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This paper studies the magnitude homology of graphs focusing mainly on the
relationship between its diagonality and the girth. The magnitude and magnitude
homology are formulations of the Euler characteristic and the corresponding
homology, respectively, for finite metric spaces, first introduced by Leinster and
Hepworth–Willerton. Several authors study them restricting to graphs with path
metric, and some properties which are similar to the ordinary homology theory have
come to light. However, the whole picture of their behaviour is still unrevealed, and
it is expected that they catch some geometric properties of graphs. In this article, we
show that the girth of graphs partially determines the magnitude homology, that is,
the larger girth a graph has, the more homologies near the diagonal part vanish.
Furthermore, applying this result to a typical random graph, we investigate how the
diagonality of graphs varies statistically as the edge density increases. In particular,
we show that there exists a phase transition phenomenon for the diagonality.
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1. Introduction

The magnitude of finite metric spaces was introduced by Leinster [12] as a for-
mulation of the Euler characteristic of finite metric spaces. The magnitude has
several interesting properties such as the multiplicativity property and the inclu-
sion–exclusion principle, which seems parallel to the case of the ordinary Euler
characteristic of topological spaces. However, the whole picture of the behaviour
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of the magnitude is unrevealed, and that is attracting people in several areas of
mathematics. In particular, the magnitude of finite graphs, which takes values in
formal power series with Z-coefficients, is studied by several authors so far [1, 4,
8, 9, 11]. Throughout this article, we call a finite, simple and undirected graph
without loops just a graph.

The magnitude homology of graphs is a categorification of the magnitude, first
introduced by Hepworth–Willerton [9] as an analogy of ordinary homology the-
ory. It is a bigraded abelian group whose Euler characteristic coincides with the
magnitude, and the multiplicativity property and the inclusion–exclusion princi-
ple are formulated as the Künneth and the Mayer–Vietoris theorems, respectively
[9]. Their beautiful theory enables us to compute the magnitude and magnitude
homology of graphs. For example, Gu [8] showed a remarkable compatibility of
the magnitude homology with the algebraic Morse theory, and he computed the
magnitude homology of several types of graphs including well-known classical ones.
Bottinelli–Kaiser [4] studied the magnitude homology of median graphs, using the
retraction between the homology groups. More or less, the remarkable property
concerned in their works is the diagonality of graphs, first suggested in [9], which
guarantees a simpleness of the magnitude homology in some sense.

In this article, we show that the girth of graphs partially determines the magni-
tude homology. More specifically, the larger girth a graph has, the more homologies
near the diagonal part vanish. Furthermore, by using this result, we investigate how
the diagonality of graphs varies statistically as the edge density (proportion of the
number of edges to that of possible edges) increases. In particular, we show that
there exists a phase transition phenomenon for the diagonality. As shown in [9], a
tree (or more generally, a forest) which has low edge density is diagonal. It is also
known that a few graphs with high edge density are diagonal. This fact is shown
in [9] for complete graph, and in [8] for pawful graph (see definition 2.9). How-
ever, graphs with intermediate edge density are more likely to be non-diagonal. To
describe this phenomenon statistically, we consider the Erdős–Rényi graph model
which is a typical random graph model extensively studied since the 1960s [5–7].
Given n ∈ N and p ∈ [0, 1], an Erdős–Rényi graph Gn,p with parameters n and p
is a random graph with n vertices, where the edge between each pair of vertices is
added independently with probability p.

Now, we explain our results in the following. We first state a relationship between
the girth of graphs and the magnitude homology. They will be proved in an algebraic
and combinatorial way in § 3. Let G be a graph and x ∈ V (G) be a vertex. We define
the local girth of G at x by

girx(G) := inf{i � 3 | there exists a cycle of length i in G containing x}.
We also define the girth of G by gir(G) := minx girx(G). Note that the follow-
ing statements are compatible with the computation of the magnitude homology
for trees and cycle graphs in [8, 9], respectively. In particular, corollary 1.4
is a generalization of the computation of the magnitude homology of trees in
[9, corollary 6.8]. Below, MH∗,∗(G) is the magnitude homology of G, and the super-
script x of MHx

∗,∗(G) indicates the restriction on the starting point (see § 2.2 for
the definitions).

https://doi.org/10.1017/prm.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.7


Girth, magnitude homology and phase transition of diagonality 223

Theorem 1.1. Let � � 1. If girx(G) � 5, then MHx
�,�(G) ∼= Z

deg x. Here, deg x
denotes the degree of the vertex x.

The following is an immediate corollary of theorem 1.1. It is also obtained by
Sazdanovic–Summers in [14, thoerem 4.3].

Corollary 1.2. Let � � 1. If gir(G) � 5, then MH�,�(G) ∼= Z
2#E(G). Here, #E(G)

denotes the number of edges of G.

The following are extensions of the above.

Theorem 1.3. Let � � 1 and i � 0. If girx(G) � 2i + 5, then

MHx
�−j,�(G) ∼=

{
Z

deg x, j = 0,

0, 1 � j � i.

Corollary 1.4. Let � � 1 and i � 0. If gir(G) � 2i + 5, then

MH�−j,�(G) ∼=
{

Z
2#E(G), j = 0,

0, 1 � j � i.

The above results will be proved by using the algebraic Morse theory. The fol-
lowing gives a criterion for the diagonality of graphs. Let e ∈ E(G) be an edge. We
define the local girth of G at e by

gire(G) := inf{i � 3 | there exists a cycle of length i in G containing e}.
Note that we have gir(G) = mine gire(G).

Theorem 1.5. Let G be a graph and e ∈ E(G) be an edge. If k := gire(G) ∈ [5,∞),
then MH2,�(G) �= 0 for � = �(k + 1)/2�.

Corollary 1.6. If G is a diagonal graph, then gir(G) = 3, 4, or ∞.

By considering k = 2i + 5 or 2i + 6 in theorem 1.5, it turns out that the range
1 � j � i guaranteeing the vanishing of the magnitude homology groups in corollary
1.4 is optimal (see table I).

Next we state several stochastic properties of the magnitude homology of the
Erdős–Rényi random graph model. They will be shown in § 4. In the study of the
Erdős–Rényi graph Gn,p, one is usually concerned with the asymptotic behaviour
of Gn,p as the number of vertices n tends to infinity, where p is typically regarded
as a function of n. For a graph property P, we say that Gn,p satisfies P asymp-
totically almost surely (a.a.s.) if limn→∞ P(Gn,p satisfies P) = 1. We also use the
Bachmann–Landau big-O/little-o notation with respect to the number of ver-
tices n tending to infinity. Additionally, for non-negative functions f(n) and g(n),
f(n) � g(n) means that f(n) = o(g(n)). One of the most classical themes is search-
ing the threshold probability p(n) for various graph properties P. Here, we call the
probability p(n) a threshold for P if p � p(n) implies that Gn,p satisfies P a.a.s.
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Table 1. Ranks of the magnitude homology described in corollary 1.4 and theorem 1.5

�\ k 0 1 2 · · · i i + 1 i + 2 i + 3

0 #V
1 0 2#E
2 0 0 2#E
... 0 0 0

. . .

i 0 0 0 0 2#E
i + 1 0 0 0 0 2#E
i + 2 0 0 0 0 2#E
i + 3 �= 0 0 0 0 0 2#E

Figure 1. Limiting function of c appearing in theorem 1.7 (2).

and p 	 p(n) implies that Gn,p does not satisfy P a.a.s. For example, p(n) = n−1

is the threshold probability for the appearance of a cycle in Gn,p.
The first result exhibits a phase transition for the diagonality of Erdős–Rényi

graphs. This is where the magnitude homology of Erdős–Rényi graph suddenly
becomes non-diagonal.

Theorem 1.7. Let Gn,p be an Erdős–Rényi graph with parameters n and p. Then,
the following (1), (2) and (3) hold.

(1) If p � n−1, then Gn,p is diagonal a.a.s.

(2) If p = cn−1, then

lim
n→∞P(Gn,p is non-diagonal)

=

{
1 −√

1 − c exp(c/2 + c2/4 + c3/6 + c4/8), c < 1,

1, c > 1.

(3) If n−1 � p � n−3/4, then Gn,p is non-diagonal a.a.s.

As seen in figure 1, the probability that Gn,c/n is non-diagonal approaches an
explicit constant bounded away from one whenever c < 1. Meanwhile, when c > 1,
Gn,c/n is non-diagonal a.a.s.

Now, a natural question is whether Gn,p is non-diagonal a.a.s. above the order
p = n−3/4. In the theory of random graphs, it is frequently asked whether a graph
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property is monotone since the monotonicity guarantees the existence of its proba-
bility threshold in Erdős–Rényi graphs [3]. Here, a graph property P is said to be
monotone increasing if whenever a graph G satisfies P and G is a subgraph of a
graph G′ then G′ also satisfies P. However, since the non-diagonality is not a mono-
tone property, the above question is not straightforward. The following theorem
partially answers this question.

Theorem 1.8. Let ε > 0 be fixed, and let Gn,p be an Erdős–Rényi graph with
parameters n and p. If p � (((3 + ε) log n)/n)1/3, then Gn,p is diagonal a.a.s.

The study of P(Gn,p is non-diagonal) in the regime of p not covered by theorems
1.7 and 1.8 will be our future work. At this moment, even the existence of the
threshold where Gn,p again becomes diagonal is still unknown.

Finally, we show the asymptotic behaviour of each rank of the magnitude homol-
ogy around the threshold probability. The following result can be regarded as a
weak law of large numbers for the rank of the magnitude homology.

