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THE SHAPE OF COMPACT COVERS

ZIQIN FENG AND PAUL GARTSIDE

Abstract. For a space X let K(X ) be the set of compact subsets of X ordered by inclusion. A map
φ : K(X ) → K(Y ) is a relative Tukey quotient if it carries compact covers to compact covers. When
there is such a Tukey quotient write (X,K(X )) ≥T (Y,K(Y )), and write (X,K(X )) =T (Y,K(Y )) if
(X,K(X )) ≥T (Y,K(Y )) and vice versa.

We investigate the initial structure of pairs (X,K(X )) under the relative Tukey order, focussing on the
case of separable metrizable spaces. Connections are made to Menger spaces.

Applications are given demonstrating the diversity of free topological groups, and related free objects,
over separable metrizable spaces. It is shown a topological group G has the countable chain condition if it
is either �-pseudocompact or for some separable metrizable M, we have K(M ) ≥T (G,K(G)).

§1. Introduction. The purpose of this paper is to uncover the possible ‘shapes’
of compact covers of topological spaces, in particular separable metrizable spaces.
Applications are made to distinguish free topological groups of separable metrizable
spaces, and to show that a wide class of topological groups have the countable chain
condition (ccc), including those with a compact cover with the same ‘shape’ as that
of a separable metrizable space.

The main technical tool—which makes precise the notion of ‘shape’ of a compact
cover—is that of the relative Tukey order and equivalence. This line of thought
continues work of the authors and others on the Tukey structure of directed sets of
the formK(X ), which is the set of compact subsets of a space X ordered by inclusion
[9, 10]. It also encompasses work, arising from functional analysis, studying spaces
with a ‘P-ordered compact cover’ (see the survey [5]).

Let P be a directed set, and P′ any subset. A subset C of P is cofinal for P′

(in P) if for every p′ ∈ P′ there is c from C such that c ≥ p′. For a space X we
have natural pairs (X,K(X )) and (F(X ),K(X )), where F(X ) is the set of all finite
subsets of X (also denoted [X ]<�) and (abusing notation) the ‘X ’ in (X,K(X ))
means the singletons of X. Observe that the cofinal sets for X in K(X ) are precisely
the compact covers of X. To compare two pairs, say (P′, P) and (Q′, Q) we write
(P′, P) ≥T (Q′, Q), and say ‘(P′, P) Tukey quotients to (Q′, Q)’ if and only if there is
a map (called a relative Tukey quotient) φ : P → Q which takes subsets of P cofinal
for P′ to subsets of Q cofinal for Q′. If (P′, P) ≥T (Q′, Q) and (Q′, Q) ≥T (P′, P)
then the pairs are said to be Tukey equivalent, denoted (P′, P) =T (Q′, Q). Naturally
we abbreviate (P,P) by P.
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2 ZIQIN FENG AND PAUL GARTSIDE

Observe that a space X is compact if and only if (X,K(X )) =T 1, and is�-compact
but not compact if and only if (X,K(X )) =T �. Further a space X has a P-ordered
compact cover if and only if P ≥T (X,K(X )).

We start in Section 2 by determining when each of (X,K(X )), (F(X ),K(X )) and
K(X ) does, or does not, Tukey quotient to �. In our case of particular interest,
separable metrizable spaces, it turns out that each of them does not Tukey quotient
to � precisely when the space is compact.

We continue in Section 3 by uncovering the initial structure of the Tukey order
on (M,K(M ))’s and (F(M ),K(M ))’s where M is separable metrizable. Actually
the first few steps are known, see [9, Theorem 3.4]. Denote by (M,K(M)) all pairs
(M,K(M )), and by (F(M),K(M)) all pairs (F(M ),K(M )), both ordered by the
Tukey order.

Then the initial structure of (M,K(M)) starts: (1) the minimum Tukey
equivalence class in (M,K(M)) is [(1,K(1))]T , and (M,K(M )) is in this class
if and only if M is compact; (2) it has a unique successor, [(�,K(�))]T , which
consists of all (M,K(M )) where M is �-compact but not compact; and (3) this has
[(��,K(��))]T = {(M,K(M )) :M is analytic but not �-compact} as a successor.
The initial structure of (F(M),K(M)) starts identically.

Now the questions are: (1) what are the (M,K(M )) Tukey-above (��,K(��))?
and (2) are there any (M,K(M )) strictly Tukey-above (�,K(�)) but not above
(��,K(��))? At this point Menger spaces enter the discussion. A space is Menger
if for every sequence of open covers, (Un)n, one can select finite Vn ⊆ Un so
that their union,

⋃
n Vn, cover. A space is strong Menger if every finite power

is Menger. Clearly, �-compact spaces are strong Menger, but there are, in ZFC,
non-�-compact strong Menger subsets of the reals. Then Theorem 3.4 says, for
a separable metrizable M, that (M,K(M )) �≥T (��,K(��)) precisely when M is
Menger, and (F(M ),K(M )) �≥T (��,K(��)) if and only if M is strong Menger.
This is conceptually an illuminating result. The Menger property was isolated in
an (unsuccessful) attempt to characterize �-compact spaces in terms of a covering
property. Our characterization of separable metrizable Menger spaces manages to
connect them back to compact covers. Theorem 3.7 says that, consistently at least,
there are many distinct Tukey classes of (M,K(M )) and (F(M ),K(M )) where M
is strong Menger. It is not clear whether (��,K(��)) has any successors. One
candidate (guided by the authors results for K(M )’s) is (K(Q),K(K(Q)). We obtain
partial results on what pairs (M,K(M )) lie Tukey above, below or are incomparable
with (K(Q),K(K(Q)).

