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Abstract
Unintended technical interactions across system interfaces can lead to costly failures and
rework, particularly in the early design stages of complex products. This study examines how
structured risk assessment tools influence teams’ ability to identify, evaluate and mitigate
risks from such indirect interactions. In a controlled experiment, 14 engineering teams
(comprising professionals and graduate students) engaged in simulated design decisions
across three system configurations. Tool usage – includingmodels of direct and indirect risk
propagation and value-based trade-offs – was continuously logged and linked to outcomes.
Teams that engaged earlier and more deliberately with the tools identified risks sooner and
selected mitigation actions with more favourable cost–benefit profiles. Results show that
strategic, not merely frequent, tool use improves risk management performance, particu-
larly when addressing cascading effects from indirect physical interactions. These findings
support the use of structured supports to enhance both the efficiency of early-stage risk
evaluation and the efficacy of risk treatment.

Keywords: Riskmanagement, Indirect interactions, Early-stage engineering decisions, Risk
mitigation, Experimental design research

1. Introduction
Risks are often considered the “effect of uncertainty on objectives” (Aven 2011;
Oehmen et al. 2011), and as such, the management of risk works at minimising the
impact of risks both at the product level (e.g., keeping the product safe for the users)
and at the process level (keeping the project budget and schedule according to the
plan; Rhodes, Valerdi & Roedler 2009). While risk management is an established
practice in the industry, it is becoming increasingly difficult. As products are
becoming more complex and advanced, the number of indirect interactions among
the system elements that cause complex propagation effects on both the products and
the process (which are difficult to track and measure) keeps increasing. ‘Proximity’
effects – interactions between components without direct contact – are an example of
these indirect interactions. A magnetic field is a typical example; however, fields may
include other physical phenomena, such as vibrations and heat (Otto et al. 2019).
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Managing the risks caused by indirect interactions is a challenging task, as it
involves a complex decision-making process where the probability and conse-
quences of failures are traded against the cost and benefits of mitigation strategies
(e.g., inserting protectionmechanisms). The aim of this paper is to understand how
indirect interactions among system elements impact the efficiency of the design
process, as well as the designers’ ability to change the design so that product risks
are mitigated effectively. To this end, this paper defines a novel experimental
approach where designers are confronted with a design task that introduces
indirect interactions. The approach defines a set of hypotheses for the efficiency
of the design process, as well as the effectiveness of the risk treatment strategies
chosen by the designers. The analysis of the use of different risk assessment tools
allows to understand the influence of indirect interactions on product and design
process objectives.

2. Literature review
To formulate hypotheses for the experimental approach, the generic framework for
risk management suggested by ISO 31000:2018 is adopted (Figure 1).

The ISO 31000 risk management framework provides a universal approach
applicable to various industries and problem scopes, and consists of seven main
steps:

Figure 1. Risk management process, comprised of 8 steps (ISO 31000:2018). This
paper focuses mainly on the boundary between the risk evaluation and the risk
treatment steps.
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1. Communication and Consultation – Engaging stakeholders at all stages to share
information and coordinate decisions.

2. Establishing the Context – Defining objectives, scope and criteria for risk
management, considering both internal and external factors.

3. Risk Identification – Identifying sources of risk, potential impacts and signifi-
cant events.

4. Risk Analysis – Assessing risks in depth to determine evaluation methods and
necessary data.

5. Risk Evaluation – Prioritising risks based on analysis to decide which need
treatment. (Steps 3–5 form the Risk Assessment process.)

6. Risk Treatment – Selecting and implementing strategies to address prioritised
risks.

7. Monitoring and Review – Continuously tracking risks and refining the risk
management process as needed.

8. Recording and Reporting – Documenting risk-related activities, decisions and
outcomes to ensure transparency, accountability and continuous improvement.

In risk management, a distinction is often made between product-level risks
– related to a system’s technical performance and reliability – and product
development process-level risks, which pertain to schedule adherence, resource
allocation and development uncertainties. This study focuses primarily on
managing product risks arising from unintended interactions while recognising
that process-level risks can also be affected by early risk evaluation and treat-
ment strategies.

This paper is centred on the risk assessment (steps 3–5) and the risk
treatment (step 6) steps from ISO 31000, since in these steps the design can
be greatly influenced by different choices and decisions. Among these steps, the
identification of sources of risk (e.g., incorrect or evolving requirements) is
currently receiving research attention (Wied et al. 2021). Analogously, the risk
analysis process is well-researched, with a plethora of methods and tools being
investigated (Kunreuther 2002). Aven (2016) highlighted how technology can
enhance risk analysis methods, while underscoring the need for longitudinal
and comparative studies to address limitations in existingmodels. Less research
has been conducted to study how designers prioritise risks based on the analysis
and select mitigation strategies. Increasing this understanding is crucial as there
seems to be a mismatch between the number of ‘issues’ that are prioritised by
designers (with the aid of risk analysis methods) and the number of actual issues
that are discovered in the process. As an example of this mismatch, Figure 2a
illustrates the potential effect that the use of Failure Mode and Effects Analysis
(FMEA), a popular risk assessment tool (Koark & Beul 2017), has on the
number of ‘issues’ that are identified and “front-loaded” by a development
team.

