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Abstract
Flowering plants depend on some animals for pollination and contribute to nourish the animals in natural environ-
ments. We call these animals pollinators and build a plants-pollinators cooperative model with impulsive effect on a
periodically evolving domain. Next, we define the ecological reproduction index for single plant model and plants-
pollinators system, respectively, whose threshold dynamics, including the extinction, persistence and coexistence,
is established by the method of upper and lower solutions. Theoretical analysis shows that a large domain evolution
rate has a positive influence on the survival of pollinators whether or not the impulsive effect occurs, and the pulse
eliminates the pollinators even when the evolution rate is high. Moreover, some selective numerical simulations are
still performed to explain our theoretical results.

1. Introduction and model formulation

In recent decades, interspecies interactions have received considerable attention since it is rare for a
single species to survive independently in the natural realm. Based on the positive or negative influence
of each species on the others, interactions between populations of different species are used to being
classified as competition, predator-prey and cooperation. Animals resonate with plants in many forms
during the species succession, forming a cross-species communication. A typical example is the cooper-
ative relationships between the flowering plants and insects, such as bees and butterflies. Insects obtain
nutrients and energy from pollens of plants, and they, as a pollinators, spread pollen to the plants (see
Figure 1).

The spread of species is widely present in nature. Interestingly, plant populations exhibit both the
short-distance dispersal directly determined by the plants itself and the long-distance dispersal that is
indirectly dependent on other media such as wind and animals [29]. Local and non-local diffusion oper-
ators have always been one of the theories to describe short-distance and long-distance dispersal. The
results of [7, 13] suggest that although some current works focus on the non-local dispersal patterns of
plants and their ecological significance, local Laplacian dispersal in the stochastic order sense, a basis
for investigating more general dispersal phenomena, is an indispensable and effective tool for theoretical
study of the diffusion phenomenon in plant populations.

The habitat of a species plays a crucial role in its dispersal. For example, the spatial structure of
habitat can enhance the persistence of species survival [12]. When the boundary of varying habitat is
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Figure 1. The schematic diagram of the plants-pollinators system.

unknown, differential equation with free boundaries is considered to characterise population dynamics.
For instance, the spreading of invasive species was discussed in [11, 15, 38, 40, 41] and investigated the
transmission of infected disease in [2, 16, 21, 37]. On the other hand, the range of habitats can present
periodic variations. For example, the areas and depth of rivers and lakes change regularly due to the
alternation of seasons. In summer, the water area becomes larger, while in winter, the water level drops,
causing the habitat of aquatic species to extension and contraction. Although seasonal change is the
direct source of periodic factors, the indirect coupling of habitat cannot be ignored. Like the model in
[12], we would analyse the potential impacts of domain changes on long-term asymptotic behaviours
such as population persistence and coexistence by partially introducing the intrinsic structure of habitats
into the model, so as to achieve the purpose of proceeding with a comprehensive investigation of such
ecological issues.

Therefore, habitat is called a growing or evolving domain. In reality, there are many recent advances
concerning the dynamical behaviours of good mathematical models, as seen from [19, 28, 31, 36, 49].
Particularly, Montano et al. [28] discussed a diffusive two predators-one prey model with Holling-type
II functional response, which showed that suitable conditions, depending on the domain evolution func-
tion and the space dimension, were introduced leading to the extinction of one predator and the stable
coexistence of the surviving predator and its prey. References [31, 36] indicated that the small evolving
rate had positive impact on prevention and control of disease. Nevertheless, [49] researched that the
increase in domain evolution ratio would boost the spread of dengue fever.

Clearly, the size of a habitat’s population affects their survival and reproduction. For example, mam-
mals give birth at a specific period, so the population experiences a birth pulse growth. At the same time,
they will suffer the depletion of numbers mainly caused by capture. We suspect that part of the power
from the harvesting pulse cancels out the power from the birth pulse, which may be one reason why
species are kept at a certain number. The assumption of harvesting pulse only is also reflected in our
model in the following text, which can be used to describe the artificial transient disturbance, including
the release of natural enemies and the spraying of pesticides at certain fixed time points. In contrast to
the evolution of the population, the impact of such disturbance of the pulse on the population system is
transient and can be regarded as temporary, whereas the disturbance has a great impact on the population
density or the number of individuals. Classical differential equations are not suitable for describing such
phenomena, in which the important drivers are non-continuous process. Hence, impulsive differential
equations are employed to describe the evolution of population under transient perturbations. Mil’man
and Myshkis’ work in the 1960s [27] launched the theoretical study of impulsive differential equations,
which has progressed since the 1980s.

