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We introduce the concept of ‘irrational paths’ for a given subshift and use it to
characterize all minimal left ideals in the associated unital subshift algebra.
Consequently, we characterize the socle as the sum of the ideals generated by
irrational paths. Proceeding, we construct a graph such that the Leavitt path algebra
of this graph is graded isomorphic to the socle. This realization allows us to show
that the graded structure of the socle serves as an invariant for the conjugacy of
Ott–Tomforde–Willis subshifts and for the isometric conjugacy of subshifts
constructed with the product topology. Additionally, we establish that the socle of
the unital subshift algebra is contained in the socle of the corresponding unital
subshift C*-algebra.
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1. Introduction

Leavitt path algebras are non-commutative algebras that have attracted signifi-
cant attention, due to their versatility and deep connections with various branches
of mathematics, including combinatorics, C*-algebras, and symbolic dynamics.
Particularly noteworthy, the classification of Leavitt path algebras is closely related
to the classification of graph C*-algebras and those of subshifts of finite type. This
relation enables the utilization of algebraic techniques and the inherent structure
of Leavitt path algebras to address problems in symbolic dynamics, see [17] and
[18] for a recent overview.
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2 D. Gonçalves and D. Royer

Expanding from the setup above, C*-algebras associated with subshifts over
finite alphabets have been formally defined in prior works. However, due to the
intricacies involved in dealing with arbitrary subshifts (not limited to finite type),
the definition has gone through refinements, culminating with the formulation given
in [15]. Among other applications, conjugacy of subshifts can be described in terms
of certain isomorphisms of the associated algebras, see [13].

In the general context of subshifts over arbitrary alphabets, both purely alge-
braic and C*-algebraic subshift algebras have recently been defined, see [9, 11].
These algebras generalize Leavitt path algebras of graphs and ultragraphs and
can be seen as Leavitt path algebras of labelled graphs [8, 10]. As with Leavitt
path algebras, these new algebras exhibit a strong correlation with the underlying
dynamics of the associated subshifts, including the characterization of conjugacy
between Ott–Tomforde and Willis subshifts via algebraic terms. Consequently, the
understanding of their structure is important.

When addressing infinite alphabets, multiple definitions of a subshift exist.
Among these, the approach outlined by Ott–Tomforde and Willis is extensively
studied, see, for example, [19, 20, 23, 24, 27], particularly in relation to the
non-commutative subshift algebras introduced in [9, 11], exhibiting a strong con-
nection with these algebras. It is worth noting that the subshifts introduced by
Ott–Tomforde and Willis, hereafter referred to as OTW-subshifts, conform to the
typical definition of subshifts when the alphabet is finite.

Our contribution, in this article, to the description of the structure of subshift
algebras lies in the socle and its grading. In the context of Leavitt path algebras,
the socle is examined in [5, 6] and used in the classification program to generate
an atlas of Leavitt path algebras of small graphs in [4]. The socle series is studied
in [3], and additionally, the socle of Kumijian–Pask algebras is considered in [14].
In our investigation of the socle of a purely algebraic subshift algebra, we have
identified a graph wherein the socle of the subshift algebra is graded isomorphic
to the Leavitt path algebra of the said graph. This finding is novel even within
the context of Leavitt path algebras, as previous studies have characterized the
socle solely as an ideal, and enables us to discern properties of the socle and use
it in applications. Indeed, it allows us to establish a combinatorial criterion that
the underlying graphs of conjugate OTW-subshifts must satisfy. Building on [9,
theorem 6.11], this implies that the graded socle serves as an invariant for isometric
conjugacy of subshifts with the 1

2i
-metric (which induces the product topology, see

the discussion above [9, theorem 6.11] for the precise definition of such subshifts).
We give more details of our work below.

We devote §2 to preliminaries, where we recall the notions of subshift, the unital
algebra associated with a subshift, and a few results that we use in the article. We
refer the reader to [11] for a more comprehensive introduction to subshift algebras.

In §3, we describe the minimal left ideals in an unital subshift algebra, see corol-
lary 3.11. To do this, we identify certain special elements in a subshift, which we call
irrational paths (definition 3.4). We show that any minimal left ideal is isomorphic
to a left ideal generated by a one-point set given by an irrational path. Previously,
left minimal ideals were linked with line paths, see [22]. The use of irrational paths
(which contain the line paths) completes the description of the left minimal ideals.
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The socle of subshift algebras, with applications to subshift conjugacy 3

With the description of the minimal left ideals obtained in §3, we proceed, in §4,
to the study of the socle, which is the sum of all left minimal ideals of the alge-
bra. We prove that the socle of an unital subshift algebra is not only isomorphic
but equal to the sum of left ideals generated by the irrational paths, see theo-
rem 4.2. This result is new also in the context of Leavitt path algebras, where it
was previously shown that the socle contains the ideal generated by line points,
see remark 4.4. As a consequence of our results, we show that the socle of a unital
subshift algebra is always different from the algebra and is non-zero if and only if
the set of irrational points is non-empty, see 4.5. We finish the section describing a
smaller generating set for the socle. For this, we consider tail equivalence (defini-
tion 4.7) in the set of irrational paths and show that the socle is the direct sum of
the left minimal ideals generated by each equivalence class, see corollary 4.9.

The construction of a graph associated with a subshift is the focus of §5. We show
that the Leavitt path algebra of this graph is graded isomorphic to the subshift
algebra, see corollary 5.7. Moreover, we observe that the aforementioned graph is
always acyclic, row-finite, and sinkless, see remark 5.8. We use this to characterize,
in terms of condition (Y), when the socle is strongly Z-graded, see proposition 5.10.
As an application, we show that if two OTW-subshifts are conjugate, then the
graphs associated with the corresponding subshifts satisfy condition (Y), see the-
orem 5.14. We employ the latter criterion for two specific examples and conclude
that neither the associated OTW-subshifts are conjugate nor there is an isometric
conjugacy between the associated subshifts built using the 1

2i
-metric (which induces

the product topology), see corollary 5.18 for details.
We finish the article in §6, with a brief examination of the socle of the subshift

C*-algebra. Specifically, for a given subshift, we show that the socle of the subshift
algebra is contained in the socle of the subshift C*-algebra and establish that this
inclusion may be proper. This is the same behaviour presented by Leavitt path
algebras, see [6, theorem 3.6]. However, the example we provide to illustrate the
possibility of strict containment differs from the example in [6], which relies on a
graph with sinks (a setting not permitted for subshift algebras).

2. Preliminaries

In this section, we recall the definition of the unital subshift algebra and some
relevant results regarding it. We start setting up notation and recalling the notion
of a subshift.

Throughout the article, R stands for a commutative unital ring, N = {0, 1, 2, . . .},
and N∗ = {1, 2, . . .}.

2.1. Symbolic dynamics

Let A be a non-empty set, referred to as an alphabet. The shift map σ is a map
from A N to itself, defined as σ(x) = y, where x = (xn) n ∈ N and y = (xn+1)n∈N.
We designate elements of A ∗ =

⋃∞
k=0 A k as blocks or words, with ω representing

the empty word. Additionally, we define A + = A ∗ \ {ω}. For any α ∈ A ∗ ∪ A N,
|α| denotes its length. Given 1 ≤ i, j ≤ |α|, we define αi,j := αi · · ·αj if i ≤ j, and
αi,j = ω if i > j. If β ∈ A ∗, then βα denotes concatenation. For a block α ∈ A k,
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4 D. Gonçalves and D. Royer

α∞ represents the infinite word αα . . .. A subset X ⊆ A N is invariant for σ if
σ(X) ⊆ X. For an invariant subset X ⊆ A N, we define Ln(X) as the set of all words
of length n that appear in some sequence of X, that is,

Ln(X) := {(a0 . . . an−1) ∈ A n : ∃ x ∈ Xs.t. (x0 . . . xn−1) = (a0 . . . an−1)}.

It is evident that Ln(A N) = A n, and it is always the case that L0(X) = ω. The
language of X, denoted as LX, encompasses all finite words that manifest within
some sequence of X. Formally,

LX :=
∞⋃

n=0

Ln(X).

For elements c, d ∈ LX, we use the notation c|c| 6= d|d| meaning that the last letter
of c is different from the last letter of d.

Given F ⊆ A ∗, the subshift XF ⊆ A N is the set of all sequences x in A N such
that no word of x belongs to F. When the context is clear, we denote XF by X. The
key sets that are used in the definition of the algebra associated with a subshift are
defined below.

Definition 2.1. Let X be a subshift for an alphabet A . Given α, β ∈ LX, define

C(α, β) := {βx ∈ X : αx ∈ X}.

In particular, the set C(ω, β) is denoted by Zβ and called a cylinder set, and the
set C(α, ω) is denoted by Fα and called a follower set. Notice that X = C(ω, ω).

2.2. Unital algebras of subshifts

In this section, we recall the definition of the unital algebra associated with a
general subshift X, as done in [11]. We start with the definition of the Boolean
algebra associated with the sets of the form C(α, β).

Definition 2.2. Let X be a subshift. Define U to be the Boolean algebra of sub-
sets of X generated by all C(α, β) for α, β ∈ LX, that is, U is the collections of
sets obtained from finite unions, finite intersections, and complements of the sets
C(α, β).