Potential product weaknesses are detected earlier, enabling more effective issue
resolution and resulting in fewer unresolved issues at market launch. Figure 2b
instead shows the actual number of issues identified and resolved during the
development project of a complex sensor system Giffin et al. (2009), measured
as the number of change requests per month written. Although not addressing risk
especially, this research highlights how the number of issues identified in the early
phases is still limited compared to the late phases.
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Risk in complex systems arises from two fundamental aspects: (1) Sources of
uncertainty, which introduce unpredictability into the design and development
process, and (2) Impact categories of risk, which describe how these uncertainties
affect key system objectives. Sources of uncertainty include factors such as tech-
nology immaturity, incomplete specifications and unintended interactions, while
impact categories define the consequences, such as cost overruns, schedule delays
or degraded performance. In this study, we focus on risks stemming from unin-
tended technical interactions (a source of uncertainty) and analyse their cascading
effects on product-level objectives (e.g., reliability and safety) and to a lesser extent
development process-level constraints (e.g., cost and rework time). Recognising
this distinction enables a structured approach to risk assessment, connecting

a) Potential number of issues identified and front-loaded by risk assessment 

methods (adapted from Koark and Beul, 2017)

b) Actual number of issues identified in a complex system (adapted from

Giffin et al., 2009) 

Figure 2. (a) Potential number of issues identified (based on risk assessment
methods), adapted from (Koark & Beul 2017), (b) Actual number of issues identified
in a complex system, adapted from (Giffin et al. 2009).
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process-level risks to broader system outcomes. These risks share important
characteristics with what Renn et al. (2022) describe as systemic risks – particularly
in their potential for cascading effects that extend beyond the immediate point of
failure.

The fact that the system has many indirect interactions causes major propa-
gation effects downstream or risks that may have low probability and impact on
direct interactions. The complexity of the interactions in a system often causes
practitioners to overestimate the risk of very low-probability events and under-
estimate that of high-probability events (Lomborg 2003). For these reasons, the
literature stresses the need to facilitate the communication of the ‘residual risk’
(Maiworm, Hammann & Schleich 2023) that is not included in rational risk
assessment procedures. Also, the choice of the appropriate risk treatment implies
the determination of a risk tolerance (e.g., the willingness to accept a certain level of
risk to achieve project goals), which is also critical in risk management. The
probability and consequences of failure against potential benefits should be con-
sidered early and revisited throughout the design process (Bossuyt et al. 2012).
Despite their importance, the cyclic loops between the risk evaluation process and
the risk treatment process in practice have not yet been studied in detail.

This paper explores further the connection between risk evaluation and the risk
treatment process on the design process and product, focusing on these two high-
level research questions:

1. What is the role of indirect interactions on (1) the efficiency of the design process
and (2) the efficacy of the product?

2. How can the use of design supports improve (1) the efficiency of the design process
and (2) the efficacy of the product?

These two high-level questions have been studied through the definition of an
experimental approach.

3. Experimental approach
The experiment aims to replicate an industrial environment in which an engin-
eering design team executes a complex design decision gate (Cooper 2008) at a
fictitious truck manufacturer. We formed 14 teams with a total of 68 participants.
Each team was tasked with describing a new design after analysing three design
proposals for a truck.

- Seven teams (Teams 1–7) with a mix of 17 industrial experts representing
industrial companies, including three automotive Original Equipment Manu-
facturers (OEMs) and 27 senior and junior researchers working within complex
systems at 13 international universities.

- Two teams (Teams 8 and 9), with seven industrial experts from a Swedish
Car OEM.

- Five teams (Teams 10–14), with 17 international students enrolled in Mechanical
Engineeringmaster’s programs. Some students had previous industrial experience.

Table 1 provides a summary of the teams and their industrial experience.
The participants were assigned to the teams. The teams comprised three to six
participants.
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3.1. Data collection

To be able to measure the behaviour of the design teams on such a simulated
complex decision gate, we decided to track the use of five design supports
containing a different set of information. When participants logged into the web
application, the interactions that occurred with the five different supports were
automatically recorded in the database. The interactions recorded were the “tran-
sition clicks” that participants made in the application. Since the design supports
were divided into different “tabs,” it was possible to record the time stamps when
the participants transitioned from one support to the other. It must be noted that
all participants had access to the web application through their laptops and phones.
However, they were free to decide whether to look at the web application indi-
vidually, divide the group into smaller groups, or look through the application from
only one device.

Figure 3 shows a hypothetical distribution of the use of the different supports
contained in the web application over the course of the design session (shown as a
stacked area chart). The figure allows to visualise the generic design process
followed by the design teams, as well as the independent variables (IV) and the
dependent variables (DV) that were measured and that represent the key variables
for the hypotheses made. It should be noted that these distributions are hypothet-
ical and that the participants were free tomove back and forth between the different
tabs as they desired.

The first design support was a “value model” that precomputed the company’s
profit for the 3 systems onto 3 different applications. The value information was
computed such that there was no univocal answer regarding the best system. The
use of this support was mainly meant to allow the teams to become familiar with
the design problem and trade-offs involved. Therefore, its use does not represent a
critical variable for this experiment.

For the experiment, much stronger attention was given to the other four design
supports, divided into:

- representations of direct risk interactions (green area in Figure 3): to this category
belonged 1) a technical risk registry, which represented a ‘simplified FMEA’,
where the risk of failure for each component was computed on a scale of 0–1
(0 = low risk, 1 = high risk) and 2) a Component-based Design Structure Matrix

Table 1. Summary of teams involved in the study

Teams Composition
Minimum

experience (years)
Maximum

experience (years)

Average
experience
(years)

Teams 1–7 17 Industrial experts and
27 researchers

0 38 13.24

Teams 8 and 9 7 Industrial experts from
a Car OEM

6 40 22.14

Teams 10–14 17 international students 0 5 1.41

The members of Teams 1–7 mostly had research experience, whereas Teams 8 and 9 mostly had industrial experience. Additionally, the members of
Teams 1–9 had heterogeneous experience levels, whereas those of Teams 10–14 were more homogeneous.
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(b-DSM; Browning 2016) visualising how components were in direct contact
with each other (therefore, the interfaces were binary).

