP address: 10.3.50.30, on 15 Jul 2025 at 11:59:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000029
https://www.cambridge.org/core


562 M. Heinkenschloss and D. P. Kouri

Algorithm 3 Primal–dual risk minimization algorithm.
Require: Initial primal guess 𝑢1 ∈ Uad, initial dual guess 𝜃1 ∈ 𝔄, initial penalty

parameter 𝑟1 > 0, and positive constants 𝜏1 > 0, 𝛿𝑟 ∈ (1, +∞) and 𝛿𝜏 ∈ (0, 1)
1: for 𝑘 = 1, 2, . . . do
2: Step computation: Compute 𝑢𝑘+1 ∈ Uad that approximately solves (5.22)
3: Risk identifier update: Set 𝜃𝑘+1 ← Θ𝑘(𝐹(𝑢𝑘+1))
4: Penalty parameter update:
5: if ∥𝜃𝑘+1 − 𝜃𝑘 ∥𝐿2

P
(Ω) > 𝑟𝑘𝜏𝑘 then

6: Set 𝑟𝑘+1 ← 𝛿𝑟𝑟𝑘
7: Set 𝜏𝑘+1 ← 𝜏𝑘
8: else
9: Set 𝑟𝑘+1 ← 𝑟𝑘

10: Set 𝜏𝑘+1 ← 𝛿𝜏𝜏𝑘
11: end if
12: end for

(5.21) is analogous to the derivation of the augmented Lagrangian in Rockafellar
(1973), for example. The regularized risk measure R𝑘 [·] is Lipschitz-continuously
differentiable and the maximization problem (5.21) defining R𝑘 [𝑋] has the unique
maximizer

Θ𝑘(𝑋) B proj𝔄(𝑟𝑘𝑋 + 𝜃𝑘).

Moreover, the gradient of R𝑘 [·] is Θ𝑘(·) and so the risk-averse objective function
at the 𝑘th iteration is continuously differentiable with gradient

∇[R𝑘 ◦ 𝐹 + ℘](𝑢) = E[Θ𝑘(𝐹(𝑢))𝐹′(𝑢)] + ∇℘(𝑢)

as long as 𝐹(·) and ℘(·) are.
At the 𝑘th iteration of the primal–dual risk minimization method, we compute

an approximate minimizer for the regularized problem

min
𝑢∈Uad

{ 𝑓𝑘(𝑢) B R𝑘(𝐹(𝑢)) + ℘(𝑢)}, (5.22)

and then employ augmented Lagrangian techniques to update the penalty parameter
𝑟𝑘+1 and the dual estimates 𝜃𝑘+1. One such realization of these updates is given
in Algorithm 3. Kouri and Surowiec (2022) prove convergence of the sequence of
iterates {𝑢𝑘} generated by Algorithm 3 when 𝑢𝑘+1 is an 𝜖𝑘-minimizer of (5.22).
In particular, if 𝑟𝑘 → 𝑟★ > 0 and 𝜖𝑘 → 𝜖★ ≥ 0, then Theorem 1 in Kouri and
Surowiec (2022) ensures that any weak accumulation point of {𝑢𝑘} is a (𝐾2/𝑟★+𝜖★)-
minimizer of (5.20). Here, 𝐾 > 0 is a bound for the risk envelope 𝔄. This result is
generally not practical unless (5.20) is convex. For non-convex problems, ensuring
𝜖𝑘-minimizers is impossible. Instead, one can only guarantee that 𝑢𝑘+1 is an
𝜖𝑘-stationary point of the form

⟨E[Θ𝑘(𝐹(𝑢𝑘+1))𝐹′(𝑢𝑘+1)] + ∇℘(𝑢𝑘+1), 𝑢 − 𝑢𝑘+1⟩ ≥ −𝜖𝑘 ∥𝑢 − 𝑢𝑘+1∥ (5.23)
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for all 𝑢 ∈ Uad, using, for example, Algorithm 1 or Algorithm 2. In this setting,
Kouri and Surowiec (2022, Theorem 3) prove convergence to a stationary point of
(5.20).