In Section 4 we turn to applications. First we connect the Tukey structure of
compact covers of a space X (specifically, (F(X ),K(X )), which helps explain our
interest in this pair) with those of its free topological group, F (X ), and related
free algebraic objects. This allows us to show that there is a 2c-sized family
of separable metrizable spaces whose free topological groups (et cetera) are all
pairwise non homeomorphic; and, consistently, large families of strong Menger
separable metrizable spaces with pairwise non homeomorphic free topological
groups. Second we prove a result implying that �-pseudocompact topological groups
and topological groups with a K(M )-ordered compact cover are ccc, generalizing
results of Tkachenko and Uspenskii.
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THE SHAPE OF COMPACT COVERS 3

§2. Core results on relative Tukey order. For a general overview of relative Tukey
quotients the reader is referred to [9]. If φ is a map from P to Q which is order-
preserving and φ(P′) is cofinal for Q′ in Q then it is a relative Tukey quotient.
Conversely, provided Q is Dedekind complete, then if (P′, P) ≥T (Q′, Q) then there
is a φ a map from P to Q which is order-preserving and φ(P′) is cofinal for Q′ in Q.
We note that K(X ) is Dedekind complete. Thus we may, and usually do, assume
any given Tukey quotient is order-preserving. This justifies our claim above that a
space X has a ‘P-ordered compact cover’, which means there is a compact cover
{Kp : p ∈ P} such thatKp ⊆ Kp′ when p ≤ p′, if and only ifP ≥T (X,K(X )). Also
note that, as P is directed, P ≥T (X,K(X )) if and only if P ≥T (F(X ),K(X )).

We record some basic Tukey equivalences. When computing Tukey order relations
we will replace, for example, (��,K(��)) with �� , without further comment.

Lemma 2.1.

(1) (�, [�]<�) =T [�]<� =T �, and (2) (��,K(��)) =T (F(��, )K(��)) =T �� .

2.1. Relative k-calibres. The purpose of the next two results is to determine when
one of our pairs must Tukey quotient to a countably infinite pair. The non-existence
of such a quotient is connected to the space being almost compact. This is key to
eliminating ‘×�’ factors in later Tukey calculations.

A space X is countably compact if every countable open cover has a finite
subcover, or equivalently if every closed discrete subset is finite. A space X is totally
countably compact if for every sequence (xn)n∈� on X there is an infinite A ⊆ �
such that {xn : n ∈ A} is compact. We introduce a strengthening of total countable
compactness as follows. A space X is totally countably compact for finite sets if for
every sequence (Fn)n∈� of finite subsets of X there is an infinite A ⊆ � such that
⋃
{Fn : n ∈ A} is compact. A space X is �-bounded if every countable subset has

compact closure.
Clearly�-bounded implies totally countably compact for finite sets, which implies

totally countably compact, which, in turn, implies countably compact.

Problem 2.2.

(1) Find an example of a space which is totally countably compact for finite sets but
not �-bounded.

(2) Find an example of a space which is totally countably compact but not totally
countably compact for finite sets.

Recall that a directed set P is countably directed (every countable subset has an
upper bound) if and only if P �≥T �.

Proposition 2.3. Let X be a space. Then:
(1) X is totally countably compact if and only if (X,K(X )) �≥T [�]<� ,
(2) X is totally countably compact for finite sets

if and only if (F(X ),K(X )) �≥T [�]<� , and
(3) X is �-bounded if and only if

there is a directed set P such that P ≥T (X,K(X )) and P �≥T �.

Proof. We prove (2). The argument for (1) is similar and simpler.
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4 ZIQIN FENG AND PAUL GARTSIDE

Suppose, first, that X is not totally countably compact for finite sets. So there
is a sequence (Fi)i∈� of finite subsets such that for every infinite A ⊆ � we have
⋃
{Fn : n ∈ A} not compact. This is the same as saying that for every compact subset

K of X, for only finitely many n do we have Fn ⊆ K . Define φ : K(X ) → [�]<� by
φ(K) = {n ∈ � : Fn ⊆ K}. This is well-defined and order-preserving. For each n
in �, clearly Fn is compact and n ∈ φ(Fn). As F(X ) is directed it follows that the
image of φ is cofinal in [�]<� . In other words, φ is a relative Tukey quotient of
(F(X ),K(X )) to [�]<� .

Now suppose we are given φ a relative Tukey quotient of (F(X ),K(X )) to [�]<� .
We can assume φ is order-preserving and has image cofinal for F(X ) in K(X ). In
particular, for each n in � there is a finite Fn such that φ(Fn) ⊇ {n}. This gives a
sequence (Fn)n∈� of finite subsets of X. It witnesses that X is not totally countably
compact for finite sets. To see this, take any infinite A ⊆ �. If K =

⋃
{Fn : n ∈ A}

were compact then, as Fn ⊆ K for every n in A, φ(K) would contain the infinite set
set A, contradicting φ mapping into the finite subsets of �. Thus

⋃
{Fn : n ∈ A} is

not compact, as required.
Now for (3). Suppose X is�-bounded. ThenP = {C : C is countable} is a count-

ably directed (by inclusion) compact cover. Conversely, suppose K = {Kp : p ∈ P}
is a P-ordered compact cover of X where P �≥T �. Then P is countably directed.
Take any countable subset C of X, for each x in C pick px such that x ∈ Kpx . Then
{px : x ∈ C} has an upper bound, say p∞, and C ⊆ Kp∞ , which is compact. 	

2.2. Products, powers, and complements. We collect here useful facts concerning
products, powers, and complements of Tukey pairs (X,K(X )) and (F(X ),K(X )).
Proofs are largely left to the reader. These will be used, mostly without further
comment, in the sequel.