Recently, based on the complicated dynamics induced by pulses, impulsive differential systems have
been deeply explored by many scholars. Since drugs are frequently given into the body as pulses via
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oral or injection in the treatment of diseases, impulsive ordinary differential equations can be utilised
to examine the dynamics of infectious diseases [17, 35]. In the dynamics of population ecology, the
impulse equation model is often used to describe the occurrence of population numbers in a short period
of time. Such as many species such as fish or large mammal populations will experience a birth pulse
growth. Pulse models have been used in many population ecosystems, such as predator-prey systems,
pest management systems, and systems with control strategies. With the change of seasons, the pulse
phenomenon and population spread simultaneously affect the survival of the population. In particular,
Lewis and Li [22] discussed how a seasonal birth pulse influences population dynamics, incorporating
spreading speeds, travelling wave speeds, minimal domain size, as well as complicated bifurcations, in
a response diffusion model with a seasonal birth pulse. Later, [46] considered the non-local dispersal
stage of the system into account, established the threshold-type dynamics of the system with bounded
domain, and proved the existence of a spreading speed in unbounded domain. Interestingly, impulsive
harvesting was introduced into the free boundary problem and periodically evolving domain problem
[24, 25], which aim to study the impacts of their combinations on persistence and extinction of species.

Flowering plants depend on pollinators (usually insects) for pollination and contribute to nourish
them in natural environments. In this paper, we consider the cooperative relationship between plants
and pollinators, and build a plants-pollinators model with impulsive effect on a periodically evolving
domain. This model depicts the case in which impulsive effect, described by a function g, occurs at every
time nT (n = 0, 1 . . . ) with impulsive period T > 0 throughout the continuous growth and dispersal
process of a population. During the dispersal stage, species P and H diffuse by the coefficients d1 and
d2 (> 0), respectively. Inspired by [25, 42], the model is introduced as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P

∂t
− d1

∂2P

∂x2
= P

(
γ1 − cP + α1H

aP + bH

)
, x ∈ (0, l(t)), t> 0,

∂H

∂t
− d2

∂2H

∂x2
= H

(
−γ2 + α2P

aP + bH

)
, x ∈ (0, l(t)), t ∈ ((nT)+, (n + 1)T],

P(t, 0) = P(t, l(t)) = 0, H(t, 0) = H(t, l(t)) = 0, t> 0,

P(0, x) = P0(x), H(0, x) = H0(x), x ∈ [0, l(0)],

H((nT)+, x) = g(H(nT , x)), x ∈ (0, l(0)),

(1.1)

where P and H denote the population densities of plants and pollinators, respectively. γ1 represents the
intrinsic growth rate of the plants, γ2 is the pollinators’ per capita mortality rate, a denotes the half-
saturation constant of plants, b is called the saturation effect of pollinators, c is the carrying capacity of
plants. α1 represents the plants’ efficiency in translating plants-pollinators interactions into fitness, while
α2 shows the corresponding value for the pollinators. Moreover, it suffices to guarantee that this solution
makes sense in the case where γ2 cannot be too large. In fact, we need only take γ2 <

α2
a

. The term
H((nT)+, x) = g(H(nT , x)) shows that the density of pollinators at the end of the pulse is the function
g of the density of pollinators at the start of the pulse. We always take n = 0, 1, 2, . . . unless otherwise
stated. All coefficients are positive.

In the current paper, we make the following assumptions about the impulsive function g:

(A1) g(H) is the first order continuously differentiable for H ≥ 0, g(0) = 0, g′(0)> 0, and for H > 0,
g(H)> 0, g(H)/H is nonincreasing with respect to H and 0< g(H)/H ≤ 1.

(A2) g(H) is nondecreasing with respect to H ≥ 0.
(A3) There are positive constants D, ν > 1 and small σ such that g(H) ≥ g′(0)H − DHν for 0 ≤ H ≤ σ .