Theorem 5.3. Suppose ℘ : U → R is weakly lower semicontinous, 𝐹 : U →
𝐿2
P(Ω) is completely continuous, that is,

𝑣𝑘 ⇀ 𝑣 =⇒ 𝐹(𝑣𝑘)→ 𝐹(𝑣),

𝐹′(·) is completely continuous, ℘′(·) is weakly continuous, and there exists 𝛾 ∈ R
such that the 𝛾-level set

{𝑢 ∈ Uad | R[𝐹(𝑢)] + ℘(𝑢) ≤ 𝛾}

is non-empty and bounded. If the sequence of iterates {𝑢𝑘} generated by Algo-
rithm 3 satisfy (5.23) with 𝜖𝑘 → 0 and 𝑟𝑘 →∞, then any weak accumulation point
of {𝑢𝑘} is a stationary point of (5.20).

As mentioned earlier, the objective function in (5.22) is differentiable if 𝐹(·)
and ℘(·) are differentiable. Thus the optimization subproblems (5.22) can be
solved using Newton-type optimization methods, such as the trust-region method
described in Section 5.1.1. Additional efficiencies can be gained by exploiting
the structure of the smoothed risk measure R𝑘 . For example, if the underlying
risk measure is R = AVaR𝛽 defined in (4.9) and an SAA approximation with 𝑁
samples is used, then Markowski (2022) demonstrates that gradient and Hessian-
times-vector information of the SAA approximation of the objective function in
(5.22) can be well approximated using only a fraction of the 𝑁 samples – in later
iterations of Algorithm 3 only approximately (1 − 𝛽)𝑁 ≪ 𝑁 samples. Moreover,
when applying smoothing as in Kouri and Surowiec (2016, 2020a) to (4.10),
Markowski (2022) proposes a substep in an inexact Newton method to deal with
the near-rank deficiency of the Hessian.

Related to Algorithm 3 is the interior point method developed in Garreis et al.
(2021). Their interior point method considers a restricted class of coherent risk
measures of the form (4.3), with the expected utility function

U(𝑋) = E[min{𝑎1𝑋, 𝑎2𝑋}]

for 𝑎1 ∈ [0, 1) and 𝑎2 > 1. This class of risk measures enables the reformulation
of (5.20) as

min
(𝑢,𝑡 ,𝑊)∈Uad×R×𝐿2

P
(Ω)
𝑡 + E[𝑊] + ℘(𝑢)

subject to 𝑊 ≥ 𝑎1(𝐹(𝑢) − 𝑡) a.s., 𝑊 ≥ 𝑎2(𝐹(𝑢) − 𝑡) a.s.
(5.24)

Garreis et al. (2021) apply an interior point method to solve (5.24).
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5.2. Stochastic methods

The stochastic approximation (SA) method, originally introduced by Robbins and
Monro (1951), has recently received increased attention for PDE-constrained ap-
plications of the type

min
𝑢∈Uad

E[𝐹(𝑢)] + ℘(𝑢), (5.25)

where U is a Hilbert space, Uad ⊂ U is a closed convex set, 𝐹 : U → 𝐿1
P(Ω) and

℘ : U → R. We assume that 𝐹 and ℘ are Fréchet-differentiable. We have discussed
some SA methods in Section 3.6 for the model problem without control constraints,
i.e. Uad = U . More generally, Barty, Roy and Strugarek (2007) and Geiersbach and
Pflug (2019) studied SA for convex problems posed in Hilbert space. Building on
these works, Geiersbach and Wollner (2020) and Martin et al. (2021) combine SA
and uniform finite element mesh refinement for convex PDE-constrained optimiz-
ation problems. In addition, Geiersbach and Scarinci (2023) study SA methods for
nonlinear, potentially non-convex, PDE-constrained optimization problems. Relat-
ing SA and the methods described in Section 5.1, Martin and Nobile (2021) apply a
stochastic gradient method called SAGA (stochastic averaged gradient accelerated
method) to a quadrature approximation of (5.25) for the particular case of the model
problem in Section 3.