Lemma 2.4. For any spaces X and Y:
(1) (X×Y,K(X ×Y )) =T (X,K(X ))×(Y,K(Y )) and (F(X ×Y ),K(X ×Y )) =T

(F(X ),K(X )) × (F(Y ),K(Y )),
(2) (F(X ),K(X )) =T (F(X ),K(X )) × (F(X ),K(X )), and
(3) (X,K(X )) =T (X ⊕ X,K(X ⊕ X )).

From claim (1) we have in particular that (X 2,K(X 2)) =T (X,K(X ))2. In contrast
to claim (2) we cannot add Tukey equivalence to (X,K(X )) (see Remark 3.6).

Example 2.5. Consistently there is a separable metrizable M such that,
(M,K(M )) is not Tukey equivalent to (M,K(M )) × (M,K(M )).

Lemma 2.6. Let �X and �X be compactifications of a space X. Then (S(�X \ X ),
K(�X \ X ) =T (S(�X \ X ),K(�X \ X ) for S = I,F and K.

Proof. By transitivity of Tukey equivalence, we may suppose �X = �X the
Stone–Cech compactification of X. Then the identity map iX : X → X extends
to a map f : �X → �X which is a Wadge reduction (f–1X = X ) and the claimed
Tukey equivalences follow (witnessed by φ(K) = f(K) and �(L) = f–1L). 	

Let X be a space with compactification �X . Set qX = �X \ X , the remainder of X
in �X . By the previous lemma—up to Tukey equivalence— qX does not depend on
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the choice of compactification. Observe that K(�X ) is a compactification of K(X ).
Set K(X ) = K(�X ) \ K(X ), the corresponding remainder of K(X ).

Lemma 2.7. Let X be a space. Then

( qX,K( qX )) =T (K(X ),K(K(X ))).

Proof. Since X embeds as a closed set in K(X ), we see qX embeds as a closed set
in K(X ), so we have (K(X ),K(K(X ))) ≥T ( qX,K( qX )).

For the converse define φ : K( qX ) → K(K(X )) by φ(K) = {{z} ∪ L : z ∈ K &
L ∈ K(�X )}. This is well-defined because: K �= ∅ so each {z} ∪ L in φ(K) is a
compact subset of �X not contained in X, and the family φ(K) is the continuous
image of K ×K(�X ) and so compact. Clearly φ is order-preserving. Take any L in
K(X ). Then L is a compact subset of �X meeting qX , say at z. And now we see, z is
in qX and L = {z} ∪ L ∈ φ({z}), as required for a relative Tukey quotient. 	

§3. Compact covers of separable metrizable. We expose the initial, Section 3.1, and
cofinal, Section 3.2, Tukey order structure of (M,K(M ))’s and (F(M ),K(M ))’s, for
separable metrizable spaces, M. We start by giving an alternative characterization
of the Tukey order in this context.

Theorem 3.1. Let M and N be separable metrizable, C ⊆ K(M ) and D ⊆ K(N ).
Then the following are equivalent:

(1) (C,K(M )) ≥T (D,K(N )), and
(2) there is a compact metrizable space Z, closed subset D of K(M ) × Z

and continuous f : D → N such that for every L ∈ D there is a compact subset
K ′ = {C} ×K of D where C ∈ C and f(K ′) ⊇ L.

Proof. To show that (2) implies (1), define φ : K(M ) → K(N ) via φ(K) =
f((K(K) × Z) ∩D). Then φ is clearly well-defined and order-preserving. Take any
L in D. Then we know there is a {C} ×K as in the statement of (2). Now C is in C
and φ(C ) ⊇ f({C} ×K) ⊇ L, as required.

Suppose, then, that (1) holds, and φ : K(M ) → K(N ) is an order preserving
relative Tukey quotient. Let Z be any metrizable compactification of N. Let
C0 = {(K,L) ∈ K(M ) ×K(N ) : L ⊆ φ(K)}. Let C be the closure of C0 in
K(M ) ×K(Z).

We know that C [K(M )] = {K ⊆ Z : ∃L ∈ K(M ) with (L,K) ∈ C} ⊆ K(N )
(see Lemma 21 in [10]). Let D = C ∩ (K(M ) × Z). Then D is a closed subset
of K(M ) × Z. By the previous remark D also equals C ∩ (K(M ) ×N ). Let f be
the projection map from K(M ) × Z to Z restricted to D. We verify that f has the
property in (2).

Take any compact set L in D. As φ is a relative Tukey quotient there is a K in C
such that φ(K) ⊇ L. Let L0 = {K} × φ(K). Then L0 is a subspace of K(M ) × Z
homeomorphic to φ(K), which is compact. Now we see that L0 is a compact subset
ofC0, and hence a compact subset of C. Also it is clear from the definitions of D and
L0 thatL0 is a (compact) subset of D, and f carriesL0 toφ(K) which contains L. 	
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6 ZIQIN FENG AND PAUL GARTSIDE

3.1. The initial structure of (M,K(M)) and (F(M),K(M)). Recall that a space
is Menger if for every sequence of open covers, (Un)n, one can select finite Vn ⊆ Un so
that their union,

⋃
n Vn, cover. While a space is strong Menger if every finite power

is Menger. The Menger property is preserved by: multiplication with a compact
space, closed subsets (hence perfect pre-images), countable unions, and continuous
images. By a standard argument we deduce the following lemma.

Lemma 3.2. A separable metrizable space M is strong Menger if and only if F(M )
(with the standard, Vietoris, topology) is Menger.