Theorem 1.9. Let k, � ∈ N and p = cn−1 for some fixed c > 0. Let Gn,p be an
Erdős–Rényi graph with parameters n and p. Then,

lim
n→∞

E[rk(MHk,�(Gn,p))]
n

= cδk,�,

where δk,� is the Kronecker delta function. Moreover, for any ε > 0,

lim
n→∞ P

(∣∣∣∣ rk(MHk,�(Gn,p))
n

− cδk,�

∣∣∣∣ > ε

)
= 0.

Remark 1.10. Theorem 1.9 immediately implies limn→∞ E[rk(MHx
k,�(Gn,c/n))] =

cδk,� for any vertex x in Gn,p. Note that the value c appearing here coincides with
the limit of the expected degree of x in Gn,c/n. This means that E[rk(MHx

k,�(Gn,p))]
and E[(deg x)δk,�] are asymptotically equal. On the other hand, it is shown in
[9] that rk(MHx

k,�(T )) = (deg x)δk,� for any tree T and its vertex x. Therefore,
E[rk(MHx

k,�(Gn,p))] and rk(MHx
k,�(T )) depend only on the degree of x asymptot-

ically. This property is compatible with the fact that Gn,c/n has locally tree-like
structure.

The magnitude #G(q) of a graph G, which takes value in the formal power series
Z[[q]], is determined by the magnitude homology of G (cf. [9, theorem 2.8]):

#G(q) =
∞∑

�=0

(
�∑

k=0

(−1)k rk(MHk,�(G))

)
q�.

For � � 0, define χ�(G) as the coefficient of q� in the above equation. Then, the
following corollary of theorem 1.9 immediately follows.

https://doi.org/10.1017/prm.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.7


226 Y. Asao et al.

Corollary 1.11. Let � ∈ N and p = cn−1 for some fixed c > 0. Let Gn,p be an
Erdős–Rényi graph with parameters n and p. Then,

lim
n→∞

E[χ�(Gn,p)]
n

= (−1)�c.

Moreover, for any ε > 0,

lim
n→∞ P

(∣∣∣∣χ�(Gn,p)
n

− (−1)�c

∣∣∣∣ > ε

)
= 0.

This article is organized as follows. In § 2, we briefly review some basic definitions
of the magnitude homology of graphs. In § 3, we study the magnitude homology
of graphs and its diagonality from a viewpoint of the girth. We use the algebraic
Morse theory and combinatorial arguments on graphs. Finally, in § 4, we study the
magnitude homology of Erdős–Rényi graphs using theorems obtained in § 3 together
with classical results on random graphs.

2. Notations for the magnitude homology of graphs

In this section, we recall some definitions of the magnitude homology of graphs.

2.1. Graph

A finite simple undirected graph without loops is a pair of a nonempty finite set V
and a collection E of subsets in V of cardinality two. We regard V and E as a vertex
set and an edge set, respectively. Throughout this article, we call a finite simple
undirected graph without loops just a graph. Below, we describe some notation and
terminology for a given graph G = (V (G), E(G)).

Definition 2.1. We say that x ∈ V (G) is adjacent to y ∈ V (G) if {x, y} ∈ E(G),
and denote x ∼ y. For x ∈ V (G), the degree deg x indicates the number of vertices
that are adjacent to x.

Definition 2.2. A tuple (x0, x1, . . . , xk) ∈ V (G)k+1 is called a path between x, y ∈
V (G) if x0 = x, xk = y, and xi−1 ∼ xi for all i = 1, 2, . . . , k. Here, k is called the
length of the path. A graph G is said to be connected if for any two vertices x, y ∈
V (G), there exists a path between x and y.

Definition 2.3. For vertices x, y ∈ V (G), an extended metric d(x, y) is defined as
the length of shortest path between x and y, that is, the minimum number of edges
connecting x and y. If there exist no such paths, we set d(x, y) = ∞.

Definition 2.4. Let i � 3. An i-cycle or cycle in a graph G is a tuple (x0, . . . , xi)
of vertices in G satisfying (1) {xk, xk+1} ∈ E(G) for 0 � k � i − 1, (2) x0 = xi,
and (3) x0, . . . , xi−1 are all distinct.

Definition 2.5. A tree is a connected graph that has no cycles, while a connected
graph that has exactly one cycle is called a unicyclic graph.
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2.2. Magnitude homology

In this subsection, we briefly recall the definition of the magnitude homology.
The readers not familiar with this subject should refer to [9] for details. Let
G = (V (G), E(G)) be a graph. For a tuple (x0, x1, . . . , xk) ∈ V (G)k+1, we define
L(x0, x1, . . . , xk) :=

∑k
i=1 d(xi−1, xi). Let � ∈ Z�0 be fixed, and for any k ∈ Z�0,

we define a free Z-module MCk,�(G) generated by a set

{(x0, x1, . . . , xk) ∈ V (G)k+1 | xi �= xi+1 for 0 � i � k − 1, L(x0, . . . , xk) = �}.

We note from the definition that MCk,�(G) = 0 for k > �. We can decompose
MCk,�(G) into spatially localized versions as follows. For any k ∈ Z�0 and x, y ∈
V (G), we define free Z-modules MCx

k,�(G) and MCx,y
k,� (G) generated by sets

{
(x0, x1, . . . , xk) ∈ V (G)k+1

∣∣∣∣x0 = x,L(x0, . . . , xk) = �,
xi �= xi+1 for 0 � i � k − 1

}

and {
(x0, x1, . . . , xk) ∈ V (G)k+1

∣∣∣∣x0 = x, xk = y, L(x0, . . . , xk) = �,
xi �= xi+1 for 0 � i � k − 1

}
,

respectively. Then we have the following obvious decompositions by the start points
and the end points of tuples:

MCk,�(G) ∼=
⊕

x∈V (G)

MCx
k,�(G) ∼=

⊕
x,y∈V (G)

MCx,y
k,� (G). (2.1)

Definition 2.6. Given (x0, . . . , xi, . . . , xk) ∈ MCk,�(G), we say that xi is a
smooth point of (x0, . . . , xi, . . . , xk) if L(x0, . . . , xk) = L(x0, . . . , x̂i, . . . , xk), that is,
d(xi−1, xi+1) = d(xi−1, xi) + d(xi, xi+1). Here, the hat symbol over xi indicates that
this vertex is deleted from (x0, . . . , xi, . . . , xk). We say that xi is a singular point of
(x0, . . . , xi, . . . , xk) if it is not a smooth point of (x0, . . . , xi, . . . , xk).

For k � 1, the boundary map ∂k,�(G) : MCk,�(G) → MCk−1,�(G) is defined as
the linear extension of

∂k,�(G)(x0, . . . , xk) =
k−1∑
i=1

(−1)i1{xi is smooth}(x0, . . . , x̂i, . . . , xk)

for (x0, . . . , xk) ∈ MCk,�(G) (see [9, definition 2.2]). By convention, we also
define MC−1,l(G) = 0 and ∂0,l(G) = 0. Then, it holds that ∂k,�(G) ◦ ∂k+1,�(G) =
0 for k � 0, that is, ker ∂k,�(G) ⊃ Im ∂k+1,�(G) (see [9, lemma 2.11]). The
magnitude homology group MHk,�(G) of length � is defined by MHk,�(G) :=
ker ∂k,�(G)/ Im ∂k+1,�(G).
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Obviously, the boundary maps are compatible with the decompositions (2.1).
Hence it induces the decompositions

MHk,�(G) ∼=
⊕

x∈V (G)

MHx
k,�(G) ∼=

⊕
x,y∈V (G)

MHx,y
k,� (G). (2.2)

Note that, if x and y are adjacent, we have a tuple (x, y, x, . . . ) which is a
homology cycle in MHx

�,�(G). Hence we have rk(MHx
�,�(G)) � deg x. In particular,

rk(MH�,�(G)) � 2#E(G) holds from equation (2.2).

Example 2.7 [9, corollary 6.8]. Let T be a tree, and x ∈ V (T ) be fixed. Then we
have

MHx
k,�(T ) �

⎧⎪⎨
⎪⎩

Z, k = � = 0,

Z
deg x, k = � � 1,

0, k �= �.

This is verified by using Mayer–Vietoris theorem in [9, theorem 6.6] after checking
that it is compatible with the decompositions (2.2). Moreover, equation (2.2) yields

MHk,�(T ) �

⎧⎪⎨
⎪⎩

Z
#V (T ), k = � = 0,

Z
2#E(T ), k = � � 1,

0, k �= �.

Definition 2.8 [9, definition 7.1]. A graph G is called diagonal if MHk,�(G) = 0
for k �= �.

Definition 2.9 [8, definition 4.2]. A graph of diameter at most two is called paw-
ful if any distinct vertices x, y, z ∈ V (G) with d(x, y) = d(y, z) = 2 and d(z, x) = 1
have a common neighbour. Here, for S ⊂ V (G), a vertex w ∈ V (G) is said to be a
common neighbour of S if w is adjacent to all the vertices in S.

Example 2.10. Trees are diagonal, as seen in example 2.7. Join graphs, in partic-
ular complete graphs, are also diagonal [9, theorem 7.5]. Moreover, pawful graphs
are diagonal [8, theorem 4.4].

3. Girth and the magnitude homology of graphs

In this section, we study the magnitude homology of graphs by a method of algebraic
topology. First in § 3.1, we briefly review the algebraic Morse theory, which is a
crucial tool for the later parts. In § 3.2 and 3.3, we compute the (� − i, �)-part
MH�−i,�(G) of the magnitude homology for a general graph G and for some 0 �
i � � − 1. In § 3.4, we give a criterion for graphs to be diagonal. All the main results
proved in this section, especially theorems 1.3 and 1.5, will be key lemmas for the
probabilistic study of the magnitude homology in § 4.