The basic SA method generates the sequence of iterations

𝑢𝑘+1 = projUad
(𝑢𝑘 − 𝛾𝑘(𝐺(𝑢𝑘 , 𝜉𝑘) + ∇℘(𝑢𝑘))), (5.26)

where 𝐺𝑘(𝑢𝑘) are independent random realizations of the gradient of 𝐹(·), and
𝛾𝑘 > 0 are predetermined step lengths. For example,

𝐺𝑘(𝑢𝑘) =
1
𝑁𝑘

𝑁𝑘∑︁
𝑛=1
∇𝐹𝑛(𝑢𝑘), (5.27)

where 𝑁𝑘 ∈ N and ∇𝐹𝑛(𝑢𝑘) are independent realizations of ∇𝐹(𝑢𝑘). In this
setting, each iteration of SA defined in (5.26) requires 𝑁𝑘 state and adjoint solves.
Traditionally, 𝑁𝑘 is small, like 𝑁𝑘 = 1, resulting in a low per-iteration cost.
However, the convergence of {𝑢𝑘} is probabilistic, often requires convexity of
𝐹(·) + ℘(·), and is dependent on the choice of 𝛾𝑘 . The basic SA method (5.26),
(5.27) is written in Hilbert space, and in this case one may assume that the gradient
estimators 𝐺𝑘(𝑢𝑘) are unbiased. The numerical realization, however, requires
discretizations of state and adjoint PDEs and possibly the iterative solution of
these discretized equations, which generates biases. The size of the bias can be
controlled by refining the discretization or iterative method stopping criteria and
must be integrated into the convergence analysis of the SA method. See e.g.
Geiersbach and Pflug (2019), Geiersbach and Wollner (2020), Martin et al. (2021)
for such analyses applied to the model problem in Section 3.
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When there is no bias, a basic analysis of (5.26) can be found, for example,
in Shapiro et al. (2014, Section 5.9.1). It employs the step sizes 𝛾𝑘 ≔ 𝜅/𝑘 for
prescribed constant 𝜅 > 0 and the following assumptions.

(i) There exists a constant 𝑀 > 0 such that

E
[
∥𝐺𝑘(𝑢)∥2U

]
≤ 𝑀2, 𝑢 ∈ Uad. (5.28)

(ii) The function 𝑓 (·) = E[𝐹(·)] + ℘(·) is Fréchet-differentiable and strongly
convex, that is, there exists 𝑐 > 0 such that

𝑓 (𝑢′) ≥ 𝑓 (𝑢) + ⟨∇ 𝑓 (𝑢), 𝑢′ − 𝑢⟩U +
1
2
𝑐∥𝑢′ − 𝑢∥2U for all 𝑢, 𝑢′ ∈ U . (5.29)

For 𝜅 > 1/(2𝑐), these assumptions ensure that

E
[
∥𝑢𝑘 − �̄�∥2U

]
= 𝑂(𝑘−1), (5.30)

where �̄� ∈ Uad is the unique solution to (5.25). In words, the expected error at
the 𝑘th iteration is 𝑂(𝑘−1/2). Additionally, if ∇ 𝑓 (·) is Lipschitz-continuous and
�̄� ∈ Uad satisfies ∇ 𝑓 (�̄�) = 0, then

E[ 𝑓 (𝑢𝑘) − 𝑓 (�̄�)] = 𝑂(𝑘−1). (5.31)