Next we connect the Menger property to compact covers.

Lemma 3.3. Let M and N be separable metrizable spaces.
(1) If (M,K(M )) ≥T (N,K(N )) and M is Menger then N is also Menger.
(2) If (F(M ),K(M )) ≥T (F(N ),K(N )) and M is strong Menger then N is strong

Menger.

Proof. We prove part (1). Part (2) follows similarly using Lemma 3.2.
As (M,K(M )) ≥T (N,K(N )), we know from Theorem 3.1 there is a compact

metrizable space Z, closed subset D of K(M ) × Z and continuous map f of D into
N satisfying condition (2) of the theorem. LetD′ = D ∩ (M × Z) andf′ : D′ → N
be f restricted to D′. Then the covering property of f implies f′ is surjective. If M
is Menger, then so are, in turn,M × Z, D and N (via f′). 	

Theorem 3.4. Let M be separable metrizable. Then:
(1)K(M ) �≥T (��,K(��)) if and only if M is locally compact (equivalently, K(M )

Menger),
(2) (M,K(M )) �≥T (��,K(��)) if and only if M is Menger, and
(3) (F(M ),K(M )) �≥T (��,K(��)) if and only if M is strong Menger.

Proof. For (1): Since K(M ) =T (K(M ),K(K(M ))), by part (2), we know that
K(M ) �≥T (��,K(��)) if and only if K(M ) is Menger. Recall that K(M ) is
�-compact only when M is locally compact. On the other hand, M is not locally
compact if and only if it contains a closed copy of the metric fan, F. Noting that
K(F) is not Menger (it is Polish but not �-compact) completes the argument.

For (2): As the space of irrationals, �� , is not Menger, by Lemma 3.3(1), if
(M,K(M )) ≥T (��,K(��)) then M is not Menger.

Now we assume (M,K(M )) �≥T (��,K(��)) and show M Menger. Take any
sequence of open covers (Un)n∈� . As M is Lindelöf we can assume each Un is
countable, sayUn = {Unm : m ∈ �}. For x in M definefx ∈ �� byfx(n) = min{m :
x ∈

⋃m
i=0U

n
m}. Define φ′ :M → �� by φ′(x) = fx .

Take any compact subset K of M. We show φ′(K) is bounded in �� . To see this
note that for each n, Un covers K, so we can pick f(n) = m such that {Un0 , ... , U nm}
cover K. Now φ′(K) ≤ f.

Since (M,K(M )) �≥T (��,K(��)) we see thatφ′(M ) is not cofinal in�� . So there
is an f such that for every x in M there is an nx such that fx(nx) < f(nx).
For each n let Vn = {Un0 , ... , U nf(n)}, a finite subcollection of Un. We complete the
proof by showing

⋃
n

⋃
Vn covers. Well take any x in M, then fx(nx) < f(nx), so

x ∈ Un
fx (nx ) ∈ Vnx .
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For (3): To see this recall Lemmas 3.3(2) and 3.2, and apply the argument for
part (2) to the space F(M ) in place of M. 	

Question 3.5. Let X be a Lindelöf space. Is it the case that X is Menger if and only if
(X,K(X )) �≥T (��,K(��))? And is X strong Menger if and only if (F(X ),K(X )) �≥T
(��,K(��))?

Note that the proof given above shows for any Lindelöf X, (X,K(X )) �≥T
(��,K(��)) implies X is Menger. But the converse depends on Theorem 3.1 which
requires metrizability.

Remark 3.6. Consistently [13] there are Menger sets, M, such that M 2 is not
Menger. For such an M we have (M,K(M )) �≥T (�,K(��)) but (M 2,K(M )2) ≥T
(�,K(��)). In particular, (M,K(M )) �=T (M 2,K(M 2)) =T (M,K(M ))2.

At least consistently there are many strong Menger sets whose families of compact
subsets are distinct up to Tukey equivalence.

Theorem 3.7. If 2b > c then there is a family S of 2b-many strong Menger sets
such that (F(M ),K(M )) �=T (F(N ),K(N )) for distinct M and N from S.

Proof. We review a method, see [3], of constructing non �-compact strong
Menger sets. Write [N]<∞ and [N]∞ for the set of finite and, respectively, infinite
subsets of N. For a ∈ [N]∞ and n in N, a(n) denotes the nth element of a in its
increasing enumeration. For a, b in [N]∞, a ≤∗ b means a(n) ≤ b(n) for all but
finitely many n. A b-scale is an unbounded set, B = {bα : α < b}, in ([N]∞,≤∗)
such that α < � implies b� �≤∗ bα . It is straight forward to see that b-scales exist
in ZFC. Then XB = [N]<∞ ∪ B , considered as a subspace of P(N) (all subsets
of N, identified with the Cantor set, {0, 1}N), is a strong Menger set which is not
�-compact. (Actually [3] showedXB is a so called Hurewicz set. See [4] for the proof
that all finite powers of these sets are Menger.)

Observe that any subset B ′ of B which has size b is also a b-scale, and so XB′ is
a strong Menger set. Thus there are at least 2b-many subsets of the reals that are
strong Menger. However we know, see [9], that for any separable metrizable space
M the set {N ⊆ R : (F(M ),K(M )) =T (F(N ),K(N ))} has size c. It follows that
when 2b > c there are indeed 2b-many strong Menger sets as in the statement of the
theorem. 	

Naturally we would like to remove the hypothesis ‘2b > c’ from the preceding
theorem. It seems plausible that the members of the given 2b-sized family of separable
metrizable strong Menger spaces have pairwise Tukey inequivalent (F(M ),K(M ))
in ZFC. In general what can we say in ZFC about the number of Tukey classes of
pairs (M,K(M )) and (F(M ),K(M )) where M is a separable metrizable (strong)
Menger space?