We can now recall the definition of the unital algebra associated with a subshift.

Definition 2.3. Let X be a subshift. We define the unital subshift algebra ÃR(X) as
the universal unital R-algebra with generators {pA : A ∈ U} and {sa, s∗a : a ∈ A },
subject to the relations:

(i) pX = 1, pA∩B = pApB, pA∪B = pA + pB − pA∩B, and p∅ = 0 for every
A,B ∈ U ;

(ii) sas
∗
asa = sa and s∗asas

∗
a = s∗a for all a ∈ A ;

(iii) sβs
∗
αsαs

∗
β = pC(α,β) for all α, β ∈ LX, where sω := 1, and for α =

α1 . . . αn ∈ LX, sα := sα1 · · · sαn and s∗α := s∗αn · · · s∗α1 .

https://doi.org/10.1017/prm.2024.100 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.100


The socle of subshift algebras, with applications to subshift conjugacy 5

It follows from the third relation of the previous definition that sαs
∗
α = pZα and

s∗αsα = pFα for each α ∈ LX. Recall that the relative range of (A,α), where α ∈ LX
and A ∈ U , is given by

r(A,α) = {x ∈ X : αx ∈ A}.

Next, we recall some results that will be necessary in our work.

Lemma 2.4. [7, lemma 3.7] Let X be a subshift, a, b ∈ A , and γ, α ∈ LX.

(i) If β := bγ ∈ LX, then s
∗
βsa = δb,as

∗
γpFa .

(ii) If A ∈ U , then pAsα = sαpr(A,α) and s∗αpA = pr(A,α)s
∗
α.

By [11], ÃR(X) has a Z-grading given by

ÃR(X)n = spanR{sαpAs∗β : α, β ∈ LX, A ∈ U and |α| − |β| = n}, n ∈ Z.

It is also graded by the free group on the alphabet. This grading arises from the
isomorphism of the algebra with a certain partial skew group ring, as stated below.

Theorem 2.5 [11, theorem 5.9] Let X be a subshift. Then, ÃR(X) ∼= D̃R(X) oτ F
via an isomorphism Φ that sends sa to 1aδa and s∗a to 1a−1δa−1 .

Another important result regarding ÃR(X) is the so-called Reduction Theorem
(which was proved in [7]). We recall this result below, after providing the necessary
definitions.

Definition 2.6. [7, definitions 4.1 and 4.2] Let X be a subshift, α ∈ LX \{w}, and
∅ 6= A ∈ U . The pair (A,α) is called a cycle if A ⊆ r(A,α). We say that a cycle
(A,α) has an exit if A 6= {α∞}. Otherwise, in case A = {α∞}, we say that (A,α)
is a cycle without exit.

Definition 2.7. [7, definition 4.4] Let X be a subshift. We say that a cycle without
exit (A,α) is minimal if there is no element β ∈ LX, with 1 ≤ |β| < |α|, such that
α = βk for some k ≥ 2.

Theorem 2.8 [7, Reduction Theorem] Let X be a subshift and x ∈ ÃR(X) be a

non-zero element. Then, there exists µ, ν ∈ ÃR(X) such that µxν 6= 0 and either

(i) µxν = γpD with D ∈ U and γ ∈ R or

(ii) µxν = γ1pA +
k∑

i=2

γisβqipA, where (A, β) is a minimal cycle without exit,

qi ∈ N \ {0}, and 0 6= γi ∈ R.

3. Minimal left ideals in ÃR(X)

In this section, we characterize, up to isomorphism, the minimal left ideals of ÃR(X)
(see corollary 3.11). To begin, we show a couple of results on the structure of left
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ideals of ÃR(X). As in the previous section, unless otherwise stated, R stands for
a commutative unital ring.

Proposition 3.1. Let X be a subshift. Then,

(i) for each x ∈ ÃR(X), ÃR(X)x is a left ideal of ÃR(X).
(ii) if 0 6= I ⊆ ÃR(X) is a left minimal ideal, then there exists some x ∈ ÃR(X)

such that I = ÃR(X)x.
(iii) for all A,B ∈ U with ∅ 6= B ( A, it holds that 0 6= ÃR(X)pB ( ÃR(X)pA.

Proof. The first item is clear, so we begin with the proof of the second one.
Let 0 6= I ⊆ ÃR(X) be a left minimal ideal, and let 0 6= x ∈ I. Then, ÃR(X)x is

a left ideal of ÃR(X), which is contained in I. Since ÃR(X)x 6= 0 and I is minimal,

we obtain that I = ÃR(X)x.
Next, we prove the third item. Notice that 0 6= ÃR(X)pB , since pB ∈ ÃR(X)pB .

Furthermore, for any z ∈ ÃR(X), we have zpB = zpBpA (since B ⊆ A), which

implies that ÃR(X)pB ⊆ ÃR(X)pA. It remains to prove that the inclusion is

proper. Suppose that ÃR(X)pB = ÃR(X)pA. This implies the existence of some

z ∈ ÃR(X) such that zpB = pA. Define C = Bc ∩ A, which is an element of U .
Observe that pBpC = 0 since B ∩ C = ∅, and pApC = pC 6= 0 because C 6= ∅.
Therefore, 0 = zpBpC = pApC 6= 0, a contradiction. We conclude that ÃR(X)pB 6=
ÃR(X)pA. �

Proposition 3.2. Let X be a subshift. Then, for each A ∈ U with |A| > 1,

ÃR(X)pA is a left ideal of ÃR(X), which is not minimal.

Proof. Using the first item of proposition 3.1, we obtain that ÃR(X)pA is a left ideal

of ÃR(X). Given that |A| > 1, there exists x, y ∈ A with x 6= y. Write x = x1x2...
and y = y1y2..., where xi, yi ∈ A for each i. Since x 6= y, there exists an index j ∈ N
such that xj 6= yj . Let B = Zx(1,j)

∩ A. Since x ∈ B and y /∈ B, we have that

∅ 6= B ( A. Consequently, using the third item of proposition 3.1, we obtain that
ÃR(X)pA is not minimal. �

Given the above, we are interested in the left ideals of the form ÃR(X)pA, where
|A| = 1. Before proceeding, we review the definition of a line path below.

Definition 3.3. [22, definition 4.1] Let X be a subshift. We say that an element
p = a0a1a2a3... ∈ X is a line path if Za0

= {p}, and for every β ∈ LX and k ∈ N,
we have that β∞ 6= akak+1ak+2 . . .. We denote by PX the set of all the elements
A ∈ U such that A = {p} for some line path p ∈ X.

Line paths are associated with minimal left ideals. In fact, it is proved in [22,

corollary 4.8] that, for each A ∈ PX, ÃR(X)pA is a minimal left ideal. However,

there are other minimal ideals of the form ÃR(X)pB , with B /∈ PX. To show this,
we need the following definition.
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Definition 3.4. Let X be a subshift. Denote by QX the set of all the single point
sets {p} ∈ U such that p 6= αβ∞ for each α, β ∈ LX. We call an element of QX an
irrational path.

Notice that PX ⊆ QX but, in general, PX 6= QX, as we show in the next example.

Example 3.5. Let A = {a, b, c} be an alphabet with three letters, and let x ∈ A ∞

be the element

x = bcb2cb3cb4c....

Define

X = {a∞, b∞, ax, cx} ∪ {σn(x) : n ∈ N},

which is a subshift.
This subshift has no line paths since the cardinalities of Za, Zb, and Zc are all

greater than one. However, QX 6= ∅ since U 3 C(c, a) = {ax} is an element of QX.

Lemma 3.6 allows us to establish a dichotomy for the set of irrational paths in a
subshift: either QX is empty or it has infinitely many elements.

Lemma 3.6. Let X be a subshift. If A = {p} ∈ QX, then {σn(p)} ∈ QX for each
n ∈ N, and moreover, σn(p) 6= σm(p) for each m 6= n. Consequently, if QX is
non-empty, then it contains infinitely many elements.

Proof. Let A = {p} ∈ QX, where p = p0p1p2... ∈ X, n ∈ N, and define a =
p0p1..pn−1. Notice that {σn(p)} = r(A, a) ∈ U . Suppose that {σn(p)} /∈ QX, that
is, σn(p) = αβ∞ for some α, β ∈ LX. Then, p = aαβ∞ and hence {p} /∈ QX, a
contradiction. Therefore, {σn(p)} ∈ QX.

Now, suppose that σn(p) = σm(p) for some m 6=n, and suppose, without loss of
generality, that n <m. Let z = σn(p) = σm(p) and let b = pnpn+1...pm−1. Then,
z = σn(p) = bσm(p) = bz, and consequently, z = b∞. Hence, p = p0p1...pn−1z =
p0p1...pn−1b

∞, which implies that {p} /∈ QX, a contradiction. Therefore, σn(p) 6=
σm(p). �

Recall that a non-zero idempotent e in an algebra A is minimal if eAe is a
division ring, see [12, definition 30.1]. Furthermore, if A is semiprime, then L is a
minimal left ideal of A if and only if L = Ae, where e is a minimal idempotent in
A, see [12, proposition 30.6]. We will use these concepts below to prove that left
ideals associated with irrational paths are minimal. From now on, we assume that
the base ring R is a field, so that ÃR(X) is semiprime (in fact, it is enough to ask
that R has no zero divisors to obtain semiprimeness, see [7, corollary 5.6]).