Although convergent, SA is highly sensitive to the choice of 𝜅 in the step size
𝛾𝑘 = 𝜅/𝑘 . Nemirovski, Juditsky, Lan and Shapiro (2009) demonstrate extremely
slow convergence of SA for a poorly chosen 𝜅, when minimizing a simple one-
dimensional deterministic quadratic function, reducing the error in (5.30) by only
0.015 after one billion iterations. Convergence can be even slower without strong
convexity (5.29) of 𝑓 . Moreover, this choice of 𝛾𝑘 can be too small to achieve
a reasonable convergence rate, while longer steps may not result in a convergent
algorithm. For finite-dimensional convex problems, these issues can be overcome
using the robust SA and mirror descent methods described in Nemirovski et al.
(2009), which are based on the earlier work of Nemirovski and Yudin (1978). By
employing the averages of the SA iterates 𝑢𝑘 given by

�̂� 𝑗:𝑘 B
𝑘∑︁
𝑖= 𝑗

𝜈𝑖𝑢𝑖 for 𝜈ℓ B
𝛾ℓ∑𝑘
𝑖= 𝑗 𝜈𝑖

,

Nemirovski et al. (2009) show that

E[ 𝑓 (�̂�𝑘:𝑁 ) − 𝑓 (�̄�)] = 𝑂(𝑁−1/2) (5.32)

after 𝑁 iterations, even when 𝛾𝑘 is chosen to be a constant, i.e. 𝛾𝑘 = 𝑂(𝑁−1/2), and
when 𝛾𝑘 = 𝑂(𝑘−1/2). See equations (2.22) and (2.27) in Nemirovski et al. (2009).
Although robust SA results in the slower convergence rate (5.32) compared to
(5.31), it does not require strong convexity, and the dependence of the convergence
rate on the choice of step size is significantly diminished. In particular, scaling 𝛾𝑘
by some positive constant 𝜃 results in the right-hand side of (5.32) being scaled by
the constant max{𝜃, 𝜃−1}.
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SA methods are actively researched, primarily in the context of machine learning
problems. In principle, these SA methods can be adapted to solve PDE-constrained
optimization problems under uncertainty. However, as mentioned before, in this
problem class, biases that result from discretization errors or iterative solutions
of discretized PDEs at given samples, for example, are inevitable and must be
incorporated into the design and analysis of the SA method. Moreover, except
for special cases such as our model problem in Section 3.2.2, PDE-constrained
optimization problems under uncertainty generally lead to non-convex problems,
whereas many SA analyses in the literature assume convexity.

6. Conclusions and outlook
Research on PDE-constrained optimization under uncertainty is rapidly evolving
and presents many challenging research issues related to problem formulation,
mathematical analysis, numerical methods, and applications.

Much of the current literature has focused on unconstrained or deterministic
control-constrained problems (e.g. (4.1c)). However, state-dependent constraints
of the type (4.1b) and pointwise (in space and/or time) state constraints play an im-
portant role in applications. Even for deterministic PDE-constrained optimization
problems, pointwise state constraints are challenging to handle, both theoretically
and numerically. The treatment of such constraints in the presence of uncertainty
is just beginning. See the references at the end of Section 4.3.

Likewise, the current literature has focused on PDE-constrained optimization
problems in which the decisions are made before observing the uncertainty and
are not revised after the uncertainty is revealed. However, multistage problems
in which the decisions are made in stages, with later decisions incorporating the
uncertainty revealed in the present and previous stages, are important in many
applications. As already noted in, for example, Birge and Louveaux (2011) and
Pflug and Pichler (2014), there is a connection with stochastic control problems, but
also with nonlinear model predictive control (see e.g. Grüne and Pannek 2011 and
Rawlings, Mayne and Diehl 2024) and reinforcement learning (see e.g. Bertsekas
2019, 2024, Meyn 2022 and Recht 2019).