Question 3.8. In ZFC:
Are there at least 2b-many Tukey inequivalent (F(M ),K(M )) pairs where M is

strong Menger? Are there at least 2d-many Tukey inequivalent (M,K(M )) pairs where
M is Menger?

Is 2d an upper bound on the number of Tukey inequivalent (M,K(M )) pairs where
M is Menger?
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8 ZIQIN FENG AND PAUL GARTSIDE

Is it consistent that there are strictly fewer, up to Tukey equivalence, pairs
(F(M ),K(M )) where M is strong Menger than (M,K(M )) pairs where M is Menger?

Our next task is to determine the position of (K(Q),K(K(Q))), which is Tukey
equivalent to K(Q). First a constraint on pairs (M,K(M )) above K(Q). Recall that
a space is hereditarily Baire if every closed subspace satisfies the conclusion of the
Baire category theorem. For separable metrizable spaces, being hereditarily Baire is
equivalent to not containing a closed copy of Q.

Proposition 3.9. Let M be separable metrizable. If (M,K(M )) ≥T K(Q) then M
is not hereditarily Baire.

Proof. There are compact metrizable Z, closed D in K(M ) × Z and continuous
f : D → Q as in Theorem 3.1(2). Let D′ = D ∩ (M × Z) and f′ be f restricted to
D′. Then the covering property on f implies that f′ is compact-covering. Suppose,
for a contradiction, that M is hereditarily Baire. Since f′ is compact-covering to Q

by [14] f′ is inductively perfect, say when restricted to some closed D′′. But now
D′′ is �-compact and hereditarily Baire, hence Polish, so its perfect image, Q, is also
Polish, which is false. 	

Next a characterization of pairs (M,K(M )) Tukey-below K(Q). Recall that a
separable metrizable space that is the continuous image of a Polish space is analytic,
the complement of an analytic set in a Polish space is coanalytic, and continuous
images of coanalytic is Σ1

2.

Proposition 3.10. Let M be separable metrizable. We have K(Q) ≥T (M,K(M ))
if and only if M is Σ1

2.

Proof. If K(Q) ≥T (M,K(M )) then there are a compact, metrizable Z, closed
D ⊆ K(Q) × Z and continuous surjection f : D →M . Since K(Q) is co-analytic,
so is D, and hence M, as the continuous image of co-analytic, is Σ1

2.
Conversely, suppose M is Σ1

2. Then there is a co-analytic N such that M is the
continuous image of N. Hence (N,K(N )) ≥T (<,K(M )). But, as N is co-analytic,
we know K(Q) ≥T K(N ). Recalling that K(N ) ≥T (N,K(N )) (via the identity
map), by transitivity of ≥T , we are done. 	

There are pairs Tukey-incomparable with K(Q) and Proposition 3.9 does not
characterize the pairs not Tukey-above K(Q).

Example 3.11. There are separable metrizable spaces M1 and M2 such that
both (M1,K(M1)) and (M2,K(M2)) are Tukey above (��,K(��)) and Tukey-
incomparable with (K(Q),K(K(Q))), andM1 is hereditarily Baire whileM2 is not
hereditarily Baire.

Proof. Let M1 be a Bernstein set and M2 =M1 ⊕Q. Note M1 is hereditarily
Baire. AsM2 contains a closed copy of Q, it is not hereditarily Baire. AsM1 is not
compact, while Q is �-compact, we see that (M2,K(M2)) =T (M1,K(M1)) × � =T
(M1,K(M1)). It suffices, then, to show that (M1,K(M1)) has the required position
in the Tukey order. AsM1 is not Menger, we have (��,K(��)) ≤T (M1,K(M1)).
AsM1 is not Σ1

2, we have (M1,K(M1)) �≤T (K(Q),K(K(Q))). 	
What remains unclear is whether there are (interesting) pairs (M,K(M )) strictly

Tukey-below K(Q).
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Question 3.12. Is there in ZFC a separable metrizable space M such that

�� =T (��,K(��)) <T (M,K(M )) <T K(Q)?

Such an M is Σ1
2 but not analytic. We know [11] under V = L there is an

example, indeed where M = K(N ). It is consistent [10] that such an M which is
also hereditarily Baire does not exist. Hence the interest is whether there is a ZFC
example, or whether consistently no such M exist (for example, because they must
be hereditarily Baire).

We have seen that—among separable metrizable spaces—those for which we have
(M,K(M )) �≥T �� are precisely the Menger spaces. We have observed that for
Lindelöf spaces X, the Tukey relation (X,K(X )) �≥T �� implies X is Menger. This
raises some intriguing questions.

Question 3.13. Let M be separable metrizable. Is there a covering property
(analogous to that defining Menger space) characterizing when (M,K(M )) �≥T K(Q)?
What if we generalize to Lindelöf spaces?

Menger spaces have some interesting properties, do they extend to Lindelöf spaces
X such that (X,K(X )) �≥T K(Q)? For example, Menger spaces are D [2].

Question 3.14. Let X be Lindelöf. If (X,K(X )) �≥T K(Q) then is X a D-space?
Is X a D-space if (X,K(X )) �≥T K(M ), for some separable metrizable M?