Proposition 3.7. Let X be a subshift and R be a field. Then, for each A ∈ QX,
ÃR(X)pA is a left minimal ideal of ÃR(X).

Proof. Fix an A = {p} ∈ QX, and let α, β ∈ LX and B ∈ U be such that
pAsαpBs

∗
βpA 6= 0. Then, α is an initial path of p, since otherwise pAsα = 0.

Similarly, β is an initial path of p. Write p = αx and p = βy, where x, y ∈ X.
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Then, since

0 6= pAsαpBs
∗
βpA = sαpr(A,α)pBpr(A,β)s

∗
β ,

we have that ∅ 6= r(A,α)∩B ∩ r(A, β) and hence r(A,α) = r(A,α)∩B ∩ r(A, β) =
r(A, β). Notice that r(A,α) = {x} = {σ|α|(p)} and r(A, β) = {y} = {σ|β|(p)}, so
that σ|α|(p) = σ|β|(p). From lemma 3.6, we get that |α| = |β|, and consequently,
α = β. Hence,

pAsαpBs
∗
βpA = sαpr(A,α)pBpr(A,β)s

∗
β = sαpr(A,α)pr(A,α)s

∗
α =

= pAsαs
∗
αpA = pApZαpA = pA.

Therefore, as elements of the form sαpBs
∗
β generate ÃR(X) (see the comment

about the Z-grading of ÃR(X) below lemma 2.4), we obtain that pAÃR(X)pA =
RpA. This means that pA is a minimal idempotent, and so, by [12, proposition 30.6],

we conclude that ÃR(X)pA is a minimal left ideal. �

Next, we completely characterize minimal left ideals associated with elements of
U .

Proposition 3.8. Let X be a subshift, R be a field, and A ∈ U . Then, ÃR(X)pA
is a left minimal ideal if and only if A ∈ QX.

Proof. Let A ∈ QX. Then, by proposition 3.7, ÃR(X)pA is minimal.

To prove the converse, let A ∈ U and assume that ÃR(X)pA is minimal. If |A| > 1

then, by proposition 3.2, ÃR(X)pA is not minimal, a contradiction. Hence, |A| = 1,
and we write A = {p}. Suppose that A /∈ QX. Then, p = αµ∞, with µ, α ∈ LX.

Suppose first that |α| = 0, that is, p = µ∞. Let β ∈ LX be the element of
minimal length such that µ = βk for some k ∈ N. Then, µ∞ = p = β∞, and
the pair (A, β) is a minimal cycle without exit (see definition 2.7). Applying [7,

lemma 5.3], we obtain that pAÃR(X)pA and R[x, x−1] are isomorphic algebras,
where R[x, x−1] denotes the Laurent polynomials ring. Since R[x, x−1] is not a

division ring, neither is pAÃR(X)pA. Hence, pA is not a minimal idempotent and

ÃR(X)pA is not a minimal ideal, which contradicts the hypothesis.
Next, suppose that p = αµ∞, with |α| > 0. Define B = {µ∞} and notice that

r(A,α) = {µ∞}. Then, pAsα = sαpr(A,α) = sαpB , and similarly, s∗αpA = pBs
∗
α.

From the previous paragraph, we get that ÃR(X)pB is not minimal. Let J be a

left ideal of ÃR(X) such that 0 6= J ( ÃR(X)pB . Define I = Js∗α, which is a left

ideal of ÃR(X). Notice that I = Js∗α = JpBs
∗
α = Js∗αpA, so that I ⊆ ÃR(X)pA.

Let 0 6= x ∈ J . Then, x = xpB = xpBpFα = xpBs
∗
αsα, and therefore, 0 6= xpBs

∗
α.

So, I 6=0. Aiming to show that I 6= ÃR(X)pA, suppose that I = ÃR(X)pA. Then,
pA ∈ I = Js∗α, and there is y ∈ J such that pA = ypBs

∗
α. Multiplying this equality

on the right by sα, we get that pAsα = ypBs
∗
αsα = ypB , and since pAsα = sαpB ,

we conclude that sαpB = ypB . Now, multiplying this equality on the left by s∗α, we
get that s∗αsαpB = s∗αypB , which is an element of J. As s∗αsαpB = pB , we obtain

that pB ∈ J , and consequently, J = ÃR(X)pB , which is a contradiction. Therefore,

I 6= ÃR(X)pA and ÃR(X)pA is not minimal. �
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Our next goal is to completely characterize the left minimal ideals of ÃR(X). For
this, we need the following lemma:

Lemma 3.9. Let 0 6= x ∈ ÃR(X) be such that ÃR(X)x is a left minimal ideal of

ÃR(X). Then, for each µ′, ν′ ∈ ÃR(X) with µ′xν′ 6= 0, ÃR(X)x and ÃR(X)µ′xν′ are

isomorphic as left ÃR(X)-modules (and consequently, ÃR(X)µ′xν′ is also minimal).

Proof. First, observe that ÃR(X)µ′x = ÃR(X)x. Indeed, this follows from the min-

imality of ÃR(X)x and the fact that 0 6= ÃR(X)µ′x is a left ÃR(X) ideal contained
in ÃR(X)x.

Define ϕ : ÃR(X)µ′x → ÃR(X)µ′xν′ by ϕ(a) = aν′ for each a ∈ ÃR(X)µ′x.

Notice that this map is a surjective left ÃR(X)-module homomorphism. We show

that ϕ is injective. Since ϕ(µ′x) = µ′xν′ 6= 0, we have that ker(ϕ) 6= ÃR(X)µ′x.

Moreover, Ker(ϕ) is a left ÃR(X) ideal contained in ÃR(X)µ′x = ÃR(X)x. By the

minimality of ÃR(X)x, we conclude that ker(ϕ) = 0. Therefore, ϕ is an ÃR(X)-left
module isomorphism. �

Proposition 3.10. Let X be a subshift, R be a field, and let x ∈ ÃR(X) be such

that ÃR(X)x is a minimal left ideal. Then, ÃR(X)x is isomorphic (as a left ÃR(X)-
module) to ÃR(X)pD for some D ∈ QX.

Proof. Applying the Reduction Theorem (theorem 2.8) for x, we obtain µ, ν ∈
ÃR(X) such that µxν 6= 0 and µxν = λpD, where D ∈ U and λ ∈ R, or µxν =

γ1pA +
k∑

i=2

γisβqipA, where (A, β) is a minimal cycle without exit (so A = {β∞}),

qi ∈ N \ {0}, and 0 6= γi ∈ R.

By lemma 3.9, ÃR(X)x and ÃR(X)µxν are isomorphic as left ÃR(X)-modules.

So, if µxν = λpD, then ÃR(X)x is isomorphic to ÃR(X)λpD. As R is a field,

ÃR(X)λpD = ÃR(X)pD, and by proposition 3.8, we get that D ∈ QX.
Next, we show that the second possibility for µxν does not happen. For this,

suppose that µxν = γ1pA +
k∑

i=2

γisβqipA, and to simplify notation, let z = µxν.

From [7, lemma 5.3], there exists an R-isomorphism ψ : pAÃR(X)pA → R[x, x−1].

Let I = pAÃR(X)z, which is a non-zero two-sided ideal of pAÃR(X)pA (to see that
it is an ideal on the right, use that z = pAzpA since (A, β) is a minimal cycle
without exit, and that R[x, x−1] is commutative).

Next, we show that I is a minimal ideal of pAÃR(X)pA. Let 0 6= J be a

pAÃR(X)pA ideal such that J ⊆ I. Then, 0 6= ÃR(X)J is an ÃR(X) left ideal

contained in ÃR(X)z. Since ÃR(X)z is minimal (by lemma 3.9), we obtain that

ÃR(X)J = ÃR(X)z. Consequently, pAÃR(X)J = pAÃR(X)z = I, and since

pAÃR(X)J = pAÃR(X)pAJ = J , we conclude that J = I. Therefore, I is minimal.
The minimality of I implies that ψ(I) is a minimal ideal of R[x, x−1], which

is a contradiction, since R[x, x−1] has no minimal ideals. Therefore, the case

µxν = γ1pA +
k∑

i=2

γisβqipA is not possible, as desired. �
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Corollary 3.11. Let X be a subshift, R be a field, and I be a left ideal in ÃR(X).
Then, I is minimal if and only if it is isomorphic (as a left ÃR(X)-submodule) to

ÃR(X)pA for some A ∈ QX.

Proof. If I is isomorphic as a left ÃR(X)-ideal to ÃR(X)pA for some A ∈ QX,
then it is minimal by proposition 3.8. For the other statement, suppose that I is
a left ÃR(X) minimal ideal. By proposition 3.1, there exists x ∈ ÃR(X) such that

I = ÃR(X)x. The result now follows from proposition 3.10. �

4. The socle of ÃR(X)

Recall that the (left) socle of an algebra B, denoted by Soc(B), is the sum of all the
left minimal ideals in B, and that Soc(B) is a two-sided ideal. If B is semiprime,
then Soc(B) coincides with the sum of all the right minimal ideals in B, as proved
in [25, chapter 3, proposition 4]). As we we are assuming that R is a field, we have

that ÃR(X) is semiprime.