3.1. Algebraic Morse theory

For our computation, we use the algebraic Morse theory studied in [15]. The
matching that we construct in § 3.2 and3.3 is quite similar to that of Gu’s [8].
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While he constructs matchings for several specific graphs in [8], we improve them
to make it applicable to general graphs. In this subsection, we briefly review the
algebraic Morse theory. It is almost the same instruction as in [8], and see [15] for
the details.

Let C∗ = (C∗, ∂∗) be a chain complex of finite rank-free Z-modules. We choose
a basis Ik of Ck, and we set Ck =

⊕
α∈Ik

Ck,α
∼=⊕α∈Ik

Z for each k � 0. We

denote differentials restricted to each component as fβα : Ck+1,α ↪→ Ck+1
∂k+1−−−→

Ck � Ck,β .
Let ΓC∗ be a directed graph whose vertex set is

∐
k Ik, and directed edges are

{α → β | fβα �= 0}. Recall that a matching of a directed graph is a subset M of the
edge set such that any two distinct edges in M have no common vertices. For a
matching M of ΓC∗ , we define a new directed graph ΓM

C∗ by inverting the direction
of all edges in M .

Definition 3.1. The matching M is called Morse matching if the directed graph

ΓM
C∗ is acyclic, and all the homomorphisms of the form fβα : Ck+1,α ↪→ Ck+1

∂k+1−−−→
Ck � Ck,β corresponding to the edges in M are isomorphisms.

Here we remark that ΓM
C∗ is acyclic if and only if there are no closed paths in ΓM

C∗
of the form a1 −→ b1 −→ · · · −→ bp−1 −→ ap = a1 with ai ∈ Ck+1 and bi ∈ Ck for
some k.

Theorem 3.2 [15]. For a Morse matching M , the chain complex C∗ is homotopy
equivalent to the chain complex C̊∗ defined as follows: let I̊k be the set of vertices
in Ik unmatched by M . We define C̊k =

⊕
α∈I̊k

Ck,α for each k � 0. For each α ∈
I̊k and β ∈ I̊k−1, let ΓM

α,β be the set of paths in ΓM
C∗ connecting α and β in this

order. For γ ∈ ΓM
α,β, we define ∂̊γ : Ck,α → Ck−1,β as ∂̊γ = (−1)i/2fβvi

◦ f−1
vi−1vi

◦
· · · ◦ fv3v2 ◦ f−1

v1v2
◦ fv1α, where γ = (α → v1 → · · · → vi → β). Then the differential

∂̊k restricted on Ck,α for α ∈ I̊k is defined as

∂̊k|Ck,α
=

∑
β∈I̊k−1,γ∈ΓM

α,β

∂̊γ .

In particular, we have ∂̊k = 0 if the original differential ∂k vanishes on C̊k.

3.2. Computation for diagonal part

In this subsection, we study the diagonal part ((�, �)-part) of the magnitude
homology. In the following, we assume that � � 1 unless otherwise noted. We first
recall the definition of the local girth of a graph at a fixed vertex, as seen in the
Introduction.

Definition 3.3. Let G be a graph and x ∈ V (G) be a vertex. We define the local
girth of G at x by girx(G) := inf{i � 3 | there exists an i-cycle in G containing x}.
We also define the girth of G by gir(G) := minx girx(G).
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Figure 2. (a) Illustration of a 3-cycle containing x in the case that d(xi−2, xi) = 1.
(b) Illustration of a 4-cycle containing x. (c) Illustration of a 3- or 4-cycle containing
x in the case that xi−1 �= xi+1. A 3-cycle appears when xi and yi are adjacent, otherwise
a 4-cycle appears.

Our aim in this subsection is to prove theorem 1.1. We use the algebraic Morse
theory for the proof. Let us consider a truncated chain complex

0 −→ MCx
�,�(G) −→ MCx

�−1,�(G) −→ 0

and denote it by C∗. It is easy to see that the first homology of C∗ is isomorphic to
MHx

�,�(G). In the following, we give a Morse matching on ΓC∗ for graphs that have
neither 3- nor 4-cycles containing x as their vertex.

Lemma 3.4. Let � � 1 and i � 1. Let G be a graph with girx(G) � 4 for a vertex
x ∈ V (G). Let (x = x0, . . . , x�) ∈ MCx

�,�(G) be a chain, and suppose that xj is its
singular point for 0 � j � i − 1. Then xj ∈ {x0, x1} for 0 � j � i.

Proof. We prove by induction on i. For i = 1, the statement is trivially true. Sup-
pose that xj is singular for 0 � j � i − 1. Then it follows that xj ∈ {x0, x1} for
0 � j � i − 1 from the inductive assumption. Now we have {xi−2, xi−1} = {x0, x1}
because xi−2 �= xi−1. Note here that we have d(xk, xk+1) = 1 for 0 � k � � − 1
by the definition of MC�,�(G). Then by the assumption that xi−1 is a singular
point, we have d(xi−2, xi) � 1. If we have d(xi−2, xi) = 1, then these three points
xi−2, xi−1, xi form a 3-cycle containing x because xi−2 or xi−1 coincides with x,
which is not the case [see figure 2(a)]. Hence we obtain that d(xi−2, xi) = 0, which
implies that xi = xi−2 ∈ {x0, x1}.

�

Let T� be a subset of generators in MCx
�,�(G) defined as

T� =
{
(x0, . . . , x�) ∈ MCx

�,�(G) | xi is smooth for some 0 � i � �
}

.

Whenever T� �= ∅, we define a map f� : T� −→ MCx
�−1,�(G) by deleting the first

smooth point, that is, f�(x0, . . . , x�) = (x0, . . . , x̂i, . . . , x�), where xj is a singular
point of (x0, . . . , x�) for 0 � j � i − 1, and xi is its smooth point.

Lemma 3.5. If girx(G) � 5, the above map f� is injective.
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Proof. Suppose that

f�(x0, . . . , x�) = (x0, . . . , x̂i, . . . , x�) = (y0, . . . , ŷj , . . . , y�) = f�(y0, . . . , y�).

Then we have d(xi−1, xi+1) = 2 and d(yj−1, yj+1) = 2. Because the other pairs of
adjacent points are apart from each other by distance 1, we obtain i = j, which
implies that xk = yk for 0 � k � i − 1 and i + 1 � k � �. If i = j � 2, then we have
xk, yk ∈ {x0, x1} = {y0, y1} for 0 � k � i = j by lemma 3.4. Then we obtain xi =
yi from xi−1 = yi−1, indicating that (x0, . . . , x�) = (y0, . . . , y�). Suppose that i =
j = 1 and x1 �= y1. Then we have x0 = y0, x2 = y2, d(x0, x2) = 2, and d(x0, x1) =
d(x1, x2) = d(x0, y1) = d(y1, x2) = 1 [see figure 2(b)]. Hence these four points form
a 4-cycle containing x, which is not the case. Thus we obtain x1 = y1, indicating
that (x0, . . . , x�) = (y0, . . . , y�). �

By lemma 3.5, we can define a matching Mf�
= {α → β | f�(α) = β} on ΓC∗ by

the injective map f�. When T� is empty, we define the empty matching.

Lemma 3.6. If girx(G) � 5, then the above matching Mf�
is a Morse matching.

Proof. Let (x0, . . . , x̂i, . . . , x�) ∈ MCx
�−1,�(G), where xi is a smooth point of the

tuple (x0, . . . , x�) ∈ MCx
�,�(G), but not the first one. Note that i � 2. We show that

the tuple (x0, . . . , x̂i, . . . , x�) is not in the image of f�. This implies that there is no
directed path of length �3 in Γ

Mf�

C∗ , indicating that Γ
Mf�

C∗ is acyclic. Suppose that
f�(y0, . . . , y�) = (x0, . . . , x̂i, . . . , x�), and let yj be the first smooth point of the tuple
(y0, . . . , y�). Then we have (y0, . . . , ŷj , . . . , y�) = (x0, . . . , x̂i, . . . , x�), hence we have
i = j by the same argument in the proof of lemma 3.5. Then, xk = yk for 0 � k � i −
1 and i + 1 � k � �, and also xi �= yj . Because yj is the first smooth point, we have
{y0, . . . , yj} = {y0, y1} by lemma 3.4. Furthermore, since xk = yk for 0 � k � i − 1,
we obtain that yi = yi−2 = xi−2. Because yi is adjacent to yi+1 = xi+1, we have
d(xi−2, xi+1) = d(xi+1, xi) = d(xi, xi−1) = d(xi−1, xi−2) = 1 [see figure 2(c)]. Then
there is a 3- or 4-cycle containing the edge {yi−2, yi−1} = {y0, y1} = {x0, x1} unless
we have xi−1 = xi+1. The former case contradicts that girx(G) � 5. The latter case
contradicts the fact that xi is a smooth point of (x0, . . . , x�) ∈ MCx

�,�(G). �

Proof of theorem 1.1. By theorem 3.2 and lemma 3.6, the chain complex C∗ is
homotopy equivalent to the chain complex generated by the unmatched generators
of the Morse matching Mf�

. The unmatched generators in MCx
�,�(G) are exactly

the tuples that have only singular points, and by lemma 3.4, they are of the form
(x, y, x, y, . . .), where y is adjacent to x. Because the differential of MCx

∗,�(G) van-
ishes on these generators, MHx

�,�(G) is isomorphic to a free module generated by
the tuples of the form (x, y, x, y, . . .). This completes the proof. �

3.3. Computation for non-diagonal part

We extend our matching constructed above to a larger part of the magnitude
chain complex. For a tuple (x0, . . . , xn) ∈ V (G)n+1, we call (xg, xg+1) a gap if
d(xg, xg+1) � 2, and we call it the first gap if additionally d(xj , xj+1) = 1 for 0 �
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j � g − 1. For 0 � i � � − 1, let T�−i be a subset of MCx
�−i,�(G) defined as

T�−i :=
{

(x0, . . . , x�−i) ∈ MCx
�−i,�(G)

∣∣∣∣xj is smooth for some 1 � j � g − 1,
where (xg, xg+1) is the first gap

}
.