3.2. The cofinal structure. It is known [9, Lemma 2.1 and Theorem 2.2] that
for any spaces X and Y we have K(X ) ≥T (F(X ),K(X )) ≥T (X,K(X )) and
each of ‘K(X ) ≥T K(Y )’, ‘(F(X ),K(X )) ≥T (F(Y ),K(Y ))’ and ‘(X,K(X )) ≥T
(Y,K(Y ))’ are equivalent. Hence the cofinal structure of (M,K(M )’s and
(F(M ),K(M ))’s are the same as that of K(M )’s, where M is separable metrizable.
The reader is referred to [9, 10] for details of the cofinal structure of K(M )’s. But for
later use we record the existence of Tukey anti-chain of maximal size which follows
from [9, Theorem 3.11].

Theorem 3.15. There is a 2c-sized family, M of separable metrizable spaces such
that if M,N are distinct elements of M then (M,K(M )) �≥T (N,K(N )) (and vice
versa) and (F(M ),K(M )) �≥T (F(N ),K(N )) (and vice versa).

§4. Applications.

4.1. Diversity of free topological groups and relatives. For a space X the free
topological group of X (respectively, the free Abelian topological group of X),
denoted F (X ) (A(X )), is the free group (free Abelian group) on X with the coarsest
topological group topology so that for every continuous map f from X into a
(commutative) topological group the canonical extension over the free (Abelian)
group is continuous. Similarly, the free locally convex topological space of X, denoted
L(X ), is the vector space on X with the coarsest locally convex topological vector
space topology so that for every continuous map f from X into a locally convex
topological vector space the canonical linear extension over L(X ) is continuous.
Finally, denote by Lp(X ) the vector space as above but only requiring continuous
real valued maps on X to have continuous canonical extension.
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Here we connect the Tukey structure of compact covers of a space X with those of
F (X ), A(X ), L(X ) and Lp(X ). To start we only need the following standard fact.

Lemma 4.1. Let X be a space. Then for G any of F, A, L, or Lp, the space G(X )
has two properties: (1) X embeds as a closed subset and (2)G(X ) is a countable union
of continuous images of a product of a compact space and a finite power of X.

Proof. For G either F or A, observe that G(X ) is the (countable) union over
all free words of continuous images of finite powers of X. While for G either L or
Lp, note that G(X ) is the union of the sets {

∑n
i=1 
ixi : 
1, ... , 
n ∈ [– n, n] and

(x1, ... , xn) ∈ Xn}. 	

Proposition 4.2. Let X be a space, andG(X ) another space such that (1) X embeds
as a closed subset in G(X ) and (2) G(X ) is a countable union of continuous images of
a product of a compact space and a finite power of X. Then (F(G(X )),K(G(X ))) ≥T
(F(X ),K(X )) and (F(X × �),K(X × �)) ≥T (F(G(X )),K(G(X ))).

If X is not totally countably compact for finite sets then

(F(X ),K(X )) =T (F(G(X )),K(G(X ))).

In particular, the above Tukey relations hold when G is any of F, A, L, or Lp.

Proof. Fix X and G(X ). The first Tukey relation is immediate from property
(1) (K �→ K ∩ X is the desired relative Tukey quotient). We show the second Tukey
relation. Using property (2), write G(X ) =

⋃
n Gn where Gn = fn(Ln × Xmn ),

Ln is compact, mn from N and fn is a continuous map from Ln × Xmn into G(X ).
Define φ : K(X × �) → K(G(X )) by φ(K ′) = fn(Ln ×Kmn ), where K = �1(K ′)
and n = max �2(K ′). Note that φ is well defined and clearly order-preserving.
To see φ(F(X )) covers G(X ), take any g in G(X ), then g is in some
Gn, so g = fn(�, x1, ... , xmn ), and now we see φ(F × {n}) contains g where
F = {x1, ... , xmn}.

Now suppose, X is not totally countably compact for finite sets. It remains
to show (F(X ),K(X )) ≥T (F(G(X )),K(G(X ))). But by Proposition 2.3 we
know (F(X )),K(X )) ≥T � and we compute (applying Lemma 2.4 for the first
equivalence):

(F(X ),K(X )) =T (F(X ),K(X )) × (F(X ),K(X ))

≥T (F(X ),K(X )) × (�,�) =T (F(X × �),K(X × �)).

Now our claim follows from the first part. 	

Applying this result to the 2c-sized anti-chain of Theorem 3.15 we see there is
wide variety of free topological groups et cetera of separable metrizable spaces.

Example 4.3. There is a 2c-sized family, M of separable metrizable spaces such
that ifM,N are distinct elements of M then: (1) G(M ) does not embed as a closed
set in G(N ) and (2) G(M ) is not the continuous image of G(N ), for G any of F, A,
L or Lp.

This should be compared with a result from [8] where it is shown that there is a
2c-sized family, A of separable metrizable spaces such that if M,N are distinct
elements of A then: (1′) A(M ) does not embed in A(N ) and (2′) A(M ) is not the
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continuous open image of A(N ). Here (1′) is stronger that (1) above, while (2′)
is weaker than (2). The results from [8] give much more information about the
topology of the free Abelian topological group, including its character, but they
only apply to the free Abelian case.

Applying the proposition to the consistent family of strong Menger sets of
Theorem 3.7 we obtain a large family of ‘small’ (close to �-compact) separable
metrizable spaces with diverse free topological algebraic objects.

Example 4.4. If 2b > c then there is a 2b-sized family, S, of strong Menger sets
such that if M and N are distinct elements of S then G(M ) and G(N ) are not
homeomorphic, for G any of F, A, L or Lp.

Reformulating the proposition above in terms of P-ordered covers we immediately
deduce the first part of the next lemma. The second part follows from the fact that
each of F (X ), A(X ), L(X ) and Lp(X ) contains an infinite closed discrete subset,
hence they are not �-bounded, and the claim follows from Proposition 2.3. To see
that they do all contain an infinite closed discrete set, forL(X ) andLp(X ) note they
contain closed copies of R, while for A(X ) and F (X ), apply [1, Corollary 7.4.3].