The impulsive function g satisfying assumptions (A1), (A2) and (A3) usually take the form of linear
function g(H) = H and the Beverton-Holt function:
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g(H) = n1H

n2 + H
(1.2)

with n1 > 0 and n2 > 0 as in [4].
Similar to [10, 32], we let (0, l(t)) be a periodically evolving domain with the moving boundary

l(t), and assume that any point x(t) ∈ (0, l(t)) still satisfies x(t + T) = x(t). Due to the principle of mass
conservation and Reynolds transport theorem [1], the evolution of domain l(t) generates the spacial
flow velocity a. Inspired by [3], the evolution of domain introduces two types of extra terms, one is the
dilution terms P(∇ · a) and H(∇ · a) in terms of local volume expansion (see details for [5]), another is
the advection terms a · ∇P and a · ∇H, which represent the transport of material around (0, l(t)) at a rate
determined by the flow a. Therefore, problem (1.1) can be converted to the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P

∂t
− d1

∂2P

∂x2
+ a · ∇P + P(∇ · a)

= P

(
γ1 − cP + α1H

aP + bH

)
, x ∈ (0, l(t)), t> 0,

∂H

∂t
− d2

∂2H

∂x2
+ a · ∇H + H(∇ · a)

= H

(
−γ2 + α2P

aP + bH

)
, x ∈ (0, l(t)), t ∈ ((nT)+, (n + 1)T],

P(t, 0) = P(t, l(t)) = 0, H(t, 0) = H(t, l(t)) = 0, t> 0,

P(0, x) = P0(x), H(0, x) = H0(x), x ∈ [0, l(0)],

H((nT)+, x) = g(H(nT , x)), x ∈ (0, l(0)).

(1.3)

To circumvent the complexities caused by the advection and dilution terms, we modify problem (1.3)
from the evolving domain into the fixed domain by employing Lagrangian transformations [3, 26].
Hence, we assume that the evolution of domain is uniform and isotropic; that is, the domain evolves
by the same ratio in all directions as time flies. One possibility can be denoted as

x(t) = ρ(t)y, y ≥ 0, (1.4)

where the positive continuous function ρ(t) represents the evolution rate of domain, and ρ(t) is
T-periodic in time t, that is,

ρ(t) = ρ(t + T)

for some T > 0 and ρ(0) ≡ 1. Assuming l(0) = l0, we rewrite the evolving domain as (0, l(t)) = (0, ρ(t)l0).
Thus, P and H can be mapped as a new function with the definition

P(x, t) = p(y, t), H(x, t) = h(y, t), (1.5)

then problems (1.4) and (1.5) yield that

pt = ∂P

∂t
+ a · ∇P, ht = ∂H

∂t
+ a · ∇H,

∇a = ρ̇(t)

ρ(t)
, Pxx = 1

ρ2(t)
pyy, Hxx = 1

ρ2(t)
hyy.
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As a result, problem (1.3) is changed into the following problem on a fixed domain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt − d1

ρ2(t)
pyy = − ρ̇(t)

ρ(t)
p + p

(
γ1 − cp + α1h

ap + bh

)
, y ∈ (0, l0), t> 0,

ht − d2

ρ2(t)
hyy = − ρ̇(t)

ρ(t)
h + h

(
−γ2 + α2p

ap + bh

)
, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

p(t, 0) = p(t, l0) = 0, h(t, 0) = h(t, l0) = 0, t> 0,

p(0, y) = p0(y), h(0, y) = h0(y), y ∈ [0, l0],

h((nT)+, y) = g(h(nT , y)), y ∈ (0, l0).

(1.6)

The structure of the current paper is organised as follows. In the next Section, we are devoted to inves-
tigating the threshold dynamics scenario of the plants-pollinators system, which is the core work of the
current paper. Firstly, we discuss the threshold dynamics of plant model without pollinators, and present
extinction-persistence phenomenon by the ecological reproduction index R1

0. Then we are concerned
with investigating the threshold dynamics of plants-pollinators system, the ecological reproduction index
R2

0 of pulse problem is introduced by an explicit formula. Finally, we consider threshold-type results for
the asymptotic behaviour of the solution to problem (1.6). Furthermore, numerical simulations are per-
formed to understand the impacts of the domain evolution rate and impulsive effect on the dynamics of
the population in Section 3. In Section 4, we end our investigation with a brief discussion.

2. Threshold scenario of plants-pollinators system

In this section, we focus on investigating the threshold dynamics scenario of problem (1.6). In plants
world without pollinators, we discuss the dynamical behaviours of (1.6) with h ≡ 0 and present the
sharp persistence-extinction dichotomy of plants. Besides, we are devoted to studying the dynamical
behaviours of plants-pollinators system, in which we first establish the ecological reproduction index
R2

0, then obtain the extinction-coexistence dichotomy of (1.6) by R2
0.

2.1. The threshold dynamics in plants world

In this subsection, as the starting point of the further investigation, we first discuss the dynami-
cal behaviours in plants world in the absence of pollinators and present a considerably widespread
persistence-extinction phenomenon of plants by the ecological reproduction index R1

0, which is anal-
ogous to the basic reproduction number in epidemiology [45].