Note that the subset T� defined here coincides with the one defined in the previous
subsection. We simply say that xj is the first smooth point before the first gap
of (x0, . . . , x�−i) if xj with 1 � j � g − 1 is a smooth point and xk’s are singular
points for 0 � k � j − 1, where (xg, xg+1) is the first gap. Note that it means just
the first smooth point for the case i = 0. Whenever T�−i �= ∅, we define a map
f�−i : T�−i −→ MCx

�−i−1,�(G) by deleting the first smooth point before the first
gap, that is, f�−i(x0, . . . , x�−i) = (x0, . . . , x̂j , . . . , x�−i), where xj is the first smooth
point of (x0, . . . , x�−i) before the first gap. Note that our definitions of T�−i’s and
f�−i’s contain those of f� and T� defined in the previous subsection, respectively,
by considering i = 0. The image of the map f�−i is disjoint from the subset T�−i−1

for 0 � i � � − 1 since the deletion of a point by f�−i makes a new first gap before
which there exists no smooth points.

Lemma 3.7. If girx(G) � 5, then f�−i is injective for 0 � i � � − 1.

Proof. As shown in lemma 3.5, f� is injective. Hence, we assume that i � 1. Suppose
that f�−i(x0, . . . , x�−i) = f�−i(y0, . . . , y�−i). By the same argument in the proof of
lemma 3.5, the positions of the first smooth point and the first gap of the both
tuples are same. By looking at the parts before the first gap, the statement follows
from the same argument in the proof of lemma 3.5. �

By lemma 3.7, we can define a matching Mf∗ of ΓMCx
∗,�(G) by the injective maps

f∗ = (f�−i)0�i��−1. In the following, we assume i to be in the range 0 � i � � − 1
unless otherwise mentioned.

Lemma 3.8. If girx(G) � 5, then the above matching Mf∗ is a Morse matching.

Proof. Let (x0, . . . , x̂j , . . . , x�−i) ∈ MCx
�−i−1,�(G), where xj is a smooth point of

the tuple (x0, . . . , x�−i) ∈ MCx
�−i,�(G), but not the first smooth point before the

first gap. The case for i = 0 has been already considered in lemma 3.6, hence we
assume i � 1. Let (xg, xg+1) be the first gap of the tuple (x0, . . . , x�−i). If j =
g or g + 1, then (x0, . . . , x̂j , . . . , x�−i) is not in the image of f�−i. It is because
the first gap (xg−1, xg+1) or (xg, xg+2) of (x0, . . . , x̂j , . . . , x�−i) must satisfy that
d(xg−1, xg+1) � 3 or d(xg, xg+2) � 3 respectively, while the first gap of an image
of f�−i must have distance 2. For the case that j � g − 1, we can show that the
tuple (x0, . . . , x̂j , . . . , x�−i) is not in the image of f�−i by the same argument in the
proof of lemma 3.6. Hence the remained case is that j � g + 2. In this case, if we
have (x0, . . . , x̂j , . . . , x�−i) = f�−i(y0, . . . , y�−i), then the tuple (y0, . . . , y�−i) must
be of the form (x0, . . . , xg, ynew, xg+1, . . . , xj−1, xj+1, . . . , x�−i) with d(xg, xg+1) =
2. Here, ynew is the first smooth point before the first gap by the definition of f�−i.
Then the first gap (yg′ , yg′+1) of (y0, . . . , y�−i) satisfies g′ � g + 1. Hence there
cannot be a cycle of the form a1 −→ b1 −→ · · · −→ ap −→ bp −→ a1 in ΓMf∗

MCx
∗,�(G)
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with ak ∈ MCx
�−i,�(G), bk ∈ MCx

�−i−1,�(G) because the position of the first gap of
ak moves backward. This completes the proof. �

By lemma 3.8, we obtain a chain complex (M̊C
x

∗,�(G), ∂̊∗,�) consisting of the
unmatched generators by the Morse matching Mf∗ , which is homotopy equiva-
lent to the original magnitude chain complex (MCx

∗,�(G), ∂∗,�) by theorem 3.2. The
following lemma characterizes the generators of (M̊C

x

∗,�(G), ∂̊∗,�).

Lemma 3.9. Let girx(G) � 5. A tuple (x0, . . . , x�−i) ∈ MCx
�−i,�(G) is unmatched by

the matching Mf∗ if and only if it satisfies one of the following conditions:

(i) It has no gaps and no smooth points.

(ii) It has the first gap (xg, xg+1) with g � 1 and d(xg, xg+1) � 3 such that there
is no smooth point before the first gap.

(iii) It has the first gap (xg, xg+1) with g � 1 and d(xg, xg+1) = 2 such that
there is no smooth point before the first gap. Furthermore, every ver-
tex z adjacent to both of xg and xg+1 is the second smooth point of
(x0, . . . , xg, z, xg+1, . . . , x�−i).

(iv) It has the first gap (x0, x1) with d(x0, x1) � 3.

Proof. Let (x0, . . . , x�−i) ∈ MCx
�−i,�(G) satisfy none of the above conditions. We

will show that (x0, . . . , x�−i) is matched. If there is a smooth point before the first
gap, then it is in T�−i, hence it is matched. Hence we can suppose that (x0, . . . , x�−i)
has the first gap (xg, xg+1) with g � 0 and d(xg, xg+1) = 2 such that there is
no smooth point before the first gap, and furthermore, there is a vertex z adja-
cent to xg and xg+1 such that z is the first smooth point before the first gap of
(x0, . . . , xg, z, xg+1, . . . , x�−i). Then we have f�−i+1(x0, . . . , xg, z, xg+1, . . . , x�−i) =
(x0, . . . , x�−i), hence it is matched. Therefore the above conditions are necessary to
be unmatched.

We show the sufficiency as follows. When a tuple satisfies (i), then it is in
MCx

�,�(G) and not in T�, hence it is neither in the image nor domain of any f∗.
When a tuple satisfies (ii), it is not in T�−i. Furthermore, if it is in the image of
f�−i+1, then its first gap (xg, xg+1) is obtained by omitting the first smooth point of
a tuple in T�−i+1, which implies that d(xg, xg+1) = 2. This is a contradiction. When
a tuple satisfies (iii), it is not in T�−i. Furthermore, if it is in the image of f�−i+1,
then it must be expressed as f�−i+1(x0, . . . , xg, z, xg+1, . . . , x�−i), where z is a ver-
tex adjacent to both xg and xg+1. However, z is not the first smooth point of the
tuple (x0, . . . , xg, z, xg+1, . . . , x�−i), hence f�−i+1(x0, . . . , xg, z, xg+1, . . . , x�−i) �=
(x0, . . . , xg, xg+1, . . . , x�−i). This is a contradiction. When a tuple satisfies (iv),
it is not in T�−i. Furthermore, if it is in the image of f�−i+1, then its first gap
(x0, x1) is obtained by omitting the first smooth point of a tuple in T�−i+1, which
implies that d(x0, x1) = 2. This is a contradiction. This completes the proof. �

Now we look at the differential ∂̊∗,� on M̊C
x

∗,�(G).
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Lemma 3.10. Let girx(G) � 5. Let α be a tuple satisfying one of the conditions in
lemma 3.9. Then there are no paths of length � 2 in ΓMf∗

MCx
∗,�(G) that start from α.

Proof. Note that there exist no directed edges α −→ β such that α ∈ MCx
�−i,�(G),

β ∈ MCx
�−i+1,�(G) by lemma 3.9. Hence, let α −→ β be a directed edge in ΓMf∗

MCx
∗,�(G)

with α ∈ MCx
�−i,�(G), β ∈ MCx

�−i−1,�(G). In order that this directed edge is
extended to a path of length 2, β must be in the image of f�−i. Note that, in
order to be in the image of f�−i, β must have the first gap with distance exactly
2. Hence α and β must be of the forms α = (x0, . . . , xg, xg+1, . . . , xk, . . . , x�−i) and
β = (x0, . . . , xg, xg+1, . . . , x̂k, . . . , x�−i), where (xg, xg+1) is the first gap of α and β
with g � 0, d(xg, xg+1) = 2, and g + 2 � k � � − i − 1. Further, α must satisfy (iii)
of lemma 3.9 by the assumption. Hence every vertex y adjacent to both of xg and
xg+1 is the second smooth point of the tuple (x0, . . . , xg, y, xg+1, . . . , x̂k, . . . , x�−i),
which implies that β cannot be in the image of f�−i. Hence the statement
follows. �

We obtain the following by lemma 3.10 and theorem 3.2.

Lemma 3.11. Let girx(G) � 5. The differentials on M̊C
x

∗,�(G) are the restrictions
of those on MCx

∗,�(G).

Now we further construct a Morse matching for (M̊C
x

∗,�(G), ∂̊∗,�). Before that,
we study some properties of the unmatched tuples of the matching Mf∗ by the
following three lemmas.