- representations of indirect risk interactions. (blue area in Figure 3): to this
category belonged (1) a component-based DSM containing the spatial distances
(in mm) between the components (d-DSM) and (2) Risk propagation matrices
(r-DSM), where the direct risks contained in the technical registry were pre-
computed by combining the Change Propagation Method (CPM) by Clarkson,
Simons, and Eckert (2004) and themethod by Alonso Fernández, Panarotto, and
Isaksson (2024). This method uses the same algorithm as in CPM but differs in
terms of how the direct Likelihood (L) and Impact (I) values are calculated. The
likelihood of propagation is estimated based on the spatial distances between the
components (therefore, the distance values contained in the matrix).

While there are numerous risk assessment methods, such as Fault Tree
Analysis (FTA) or Hazard and Operability Study (HAZOP) (ISO/IEC 31010
2019). The focus of this paper is to identify the extent to which designers manage
the technical risks caused by indirect interactions. Therefore, we were interested
in studying both direct risk representations (FMEA and b-DSM) and indirect
risk representations (d-DSM and r-DSM). Given the time limit of the design

Figure 3. Hypothetical distribution of the use of design supports over the course of
the design session, together with the independent variables (IV) and dependent
variables (DV) relevant to the experiment.
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sessions (between 3 and 6 hours), we have chosen the DSM format due to its
compactness (Browning 2016). Since each of the 3 systems contains 15 compo-
nents on average (therefore with 15 × 15 = 225 possible interactions to be
multiplied for 3 systems), showing large Fault Trees representing all these
interactions would have made the design sessions complicated to perform.
The risk would have been that the participants would focus only on the
computation results of the direct interactions, rather than on the propagation
of the indirect interactions (which was the main focus of the study). For these
reasons, the DSM format was chosen so that the teams could focus on reading
the indirect risk matrices in a more nuanced fashion and focus on the trade-off
involved among the direct risks (from the technical registry) and their propa-
gation through the system due to spatial “closeness.” For example, the hub was
not in direct contact with the filter, with a relatively low direct risk (from the risk
registry). However, their overall risk propagation was high, due to their physical
closeness to other “risky” elements of the system. In contrast, the other two
elements not in direct contact, the servo valve and the filter, are still not in direct
contact and close to each other (500 mm) but still rather isolated spatially from
the rest of the system. This resulted in a relatively low overall risk of propagation
owing to the low risk in the risk registry and the distance of these components to
more risky elements.

The tabs in the web application were placed in such a way that after reading this
information, the teams were asked to select which components were the most
critical from a risk perspective (orange area in Figure 3). This was assumed to
represent the “risk evaluation phase” according to the definition of ISO 31000:2018
(Figure 1). After selecting the risks, the teams could engage with a list of mitigation
elements (purple area in Figure 3). These interactions were assumed as a proxy for
the engagement with the “risk treatment” stage of ISO 31000 (2018). This list
contained 25 elements that the teams could use to mitigate the risk. Some of these
elements were components that could be placed at specific interfaces (such as M01
– EMI filter) or “strategies” (such as M04 – regular inspection on hub alignment).
The list provided each team with information about the cost incurred and the
reliability gained by choosing a specificmitigation element. The choice of reliability
gains and cost for each mitigation element was made ‘ad-hoc’ so that some
elements were too expensive for the overall gain they provided (considering the
distances and the propagation risk). Other elements were made cheap while
providing a high-reliability gain, but only considering the overall propagation
and distances. The cost and reliability gains were crucial in determining the overall
“performance” of the design teams on the product results.

In selecting an appropriate performance metric to assess risk management
effectiveness, we used the normalised risk of function degradation derived from the
risk propagation matrix instead of direct risks from the technical risk registry. This
choice was made because indirect interactions, captured by spatial distances and
risk propagation effects, more accurately represent real-world scenarios in com-
plex system design. Direct risks, assessed in isolation, often underestimate or
overlook the cumulative impacts arising from proximity-induced propagation.
Therefore, this propagation-informed metric better reflects actual engineering
conditions, where risks interact and compound non-linearly across system inter-
faces, making it a more robust representation of the true risks faced by the design
teams.
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The experimental inputs were constructed to simulate plausible design data
without embedding decision cues. For example, mitigation costs and effectiveness
scores were calibrated to allow both under- and over-design, and no dominant
solution was embedded. This setup ensured that any perceived value of a tool
would emerge from the participants’ reasoning process, not from how ‘obvious’ the
data made the answer.

Figure 4 visually consolidates the experimental setup and process flow
described. The workflow illustrates the six sequential stages of the web-based

Figure 4. Overview of the experimental setup and process flow of the study.

9/27

https://doi.org/10.1017/dsj.2025.10015 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2025.10015


design session (from introduction to risk treatment), the real-time data logging of
participant interactions, and the iterative use of design support tools, including
Design Structure Matrices (DSMs) for interfaces, distances and risk propagation.

3.2. Hypothesis development

As mentioned in the introduction, this paper aims to understand the influence
of indirect interactions on product and design process objectives. We will
first start describing the independent variables that were measured (IV) and
how these impact dependent variables (DV) that relate to design process
objectives. After, we will describe the dependent variables involving the product
objectives.