A major computational bottleneck when trying to extend existing stochastic
programming tools to the PDE-constrained case is the computational cost of the
evaluation of the control-to-state map, i.e. the solution of the state PDE, that enters
the objective function and constraint functions, e.g. 𝐹 and 𝐺 in (4.1), and the asso-
ciated adjoint PDEs required for derivative computations. In the case of the model
problem (3.51), these are the PDEs (3.52c) and (3.52c). Thus, methods to reduce
the overall number of PDE solutions or the cost of an approximate PDE solution
have an immediate impact. For example, for deterministic PDE-constrained op-
timization problems, projection-based reduced-order models (PROMs) of the state
and adjoint PDEs have been integrated into a trust-region algorithm, which was
proposed and analysed in Kouri et al. (2013, 2014) and which is Algorithm 1 with
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Uad = U . This integrated approach guarantees convergence to points 𝑢∗ that satisfy
the first-order necessary optimality conditions of the original problem (see also
Theorem 5.1) at a computational cost that is a fraction of the cost incurred had
only a high-fidelity PDE discretization been used; see e.g. Zahr and Farhat (2015)
and Wen and Zahr (2023). The extension to PDE-constrained optimization prob-
lems with uncertainty has been limited to the smooth risk-averse formulations and
applications with a relatively small number of random variables where the expect-
ation can be approximated by sparse-grid quadrature or Voronoi-based piecewise
constant approximation; see e.g. Zahr et al. (2019) and Zou et al. (2022).

Similarly, for the evaluation of expectations of quantities of interest involving a
PDE solution at a fixed control, multilevel and multi-fidelity Monte Carlo methods,
which were reviewed in Section 3.5.2, are successfully used to reduce the compu-
tational cost. Krumscheid and Nobile (2018) and Giles and Haji-Ali (2019) extend
this to functions other than the expected value. Alternatively, Heinkenschloss,
Kramer, Takhtaganov and Willcox (2018) and Heinkenschloss, Kramer and Takht-
aganov (2020) developed an importance sampling-based approach that uses PROMs
and their error estimates for AVaR (4.9) estimation, while Zou, Kouri and Aquino
(2017, 2019) developed a locally adaptive PROM approximation for estimating
general risk measures. These developments are for the evaluation of some risk
measures at a fixed control. Extension of such approaches to the optimization
context is an open area of research.
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D. Dentcheva and A. Ruszczyński (2003), Optimization with stochastic dominance con-
straints, SIAM J. Optim. 14, 548–566.

J. Dick, F. Y. Kuo and I. H. Sloan (2013), High-dimensional integration: The quasi-Monte
Carlo way, Acta Numer. 22, 133–288.

J. Eckstein and D. P. Bertsekas (1992), On the Douglas–Rachford splitting method and
the proximal point algorithm for maximal monotone operators, Math. Program. 55,
293–318.

I. Ekeland and R. Temam (1999), Convex Analysis and Variational Problems, Vol. 28 of
Classics in Applied Mathematics, SIAM.

M. S. Eldred (2011), Design under uncertainty employing stochastic expansion methods,
Int. J. Uncertain. Quantif. 1, 119–146.

G. Fabbri, F. Gozzi and A. Świech (2017), Stochastic Optimal Control in Infinite Dimen-
sion: Dynamic Programming and HJB Equations, Vol. 82 of Probability Theory and
Stochastic Modelling, Springer.

G. B. Folland (1999), Real Analysis: Modern Techniques and Their Applications, Pure and
Applied Mathematics, second edition, Wiley.
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L. Grüne and J. Pannek (2011), Nonlinear Model Predictive Control: Theory and Al-
gorithms, Communications and Control Engineering Series, Springer.

M. D. Gunzburger (2003), Perspectives in Flow Control and Optimization, SIAM.
M. D. Gunzburger, C. G. Webster and G. Zhang (2014), Stochastic finite element methods

for partial differential equations with random input data, Acta Numer. 23, 521–650.
P. A. Guth, V. Kaarnioja, F. Y. Kuo, C. Schillings and I. H. Sloan (2021), A quasi-Monte

Carlo method for optimal control under uncertainty, SIAM/ASA J. Uncertain. Quantif.
9, 354–383.

M. Heinkenschloss and D. Leykekhman (2010), Local error estimates for SUPG solutions
of advection-dominated elliptic linear–quadratic optimal control problems, SIAM J.
Numer. Anal. 47, 4607–4638.