Lemma 3.12. Suppose that girx(G) � 5. Let (x0, . . . , xg, xg+1, . . . , x�−i) ∈ M̊C
x

�−i,�

(G), which satisfies the condition (ii) or (iii) in lemma 3.9 with the first gap
(xg, xg+1), g � 1. If xg is its smooth point, then xg−1 is a singular point of the
tuple (x0, . . . , xg−1, x̂g, xg+1, . . . , x�−i).

Proof. By lemma 3.4, we have x2m = x2m+2 and x2m+1 = x2m+3 for 0 � 2m �
2m + 3 � g. Since xg is a smooth point, we have that d(xg−1, xg+1) = d(xg−1, xg) +
d(xg, xg+1). Then we have that

d(xg−2 = xg, xg−1) + d(xg−1, xg+1) = d(xg, xg+1) + 2d(xg−1, xg)

> d(xg−2 = xg, xg+1).

Hence xg−1 is a singular point of the tuple (x0, . . . , xg−2, xg−1, x̂g, xg+1, . . . , x�−i).
�

Lemma 3.13. Let (x0, . . . , xg, xg+1, . . . , x�−i) ∈ M̊C
x

�−i,�(G), which satisfies the con-
dition (iii) in lemma 3.9 with the first gap (xg, xg+1). If girx(G) > 5, then xg is a
smooth point of (x0, . . . , xg, xg+1, . . . , x�−i).

Proof. Note that x ∈ {xg−1, xg} by the same argument as that in lemma 3.4.
Assume that xg is a singular point of (x0, . . . , xg, xg+1, . . . , x�−i). Let z be a ver-
tex adjacent to xg and xg+1. Then we have d(xg−1, z) = d(xg−1, xg) + d(xg, z) = 2
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so that it satisfies (iii) of lemma 3.9. Hence we have xg−1 �= z. Since xg is a sin-
gular point of (x0, . . . , xg, xg+1, . . . , x�−i), we have d(xg−1, xg+1) < d(xg−1, xg) +
d(xg, xg+1) = 3. If d(xg−1, xg+1) = 2, then there exists a 5-cycle containing x
because the point adjacent to xg−1 and xg+1 do not coincide with xg or z. This con-
tradicts the assumption. If d(xg−1, xg+1) = 1, then there exists a 4-cycle containing
x. Further, we have d(xg−1, xg+1) �= 0 because d(xg, xg−1) = 1 and d(xg, xg+1) = 2.
Therefore, we conclude that xg can never be a singular point. �

Lemma 3.14. Let i � 1. Let (x0, . . . , xg, xg+1, . . . , x�−i) ∈ M̊C
x

�−i,�(G), which satis-
fies the condition (ii) or (iv) in lemma 3.9 with the first gap (xg, xg+1), g � 0.
Suppose that xg is a singular point of (x0, . . . , xg, xg+1, . . . , x�−i). If girx(G) �
2i + 4, then (x0, . . . , xg, y, xg+1, . . . , x�−i) ∈ M̊C

x

�−i+1,�(G), where y is taken as xg−1

for g � 1 and as an arbitrary vertex adjacent to x0 that lies in a shortest path
connecting x0 and x1 for g = 0.

Proof. Let xg = p0 −→ · · · −→ pd(xg,xg+1) = xg+1 be a shortest path connecting
xg and xg+1. When g = 0, we can take y = p1 so that y becomes a smooth
point. If we have g � 1 and p1 = xg−1, then we can take y = p1 = xg−1 so
that d(xg, xg+1) = d(xg, xg−1) + d(xg−1, xg+1). Hence we suppose that g � 1 and
p1 �= xg−1. Since xg is a singular point of (x0, . . . , xg, xg+1, . . . , x�−i), there exist
a shortest path xg−1 = q0 −→ · · · −→ qN = xg+1 with N < 1 + d(xg, xg+1) and
q1 �= xg. Let j be the minimum number such that qj coincides with some pm. Then
xg −→ xg−1 = q0 −→ · · · −→ qj = pm −→ pm−1 −→ p0 = xg is a cycle of length
< 2d(xg, xg+1) + 2 because (j,m) �= (1, 0), (0, 1). Note that we have d(xg, xg+1) �
i + 1 because L(x0, . . . , xg, xg+1, . . . , x�−i) = �. Hence the obtained cycle has length
< 2i + 4. Since x0, . . . , xg−1 are all singular points, we have xg−1 = x0 or xg = x0 by
lemma 3.4. Therefore this cycle contains x as its vertex, it contradicts that girx(G) �
2i + 4. Finally, we show that the obtained tuple (x0, . . . , xg, y, xg+1, . . . , x�−i) is
unmatched by the matching Mf∗ .

• If d(xg, xg+1) � 4, then we have d(y, xg+1) � 3, hence it satisfies (ii) of lemma
3.9.

• If d(xg, xg+1) = 3 and g = 0, then we have d(y, x1) = 2. Let z be a ver-
tex adjacent to both of y and x1. Then we must have d(x0, z) = d(x0, y) +
d(y, z) because x = x0 and there is no 3-cycle containing x. Hence the tuple
(x0, y, x1, . . . , x�−i) satisfies (iii) of lemma 3.9.

• If d(xg, xg+1) = 3 and g � 1, then we have d(y, xg+1) = 2 with y = xg−1. Let
z be a vertex adjacent to both of y and xg+1. Then we must have d(xg, z) =
d(xg, y) + d(y, z) because either of xg or y = xg−1 coincides with x, and there
are no 3-cycles containing x. Hence the tuple (x0, . . . , xg, y, xg+1, . . . , x�−i)
satisfies (iii) of lemma 3.9. �

Now we consider the following truncated chain complex for i � 1:

0 −→ M̊C
x

�,�(G) −→ M̊C
x

�−1,�(G) −→ · · · −→ M̊C
x

�−i−1,�(G) −→ 0.
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We denote this chain complex by D∗ in the following. Let U�−j be the subset of
generators of M̊C

x

�−j,�(G) which consists of all the tuples satisfying (ii) or (iii) in
lemma 3.9 with smooth point xg. We define maps h�−j : U�−j −→ M̊C

x

�−j−1,�(G) for
1 � j � i by h�−j(x0, . . . , xg, xg+1, . . . , x�−j) = (x0, . . . , x̂g, xg+1, . . . , x�−j), where
(xg, xg+1) is the first gap. By lemma 3.12, the image of h�−j is disjoint from U�−j−1.

Lemma 3.15. Let i � 1. If girx(G) � 2i + 5, then h�−j is injective for 1 � j � i.

Proof. Suppose that h�−j(x0, . . . , x�−j) = h�−j(y0, . . . , y�−j). We can verify that
the position of the first gaps of (x0, . . . , x�−j) and (y0, . . . , y�−j) are identical
in the same manner as in lemma 3.5. Then we have xk = yk except for k = g,
where (xg, xg+1) and (yg, yg+1) are the first gaps. Since xk and yk are singu-
lar points of (x0, . . . , x�−j) and (y0, . . . , y�−j), respectively, for 0 � k � g − 1, we
have {x0, . . . , xg} = {x0, x1} and {y0, . . . , yg} = {y0, y1} by lemma 3.4. Hence we
obtain xg = yg if g � 2. Suppose that g = 1 and x1 �= y1. Since x1 and y1 are
smooth points of (x0, . . . , x�−j) and (y0, . . . , y�−j), respectively, there exist short-
est paths x = x0 −→ x1 −→ · · · −→ x2 = y2 and x = y0 −→ y1 −→ · · · −→ x2 = y2

of length 1 + d(x1, x2) = 1 + d(y1, y2) � j + 2. Then there exists a cycle of length
� 2(j + 2) � 2i + 4 containing x as its vertex, which contradicts the assumption.
Hence we obtain that (x0, . . . , x�−j) = (y0, . . . , y�−j). �

By lemmas 3.12 and 3.15, we can define a matching Mh∗ of D∗ by injective maps
h∗ = (h�−j)1�j�i.

Lemma 3.16. Let i � 1. If girx(G) � 2i + 5, then the above matching Mh∗ is a
Morse matching.

Proof. By lemma 3.11, any differentials corresponding to edges in Mh∗ are isomor-
phisms (cf. definition 3.1). Let (x0, . . . , xg, xg+1, . . . , x�−j) ∈ M̊C

x

�−j,�(G) with the
first gap (xg, xg+1), g � 0. Let (x0, . . . , xg, xg+1, . . . , x�−j) = a1 −→ b1 −→ a2 −→
b2 −→ · · · be a path in ΓMh∗

D∗ with ap ∈ M̊C
x

�−j,�(G) and bp ∈ M̊C
x

�−j−1,�(G) for
p ∈ N. Here the directed edge ap −→ bp corresponds to a directed edge in ΓMf∗

C∗ .
Again by lemma 3.11, b1 is obtained by deleting some smooth point of a1. Hence b1

must be of the form (x0, . . . , xg, xg+1, . . . , x̂k, . . . , x�−j) with g + 1 � k � � − j − 1,
and xg must be its singular point to be in the image of h�−j by lemma 3.12. It
follows that a2 is of the form (x0, . . . , xg, y, xg+1, . . . , x̂k, . . . , x�−j), where (y, xg+1)
is the first gap. Inductively, we conclude that the first gap of ai moves backward as
i increases. Hence there cannot be any cycle in ΓMh∗

D∗ . �

Proof of theorem 1.3. By theorem 3.2 and lemma 3.16, the chain complex D∗ is
homotopy equivalent to the chain complex consisting of all the unmatched tuples
by Mh∗ . By lemma 3.13, any tuples satisfying the condition (iii) in lemma 3.9 are
matched. By lemma 3.14, any tuples satisfying the condition (ii) or (iv) in lemma 3.9
are matched. Hence it turns out that the unmatched tuples by Mh∗ are only those
satisfying the condition (i) of lemma 3.9 except for the tuples in MCx

�−i−1,�(G).
Hence the statement follows. �
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3.4. A criterion for diagonality

We devote this subsection for proving theorem 1.5 which gives a criterion of the
diagonality of graphs. First we recall the definition of the local girth of a graph at
a fixed edge, as seen in the Introduction.