For the independent variables, we considered the (1) back-loading of design
support use, (2) intensity of design support use and (3) duration of design
support use. Identifying the back-loading of design support use allows us to
identify how quickly the team members started to intensively use the design
supports. As an assumption, back-loading (or late engagement) was set at the
timestamp when the team used the design supports for 50% of the total inter-
actions. Although “front-loading” of design supports is a more commonly used
term in the design community (Thomke & Fujimoto 2000), we opted for the less
frequent term “back-loading” (previously used in the study of design supports by
Fixson & Marion 2012) because we formulated our hypothesis as a null hypoth-
esis. Our objective is to falsify this null hypothesis (that back-loading does not
have an effect), which will enable us to draw conclusions about the benefits or
risks of exclusively front-loading the use of design supports. Identifying the
intensity of design support use, or the average number of interactions per minute
during the duration of design support use, allows us to better understand the role
that design support plays throughout the risk treatment phase, not just in the
identification of risk. However, counting the number of interactions may not
provide a full picture of how the design supports have been used. There could be
cases in which the teams did not transition among supports but spent more time
looking at them without transitioning. Therefore, we considered the duration of
design support use as the total time incurred between the initial and the last
interaction with the design supports. In the example in Figure 3, TeamA presents
a longer duration of use compared to Team B, while it presents a similar intensity
of use.

The primary dependent variables in this study are the duration of risk evalu-
ation and the duration of risk treatment. The duration of risk evaluation is defined
as the time interval between the first and last interactions related to the selection or
deselection of risk elements from the registry, reflecting the team’s engagement
with identifying critical system vulnerabilities. The duration of risk treatment
corresponds to the time interval during which mitigation elements were selected
or deselected, representing the team’s process of determining and implementing
appropriate responses to the identified risks. These variables capture the efficiency
of the risk management process, as they directly relate to how quickly and
thoroughly teams complete the evaluation and treatment phases. By quantifying
these durations, the study assesses how different patterns of interaction with the
design supports – namely, back-loading, intensity and total duration – impact the
temporal dynamics of risk handling in complex design tasks.
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As there is no previous research that establishes any patterns between risk
management and these interactions to design support, we have no basis on what to
expect from the different interactional patterns that will lead to any reduction
(or increase) in the length of the two risk management phases at the core of our
study (risk evaluation and risk treatment). Thus, we posit the following null
hypotheses:

H1a–b. Back-loading of design support use does not affect the duration of risk
evaluation (H1a) and risk treatment (H1b).

H2a–b. The intensity of design support use does not affect the duration of risk
evaluation (H2a) and risk treatment (H2b).

The durations of risk evaluation and risk treatment selection were evaluated by
calculating the time between the time stamps of the selection (or deselection) of all
the chosen risks and the mitigation elements. This was formulated as a null
hypothesis to understand the interactional patterns that have been previously
explored in project management research (Iorio & Taylor 2014). Throughout this
iterative process, teams had the flexibility to select or later deselect risks and
mitigations as their understanding of the system and the problem evolved. These
interactions were collectively considered for the sake of simplicity, as there was
neither a hypothesis nor an effort to examine the potential effects of this selection
and deselection cycle.

Because our research aims to explore the role of design support in system
under- or over-design (e.g., Jones & Eckert 2023), we also formulated hypotheses
that reflect our expectations about the role of design support in avoiding under- or
over-design. Again, since no previous research has established any interaction
patterns between the use of design supports and under- and over-design, we
formulated the following null hypotheses:

H3. Back-loading of the design support use does not lead to the selection of under-
or over-designed mitigation elements.

H4. Intensity of design support use does not lead to the selection of under- or
over-designed mitigation elements.

H5. Duration of design support use does not lead to the selection of under- or
over-designed mitigation elements.

To define under- and over-design, we recorded which of the 25 mitigation
elements from the mitigation list the teams selected during the workshop. These
results are shown in Figure 5.

To effectively link design efficiency with the performance of the selected
mitigations (i.e., their efficacy), it is essential to evaluate how well the teams
balanced functionality and cost in their decisions, ensuring that the risk treat-
ment strategies were neither under- nor over-designed. This relationship is
assessed through a performance metric that integrates design efficiency consid-
erations by evaluating the functional effectiveness of each mitigation against its
cost, thereby providing insight into the overall efficiency of the design process. To
estimate this performance metric, we considered a metric incorporating func-
tions and costs, as traditionally applied in value engineering (Miles 1972).
Because the function of these elements is to mitigate risk, we defined a perform-
ancemetric considering only the values contained in the risk propagationmatrix.
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By using the normalised risk of function degradation minus the cost as a value
metric, we achieved a more precise evaluation of the design process, considering
the functionality and performance of the solution against the monetary cost
incurred. This approach balances the direct costs with the potential impacts on
system performance, emphasising the components that minimise functional
degradation relative to their cost. This ensures that each element contributes
effectively to risk treatment without unnecessary expenditure, thereby prevent-
ing both under- and over-design. We considered these values as a proxy for the
“true” risks involved in the three systems, as the risks contained in the technical
risk registry are either (1) amplified by propagation effects or (2) attenuated by
the effects of physical distance (Alonso Fernández et al. 2024).While considering
the values contained in the risk propagation matrices as “ground truth” may
present some limitations (Peng & Gero 2010), we assumed it as a good proxy to
determine the extent to which the teams considered the difference between the
“first-order” risk values contained in the registry and the “higher-order” risks
contained in the risk propagation matrices. Considering this difference was

Figure 5. Selected mitigation elements and performance metrics (higher is better) for each team and system.
High performance indicates a well-balanced selection of mitigation elements, providing effective risk
reduction at a lower cost. Conversely, lower performance scores reflect either under-design (insufficient risk
mitigation) or over-design (excessive cost relative to actual risk).
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important, as the risk values were intentionally assigned so that two situations
may have occurred:

1. The mitigation selected was under-designed; in this case, the teams selected
mitigation elements to keep the cost of the system low while compromising on
the risk of propagation.

2. The mitigation selected was over-designed; in this case, the teams selected
expensive mitigation elements compared to the actual risk involved.