M. Heinkenschloss and L. N. Vicente (2002), Analysis of inexact trust-region SQP al-
gorithms, SIAM J. Optim. 12, 283–302.

M. Heinkenschloss, B. Kramer and T. Takhtaganov (2020), Adaptive reduced-order model
construction for conditional value-at-risk estimation, SIAM/ASA J. Uncertain. Quantif.
8, 668–692.

M. Heinkenschloss, B. Kramer, T. Takhtaganov and K. Willcox (2018), Conditional-
value-at-risk estimation via reduced-order models, SIAM/ASA J. Uncertain. Quantif. 6,
1395–1423.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000029
Downloaded from https://www.cambridge.org/core. IP address: 10.3.50.30, on 15 Jul 2025 at 11:59:29, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1080/10556788.2024.2436192
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000029
https://www.cambridge.org/core


572 M. Heinkenschloss and D. P. Kouri

M. Hintermüller and R. H. W. Hoppe (2008), Goal-oriented adaptivity in control con-
strained optimal control of partial differential equations, SIAM J. Control Optim. 47,
1721–1743.

M. Hinze (2005), A variational discretization concept in control constrained optimization:
The linear–quadratic case, Comput. Optim. Appl. 30, 45–63.

M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich (2009), Optimization with PDE Con-
straints, Vol. 23 of Mathematical Modelling, Theory and Applications, Springer.

K. Ito and S. S. Ravindran (1998), Optimal control of thermally convected fluid flows,
SIAM J. Sci. Comput. 19, 1847–1869.

J. Jahn (2007), Introduction to the Theory of Nonlinear Optimization, third edition,
Springer.

J. D. Jakeman, D. P. Kouri and J. G. Huerta (2022), Surrogate modeling for efficiently,
accurately and conservatively estimating measures of risk, Reliab. Engrg Syst. Saf. 221,
art. 108280.

P. Kolvenbach, O. Lass and S. Ulbrich (2018), An approach for robust PDE-constrained
optimization with application to shape optimization of electrical engines and of dynamic
elastic structures under uncertainty, Optim. Eng. 19, 697–731.

D. P. Kouri (2012), An approach for the adaptive solution of optimization problems gov-
erned by partial differential equations with uncertain coefficients. PhD thesis, Depart-
ment of Computational and Applied Mathematics, Rice University, Houston, TX.

D. P. Kouri (2014), A multilevel stochastic collocation algorithm for optimization of PDEs
with uncertain coefficients, SIAM/ASA J. Uncertain. Quantif. 2, 55–81.

D. P. Kouri (2017), A measure approximation for distributionally robust PDE-constrained
optimization problems, SIAM J. Numer. Anal. 55, 3147–3172.

D. P. Kouri (2019), Higher-moment buffered probability, Optim. Lett. 13, 1223–1237.
D. P. Kouri and D. Ridzal (2018), Inexact trust-region methods for PDE-constrained

optimization, in Frontiers in PDE-Constrained Optimization (H. Antil et al., eds), Vol.
163 of IMA Volumes in Mathematics and its Applications, Springer, pp. 83–121.

D. P. Kouri and A. Shapiro (2018), Optimization of PDEs with uncertain inputs, in Frontiers
in PDE-Constrained Optimization (H. Antil et al., eds), Vol. 163 of IMA Volumes in
Mathematics and its Applications, Springer, pp. 41–81.

D. P. Kouri and T. M. Surowiec (2016), Risk-averse PDE-constrained optimization using
the conditional value-at-risk, SIAM J. Optim. 26, 365–396.

D. P. Kouri and T. M. Surowiec (2018), Existence and optimality conditions for risk-averse
PDE-constrained optimization, SIAM/ASA J. Uncertain. Quantif. 6, 787–815.

D. P. Kouri and T. M. Surowiec (2020a), Epi-regularization of risk measures, Math. Oper.
Res. 45, 774–795.

D. P. Kouri and T. M. Surowiec (2020b), Risk-averse optimal control of semilinear elliptic
PDEs, ESAIM Control Optim. Calc. Var. 26, art. 53.