Definition 3.17. Let G be a graph and e ∈ E(G) be an edge. We define the local
girth of G at e by

gire(G) := inf{i � 3 | there exists an i-cycle in G containing e as its edge}.

Proof of theorem 1.5. We first prove for the case that k is odd. We put k = 2K + 1.
Let 1, 2, . . . , 2K + 1 be vertices of a (2K + 1)-cycle with e = {1, 2}. We suppose that
each vertex i is adjacent to the vertices i − 1 and i + 1, where we put 0 = 2K + 1
and 2K + 2 = 1. Note that the distance between each pair of vertices of this cycle
in G is identical to that of the cycle graph itself. If not, there will be cycles of length
< 2K + 1 containing e, which contradicts the assumption. In particular, we have
d(1,K + 2) = d(2,K + 2) = K. We show that the homology cycle

[(1, 2,K + 2)] ∈ MH1,K+2
2,K+1(G)

is non-trivial.
Assume that we have [(1, 2,K + 2)] = 0, that is, there exist not necessarily

distinct tuples α1, . . . , αn ∈ MC1,K+2
3,K+1(G) and a vertex a ∈ V (G) such that

∂ ((1, 2, a,K + 2) + (−1)s1α1 + · · · + (−1)snαn) = (1, 2,K + 2).

Here, s1, . . . , sn ∈ {0, 1} and we set s0 = 0. Note that any tuples of the form
(1, a, 2,K + 2) do not appear in αi’s, because L(1, a, 2,K + 2) > K + 1. We put
α0 = (1, 2, a,K + 2) and αi = (1, xi, yi,K + 2) for i ∈ {1, . . . , n}.

Now we construct a graph A(G) with vertices {2, a, x1, y1, . . . , xn, yn}. We span
an edge between v, w if (1, v, w,K + 2) = αi or (1, w, v,K + 2) = αi for some i.
Then we have the following lemma. In the following, we denote by 〈v1, . . . , vn〉 a
path in a graph consisting of edges {v1, v2}, . . . , {vn−1, vn} in this order to make it
easy to distinguish between the paths and tuples. �

Lemma 3.18. Let x be a vertex of A(G) which is connected to the vertex 2. Let
〈1, b1, . . . , x〉 be a shortest path in G connecting 1 and x. Then b1 = 2.

Proof. Let 〈2, a1, a2, . . . , x = aN 〉 be a path in A(G) connecting 2 and x. Note that
a1 satisfies that d(1, 2) + d(2, a1) + d(a1,K + 2) = K + 1 because (1, 2, a1,K + 2)
= αm for some m. Let 〈1, bi

1, . . . , ai〉 be a shortest path in G connecting 1 and
ai. We show that bi

1 = 2 by induction on i. If b1
1 �= 2, then a closed path obtained

by concatenating three paths, 〈1, b1
1, . . . , a1〉, a shortest path connecting a1 and 2,

and the edge between 2 and 1 produces a cycle containing e. Note here that the
shortest path from 2 to a1 does not pass through 1. If it goes through 1, then we
have K + 1 = d(1, 2) + d(2, a1) + d(a1,K + 2) = 2 + d(1, a1) + d(a1,K + 2) � 2 +
d(1,K + 2) = K + 2. Because d(1, 2) + d(2, a1) � K, the obtained cycle is of length
� 2K, which contradicts the assumption. Hence we have b1

1 = 2.
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Suppose bi
1 = 2 and bi+1

1 �= 2. If (1, ai, ai+1,K + 2) = αm for some m, then a
closed path obtained by concatenating three paths, 〈1, bi

1, . . . , ai〉, a shortest path
connecting ai and ai+1, and 〈ai+1, . . . , b

i+1
1 , 1〉 produces a cycle containing e. Note

here that the shortest path from ai to ai+1 does not pass through 1 in the same
manner as discussed above. Because d(1, ai) + d(ai, ai+1) � K, the obtained cycle
is of length � 2K, which contradicts the assumption. Similarly, if (1, ai+1, ai,
K + 2) = αm for some m, then a closed path obtained by concatenating three
paths, 〈1, bi

1, . . . , ai〉, a shortest path connecting ai and ai+1, and 〈ai+1, . . . , b
i+1
1 , 1〉

produces a cycle containing e. Because d(1, ai+1) + d(ai+1, ai) � K, the obtained
cycle is of length � 2K, which also contradicts the assumption. Hence we have
bi+1
1 = 2. �

Now we divide the collection of tuples α0 = (1, 2, a,K + 2), α1, . . . , αn into
subcollections C0, . . . , CM corresponding to the connected components of A(G).
Namely, two tuples αi and αj belong to the same subcollection if the corresponding
edges in A(G) are connected by some path. We suppose that (1, 2, a,K + 2) ∈ C0.
Then we have

∂

⎛
⎝∑

i�1

∑
αj∈Ci

(−1)sj αj

⎞
⎠ = 0.

If not, there exists a tuple (1, x,K + 2) �= (1, 2,K + 2) which appears in the left-
hand side, and also in ∂(

∑
αj∈C0

(−1)sj αj) with the opposite sign, because the
total sum is (1, 2,K + 2). Then it implies that the vertex x in A(G) belongs to two
distinct connected components of A(G), which is a contradiction. Hence we have

∂

⎛
⎝ ∑

αj∈C0

(−1)sj αj

⎞
⎠ = (1, 2,K + 2),

which implies that there exists a tuple αm = (1, xm, ym,K + 2) ∈ C0 such that
L(1, xm,K + 2) = K or L(1, ym,K + 2) = K, because the right-hand side consists
of odd terms. If L(1, xm,K + 2) = K, then a path in G obtained by concatenating a
shortest path connecting 1 and xm, and a shortest path connecting xm and K + 2 is
a shortest path connecting 1 and K + 2. Because a shortest path connecting 1 and
xm goes through 2 by lemma 3.18, we have d(2,K + 2) = d(1,K + 2) − d(1, 2) =
K − 1, which is not true. We also have a contradiction from the same argument for
the case that L(1, ym,K + 2) = K. This completes a proof for the case that k is
odd.

Next we prove for the case that k is even. We put k = 2K, and let 1, 2, . . . , 2K
be vertices of 2K-cycle with e = {1, 2} similarly to the odd case. Note that we
have d(1,K + 1) = K. We show that the homology cycle [(1, 2,K + 1) − (1, 2K,

K + 1)] ∈ MH1,K+1
2,K (G) is non-trivial. Assume that we have [(1, 2,K + 1) − (1, 2K,

K + 1)] = 0, that is, there exist tuples α1, . . . , αn ∈ MC1,K+1
3,K (G) and vertices a, b ∈
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V (G) such that

∂ ((1, 2, a,K + 1) + (−1)s1α1 + · · · + (−1)snαn − (1, 2K, b,K + 1))

= (1, 2,K + 1) − (1, 2K,K + 1).

Note that any tuples of the form (1, a, 2,K + 1) and (1, b, 2K,K + 1) do
not appear in αi’s, because L(1, a, 2,K + 1), L(1, b, 2K,K + 1) > K. We put
α0 = (1, 2, a,K + 1), αn+1 = (1, 2K, b,K + 1) and αi = (1, xi, yi,K + 2) for i ∈
{1, . . . , n}. Similarly to the odd case, we construct a graph A(G) with vertices
{2, a, x1, y1, . . . , xn, yn, 2K, b}. Then the same statement in lemma 3.18 holds. It is
proved in a similar way to lemma 3.18 as follows.

Proof of lemma 3.18 for k= 2K case. Let 〈2, a1, a2, . . . , x = aN 〉 be a path in A(G)
connecting 2 and x. Note that a1 satisfies that d(1, 2) + d(2, a1) + d(a1,K + 1) = K
because (1, 2, a1,K + 1) = αm for some m. Let 〈1, bi

1, . . . , ai〉 be a shortest path in G
connecting 1 and ai. We show that bi

1 = 2 by induction on i. If b1
1 �= 2, then a closed

path obtained by concatenating three paths, 〈1, b1
1, . . . , a1〉, a shortest path connect-

ing a1 and 2, and the edge between 2 and 1 produces a cycle containing e. Note here
that the shortest path from 2 to a1 does not pass through 1. If it goes through 1,
then we have K = d(1, 2) + d(2, a1) + d(a1,K + 1) = 2 + d(1, a1) + d(a1,K + 1) �
2 + d(1,K + 1) = K + 2. Because d(1, 2) + d(2, a1) � K − 1, the obtained cycle is
of length � 2K − 2, which contradicts the assumption. Hence we have b1

1 = 2.
Suppose bi

1 = 2 and bi+1
1 �= 2. If (1, ai, ai+1,K + 1) = αm for some m, then a

closed path obtained by concatenating three paths, 〈1, bi
1, . . . , ai〉, a shortest path

connecting ai and ai+1, and 〈ai+1, . . . , b
i+1
1 , 1〉 produces a cycle containing e. Note

here that the shortest path from ai to ai+1 does not pass through 1 in the same man-
ner as discussed above. Because d(1, ai) + d(ai, ai+1) � K − 1, the obtained cycle is
of length � 2K − 2, which contradicts the assumption. Similarly, if (1, ai+1, ai,K +
2) = αm for some m, then a closed path obtained by concatenating three paths,
〈1, bi

1, . . . , ai〉, a shortest path connecting ai and ai+1, and 〈ai+1, . . . , b
i+1
1 , 1〉 pro-

duces a cycle containing e. Because d(1, ai+1) + d(ai+1, ai) � K − 1, the obtained
cycle is of length � 2K − 2, which also contradicts the assumption. Hence we have
bi+1
1 = 2. �

Now we can show that the vertices 2 and b in A(G) belong to the
same connected component as follows. Divide the collection of tuples (1, 2, a,
K + 1), α1, . . . , αn, (1, 2K, b,K + 1) into subcollections C0, . . . , CM corresponding
to the connected components of A(G). Suppose that (1, 2, a,K + 1) ∈ C0 and
(1, 2K, b,K + 1) ∈ C1. By the same argument as that in the odd case, we have

∂

⎛
⎝∑

i�2

∑
αj∈Ci

(−1)sj αj

⎞
⎠ = 0.