Our goal in this section is to characterize the socle of ÃR(X) as the sum of the
minimal left ideals associated with elements of QX. By proposition 3.8, we have
that ∑

D∈QX

ÃR(X)pD ⊆ Soc(ÃR(X)).

To prove the reverse inclusion, we first need a lemma.

Lemma 4.1. Let X be a subshift, x ∈ X, and D = {x} ∈ U .

(i) If β ∈ LX is such that D ⊆ Fβ, then {βx} ∈ U .
(ii) For each α, β ∈ LX and A ∈ U such that pDsαpAs

∗
β 6= 0, there exists y ∈ X

such that x = αy, {y} and {βy} ∈ U , and

pDsαpAs
∗
β = sαs

∗
βp{βy}.

(iii) For each α, β ∈ LX and A ∈ U , if sαpAs
∗
βpD 6= 0, then sαpAs

∗
βpD =

sαs
∗
βpD.

Proof. We begin with the first item. Let Φ be the isomorphism of theorem 2.5.
Notice that

Φ(sβpDs
∗
β) = 1βδβ1D1β−1δβ−1 = 1{βx}δ0.

Recall from [11, §5] that D̃R(X) is generated by the characteristic functions of
the sets C(α, β), with α, β ∈ LX. Consequently, 1{βx} is a finite sum of the form
1βx =

∑
i∈F

λi1Ai
, where Ai ∈ U and F is a finite set. Moreover, since U is a Boolean

algebra, we can suppose that Ai∩Aj = ∅ for each i 6= j (see [10, lemma 3.5]). Since
{βx} is a set with only one element, and all the Ai are disjoint, we obtain that F is
also a set with only one element, say F = {i}. Hence, 1βx = λi1Ai

, which implies
that λi = 1 and {βx} = Ai ∈ U .
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The socle of subshift algebras, with applications to subshift conjugacy 11

Next, we prove the second item. Let α, β ∈ LX and A ∈ U . Notice that if x /∈ Zα,
then pDsα = 0 and hence pDsαpAs

∗
β = 0. Therefore, if pDsαpAs

∗
β 6= 0, then x ∈ Zα,

say x = αy for some y ∈ X.
Thus,

pDsαpAs
∗
β = p{αy}sαpAs

∗
β = sαp{y}pAs

∗
β .

From the last term in the equality above, we obtain that p{y}pA = 0 if y /∈ A.
Therefore, we have that y ∈ A. Hence,

sαp{y}pAs
∗
β = sαp{y}s

∗
β .

In case that y /∈ Fβ , the above implies that p{y}s
∗
β = 0, and so, we conclude

that y ∈ Fβ . Observe that {y} ∈ U since {y} = r({αy}, α), and so, from the
first item of this lemma, we get that {βy} ∈ U . Thus, from the second item of
lemma 2.4, we obtain that p{y}s

∗
β = s∗βp{βy} and hence sαp{y}s

∗
β = sαs

∗
βp{βy}.

Thus, pDsαpAs
∗
β = sαs

∗
βp{βy}, as desired.

To prove the third item, let α, β ∈ LX and A ∈ U be such that sαpAs
∗
βpD 6= 0.

Since 0 6= sαpAs
∗
βpD = sαpApr(D,β)s

∗
β , we have that r(D,β) ⊆ A. Hence,

sαpApr(D,β)s
∗
β = sαpr(D,β)s

∗
β = sαs

∗
βpD, where the last equality follows from the

second item of lemma 2.4. �

Next, we prove that the socle of a subshift algebra coincides with the sum of the
minimal left ideals associated with elements of QX.

Theorem 4.2 Let X be a subshift and R be a field. Then,

Soc(ÃR(X)) =
∑

A∈QX

ÃR(X)pA.

Proof. Let 0 6= I be a left minimal ideal of ÃR(X). By lemma 3.1, there exists

0 6= x ∈ ÃR(X) such that I = ÃR(X)x. For this x, let µ, ν be as in the Reduction

Theorem (theorem 2.8) and use lemma 3.9 to conclude that ÃR(X)µxν is minimal.
Then, by the proof of proposition 3.10, we get that µxν = λpD for some 0 6= λ ∈
R and D ∈ U . Notice that since ÃR(X)x is minimal, we have that ÃR(X)µx =

ÃR(X)x. Define x′ = µx and let ϕ : ÃR(X)x′ → ÃR(X)pD be the (ÃR(X) left)
isomorphism of the proof of lemma 3.9, that is, ϕ(zx′) = zx′ν = zλpD. Observe

that ϕ(x′) = λpD, and since ϕ is a left ÃR(X)-isomorphism, this implies that

x′ = ϕ−1(ϕ(x′)) = ϕ−1(λpD) = ϕ−1(pDλpD) = pDϕ
−1(λpD) = pDx

′.

Write x
′
as a finite sum of the form x′ =

∑
λisαipAi

s∗βi
, where Ai ∈ U , αi, βi ∈

LX, and λi ∈ R for each i. From the second item of lemma 4.1, we obtain that pDx
′

has the form

pDx
′ =

∑
λisαis

∗
βi
p{βiyi},
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where D = {αiyi} for each i (notice that we can apply lemma 4.1 because, as

ÃR(X)pD is minimal, D is a one-point set). Since {αiyi} ∈ QX for each i, we have
that {βiyi} ∈ QX for each i, and hence,

x′ = pDx
′ =

∑
λisαis

∗
βi
p{βiyi} ∈

∑
A∈QX

ÃR(X)pA.

Consequently, we obtain that

I = ÃR(X)x = ÃR(X)x′ ⊆
∑

A∈QX

ÃR(X)pA

and so

Soc(ÃR(X)) ⊆
∑

A∈QX

ÃR(X)pA.

As we mentioned at the beginning of the section, the other inclusion follows from
proposition 3.8, as it gives us that ÃR(X)pA is a left minimal ideal of ÃR(X) for
each A ∈ QX.

So,

Soc(ÃR(X)) =
∑

A∈QX

ÃR(X)pA,

as desired. �

Corollary 4.3. Let X be a subshift and R be a field. Then, Soc(ÃR(X)) = J ,

where J is the two-sided ideal of ÃR(X) generated by the set {pA : A ∈ QX}.
Moreover, the socle is a Z-graded ideal.

Proof. The first part of the result follows from theorem 4.2 and the fact
that Soc(ÃR(X)) is a two-sided ideal. The grading statement follows from [1,
remark 2.1.2]. �

Remark 4.4. Let E be a graph. By [6, proposition 5.1], the socle of the Leavitt
path algebra LK(E) contains (but is not necessarily equal to) the sum of the mini-
mal left ideals associated with the line points. In theorem 4.2, we have an equality,
since we are summing over a larger set (notice that a line path in E induces an
irrational path in the subshift associated with E, but the converse is not necessarily
true, as can be seen in Example 3.5).

Corollary 4.5. Let X be a subshift and R be a field. Then,

(i) ÃR(X) has non-zero socle if and only if QX is non-empty.

(ii) Soc(ÃR(X)) 6= ÃR(X).

Proof. The first statement is a direct consequence of corollary 4.3, so we prove the
second item. The result is clearly true if QX = ∅, and hence, we may assume that
QX 6= ∅.
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Seeking for a contradiction, suppose that pX ∈ Soc(ÃR(X)). From theorem 4.2,
we obtain that pX is a sum of the form

pX =
m∑
j=1

zjpDj
,

where zj ∈ ÃR(X) and Dj ∈ QX for each j. By lemma 3.6, QX contains infinitely
many elements. So, there exists D ∈ QX such that D 6= Dj for each j ∈ {1, ...,m},
which implies that pDj

pD = 0 for each j. Therefore,

pD = pXpD =
m∑
j=1

zjpDj
pD = 0,

which is a contradiction, since pD 6= 0. We conclude that pX /∈ Soc(ÃR(X)), and
consequently, ÃR(X) 6= Soc(ÃR(X)). �

Remark 4.6. For finite graphs, the socle of a Leavitt path algebra is non-zero if
and only if the graph has sinks, see [5]. So, for a finite graph without sinks E, the
socle of LK(E) is zero. We can obtain the last statement using the result above,

considering the subshift X associated with E, recalling that ÃR(X) is isomorphic to
LK(E), and noticing that QX = ∅.

In the remainder of this section, we focus on finding a smaller generating set for
the socle of a subshift algebra. For this, we need the following definition.

Definition 4.7. Let X be a subshift and x, y ∈ X. We say that the elements x and
y are equivalent and write x ∼ y if there exists m,n ∈ N such that σm(x) = σn(y).

In the proposition below, we denote by 〈x〉 the two-sided ideal generated by x in

ÃR(X).