Therefore, this simple score allowed us to understand whether the teams
applied more careful consideration of the actual risks involved in the three
systems. Looking at the onset of Figure 5, it can be noticed that some elements
presented high performance in terms of risk and cost (e.g., M05 for System 2 or
M24 for all three systems). The teams that selected them were considered to
have a ‘balanced’ approach to risk treatment. On the contrary, this approach
was considered not followed if the teams selected elements with a low-
performance metric (e.g., M08 or M23). Taking these scores as “ground truth”
allowed us to understand whether this behaviour was dependent on a different
interaction with the design supports (e.g., the risk registry or the risk propaga-
tion matrix that contained information that could lead or mislead the teams).
Thus, efficacy was operationalised as a continuous performance metric derived
from the trade-off between reliability gains and incurred costs of selected
mitigation elements, following a value engineering approach. This metric,
therefore, captures the extent to which teams avoided under- and over-design
scenarios.

Our last three hypotheses aim to investigate the role of design support in
assisting less experienced designers. Prior research suggests that experienced
designers may be better at interpreting conflicting information (Kavakli & Gero
2002) and extracting value from structured tools (Clarkson, Simons & Eckert
2001). Therefore, we investigate whether experience moderates the relationship
between tool use patterns and risk management performance or duration. How-
ever, due to the exploratory nature of this interaction, we formulate the following as
null hypotheses:

H6a–b. There is no interaction between years of experience and back-loading of
design support use on the duration of risk evaluation (H6a) and risk treatment (H6b).

H7a, b. There is no interaction between years of experience and the intensity of
design support use on the duration of risk evaluation (H7a) and risk treatment
(H7b).

H8a–c. There is no interaction between years of experience and back-loading
(H8a), intensity (H8b) or duration (H8c) of design support use on risk manage-
ment performance.

With these hypotheses, our goal is to test whether the effects we observe with
H1–H5 are reinforced when we consider participants’ years of experience.

As previously introduced, our study addresses two central research questions:
(1) What is the role of indirect interactions in the efficiency of the design process
and the efficacy of the product? and (2) How can the use of design supports
improve the efficiency of the design process and the efficacy of the product? To
operationalise these questions clearly, we formulated a set of targeted hypotheses
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(H1–H8). Specifically, hypotheses H1–H2 explore how different patterns of
design support use affect the duration of the risk evaluation and risk treatment
phases, directly addressing process efficiency (RQ2). Hypotheses H3–H5 exam-
ine how these interaction patterns influence the selection of mitigation strategies,
thus targeting the efficacy of risk treatments in relation to indirect interactions
(RQ1 and RQ2). Finally, hypotheses H6–H8 investigate whether designers’
experience moderates the effects of tool usage on both efficiency and efficacy,
providing deeper insights into the role of design support under varied team
conditions.

4. Data analysis
The final dataset used for our analysis comprised 4460 interactions. Of these,
59.10% (2636) involved the use of any of the five design supports, broken down
into 18.27% (815) related to the selection of risks from the risk registry, 18.23%
(813) related to the selection of mitigations from the list of mitigations, and 22.60%
(1008) related to the use of the DSM matrices. The use of the matrices was
distributed by 6.23% (278) for the Interfaces DSMs, 7.94% (354) for the Distance
DSMs and 8.43% (376) for the Risks Propagation DSMs. The remaining inter-
actions, 40.90% (1824), involved interactions with the value model (i.e., checking
the impact of their decisions on the overall value). Some of these interactions are
plotted in Figure 6 as the stacked kernel density estimates (KDE) of normalised
activity over time for each intervention category. Each curve represents the
smoothed distribution of event intensities within a team, grouped by intervention
type and stacked to highlight relative contributions. Density estimates are weighted
and computed over 5-minute intervals. The workshop duration was not homoge-
neous, reflecting a better fit to realistic working conditions of a large company
developing a complex system (i.e., meetings and discussions are not always equally
bounded).

Following Hinds and Mortensen (2005), we employed multiple regression to
assess the impact of the independent variables (back-loading of design support use,
intensity of design support use and duration of design support) on the dependent
variables (duration of risk evaluation and treatment, and under- and over-design).
Additionally, we included an interaction term in our model to explore whether
years of experience amplified or mitigated the effects of the independent variables
on the dependent variables. Two-tailed t-tests were conducted to compare the
teams regarding the frequency, timing and intensity of the design support used
during risk evaluation and treatment.

To determine the robustness of our findings, we evaluated statistical signifi-
cance levels at various thresholds: 0.05, 0.01 and 0.001. These thresholds indicate
the probability that the observed results are due to chance, with lower p-values
suggesting stronger evidence against the null hypothesis.

To complement the analysis of the data regarding the proposed hypotheses,
Figure 7 presents the normalised transition matrices for each of the 14 design
teams, capturing how frequently participants navigated between the five main
design support tools: the interface DSM, the distance DSM, the risk propagation
DSM, the risk identification registry and the risk treatment selection interface.
These matrices provide a team-level behavioural profile of tool usage patterns
during the design sessions. While some teams (e.g., Team 4) exhibit focused
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transitions from risk identification to treatment with limited movement across
DSMs, others (e.g., Team 5) show higher transition frequencies among the DSM
tools themselves, particularly between the indirect and direct representations.
These variations illustrate distinct tool usage strategies adopted by teams under
the same task constraints.

Figure 6. Stacked KDEs of normalised event intensity over time, grouped by intervention category. Curves are
weighted and represent smoothed distributions per team.
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5. Results
Table 2 presents the descriptive statistics and correlation coefficients for the
primary variables. The table includes the mean values, standard deviations and
Pearson correlation coefficients for each variable pair.

Table 3 presents the results of the Ordinary Least Squares (OLS) regression
analyses examining the impact of different aspects of design support usage (back-

Figure 7. Normalised transition matrices for each team, showing the frequency of transitions from row
(source) to column (target) between design support tools.
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loading, intensity and duration) and their interactions with the experience of the
team on the duration of risk evaluation and treatment phases in the assignment.