Because d(1,K + 1) = K, every tuple αi has no singular points other than the end
points. Hence two chains ∂(

∑
αj∈C0

(−1)sj αj) and ∂(
∑

αj∈C1
(−1)sj αj) must have a

common term up to sign. It contradicts the disconnectedness assumption for C0 and
C1, hence the vertices 2 and b in A(G) belong to the same connected component.
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Since the tuple (1, 2K, b,K + 1) has no singular points, a path in G obtained by
concatenating the edge between 1 and 2K, and a shortest path connecting 2K and b
is a shortest path connecting 1 and b. This is a contradiction because every shortest
path in G connecting 1 and b passes through 2 at the first step by lemma 3.18 for
k = 2K case.

4. Stochastic properties of the magnitude homology

In this section, we prove theorems 1.7, 1.8 and 1.9. The proofs follow from the
results in § 3 together with standard arguments in the random graph theory.

4.1. Phase transition of diagonality

In this subsection, we provide the proof of theorem 1.7. We first prove theorem
1.7(1) which follows from the fact that a.a.s. Gn,p has no cycles whenever p =
o(n−1). In what follows, for i � 3, we denote by Ci the number of i-cycle graphs in
Gn,p.

Proof of theorem 1.7(1). For i � 3, a straightforward calculation yields ECi �(
n
i

)
(i!/(2i))pi � (np)i/(2i). Indeed, there are

(
n
i

)
ways of selecting i vertices of an

i-cycle graph from n vertices, and to each selection, there are i!/(2i) ways of choos-
ing the edges of the i-cycle graph. Lastly, the probability that the chosen i edges are
included in Gn,p is pi because of the mutual independence of the edge appearance.
As seen in example 2.7, all trees, or more generally forests, are diagonal. Therefore,
we have

P(Gn,p is non-diagonal) � P

( ∞∑
i=3

Ci � 1

)
�

∞∑
i=3

ECi �
∞∑

i=3

(np)i

2i
.

In the second inequality, we use Markov’s inequality. The right-hand side converges
to zero as n → ∞, which completes the proof. �

We now turn to proving theorem 1.7(2) (3). For their proofs, we divide the
concerned regime of p into two parts: (a) p = cn−1 for some 0 < c < 1; and (b)
lim infn→∞ np > 1 and p = o(n−3/4). We then discuss the asymptotic behaviour of
P(Gn,p is non-diagonal) in each part in different ways.

For the estimate of P(Gn,p is non-diagonal) in part (a), we use the following
lemma which states that almost all vertices belong to tree components and that
there exist no components containing more than one cycle. Let T (Gn,p) denote the
number of vertices in Gn,p belonging to some tree component.

Lemma 4.1 (Theorem 5.7(ii) and corollary 5.8 in [2]). Let p = cn−1 for some fixed
0 < c < 1. Then, E[T (Gn,p)] = n − O(1). In addition, every component is either
tree or unicyclic a.a.s.

The following lemma is also useful.

Lemma 4.2 (Corollary 4.9 in [2]). Let p = cn−1 for some fixed c > 0. Then, for each
m � 3, (C3, C4, . . . , Cm) converges to (Z3, Z4, . . . , Zm) in distribution as n → ∞.
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Here, {Zi}m
i=3 are mutually independent random variables, and each Zi follows the

Poisson distribution with parameter ci/(2i). In other words, for each m � 3 and
(a3, a4, . . . , am) ∈ Z

m−2
�0 ,

lim
n→∞ P((C3, C4, . . . , Cm) = (a3, a4, . . . , am)) =

m∏
i=3

{ci/(2i)}ai

ai!
exp
(
− ci

2i

)
.

Combining lemmas 4.1 and 4.2, we obtain the estimate of P(Gn,p is diagonal) in
part (a) as follows.

Proposition 4.3. Let p = cn−1 for some fixed 0 < c < 1. Then,

lim
n→∞ P(Gn,p is diagonal) =

√
1 − c exp(c/2 + c2/4 + c3/6 + c4/8).

Proof. Let F1 and F2 denote the events that Gn,p is diagonal and that Gn,p does not
contain any cycles of length at least 5, respectively. We additionally define E as the
event that every component in Gn,p is either tree or unicyclic. We can confirm that
every unicyclic component that has a cycle of length at least 5 is non-diagonal. This
follows from the Mayer–Vietoris theorem for the magnitude homology [9, theorem
6.6] combining with the fact that any cycle graphs of length at least 5 are non-
diagonal (cf. [8, theorems 4.6 and 4.8]). Therefore, we have E ∩ F1 ⊂ E ∩ F2. On
the other hand, it holds that E ∩ F1 ⊃ E ∩ F2 by using again the Mayer–Vietoris
theorem with the fact that tree graphs and 3- or 4-cycle graphs are diagonal (cf. [9,
examples 2.5 and 5.4]). Consequently, we obtain E ∩ F1 = E ∩ F2. Thus, it reduces
to prove that

lim
n→∞ P(F2) =

√
1 − c exp(c/2 + c2/4 + c3/6 + c4/8). (4.1)

Indeed, |P(F1) − P(F2)| = |P(F1 \ E) − P(F2 \ E)| � P(Ec) = o(1) from the second
conclusion of lemma 4.1.

Now, let m � 5 be fixed, and let D denote the event that every cyclic component
has at most m vertices. Then, we have

P(C5 = C6 = · · · = Cm = 0) � P(F2) � P({C5 = C6 = · · · = Cm = 0} ∩ D)

� P(C5 = C6 = · · · = Cm = 0) − P(Dc).
(4.2)

From the first conclusion of lemma 4.1, we can take a constant K, depending
only on c, such that n − E[T (Gn,p)] � K for all n. Since the number of cyclic
components that have more than m vertices is bounded above by (n − T (Gn,p))/m,
we obtain P(Dc) � (n − E[T (Gn,p)])/m � K/m using Markov’s inequality in the
first inequality. Furthermore, lemma 4.2 yields

lim
n→∞ P(C5 = C6 = · · · = Cm = 0) =

m∏
i=5

exp
(
− ci

2i

)
= exp

(
−1

2

m∑
i=5

ci

i

)
.
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Combining the above estimates with equation (4.2), we obtain

exp

(
−1

2

m∑
i=5

ci

i

)
� lim sup

n→∞
P(F2) � lim inf

n→∞ P(F2) � exp

(
−1

2

m∑
i=5

ci

i

)
− K

m
.

Equation (4.1) follows from the equation above by taking m → ∞, noting that

exp

(
−1

2

∞∑
i=5

ci

i

)
=

√
1 − c exp(c/2 + c2/4 + c3/6 + c4/8).

�

For the estimate of P(Gn,p is non-diagonal) in part (b), we use the following
lemma. For a graph G, let us denote the number of connected components of G by
ξ(G).

Lemma 4.4 [6, § 6]. Let p = cn−1 for some fixed constant c > 0. Then, for
any ε > 0, it holds that limn→∞ P(|ξ(Gn,p)/n − u(c)| > ε) = 0, where u(c) =
(1/c)

∑∞
i=1 ii−2(ce−c)i/i!.

For a graph G, the circuit rank r(G) indicates the minimum number of edges
that must be removed from G to contain no cycles. As a well-known fact, it holds
that r(G) = #E(G) − #V (G) + ξ(G).

Lemma 4.5. Let p = cn−1 for some fixed constant c > 1. Then, there exists a
constant δ > 0 such that r(Gn,p) � δn a.a.s.

Proof. We can verify that u(c) > 1 − c/2 whenever c > 1 (see also figure 3).
Therefore, lemma 4.4 implies that for c > 1, there exists a constant δ > 0
such that ξ(Gn,p) � (1 − c/2 + 2δ)n a.a.s. Furthermore, since #E(Gn,p) follows
the binomial distribution with parameters

(
n
2

)
and cn−1, a direct computation

yields limn→∞ E[#E(Gn,p)/n] = c/2 and limn→∞ Var(#E(Gn,p)/n) = 0. There-
fore, using the Minkowski inequality,

E

[(
#E(Gn,p)

n
− c

2

)2
]1/2

� E

[(
#E(Gn,p)

n
− E

[
#E(Gn,p)

n

])2
]1/2

+
∣∣∣∣E
[
#E(Gn,p)

n

]
− c

2

∣∣∣∣
=

√
Var
(

#E(Gn,p)
n

)
+
∣∣∣∣E
[
#E(Gn,p)

n

]
− c

2

∣∣∣∣ −−−−→n→∞ 0. (4.3)

Thus, from Markov’s inequality, we have #E(Gn,p) � (c/2 − δ)n a.a.s. Combining
these estimates above, we obtain a.a.s.

r(Gn,p) = #E(Gn,p) − n + ξ(Gn,p) � (c/2 − δ)n − n + (1 − c/2 + 2δ)n = δn.
�

We now provide the estimate of P(Gn,p is non-diagonal) in part (b).
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Figure 3. Description of u(c) in lemma 4.4.