Proposition 4.8. Let X be a subshift and let A,B ∈ U be two single point sets,
say, A = {p} and B = {q}, where p, q ∈ X. If p ∼ q, then 〈pA〉 = 〈pB〉, and if
p 6∼ q, then 〈pA〉〈pB〉 = 0.

Proof. We begin the proof showing that p ∼ q implies 〈pA〉 = 〈pB〉.
Suppose first that p = σn(q) for some n ∈ N. Then, q = αp, where α ∈ LX.

Hence,

s∗αpBsα = s∗αsαpr(B,α) = pFαpr(B,α) = pFα∩r(B,α) = pA,

which implies that 〈pA〉 ⊆ 〈pB〉. Multiplying the above equality on the left by sα
and on the right by s∗α, we get that

sαpAs
∗
α = sαs

∗
αpBsαs

∗
α = pZαpBpZα = pB ,

and consequently, 〈pB〉 ⊆ 〈pA〉. Therefore, we have proved that 〈pA〉 = 〈pB〉.
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To prove the general case, suppose that p ∼ q. Then, there exists m,n ∈ N such
that σm(p) = σn(q), and hence, there exists a, b ∈ LX and z ∈ X such that p = az
and q = bz. Using that r(A,α) = {z} = r(B, β) and what we proved in the previous
paragraph, we obtain that 〈pA〉 = 〈p{z}〉 = 〈pB〉.

Now, suppose that p and q are not equivalent. We will show that 〈pA〉〈pB〉 = 0.
From lemma 4.1, 〈pA〉 is the linear span of elements of the form sαs

∗
βp{µ},

where µ ∼ p and α, β ∈ LX, and also 〈pB〉 is the linear span of elements of the
form sas

∗
bp{ν}, where ν ∼ q and a, b ∈ LX. Therefore, it is enough to show that

sαs
∗
βp{µ}sas

∗
bp{ν} = 0 for α, β, a, b, µ, and ν as above.

For a, b, α, β, µ, ν as above, notice that, by the second item of lemma 4.1, either
p{µ}sas

∗
b = 0 or there exists z ∼ µ such that p{µ}sas

∗
b = sas

∗
bp{z}. As p 6∼ q, we

have that z 6∼ ν and hence p{z}p{ν} = 0. Therefore,

sαs
∗
βp{µ}sas

∗
bp{ν} = sαs

∗
βsas

∗
bp{z}p{ν} = 0

, and consequently, 〈pA〉〈pB〉 = 0. �

Let QX/∼ be the quotient space of QX by ∼, whose elements we denote by [q]
(here, and when necessary below, we identify a one-point set inQX with its element).
To each equivalence class [q] in QX/∼, we associated a projection, denoted by p[q],
which is defined as p[q] := p{q′}, where q

′ ∈ [q]. By the proposition above, p[q] is
well-defined up to the generation of the same two-sided ideal. Joining this discussion
with corollary 4.3 and proposition 4.8, we get the following description of the socle
of a subshift algebra.

Corollary 4.9. Let X be a subshift and R be a field. Then,

Soc(ÃR(X)) =
⊕

[q]∈QX/∼

〈p[q]〉.

5. The socle of a subshift algebra as a Leavitt path algebra

In this section, starting from a subshift X, we build a graph such that the associated
Leavitt path algebra is graded isomorphic to the socle of the subshift algebra.
Furthermore, we provide applications for such construction. The definition of the
graph depends on some subsets of X, which we define below.

Fix an element p ∈ X such that {p} ∈ QX, and define I0 = N. Moreover, let

J0 = {σn(p) : n ∈ I0},

J1 = σ−1(J0) \ J0,

and inductively define, for each n ∈ N,

Jn = σ−1(Jn−1) \ (J0 ∪ J1 ∪ . . . ∪ Jn−1).

Notice that Jn ∩ Jm = ∅ for each n 6=m. Moreover, it is possible that Jn = ∅ for
some n, in which case this process is finite.
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For each i ∈ I0, define zi = σi(p), so that J0 = {zi : i ∈ I0}. Inductively, for
each n ≥ 1, chose an index set In that indexes the elements of Jn and such that
In ∩ Im = ∅ for each n 6=m. Write Jn = {zi : i ∈ In}.

Define I =
∞⋃

n=0
In and J =

∞⋃
n=0

Jn, which are both disjoint unions. The set I is

the index set of the elements of J, so the map I 3 i 7→ zi ∈ J is a bijective map.

Remark 5.1. Each element zi ∈ J has a unique representation of the form zi =
azj , where a ∈ A and zj ∈ J . This is clear when i ∈ I0, since in this case,
zi = σi(p) = aσi+1(p), where a is the first letter of zi. When zi ∈ Jn for some
n ≥ 1, we have that zi ∈ σ−1(Jn−1) and hence σ(zi) = zj for a (unique) zj ∈ Jn−1.
Therefore, zi = azj for some a ∈ A .

Now, we define a graph Ep associated to the fixed element p ∈ X (with {p} ∈ QX).
Both the vertex and edge sets are indexed by the set I defined above, and we write
E0

p = {vi : i ∈ I} and E1
p = {ei : i ∈ I}. The source map is defined by s(ei) = vi for

each i ∈ I. To define the range map, for each i ∈ I, write zi = azj as in remark 5.1,
and let r(ei) = vj . Equivalently, the range map is defined as r(ei) = vj , where
σ(zi) = zj . Therefore, we get that r(ei) = vj = s(zj) = s(σ(zi)).

Remark 5.2. In the graph Ep, there are no closed paths, that is, strings α =
ek1 . . . ekn such that r(ekl) = s(ekl+1

), l = 1 . . . n− 1, and r(ekn) = s(ek1). Indeed,

for each n ≥ 1 and i ∈ In, we have that s(ei) = vi and r(ei) = vj , where j ∈ In−1.
So, if α is a path in the graph Ep such that s(α) = vi, with i ∈ In and n ≥ 1, then
the range of α lies in some Ij with j <n. Hence α is not a closed path. Suppose
now that α is a path such that s(α) = vi for some i ∈ I0. Notice that for i ∈ I0,
the source and range maps are defined as s(ei) = vi and r(ei) = vi+1. Hence, α is
not a closed path. Consequently, there are no closed paths in Ep.

Our next goal is to prove that the ideal generated by an irrational element {p}
is isomorphic to the Leavitt path algebra of the graph Ep defined above. Before we
do this, we prove the following lemma:

Lemma 5.3. Let X be a subshift and Y ⊆ X be such that {y} ∈ U for each y ∈ Y .
Then,

(i) for each n ∈ N and z ∈ σn(Y ), it holds that {z} ∈ U and
(ii) for each n ∈ N and z ∈ σ−n(Y ), it holds that {z} ∈ U .

Proof. Let n ∈ N and z ∈ σn(Y ). Then, z = σn(y) for some y ∈ Y and hence
y = αz, for some α ∈ LX. Since {y} ∈ U , we have that {z} = r({y}, α) ∈ U .

To prove the second item, let n ∈ N and z ∈ σ−n(Y ). In this case, σn(z) = y for
some y ∈ Y , and therefore, z = βy for some β ∈ LX. Since {y} ∈ U , from the first
item of lemma 4.1, we get that {z} ∈ U . �

As a consequence of the above lemma, we obtain that every single element set
formed by an element in the equivalence class of an irrational path is in U , as stated
below.
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Proposition 5.4. Let {p} ∈ QX. Then, [p] = J , where J is the set constructed
above. Moreover, for each z ∈ [p], the set {z} belongs to the Boolean algebra U .

Proof. The first statement follows by the definition of J. For the second statement,
notice that, by the first item of lemma 5.3, we have that {z} ∈ U for each z ∈ J0.
Also, by applying successively the second item of lemma 5.3, we get that {z} ∈ U
for each z ∈ Jn, n ≥ 1. �

The following lemma will be useful in the study of condition (Y) within the graph
associated with the socle of a subshift algebra.

Lemma 5.5. let X be a subshift, p ∈ X be such that {p} ∈ QX, and Ep be the
associated graph. Denote by E1

p the edge set of Ep and by E∞
p the set of all the

infinite paths in Ep. There exists bijections ψ : [p] → E∞
p and ϕ : [p] → E1

p such
that

(i) for each z ∈ [p], it holds that ψ(z) = ϕ(z)ψ(σ(z)).
(ii) for each z ∈ [p] and each n ∈ N, it holds that

ψ(z) = ϕ(z)ϕ(σ(z))ϕ(σ2(z))...ϕ(σn(z))ψ(σn+1(z)).

(iii) for each z ∈ [p], it holds that

ψ(z) = ϕ(z)ϕ(σ(z))ϕ(σ2(z))ϕ(σ3(z))...,

that is, the edge in position n of the infinite path ψ(z) is ϕ(σn(z)) for each
n ∈ N.