Lemma 4.5.

(1) If a space X has a P-ordered compact covering then each of F (X ),A(X ),L(X ),
and Lp(X ) has a P × �-ordered compact covering.

(2) If any of F (X ), A(X ), L(X ), or Lp(X ) has a Q-ordered compact cover then
Q ≥T � (so Q =T Q × �).

The following example serves two purposes. It shows the necessity of the� factor
in the preceding lemma. And it gives an example of a topological group which is
not Lindelöf Σ but does have a K(M )-ordered compact cover, where M is separable
metrizable (see the next section). (Note it is well known that K(Q) ≥T �1 × �.)

Example 4.6. The space �1 has an �1-ordered compact cover. Hence A(�1) is a
topological group with an (�1 × �)-ordered compact cover, and so a K(Q)-ordered
compact cover. However A(�1) is not Lindelöf Σ and does not have an �1-ordered
compact cover.

In our last result on the free topological group and its relatives, and compact
covers we investigate invariance. It is almost immediate from Proposition 4.2 but we
have to deal with the potential of extra � factors.

Proposition 4.7. If G(X ) and G(Y ) are topologically isomorphic, for G one of F,
A, L, or Lp, then (F(X ),K(X )) =T (F(Y ),K(Y )).

Proof. Suppose G(X ) and G(Y ) are topologically isomorphic. We show there
is a Tukey quotient from (F(X ),K(X ) to (F(Y ),K(Y )). Symmetry gives the full
result.

If X is not totally countably compact for finite sets then by Proposition 4.2
(F(X ),K(X )) is Tukey equivalent to (F(G(X )),K(G(X ))) and since Y is a
closed subset of G(Y ), which is homeomorphic to G(X ), we see indeed that
(F(X ),K(X )) ≥T (F(Y ),K(Y )).

Now suppose X is totally countably compact for finite sets. Then X is
pseudocompact. As pseudocompactness is G-invariant (for each G) we see Y is
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pseudocompact. When G is either F or A, by [1, Corollary 7.5.4], Y is contained
as a closed subset in some Bn(X ), the set of words of reduced length ≤ n. As
Bn(X ) is the continuous image of a finite sum of finite powers of X we see
(F(X ),K(X )) ≥T (F(Bn(X )),K(Bn(X ))). And so, as above, (F(X ),K(X )) ≥T
(F(Y ),K(Y )). A minor modification of [1, Corollary 7.5.4] gives the result when G
is L or Lp. 	

4.2. When topological groups are ccc. Since compact groups carry the Haar
measure they are clearly ccc (every pairwise disjoint family of non-empty open sets
is countable). Interesting extensions of this result were obtained by Tkachenko [16]
who showed that �-compact topological groups are ccc, and then Uspenskii who
showed Lindelöf Σ groups [18], are ccc. Below we prove a result which generalizes
those of Tkachenko and Uspenskii, and implies that �-pseudocompact groups and
groups with a K(M )-ordered compact cover, where M is separable metrizable, are
ccc. (Recall Lindelöf Σ spaces have a K(M )-ordered compact cover, where M is
separable metrizable.)

A subspace X of a space Y has relative calibre (κ, 
, �) (in Y) if every family of
open sets in Y, each meeting X, of size κ contains a subfamily of size 
 whose every
�-sized subcollection has non-empty intersection. A space X has calibre (κ, 
, �) if
it has relative calibre (κ, 
, �) in itself. Note that a space is ccc if and only if it has
calibre (�1, 2, 2), and has the Knaster property (aka ‘property K’) if it has calibre
(�1, �1, 2). Observe that X has calibre (κ, 
, �) if and only if X has the same relative
calibre in Y (for any κ, 
, �) provided either X is a retract of Y, or X is dense in Y
and � is finite.

Define MG(X ) to be the set {xy–1z : x, y, z ∈ X} considered as a subspace of
the free topological group on X, F (X ). Let q : X 3 →MG(X ) be the natural map.
Denote byUX the universal uniformity on X. SetW (A,B) = q((A× B) ∪ (B × A))
where A ⊆ X and B is a symmetric subset of X 2 containing the diagonal. Then in
[12] it is shown:

Lemma 4.8 (Claim 10). For each x in a space X, the family of all setsW (O,U ),
where O is an open neighborhood of x and U is in UX , is a local base at x inMG(X ).

Recall that for any cover U of a space, and any subset O, the star of O in U
is st(O,U) =

⋃
{U ∈ U : O ∩U �= ∅}. Another open cover Vstar refines U if the

collection of stars, {st(V,V) : V ∈ V}, refines U . Then an open cover U is normal
if there is a sequence of covers, (Vn)n, such that V0 = U and for every n we have
that Vn+1 star refines Vn. Equivalently, ([17] and see [7, Exercise 5.4H(c)]), and
more usefully here, an open cover is normal if it has a locally finite open refinement
by cozero sets. Recall that the collection {U (U) : U is an open normal cover of
X} is a base of the universal uniformity, UX , where U (U) =

⋃
{V × V : V ∈ U}.