5.1. Direct effects on risk evaluation and treatment selection

The back-loading of design support use significantly affected both the duration of
risk evaluation (p < 0.001) and risk treatment selection (p < 0.001), rejecting H1a
and H1b. The positive coefficients (0.7233 for risk evaluation and 1.2315 for risk
treatment) suggest that increased back-loading leads to longer durations for these
activities.

The intensity of design support use did not significantly impact the duration of
risk evaluation (p = 0.935) or risk treatment (p = 0.310), supporting H2a and H2b.
This indicates that the frequency of design support use per minute does not
influence the time spent on risk-related activities.

5.2. Direct effects on performance

The back-loading of design support use significantly affected performance
(p = 0.015), rejecting H3. However, the intensity (p = 0.489) and duration
(p = 0.100) of design support use did not significantly affect performance, sup-
porting H4 and partially supporting H5.

5.3. Interaction effects with experience

The interaction between experience and back-loading of design support use did not
significantly affect the duration of risk evaluation (p = 0.315) or risk treatment
(p = 0.448), supporting H6a and H6b.

The interaction between experience and intensity of design support use sig-
nificantly affected the duration of risk evaluation (p = 0.010) and risk treatment
(p = 0.008), rejecting H7a and H7b. These interactions suggest that the impact of
intensity on risk management duration is moderated by experience, with experi-
enced teams potentially benefiting more from high-intensity use.

Table 2. Descriptive statistics and correlations between variables

Variable Mean Std 1 2 3 4 5 6

1. Experience (years) 10.236 8.010 – – – – – –

2. Risk evaluation duration
(minutes)

60.942 60.017 0.001 – – – – –

3. Risk treatment duration
(minutes)

81.402 86.872 0.131 0.671 – – – –

4. Performance 0.571 0.285 �0.189 0.131 0.279 – – –

5. Back-loading (minutes) 109.008 57.078 0.077 0.688 0.809 0.371 – –

6. Intensity (interactions/minute) 1.454 1.173 �0.649 �0.013 �0.160 �0.110 �0.247 –

7. Design support use duration
(minutes)

259.601 94.979 0.229 0.603 0.724 0.258 0.869 �0.542
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Table 3. Summary of OLS regression results for design support usage on risk management

Hypothesis Independent variable Dependent variable
Significant
effect

Coefficient
(if significant) p-value Interpretation

H1a Back-loading of design
support use

Duration of risk
evaluation

Yes** 0.7233 <0.001 Increased back-loading leads to longer risk
evaluation duration

H1b Back-loading of design
support use

Duration of risk
treatment
selection

Yes** 12.315 <0.001 Increased back-loading leads to longer risk
treatment selection duration

H2a Intensity of design
support use

Duration of risk
evaluation

No N/A 0.935 Frequency of tool use does not affect risk
evaluation duration

H2b Intensity of design
support use

Duration of risk
treatment
selection

No N/A 0.310 Frequency of tool use does not affect risk
treatment selection duration

H3 Back-loading of design
support use

Performance Yes† 0.0019 0.015 Increased back-loading slightly improves
performance

H4 Intensity of design
support use

Performance No N/A 0.489 Frequency of tool use does not affect
performance

H5 Duration of design
support use

Performance No N/A 0.100 Duration of tool use does not significantly
affect performance

H6a Experience × Back-loading Duration of risk
evaluation

No N/A 0.315 Experience does not moderate the effect of
back-loading on risk evaluation duration

H6b Experience × Back-loading Duration of risk
treatment
selection

No N/A 0.448 Experience does not moderate the effect of
back-loading on risk treatment selection
duration

H7a Experience × Intensity Duration of risk
evaluation

Yes* 41.824 0.010 Experienced designers increase their risk
evaluation duration when they use
design supports more frequently.

Continued
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Table 3. Continued

Hypothesis Independent variable Dependent variable
Significant
effect

Coefficient
(if significant) p-value Interpretation

H7b Experience × Intensity Duration of risk
treatment
selection

Yes* 61.289 0.008 Experienced designers increase their risk
treatment selection duration when they
use design supports more frequently.

H8a Experience × Back-loading Performance No N/A 0.240 Experience does not moderate the effect of
back-loading on performance

H8b Experience × Intensity Performance No N/A 0.133 Experience does not moderate the effect of
intensity on performance

H8c Experience × Duration Performance No N/A 0.118 Experience does not moderate the effect of
duration on performance

Significance levels: ** ≤ 0.001, * ≤ 0.01, † ≤ 0.05.
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The interactions between experience and all forms of design support use (back-
loading, intensity and duration) did not significantly affect performance (p-values
ranging from 0.118 to 0.240), supporting H8a, H8b and H8c.

The results indicate that back-loading and duration of design support use are
critical factors in influencing the duration of risk management activities. However,
the intensity of use did not have a significant direct impact. Furthermore, experi-
ence moderates the relationship between the intensity of design support use and
riskmanagement duration, but it does not significantly interact with other forms of
design support use to affect performance. These findings highlight the importance
of strategic planning in the use of design support tools to optimise risk manage-
ment processes and outcomes.