Proof. We begin defining the maps ψ and ϕ. Let I and J be as at the beginning of
§5. Recall that I is the index set of J, so that J = {zi : i ∈ I} and E1

p = {ei : i ∈ I}.
By proposition 5.4, we have that [p] = J and hence [p] = {zi : i ∈ I}. So, the
map ϕ : [p] → E1

p defined by ϕ(zi) = ei is a bijection. Now we define ψ. From
the definition of the source and range maps of Ep (see remark 5.1), we get that
s(ϕ(zi)) = vi for each zi ∈ [p] and r(ϕ(zi)) = s(ϕ(σ(zi))). Moreover, from the
definition of Ep, we have that each vertex vi of Ep emits a unique edge, which is
ei, and so vi is the source of a unique infinite path in Ep (the path beginning with
ei). Hence, we get a bijective map ψ : [p] → E∞

p , defined by ψ(zi) = ξi, where ξi
is the unique infinite path in Ep with s(ξi) = vi (or, equivalently, ξi is the unique
infinite path in Ep beginning with ei).

Now we prove the first item. Let zi ∈ [p], so that ϕ(zi) = ei. Denote ξ = ψ(zi),
that is, ξ is the unique infinite path in Ep beginning in the edge ei. Write zi = aizj ,
where ai ∈ A and zj ∈ X. Notice that from the definition of Ep, we have that
r(ei) = vj and vj is the source of a unique edge, which is ej. Therefore, the second

edge of ξ is ej. Write ξ = eiej ξ̃. From the definition of ψ, we get that ψ(zj) is
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the unique infinite path of Ep beginning with ej, and since ej ξ̃ is an infinite path

beginning with ej, we conclude that ψ(zj) = ej ξ̃. Then,

ψ(zi) = ξ = eiej ξ̃ = ϕ(zi)ψ(zj) = ϕ(zi)ψ(σ(zi)),

which proves the first item.
The second and third items follow by applying successively the first one. �

Notice that, by [1, remark 2.1.2], the ideal generated by a projection associated
with an irrational element {p} is graded. Next, we prove that this ideal is Z−graded
isomorphic to the Leavitt path algebra of the graph Ep. We refer the reader to [1]
for the concepts regarding Leavitt path algebras.

Proposition 5.6. Let X be a subshift, let D = {p} ∈ QX, and let Ep be the
associated graph as above. Then, 〈pD〉 and the Leavitt path algebra LR(Ep) are
Z-graded isomorphic (with its natural Z-gradings).

Proof. To obtain a homomorphism ϕ : LR(Ep) → ÃR(X), we use the universal
property of LR(Ep). So, it is enough to define ϕ on E0 ∪E1 in a way such that the
images of E0 ∪ E1 satisfy the relations defining LR(Ep).

We begin with the definition of ϕ on E 0. Let vi ∈ E0, where i ∈ I, and let zi be
the associated element in J. Define ϕ(vi) = p{zi}. Notice that from proposition 5.4,

we have {zi} ∈ U , and hence, ϕ(vi) is well-defined. Next, for each ei ∈ E1, let
zi ∈ J be the element corresponding to i, and let ai ∈ A be the first letter of zi.
Define ϕ(ei) = p{zi}sai , and ϕ(e

∗
i ) = s∗aip{zi}.

Now we verify that {ϕ(vi), ϕ(ei), ϕ(e∗i ) : i ∈ I} satisfy the relations that define
LR(Ep), see [1, definition 1.2.3]. First, notice that ϕ(vi) is idempotent for each
vi ∈ E0. Moreover, for i 6= j, we have that ϕ(vi)ϕ(vj) = p{zi}p{zj} = 0 since zi 6= zj .

Next, for a fixed i ∈ I, observe that

ϕ(s(ei))ϕ(ei) = ϕ(vi)ϕ(ei) = p{zi}p{zi}sai = p{zi}sai = ϕ(ei).

Moreover, for this i, let zi ∈ J be the element associated with i and write zi = aizj ,
where ai is the first letter of zi. Recall that r(ei) = vj . Then, r({zi}, ai) = {zj},
and hence,

ϕ(ei)ϕ(r(ei)) = ϕ(ei)ϕ(vj) = p{zi}saip{zj} = saipr({zi},ai)p{zj} = p{zi}sai = ϕ(ei).

So, we proved that

ϕ(s(ei))ϕ(ei) = ϕ(ei) = ϕ(ei)ϕ(r(ei)).

Similarly, the reader can check that ϕ(e∗i ) = ϕ(e∗i )ϕ(s(ei)) = ϕ(e∗i ) =
ϕ(r(ei))ϕ(e

∗
i ).
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Next, for i, j ∈ I with i 6= j, observe that

ϕ(e∗i )ϕ(ej) = s∗aip{zi}p{zj}saj = 0

since p{zi}p{zj} = 0. Moreover, to conclude that ϕ(e∗i )ϕ(ej) = δi,jϕ(r(ei)), write

zi = aizj as in proposition 5.4 and notice that

ϕ(e∗i )ϕ(ei) = s∗aip{zi}sai = s∗aisaipr({zi},ai) = pFaip{zj} = p{zj} = ϕ(r(ei)).

Finally, for each i ∈ I (write zi = aizj as in proposition 5.4), notice that s−1(vi) =
ei, and so

∑
e∈s−1(vi)

ϕ(se)ϕ(s
∗
e) = ϕ(ei)ϕ(e

∗
i ) = p{zi}sais

∗
ai
p{zi} = p{zi}pZai

p{zi} = p{zi} = pvi .

We have checked that the image of ϕ satisfies all the relations defining LR(Ep).
By the universal property of LR(Ep), we have that ϕ extends to a homomorphism,

which we also call ϕ : LR(Ep) 7→ ÃR(X). By the definition of ϕ on the generators,
we obtain that it is a graded homomorphism.

To finish our proof, it remains to show that ϕ is injective and that ϕ(LR(Ep)) =
〈pD〉.

By remark 5.2, Ep has no closed paths, and hence, it satisfies (vacuously) condi-
tion (L). Since ϕ(vi) = p{zi} 6= 0 for each vi ∈ E0, we obtain from Cuntz–Krieger
Uniqueness Theorem, see [1, theorem 2.2.15], that ϕ is injective.

It remains to show that ϕ(LR(Ep)) = 〈pD〉. From proposition 5.4, each zi ∈ J is
an element of [p], and then from proposition 4.8, we get that p{zi} ∈ 〈pD〉. Therefore,
ϕ(ei), ϕ(e

∗
i ), and ϕ(vi) are all elements of 〈pD〉 for all i ∈ I, and consequently,

ϕ(LR(Ep)) ⊆ 〈pD〉.
To prove that 〈pD〉 ⊆ ϕ(LR(Ep)), we first show the following claim.
Claim: Let αz ∈ [p], where α ∈ LX and z ∈ X. Then, p{αz}sα and s∗αp{αz} both

belong to ϕ(LR(Ep)).
We show that p{αz}sα ∈ ϕ(LR(Ep)) and leave the proof that s∗αp{αz} ∈

ϕ(LR(Ep)), which is analogous to the reader.
Since αz ∈ [p] = J , we have that αz = zi1 for some i1 ∈ I. From the definition

of ϕ, we obtain that ϕ(ei1) = p{zi1}
sα1 , where α1 is the first letter of α. Notice

that σ(αz) ∈ J , so that σ(αz) = zi2 for some i2 ∈ I. From the definition of ϕ, we
get that ϕ(ei2) = p{zi2}

sα2 . Proceeding inductively, we obtain indexes ik ∈ I, with

k ∈ {1, 2, ..., |α|}, such that ϕ(eik) = p{zik}sαik
.

From the second item of lemma 2.3, we get that sαkp{zik+1
} = p{zik}sαk for

each k ∈ {1, ..., |α| − 1}. Hence, making the proper computations, we obtain that

ϕ(ei1)ϕ(ei2)...ϕ(ei|α|) = p{αz}sα1 ...sα|α| = p{αz}sα.

Therefore, p{αz}sα ∈ ϕ(LR(Ep)) and the claim is proved.
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Now we show that ϕ(LR(Ep)) = 〈pD〉.
Let α, β ∈ LX and A ∈ U be such that pDsαpAs

∗
β 6= 0. From the second item

of lemma 4.1, there exists y ∈ X such that p = αy, {βy} ∈ U , and moreover,
pDsαpAs

∗
β = sαs

∗
βp{βy}. Applying the second item of lemma 2.3, we get that

p{αy}sα = sαp{y} and s∗βp{βy} = p{y}s
∗
β , and therefore,

p{αy}sαs
∗
βp{βy} = sαs

∗
βp{βy}.

It follows from the claim proved above that the element p{αy}sαs
∗
βp{βy} belongs to

ϕ(LR(Ep)), and so pDsαpAs
∗
β ∈ ϕ(LR(Ep)).

Similarly one shows that sαpAs
∗
βpD ∈ ϕ(LR(Ep)) for all α, β ∈ LX and A ∈ U .

Consequently, we obtain that 〈pD〉 ⊆ ϕ(LR(Ep)), and this finishes the proof of the
proposition. �

Corollary 5.7. Let X be a subshift. Then, there exists a graph E such that LR(E)

and Soc(ÃR(X)) are Z-graded isomorphic (with its natural Z-gradings).

Proof. For each [p] ∈ QX/∼, let Ep represent the corresponding graph (ensuring
that Ep and Eq are disconnected for distinct equivalence classes [p] and [q]). Define
E as the disjoint union of all such graphs Ep and observe that

LR(E) =
⊕

[p]∈QX/∼

LR(Ep).