D. P. Kouri and T. M. Surowiec (2022), A primal–dual algorithm for risk minimization,
Math. Program. 193, 337–363.

D. P. Kouri, M. Heinkenschloss, D. Ridzal and B. G. van Bloemen Waanders (2013), A
trust-region algorithm with adaptive stochastic collocation for PDE optimization under
uncertainty, SIAM J. Sci. Comput. 35, A1847–A1879.

D. P. Kouri, M. Heinkenschloss, D. Ridzal and B. G. van Bloemen Waanders (2014),
Inexact objective function evaluations in a trust-region algorithm for PDE-constrained
optimization under uncertainty, SIAM J. Sci. Comput. 36, A3011–A3029.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492925000029
Downloaded from https://www.cambridge.org/core. IP address: 10.3.50.30, on 15 Jul 2025 at 11:59:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492925000029
https://www.cambridge.org/core


Optimization problems governed by systems of PDEs with uncertainties 573

D. P. Kouri, M. Staudigl and T. M. Surowiec (2023), A relaxation-based probabilistic
approach for PDE-constrained optimization under uncertainty with pointwise state con-
straints, Comput. Optim. Appl. 85, 441–478.

P. A. Krokhmal (2007), Higher moment coherent risk measures, Quant. Finance 7, 373–
387.

S. Krumscheid and F. Nobile (2018), Multilevel Monte Carlo approximation of functions,
SIAM/ASA J. Uncertain. Quantif. 6, 1256–1293.

F. Y. Kuo and D. Nuyens (2016), Application of quasi-Monte Carlo methods to elliptic
PDEs with random diffusion coefficients: A survey of analysis and implementation,
Found. Comput. Math. 16, 1631–1696.

F. Y. Kuo, R. Scheichl, C. Schwab, I. H. Sloan and E. Ullmann (2017), Multilevel quasi-
Monte Carlo methods for lognormal diffusion problems, Math. Comp. 86, 2827–2860.

H. J. Kushner and P. Dupuis (2001), Numerical Methods for Stochastic Control Problems
in Continuous Time, Vol. 24 of Stochastic Modelling and Applied Probability, second
edition, Springer.

B. S. Lazarov and O. Sigmund (2011), Filters in topology optimization based on Helmholtz-
type differential equations, Int. J. Numer. Methods Engrg 86, 765–781.

B. S. Lazarov, M. Schevenels and O. Sigmund (2012a), Topology optimization consider-
ing material and geometric uncertainties using stochastic collocation methods, Struct.
Multidiscip. Optim. 46, 597–612.

B. S. Lazarov, M. Schevenels and O. Sigmund (2012b), Topology optimization with geo-
metric uncertainties by perturbation techniques, Int. J. Numer. Methods Engrg 90, 1321–
1336.

H. Levy (1992), Stochastic dominance and expected utility: Survey and analysis, Manag.
Sci. 38, 555–593.

R. M. Lewis and S. G. Nash (2005), Model problems for the multigrid optimization of
systems governed by differential equations, SIAM J. Sci. Comput. 26, 1811–1837.

D. Leykekhman (2012), Investigation of commutative properties of discontinuous Galerkin
methods in PDE constrained optimal control problems, J. Sci. Comput. 53, 483–511.

D. Leykekhman and M. Heinkenschloss (2012), Local error analysis of discontinuous
Galerkin methods for advection-dominated elliptic linear–quadratic optimal control
problems, SIAM J. Numer. Anal. 50, 2012–2038.

J.-L. Lions (1971), Optimal Control of Systems Governed by Partial Differential Equations,
Vol. 170 of Grundlehren der mathematischen Wissenschaften, Springer.

W. G. Litvinov (2000), Optimization in Elliptic Problems with Applications to Mechanics
of Deformable Bodies and Fluid Mechanics, Vol. 119 of Operator Theory: Advances
and Applications, Birkhäuser.
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