Proposition 4.6. Let lim infn→∞ np > 1 and p = o(n−3/4). Then, Gn,p is non-
diagonal a.a.s.

Proof. Let X denote the number of edges e ∈ E(Gn,p) such that gire(Gn,p) ∈ [5,∞).
From theorem 1.5, it suffices to prove that X � 1 a.a.s. We define Y as the number of
edges that are contained in some cycle. Then, Y � r(Gn,p) because of the definition
of the circuit rank. Thus, by applying lemma 4.5 with some fixed constant 1 < c <
lim infn→∞ np, there exists a constant δ > 0 such that Y � r(Gn,p) � δn a.a.s. For
i � 3, we additionally define Yi as the number of edges that are contained in some
i-cycle. Then,

P

(
Yi >

δ

3
n

)
� 3

δn
EYi � 3i

δn
ECi � 3i

δn

(np)i

2i
=

3
2δ

ni−1pi.

The first inequality follows from Markov’s inequality. In the second inequality, we
use a crude estimate Yi � iCi. Since p = o(n−3/4), for i = 3, 4, the right-hand side
of the above equation converges to zero as n → ∞. Therefore, Y3, Y4 � δn/3 a.a.s.
Combining the estimates for Y , Y3, and Y4,

P

(
X � δ

3
n

)
� P

(
Y − Y3 − Y4 � δ

3
n

)
� P

(
Y � δn and Y3, Y4 � δ

3
n

)
−−−−→
n→∞ 1,

which completes the proof. �

Combining propositions 4.3 and 4.6, we obtain the conclusion of theorem 1.7.
Lastly, we prove theorem 1.8. The notion of pawful graphs, introduced by Gu [8],

is a key for the proof. Recall from definition 2.9 that a pawful graph G is a graph of
diameter at most two satisfying the property that for any distinct vertices x, y, z ∈
V (G) with d(x, y) = d(y, z) = 2 and d(z, x) = 1, they have a common neighbour.
Since pawful graphs are diagonal, the conclusion of theorem 1.8 follows immediately
from the following theorem.

Theorem 4.7 [10, theorem 3.2]. Let m ∈ N and ε > 0. If p � (((m + ε) log n)/n)1/m,
then every m vertices in Gn,p have a common neighbour a.a.s.

4.2. Weak law of large numbers for the rank of the magnitude
homology

In this subsection, we prove theorem 1.9 using theorem 1.3. We first give a general
upper bound of the rank of the magnitude homology of a graph.
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Lemma 4.8. Let G be a graph, and let x ∈ V (G) be fixed. Then, for any k, � ∈ N,
rk(MHx

k,�(G)) �
(

�−1
k−1

)
(maxy∈V (G) deg y)�.

Proof. Recall that the generator set of MCx
k,�(G) is

{
(x0, x1, . . . , xk) ∈ V (G)k+1

∣∣∣∣x0 = x,L(x0, . . . , xk) = �,
xi �= xi+1 for 0 � i � k − 1

}

=
⊔

(�1,�2,...,�k)∈N
k

�1+�2+···+�k=�

{(x0, . . . , xk) ∈ V (G)k+1 | x0 = x,d(xi−1, xi)= �i for 1 � i � k}.

Noting that for any u ∈ V (G) and r ∈ N,

#{v ∈ V (G) | d(u, v) = r} �
(

max
y∈V (G)

deg y

)r

,

we have

#{(x0, x1, . . . , xk) ∈ V (G)k+1 | x0 = x,d(xi−1, xi) = �i for 1 � i � k}

�
k∏

i=1

(
max

y∈V (G)
deg y

)�i

=
(

max
y∈V (G)

deg y

)�

for any (�1, �2, . . . , �k) ∈ N
k with �1 + �2 + · · · + �k = �. Furthermore, a simple com-

binatorial argument yields #{(�1, �2, . . . , �k) ∈ N
k | �1 + �2 + · · · + �k = �} =

(
�−1
k−1

)
.

Thus, we conclude that

rk(MHx
k,�(G)) � rk(MCx

k,�(G)) �
(

� − 1
k − 1

)(
max

y∈V (G)
deg y

)�

. �

The following lemma gives a useful upper bounds of the probability that a
binomial distributed random variable is larger than expected.

Lemma 4.9 [13, lemma 1.1]. Suppose N ∈ N, p ∈ (0, 1), and 0 < k < N . Let X be
a binomial random variable with parameters N and p, and set μ := EX = Np. If
k � e2μ, then P(X > k) � exp(−(k/2) log(k/μ)).

In what follows, let the Erdős–Rényi graph Gn,p be constructed on an n-vertex
set Vn, and let o ∈ Vn be an arbitrarily fixed vertex.

Lemma 4.10. Let k, � ∈ N be fixed. Then, for sufficiently large n and any x ∈ Vn,
it holds that E[rk(MHx

k,�(Gn,p))2] �
(

�−1
k−1

)2
(log n)2�.

Proof. Let D be the event that the maximum degree of Gn,p is at most (log n)/2.
Then, P(Dc) �

∑
y∈Vn

P(deg y > (log n)/2) = nP(deg o > (log n)/2). Note that
deg o follows the binomial distribution with parameters n − 1 and cn−1, and set
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μ := E[deg o] = (n − 1)cn−1. Applying lemma 4.9 with N = n − 1, p = cn−1, and
k = (log n)/2, we have

P

(
deg o >

log n

2

)
� exp

(
− log n

4
log
(

log n

2μ

))

� exp
(
− log n log log n

5

)
= n−((log log n)/5)

for sufficiently large n. Therefore, for sufficiently large n and any x ∈ Vn, we obtain

E
[
rk(MHx

k,�(G))2
]

�
(

� − 1
k − 1

)2

E

[(
max
y∈Vn

deg y

)2�
]

�
(

� − 1
k − 1

)2
{

E

[(
max
y∈Vn

deg y

)2�

;D

]
+ n2�

P(Dc)

}

�
(

� − 1
k − 1

)2
{(

log n

2

)2�

+ n2�+1−((log log n)/5)

}

�
(

� − 1
k − 1

)2

(log n)2�.

In the first inequality, we use lemma 4.8. �

We now turn to proving theorem 1.9 using theorem 1.3.

Proof of theorem 1.9. Since MHk,�(Gn,p) = 0 if � < k, we assume that � � k. For
i � 3, define Ex

i as the event that Gn,p has at least one i-cycle containing x, and
set Ex :=

⋃2(�−k)+4
i=3 Ex

i . Applying theorem 1.3, we have

rk(MHk,�(Gn,p))
n

=
1
n

∑
x∈Vn

rk(MHx
k,�(Gn,p))

� 1
n

∑
x∈Vn

{
(deg x)δk,� + rk(MHx

k,�(Gn,p))1Ex

}

=
2#E(Gn,p)

n
δk,� +

1
n

∑
x∈Vn

rk(MHx
k,�(Gn,p))1Ex .

On the other hand, since rk(MH�,�(Gn,p)) � 2#E(Gn,p), we have

rk(MHk,�(Gn,p))
n

� 2#E(Gn,p)
n

δk,�.

Combining these estimates, we obtain∣∣∣∣ rk(MHk,�(Gn,p))
n

− 2#E(Gn,p)
n

δk,�

∣∣∣∣ � 1
n

∑
x∈Vn

rk(MHx
k,�(Gn,p))1Ex .
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Therefore, using the triangle inequality,

E

∣∣∣∣ rk(MHk,�(Gn,p))
n

− cδk,�

∣∣∣∣
� E

∣∣∣∣ rk(MHk,�(Gn,p))
n

− 2#E(Gn,p)
n

δk,�

∣∣∣∣+ E

∣∣∣∣2#E(Gn,p)
n

δk,� − cδk,�

∣∣∣∣
� 1

n

∑
x∈Vn

E[rk(MHx
k,�(Gn,p))1Ex ] + E

∣∣∣∣2#E(Gn,p)
n

− c

∣∣∣∣ δk,�

� E[rk(MHo
k,�(Gn,p))1Eo ] + E

∣∣∣∣2#E(Gn,p)
n

− c

∣∣∣∣
� E
[
rk(MHo

k,�(Gn,p))2
]1/2

P (Eo)1/2 + E

[(
2#E(Gn,p)

n
− c

)2
]1/2

. (4.4)

In the last line, we use the Cauchy–Schwarz inequality. The second term of equation
(4.4) converges to zero as n → ∞, as seen in equation (4.3). For the estimate of the
first term in equation (4.4), we define Co

i as the number of i-cycle graphs containing
o. We then have

P(Eo
i ) = P(Co

i � 1) � ECo
i =

(n − 1)(n − 2) · · · (n − i + 1)
2i

( c

n

)i

� ci

2in

from Markov’s inequality, which implies that

P(Eo) �
2(�−k)+4∑

i=3

P(Eo
i ) � 1

2n

2(�−k)+4∑
i=3

ci

i
.

From the estimate above and lemma 4.10, the first term of equation (4.4) converges
to zero as n → ∞. Consequently, we obtain

lim
n→∞ E

∣∣∣∣ rk(MHk,�(Gn,p))
n

− cδk,�

∣∣∣∣ = 0,

which implies the first conclusion. Again from Markov’s inequality, the above
equation also implies the second conclusion. �
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