For each [p] ∈ QX/∼, proposition 5.6 guarantees the existence of an isomorphism

ϕp : LR(Ep) → 〈[p]〉. From corollary 4.9, we get that Soc(ÃR(X)) =
⊕

[p]∈QX/∼
〈[p]〉.

So, ϕ : LR(E) → Soc(ÃR(X)) defined by ϕ =
⊕

[p]∈QX/∼
ϕp is an isomorphism. �

Remark 5.8. Notice that the graph associated with a subshift described in corol-
lary 5.7 is always acyclic, row-finite, and sinkless. Since the graph is acyclic,
corollary 5.7 and [2] imply that the socle is locally K -matricial, that is, it is the
direct union of subalgebras, each isomorphic to a finite direct sum of finite matrix
rings over the field R.

Moreover, for each p ∈ QX, the Leavitt path algebra LR(Ep) is simple, since Ep

satisfies condition (L) and there are no proper saturated and hereditary subsets
of E0

p . From the proof of the previous corollary, we get that LR(E) is semisimple,

and since Soc(ÃR(X)) and LR(E) are isomorphic, we conclude that Soc(ÃR(X)) is
semisimple.

Using the description of the socle of a subshift algebra as the Leavitt path algebra
of the associated graph given above, we provide next a criterion to determine when
the socle is strongly graded (see [26] for a study of strongly Z-graded Leavitt path
algebras). This criterion depends on condition (Y) so, for the reader’s convenience,
we first recall this definition.
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Definition 5.9. see [16, 21] A graph E satisfies condition (Y) if for each infinite
path e1e2e3 . . . there exists a finite path α and k ∈ N such that s(ek+1) = r(α) and
|α| = k + 1.

Proposition 5.10. Let X be a subshift. The socle of ÃR(X) is strongly Z-
graded (with its natural Z−grading) if and only if the associated graph E given
in corollary 5.7 satisfies condition (Y).

Proof. This follows from corollary 5.7, remark 5.8, and [16, theorem 4.2] (or [21,
theorem 3.9]). �

Remark 5.11. Let X be a subshift and let E be the graph as in corollary 5.7, that
is, E is the disjoint union of all the graphs Ep, where [p] ∈ QX/∼. Then, E satisfies
condition (Y ) if and only if each Ep satisfies condition (Y ).

Next, we characterize the condition (Y ) of E in terms of the shift map σ of X.
Let W ⊆ X be the set W = {p ∈ X : {p} ∈ QX}. From the first item of lemma 5.3,
we get that σ(W ) ⊆ W , and from the second one, we get that each z ∈ σ−1(x) is
also an element of W for each x ∈W .

Proposition 5.12. Let X be a subshift and let E be the associated graph as in
corollary 5.7. Then, E satisfies condition (Y) if and only if for each q ∈ W , there
exists an n ∈ N such that σ−(n+1)(σn(q)) 6= ∅.

Proof. First, suppose that for each q ∈ W , there exists an n ∈ N such that
σ−(n+1)(σn(q)) 6= ∅. By remark 5.11, it is enough to prove that, for each [p] ∈ QX/∼,
the graph Ep satisfies condition (Y ). Fix a [p] ∈ QX/∼. Let ξ be an infinite path
in the graph Ep, ψ be the map defined in lemma 5.5, and z ∈ [p] be such that
ψ(z) = ξ. Furthermore, let m ∈ N be such that σ−(m+1)(σm(z)) 6= ∅, and chose
y ∈ σ−(m+1)(σm(z)). Then, σm+1(y) = σm(z). Denote this last element by x. So,
we get that y = ax and z = bx, where a, b ∈ LX are such that |a| = m + 1 and
|b| = m. Now let η = ψ(y). By the second item of lemma 5.5, we get that

ξ = ψ(z) = ϕ(z)ϕ(σ(z))...ϕ(σm−1(z))ψ(σm(z)),

that is, ξ has the form ξ = αψ(σm(z)), where α is the finite path

α = ϕ(z)ϕ(σ(z))ϕ(σ2(z))...ϕ(σm−1(z)).

Similarly, η has the form η = βψ(σm+1(y)), where

β = ϕ(y)ϕ(σ(y))ϕ(σ2(y))...ϕ(σm(y)).

Since σm+1(y) = σm(z), we obtain that η = βψ(σm(z)). So, we have proved that
ξ = αψ(σm(z)) and that there exists an infinite path η of the form η = βψ(σm(z))
with |β| = |α|+ 1. This proves that Ep satisfies condition (Y ).

For the converse, suppose that E satisfies condition (Y ), and let q ∈W . Let ψ be
as in lemma 5.5, and define ξ = ψ(q), which is an infinite path in Eq. Given that E
satisfies condition (Y ), it follows that Eq also satisfies condition (Y ). Consequently,
there exists an infinite path η in Eq such that η = αµ and ξ = βµ, where µ is an
infinite path in Eq and α, β are finite paths in Eq with |α| = |β|+ 1. Let y ∈ [q] be
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such that ψ(y) = η and write m = |β|. By the second item of lemma 5.5, we get
that

βµ = ξ = ψ(q) = ϕ(q)ϕ(σ(q))ϕ(σ2(q))...ϕ(σm−1(q))ψ(σm(q)),

from where we conclude that µ = ψ(σm(q)). Similarly, from

αµ = η = ψ(y) = ϕ(y)ϕ(σ(y))ϕ(σ2(y))...ϕ(σm(y))ψ(σm+1(y)),

we obtain that µ = ψ(σm+1(y)). Therefore, ψ(σm+1(y)) = µ = ψ(σm(q)), and
since ψ is injective, we have that σm+1(y) = σm(q). This last equality means that
y ∈ σ−(m+1)(σm(q)), and so we are done. �

Remark 5.13. If σ|W : W → W is surjective then, by the proposition above, E
satisfies condition (Y ). However, surjectivity of σ is not necessary, as can be seen
in the following example: consider the subshift X over the alphabet A = {0, 1, 2}
determined by the set of forbidden words F = {00, 10, 20}. The associated graph
satisfies condition (Y ) but σ|W is not onto.

As an application of proposition 5.10, we show how to use the graded structure
of the socle as an invariant of conjugacy between Ott–Tomforde–Willis subshifts.

Theorem 5.14 Let X1 and X2 be subshifts and Ei, i = 1, 2, be the associated
graphs as in corollary 5.7. If E1 satisfies condition (Y) and E2 does not, then the
associated OTW-subshifts are not conjugate.

Proof. Suppose that the OTW-subshifts are conjugate. Then, by [11, theorem 7.6],
there is a graded isomorphism between the associated subshift algebras, which
induces a graded isomorphism between the socle of both algebras. By proposi-
tion 5.10, the socle of one subshift algebra is strongly graded, while the other
is not. Since a graded isomorphism preserves the strong graded structure of an
algebra, we obtain a contradiction. �

Remark 5.15. Under the hypothesis of the theorem above, using [9, theorem 6.11],
we conclude that the associated subshifts built using the 1

2i
metric (which induces

the product topology) are not isometrically conjugate. Moreover, for finite alpha-
bets, OTW-subshifts coincide with the usual notion of subshifts (with the product
topology). Hence, the result above also provides an invariant for the conjugacy of
subshifts (with the product topology) over finite alphabets.

To illustrate an application of the theorem above, we provide two examples of
subshifts. For one of them, condition (Y) is satisfied for the associated graph,
while for the other, it is not. We begin with a subshift that induces a 2-step
Ott–Tomforde–Willis subshift not conjugate to any 1-step Ott–Tomforde–Willis
subshift. In this case, the graph does not satisfy condition (Y).
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Example 5.16. Let N∗ be the alphabet and define P as the following subset of
(N∗)3:

P := {(1, j, 1), (j, 1, j) : j ∈ N∗ \ {2}} ∪ {(j, j + 1, j + 2) : j ∈ N∗}.

Let F = (N∗)3 \ P and XF := X. By [19, §3], the Ott–Tomforde–Willis subshift
associated with F is not conjugate to any 1-step Ott–Tomforde–Willis subshift.
Notice that

X := {(1j)∞, (j1)∞ : j ∈ N∗ \ {2}} ∪ {(k + j)j∈N∗ : k ∈ N∗}.

We show that Soc(ÃR(X)) is R-isomorphic to M∞(R), the algebra of infinite
matrices with finitely many non-zero entries.

The set of the irrational paths, in the subshift X, is QX = {{(k+j)j∈N} : k ∈ N∗}.
Let p=12345.... Then, according to the equivalence relation given in definition 4.7,
all the elements of QX are equivalent to A = {p}. By corollary 4.9, we conclude
that

Soc(ÃR(X)) = 〈pA〉.
For the element p=1234..., the associated graph Ep is the graph below.

Given that LR(Ep) is isomorphic to M∞(R) and, by proposition 5.6, LR(Ep)

and 〈pA〉 are isomorphic, it follows that Soc(ÃR(X)) and M∞(R) are isomorphic.

The next example exhibits a subshift such that the graph associated with the
socle satisfies condition (Y).