Combining this with the observation that W (O1, U (U1)) ∩W (O2, U (U2)) �= ∅ if
and only if st(O1,U2) ∩ st(O2,U1) �= ∅, we deduce:

Lemma 4.9. Let X be a space. Then the following are equivalent:
(1) (TGκ,
,2) for any families {Oα : α < κ} of non-empty open sets and

{Uα : α < κ} of open normal covers, there is a subset A of κ of size 
 such that
st(Oα,U�) ∩ st(O�,Uα) �= ∅ for any α, � ∈ A;
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(2) for any families {Oα : α < κ} of non-empty open sets and {Uα : α < κ} ⊆ UX ,
there is a subset A of κ of size 
 such that W (Oα,Uα) ∩W (O�,U�) �= ∅ for any
α, � ∈ A;

(3) X is relative calibre (κ, 
, 2) inMG(X ).

A space is retral if it can be embedded as a retract in a topological group. Obviously
every topological group is retral. Every retral space X is a retract of MG(X ) and
conversely (see [12]). Combining the above we deduce:

Theorem 4.10. A retral space X has calibre (κ, 
, 2) if and only if it has (TGκ,
,2).

A collection N of subsets of a space X is a network for another collection, C say,
if whenever some C in C is contained in an open set U, there is an element N from N
such that C ⊆ N ⊆ U . Then a space is Σ(ℵ0) if it has a cover by countably compact
sets and a countable network for this cover. Let us say that a space is Σ–(ℵ0) if it has a
cover by pseudocompact sets and a countable network for this cover. Observe that a
locally finite open cover of a pseudocompact (hence also, countably compact) space
is finite. In the next result we combine these observations with the ideas behind the
proof of Tkachenko’s theorem.

Theorem 4.11. Let X be a Σ–(ℵ0) retral space. Then X has calibre (�1, �1, 2).

Proof. Fix the cover K of X by pseudocompact sets, and countable family N
such that whenever K ⊆ U , where K ∈ K and U is open, there is an N ∈ N such
that K ⊆ N ⊆ U .

It suffices to check the condition (TG�1,�1,2) above. Fix a family of open sets
{Oα : α < �1} and normal open covers {Uα : α < �1}. Observe that (TGκ,
,2) holds
if it is true when we replace each Uα by any open refinement. So, by definition of
‘normal’ cover, we may assume that every Uα is locally finite. Picking a point xα in
Oα , it suffices to show there is a �1-sized subset A of �1 such for any distinct α, �
from A we have st(xα,U�) ∩ st(x�,Uα) �= ∅.

For each xα pick Kα from K containing xα . As Uα is locally finite and Kα is
pseudocompact pick a finite subcollection Vα of Uα covering Kα . Let Vα =

⋃
Vα .

Pick Nα in N such that Kα ⊆ Nα ⊆ Vα .
As N is countable there is an uncountable A′ ⊆ �1 such that Nα = N for all

α ∈ A′. Note {xα : α ∈ A′} is contained in N. Passing to an uncountable subset
we can suppose that all Vα have size ≤ k, for some fixed k. Color the pairs [A′]2

so that {α, �} has color 0 if st(xα,V�) ∩ st(x�,Vα) �= ∅ and 1 otherwise. If there
is an uncountable subset A of A′ whose pairs are all colored 0 then we are done:
for all distinct α, � in A we have that st(xα,U�) ∩ st(x�,Uα) contains st(xα,V�) ∩
st(x�,Vα) which is non-empty.

By Erdös–Dushnik—Miller, if there is no uncountable 0-homogeneous set then
there must be an infinite 1-homogeneous set. However Tkachenko proved: for any
set Y, and {Vα : α < �} a family of open covers of Y such that each |Vα | ≤ k
(k fixed) and {xα : α < �} ⊆ Y there is an infinite B ⊆ � such that any distinct
α, � ∈ B satisfy st(xα,V�) ∩ st(x�,Vα) �= ∅. Taking Y = N and Vα and xα for α
from an infinite 1-homogeneous set gives a contradiction. 	

Since �-pseudocompact spaces (ones that are a countable union of pseudocom-
pact subspaces) are Σ–(ℵ0) we deduce:
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Corollary 4.12. Every �-pseudocompact group is calibre (�1, �1, 2), and hence
is ccc.

Recall [6] that if a space has K(M )-ordered compact cover then it, and every
closed subspace, is Σ(ℵ0), and noting that a subspace of a space is calibre (�1, �1, 2)
if and only if its closure has the same calibre, we deduce:

Corollary 4.13. Every subgroup of a topological group with a K(M )-ordered
compact cover, where M is separable metrizable, has calibre (�1, �1, 2), and hence is
ccc.

Combining the preceding corollary with Proposition 4.2 we see:

Corollary 4.14. If X has a K(M )-ordered compact cover, where M is separable
metrizable, thenA(X ), F (X ),L(X ), andLp(X ), and all their subgroups, have calibre
(�1, �1, 2), and so are ccc.

Corollaries 4.12 and 4.13 differ because the latter claims the ccc property for all
subgroups, but the former does not.

Question 4.15. Is every subgroup of a �-pseudocompact group ccc?

Note that if G is a pseudocompact group then �G is a (compact) group containing
G as a subgroup, hence if H is a subgroup of G then the closure of H in �G is a
compact group, so ccc, and thus H is ccc.

A space X is a Maltsev space if there is a continuous mapM : X 3 → X such that
M (x, y, y) = x =M (y, y, x) for all x, y ∈ X . Retral spaces are Maltsev (if r is a
retraction from a group G onto X then setM (x, y, z) = r(xy–1z)). Pseudocompact
Maltsev spaces are retral [15] but not all Maltsev spaces are retral [12].

Question 4.16.

(i) Is every �-pseudocompact Maltsev space ccc? Retral?
(ii) Is every Maltsev space with aK(M )-ordered compact cover, where M is separable

metrizable, ccc? Retral?
(iii) Is every Σ–(ℵ0) Maltsev space ccc? Retral?
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