6. Discussion
Our research offers insights into the distinct ways design teams use risk manage-
ment design supports in risk management processes, allowing us to assess their
effectiveness as risk management mediators in complex system design. In this
study, teams that engaged early with design support tended to start identifying risks
more quickly (H1a). This is consistent with previous research indicating that risk
management tools can help individuals (McMahon & Busby 2005; Borgue et al.,
2021). Consequently, our research suggests that the effectiveness of risk manage-
ment supports depends on their interactional patterns along the risk management
process. Thus, to enhance design efficiency in terms of reduction of time and effort
spent, the timing of the use of design support tools is critical. This is further
supported by our finding that intense, repeated use of design support does not
shorten the duration of risk evaluation and treatment (H2a and H2b). Therefore,
simply “using frequently” a design support is not enough to streamline the risk
management processes. Instead, the strategic use of design support is crucial for
their effectiveness. In other words, different ways of interacting with design
support are more or less effective in mediating various aspects of the risk man-
agement process. This is supported by our findings that connect later design
support use with the performance of risk treatment (i.e., the selection of cost-
effective elements to insert at critical interfaces, H3).While “front-loading” the use
of design support could be beneficial to start to identify risks early (i.e., a larger
“back-loading” would be detrimental), it seems better to delay the decision about
which mitigation elements to select (H1b) by continuing to use the support tools,
irrespective of the intensity of use (H4). This is because the main distinction
between the risk evaluation and risk treatment phases is that the identification
phase generally culminates in a single decision (acknowledging the existence of a
risk), whereas the resolution phase entails a decision-making process, which the
team devises strategies, suggests alternatives, evaluates their feasibility and decides
on implementation actions (Sjögren et al. 2019). This was particularly relevant for
the challenge given to the teams. There was a difference between the “first-order”
risks contained in the technical risk registry and the “higher-order risks” contained
in the distance and change propagation matrices (i.e., the risks contained in the
technical risk registry were either attenuated by the long-distance or exacerbated by
short distances and propagation effects). At the same time, there were different
alternative mitigation elements that could potentially mitigate the same risk
(although at different costs). The teams that performed better “back-loaded” the
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use of the tools, even during the treatment phase, and delayed their decisions about
the elements to select. These results seem in line with set-based concurrent
engineering (Sobek, Ward & Liker 1999; Toche, Pellerin & Fortin 2020) by
suggesting delaying design decisions while exploring multiple alternatives simul-
taneously. As a general insight, it seems that there is a trade-off between front- or
back-loading the use of risk management tools with (1) schedule pressure and
(2) risk treatment performance. The front-loading of tool use should be pursued,
but prolonged use should also be encouraged. A “long tail” of use is still beneficial
to discuss the cost and benefit ofmitigation alternatives as well as the “residual risk”
(Maiworm et al. 2023) that the individuals perceive from their own synthesis of the
information contained in the tools. This risk perception ability is even more
important as risk assessment methods such as FMEA contain a certain degree of
rigidity and lack more flexible and human-like reasoning. The same was observed
by Roy, Sarkar, and Mahanty (2016) and Borgue, Panarotto, and Isaksson (2022),
who applied fuzzy logic to enable a more nuanced and adaptable risk assessment.
Compared to these studies, our results emphasise the human ability to perceive
nuances during risk assessment, as opposed to a rigorous mathematical risk
computation. Therefore, our results further explored the link between uncertainty
perception and externally enacted information, which has already been established
in previous research (Cash & Kreye 2017). Given this focus on perception, our
study did not make a more granular analysis of which of the five tools was used
more and how this had an impact. Instead, we examined the use of design support
tools as an aggregated metric. Following Gericke et al. (2020), we assumed that all
five tools interact as a ‘method eco-system’ and we focused on validating empir-
ically how a dynamic use of these design support tools as a whole was able to
enhance the ultimate metrics of effectiveness.

Since the designers’ experience can positively impact the outcome of a design
activity (Kavakli & Gero 2002), while the use of design support can compensate for
the lack of experience (Clarkson et al. 2001), it was important to determine whether
the designers’ experience reinforces the strategic use of design supports. In this
regard, we did not find statistically significant differences, except for H7a andH7b,
where we found that experience moderates the correlation between intensity and
risk evaluation and treatment durations; thus, more experienced teams manage to
offset some of the negative impacts of frequent tool use on those durations. This
may suggest thatmore experienced teams used the toolsmore efficiently. However,
considering ‘experience’ as a differentiating characteristic has been debated in
literature (Cash et al. 2022). For example, in our study, even teams with high
experience may have had low familiarity with the tools presented, the truck design
problem, mitigation elements and so forth In our study, we considered experience
as an important parameter, mainly because it allowed us to create an experiment
that fitted the realistic working conditions of a large company developing a
complex system (which often presents a wide variety in terms of seniority). In
addition, the design problem was complex but did not require the expertise of a
specialist. The difference was related to the ability to navigate effectively among the
information contained in the design support tools. Here is where experience may
have played a role, as more experienced designers had more familiarity in reading
“specialist” representations such as FMEA andDSMs that contained different (and
in some cases contradicting) information. For example, the teams had to assess
whether an interface with no direct connection (looking at the binary-DSM)
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presented high proximity with many neighbouring elements (looking at the
distance-DSM), resulting in a high propagation effect (in the CPM Risk Matrix,
r-DSM).

To further illustrate the influence of design support use patterns on risk
management outcomes, we include a comparative analysis of the two extreme
cases in our dataset: Team 1 (highest performance) and Team 7 (lowest perform-
ance), as shown in Figure 8. The density distributions of intervention types over
time reveal a striking contrast in both temporal dynamics and tool engagement
strategies. Team 1 displayed a gradual, sustained engagement across all categories –
particularly with mitigation selection – corresponding with a more balanced and
iterative risk treatment strategy. In contrast, Team 7 exhibited a sharp, early spike
in activity dominated by direct and indirect risk representations, followed by a
rapid tapering off, suggesting a compressed and potentially rushed decision-
making process. This pattern aligns with our hypothesis that back-loaded and
prolonged engagement, especially with indirect risk representations andmitigation
tools, enables teams to uncover second-order risks and developmore cost-effective
responses. These findings reinforce the interpretation that strategic tool use – not
merely frequency or intensity – enables better risk propagation awareness and
supports more robust decision-making in early design.