Example 5.17. Let

X := {(k + j)j∈N∗ : k ∈ Z}.
The set of the irrational paths is QX = {(k+j)j∈N∗ : k ∈ Z}. Let p=12345.... As

before, all the elements ofQX are equivalent to A = {p}, and hence, by corollary 4.9,

we have that Soc(ÃR(X)) = 〈pA〉.
To construct the graph associated with X, we chose In = {−n : n ∈ N∗} and

I = Z. The graph Ep is depicted below.

The Leavitt path algebra of the graph above is isomorphic to M∞(R) and so is

Soc(ÃR(X)). Moreover, by proposition 5.10, Soc(ÃR(X)) is strongly graded.

Since one of the graphs of the examples above satisfies condition (Y) and the
other does not, we obtain that the corresponding OTW-subshifts are not conjugate,
as stated below.
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Corollary 5.18. The Ott–Tomforde–Willis subshifts associated with the subshifts
of Examples 5.16 and 5.17 are not conjugate. Moreover, there is no isometric
conjugacy between the associated subshifts built using the 1

2i
metric (which induces

the product topology).

Proof. This follows directly from theorem 5.14 and remark 5.15. �

6. The relation between the algebraic and the C*-socle

We conclude the article with a concise examination of the socle of the C*-algebra
associated with a subshift, aiming to describe the relation between the socles in
both analytical and purely algebraic contexts. In the analytical context, the socle
is also defined as the sum of all left minimal ideals (it is important to note that these
ideals are not necessarily closed). Below, we recall the definition of the C*-algebra
associated with a subshift over an arbitrary alphabet, as presented in [9].

Definition 6.1. Let X be a subshift. We define ÕX as the universal unital C*-
algebra generated by projections {pA : A ∈ U} and partial isometries {sa : a ∈ A }
subject to the relations:

(i) pX = 1, pA∩B = pApB, pA∪B = pA + pB − pA∩B, and p∅ = 0 for every
A,B ∈ U ;

(ii) sβs
∗
αsαs

∗
β = pC(α,β) for all α, β ∈ LX, where sω := 1, and for α =

α1 . . . αn ∈ LX, sα := sα1 · · · sαn and s∗α := s∗αn · · · s∗α1 .

Remark 6.2. It is shown in [9] that the subshift algebra ÃR(X) is embedded

densely in ÕX via a homomorphism that sends generators of ÃR(X) to generators

of ÕX.

Next, we show that the socle of ÃR(X) is contained in the socle of ÕX and give
an example where the inclusion is proper. We will use the concept of minimal
idempotent recalled below lemma 3.6. Taking into consideration that ÃR(X) and

ÕX are semiprime (see [7, corollary 5.6] for primeness of ÃR(X)), we have the
following result.

Lemma 6.3. Let X be a subshift, R be a field, and A ∈ QX. Then, pA is a minimal
idempotent in ÃC(X) and also in ÕX.

Proof. Consider an element A ∈ QX. From the proof of proposition 3.7, it follows
that pAÃC(X)pA = CpA, implying that pA is a minimal idempotent in ÃC(X).
Furthermore, by remark 6.2, we deduce that the closure of pAÃC(X)pA in ÕX,

denoted by pAÃC(X)pA, equals pAÕXpA. However, as pAÃR(X)pA = CpA, we
conclude that

CpA = CpA = pAÃC(X)pA = pAÕXpA.

Hence, pAÕXpA = CpA, and therefore, pA is also a minimal idempotent in ÕX. �
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Proposition 6.4. Let X be a subshift. Then,

Soc(ÃC(X)) ⊆ Soc(ÕX).

Proof. According to corollary 4.3, Soc(ÃC(X)) is the two-sided ideal of ÃC(X) gen-
erated by the set {pA : A ∈ QX}. To prove that Soc(ÃC(X)) ⊆ Soc(ÕX), since

Soc(ÕX) is also a two-sided ideal, it is enough to show that pA ∈ Soc(ÕX) for

each A ∈ QX. By lemma 6.3, pA is a minimal idempotent element in ÕX for each
A ∈ QX. Therefore, from [12, proposition 30.6], we obtain that ÕXpA is a minimal

left ideal in ÕX and so, in particular, pA ∈ Soc(ÕX) for each pA ∈ QX. Consequently,

Soc(ÃC(X)) ⊆ Soc(ÕX). �

We conclude the article with an example illustrating that the inclusion
Soc(ÃC(X)) ⊆ Soc(ÕX) may be strict.

Example 6.5. Let X be the subshift of Example 5.16, that is,

X := {(1j)∞, (j1)∞ : j ∈ N∗ \ {2}} ∪ {(k + j)j∈N∗ : k ∈ N∗}.

Let p=1234... and A = {p}.
The graph Ep associated with the element p is the graph

Let H be a separable Hilbert space, with an orthonormal Schauder basis {δn :
n ≥ 1}, and let K (H ) denote the C*-algebra of all the compact operators in H. For
each n ≥ 1, define Sen , Pun ∈ K(H) as follows: Sen(δn+1) = δn and Sen(δk) = 0 for
each k 6= n+ 1, and Pun(δn) = δn and Pun(δk) = 0 for each k 6=n. Notice that the
Hilbert adjoint operator S∗

en of Sen is such that S∗
en(δn) = δn+1, and S

∗
en(δk) = 0

for k 6=n.
It is well known that there exits an injective homomorphism Φ : LC(Ep) →

K(H) such that Φ(en) = Sen , Φ(e
∗
n) = S∗

en , and Φ(un) = Pun . Moreover, this
homomorphism extends to an isomorphism of C*-algebras Ψ : C∗(Ep) → K(H).

Now, let ϕ : LC(Ep) → ÃC(X) be as in proposition 5.6 (that is, ϕ is defined on
the generators as follows: ϕ(ui) = p{zi}, ϕ(ei) = p{zi}si and ϕ(e

∗
i ) = s∗i p{zi}, where

zi = i(i+1)(i+2)... ∈ X). By corollary 5.7, we have that Im(ϕ) = Soc(ÃR(X)). Let
B = Φ(LC(Ep)), so that ϕ ◦ Φ−1 : B → Soc(ÃR(X)) is an isomorphism. Through
direct calculations, we obtain that the matrix associated with each element of B,
relative to the basis δn : n ≥ 1, belongs to M∞(C). Furthermore, for every element
T ∈ M∞(C), there exists an element in B whose associated matrix is precisely T.
Consequently, there exists an isomorphism between B and M∞(C), implying that

Soc(ÃR(X)) is isomorphic to M∞(C).
Recall that ϕ is injective, and hence, it extends to an (injective) homomorphism

ψ : C∗(Ep) → ÕX. So, we get an injective homomorphism f : K(H) → ÕX defined

by f = ψ ◦Ψ−1. Notice that f(B) = Soc(ÃR(X)).
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Next, we show that Soc(ÃR(X)) is strictly contained in Soc(ÕX). To prove this,

we show that there exists an element L ∈ K(H) such that f(L) ∈ Soc(ÕX) and L
has the property that its associated matrix, relative to the basis {δn : n ≥ 1}, does
not belong to M∞(C).

Define, for each x, y ∈ H, the operator Lx,y ∈ K(H) by Lx,y(z) =
x〈z, y〉. Through a few straightforward computations, we obtain that Lδi,δj

=

Ψ(eiei+1...ej−1) for each i < j, that Lδi,δi
= Ψ(ui), and that Lδi,δj

=

Ψ(e∗i−1e
∗
i−2...e

∗
j ) if i > j.

Notice that f(Lδ1,δj
) = pz1s1...sj−1 for each j > 1, and that f(Lδ1,δ1

) = p{z1}.

So, f(Lδ1,δj
) ∈ p{z1}ÕX for each j ≥ 1. Now, let h =

∞∑
j=1

1
j δj , and for each n ≥ 1,

define hn =
n∑

j=1

1
j δj . Observe that f(Lδ1,hn

) =
n∑

j=1

1
j f(Lδ1,δj

) ∈ p{z1}ÕX. Since

hn → h (in H ), we obtain that Lδ1,hn
→ Lδ1,h

in K (H ), so that f(Lδ1,h
) belongs

to the closure of p{z1}ÕX (in ÕX). As the set p{z1}ÕX is closed in ÕX, we conclude

that f(Lδ1,h
) ∈ p{z1}ÕX.

Now, by lemma 6.3, we get that p{z1} is a minimal idempotent. Hence, from [12,

proposition 30.6], we get that p{z1} ∈ Soc(ÕX). Since Soc(ÕX) is a two-sided ideal,

we obtain that p{z1}ÕX ⊆ Soc(ÕX), and thus f(Lδ1,h
) ∈ Soc(ÕX).

To finish the proof, notice that the matrix of Lδ1,h
, relative to the basis

{δn : n ≥ 1}, has infinitely many non-zero elements, and so, this matrix does not
belong to M∞(C). So, the element L = Lδ1,h

has the property that its associated

matrix is not an element of M∞(C), but f(L) ∈ Soc(ÕX). Therefore, Soc(ÃR(X))
(which is isomorphic to M∞(C)) is strictly contained in Soc(ÕX).
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