The findings of our experiment align with Giffin et al. (2009), who showed that
early risk evaluation and understanding of change propagation paths can signifi-
cantly reduce widespread late-stage changes. Their analysis of change propagation
motifs highlights the importance of proactive risk management, which our study
confirms as essential for maintaining design stability and efficiency. Additionally,
Eckert, Clarkson, and Zanker (2004) provide important insights into managing

Figure 8.Use intensity over time for Team 1 (best performer) and Team 7 (worst performer), by intervention
category. The contrasting patterns highlight how sustained, balanced engagement supports better risk
management outcomes.
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changes in complex engineering domains, highlighting how effective risk man-
agement can reduce the need for extensive customisation and rework. Our findings
support this, showing that the risk management strategies used in our experiment
helped prevent unnecessary modifications, thereby enhancing overall design effi-
ciency.

The transition matrices in Figure 7 reinforce our central argument that strategic
patterns of tool use – not merely frequency or duration – underpin effective risk
management. High-performing teams such as Team 1, which achieved the best cost-
effectiveness score, exhibit transitions concentrated around indirect interaction
representations (distance and propagation DSMs) and maintain engagement into
the risk treatment phase. This suggests a deliberate, staged approach in which
indirect risks are carefully considered before committing to mitigations. Conversely,
Team 7, one of the lowest-performing teams, shows shallow engagement with
indirect DSMs and a narrow transition profile focused on early risk identification,
followed by a rapid move into treatment – indicative of a more rushed and linear
strategy. Teams like Team11 exemplify iterative and distributed usage patterns, with
frequent transitions across all DSM types and between evaluation and treatment,
suggesting a more exploratory mindset. These behavioural signatures align with our
quantitative findings: sustained engagement with indirect risk tools, particularly
when extended into the treatment phase, is associated with superior risk mitigation
performance. Figure 7 thus provides qualitative, visual evidence for the claim that
navigational strategy within the support tool ecosystem is a key driver of both
efficiency and efficacy in early-stage risk management.

This study’s focus on tools designed for early-stage design processes, such as
FMEA, inherently narrows the scope and may introduce biases in the conclusions.
Other methods, such as FTA and HAZOP, were not included, as they are better
suited for operational safety assessments or failure diagnostics rather than iterative
design exploration. Future work could include these methods to assess their
relative strengths and limitations inmanaging risks during complex system design.
Incorporating risk tolerance into the design supports is outside of the scope of this
study, but it would enable the prioritisation of risks and mitigation strategies in
alignment with stakeholder goals. It would enhance the differentiation of accept-
able risks from those requiring further action, addressing residual risks effectively
(Kemp 1991; Bossuyt et al. 2012).

The risks investigated in this study – arising from indirect physical interactions
across system boundaries – align with what Pescaroli and Alexander (2018) define
as ‘interconnected risks,’ where technical dependencies can initiate chains of
unintended consequences. While our experimental scenarios are simplified, they
reflect the real-world challenge of managing early-phase design risks that may
propagate through interdependent architectures. Our findings support their argu-
ment that clearer distinctions between interacting, interconnected, and cascading
risks are essential for designing decision supports that improve resilience at both
the product and process levels.

This study takes a novel approach by structuring an empirical experiment where
there is limited prior research. Unlike conventional case studies, our hypothesis-
driven method allows for controlled observation of design team behaviours under
structured conditions. This approach demonstrates the value of structured experi-
mentation in risk management research and highlights the importance of quantita-
tive validation in understanding decision-making processes.
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Based on our experimental results, it is evident that effective risk management
significantly enhances design efficiency by enabling teams to pre-emptively
address potential issues before they escalate into more substantial problems. The
data show that teams who systematically identified and mitigated risks during the
conceptual design phase were able to optimise resource use, reduce the need for
rework, and achievemore robust and reliable outcomes. The structured use of tools
like Design Structure Matrices (DSMs) and Risk Propagation Matrices facilitated
this process by helping teams manage complex interdependencies and make more
informed decisions. This proactive approach not only minimised inefficiencies but
also contributed to a smoother, more streamlined design process, ultimately
leading to higher-quality products. These findings underscore the importance of
integrating risk management into the early stages of design, as it not only improves
the efficiency of the process but also enhances the overall efficacy, reliability and
ultimately success of the final product.

Despite careful design, this study has limitations. First, the controlled experi-
mental setup does not fully replicate industrial conditions, where external pres-
sures, organisational constraints and iterative decision-making cycles influence
risk management. Second, while participant diversity was ensured, differences in
prior exposure to the selected tools may have impacted engagement levels. Third,
the usefulness of the tools may have been influenced by how they were configured
and the data pre-loaded into them. Although values such as propagation scores and
mitigation costs were constructed to be internally consistent and balanced, their
artificial nature may still have shaped participant perceptions. The data were not
designed to suggest a single “correct” outcome, but rather to support reasoning
around trade-offs, i.e., reflecting typical engineering situations where decisions are
made using structured but imperfect inputs. Finally, learning effects within teams
could have influenced decision patterns, as participants adapted to the available
tools over time. Future studies should explore these factors in longitudinal settings.

7. Conclusion
Wehave shown that strategically using design support that providesmore granular
information about the criticality of interfaces can effectively facilitate risk evalu-
ation and treatment in complex systems. Using these support tools early with lower
intensity and picking up the pace later in the process, design teams can reduce the
time required to identify risks and thus enhance their design process efficiency.
Furthermore, delaying the use of design supports makes the teams select risk
mitigation elements that possess a better cost–benefit ratio. Teams with low
industrial experience did not experience longer risk management durations than
teams with high experience, which we attribute partly to their increased use of
design support. Therefore, our research establishes a new theoretical connection
between design support and risk evaluation and treatment in companies develop-
ing complex systems with many interfaces.
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