In reality, we consider the corresponding periodic problem for system (1.6) with h ≡ 0 as follows⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pt − d1

ρ2(t)
pyy = − ρ̇(t)

ρ(t)
p + p(γ1 − cp), y ∈ (0, l0), t> 0,

p(t, 0) = p(t, l0) = 0, t> 0,

p(0, y) = p(T , y), y ∈ [0, l0].

(2.1)

Furthermore, we focus on discussing the dynamical behaviours to problem (2.1). To address this,
linearising problem (2.1) at p = 0, we obtain the following periodic parabolic eigenvalue problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψt − d1

ρ2(t)
ψyy = γ1

μ
ψ − ρ̇(t)

ρ(t)
ψ , y ∈ (0, l0), t> 0,

ψ(t, 0) =ψ(t, l0) = 0, t> 0,

ψ(y, 0) =ψ(y, T), y ∈ [0, l0].

(2.2)
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Denote R1
0 := μ1

0, where μ1
0 is the principal eigenvalue of problem (2.2). We have the following

statements and can refer to [44, 49] for more details.

Lemma 2.1. sign(1 − R1
0)=sign(λ1

0), where λ1
0 is the principal eigenvalue of the following eigenvalue

problem ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψt − d1

ρ2(t)
ψyy = γ1ψ − ρ̇(t)

ρ(t)
ψ + λ0ψ , y ∈ (0, l0), t> 0,

ψ(t, 0) =ψ(t, l0) = 0, t> 0,

ψ(y, 0) =ψ(y, T), y ∈ [0, l0].

(2.3)

Proof. For any fixed μ> 0, we first consider the eigenvalue problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψt − d1

ρ2(t)
ψyy = γ1

μ
ψ − ρ̇(t)

ρ(t)
ψ + λ0ψ , y ∈ (0, l0), t> 0,

ψ(t, 0) =ψ(t, l0) = 0, t> 0,

ψ(y, 0) =ψ(y, T), y ∈ [0, l0],

and regard λ∗
0 as its principal eigenvalue. According to [9], we can deduce that λ∗

0(μ) is continuous
and strictly increasing for μ. Furthermore, it follows from the uniqueness of principal eigenvalue that
λ1

0 = λ∗
0(1) and λ∗

0(μ1
0) = 0.

As noted by [9] that λ∗
0(μ) satisfies

lim
μ→0+

λ∗
0(μ)< 0, lim

μ→∞
λ∗

0(μ)> 0,

and the monotonicity of λ∗
0(μ) can provide the conclusion that R1

0 =μ1
0 is the unique positive solution

for the equation λ∗
0(μ) = 0. Due to

λ1
0 = λ∗

0(1) − λ∗
0(μ1

0) = λ∗
0(1) − λ∗

0(R1
0),

together with the monotonicity implies sign(1 − R1
0)=sign(λ1

0).

Next, we focus on the existence and attractivity of the periodic solutions of problem (2.1), and similar
results can be found in [19].

Theorem 2.2.

(i) If R1
0 > 1, problem (2.1) admits a unique positive steady-state solution p∗, which is globally

asymptotically stable;
(ii) If R1

0 ≤ 1, the trivial solution 0 of problem (2.1) is globally asymptotically stable.

Proof. (i) If R1
0 > 1, that is, λ1

0 < 0, we let p = ε∗ψ , where ψ is the positive principal eigenfunction cor-
responding to the principal eigenvalue λ1

0 of periodic parabolic eigenvalue problem (2.3), we normalise
ψ such that ‖ψ‖C([0,l0]×[0,T]) = 1. Then, p = ε∗ψ is a lower solution of problem (2.1) for small enough ε∗

with 0< ε∗ ≤ −λ1
0

c
. Assume that p is a constant satisfying p>max

t∈[0,T]

{
γ1− ρ̇(t)

ρ(t)

c

}
, thus p is a upper solution

of problem (2.1). As a result, a positive steady-state solution p∗ of problem (2.1) exists and satisfies the
following equation ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p∗
t − d1

ρ2(t)
p∗

yy = (γ1 − cp∗)p∗ − ρ̇(t)

ρ(t)
p∗, y ∈ (0, l0), t> 0,

p∗(t, 0) = p∗(t, l0) = 0, t> 0,

p∗(0, y) = p∗(T , y), y ∈ [0, l0].
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Motivated by [18, Theorem 27.1], employing the concavity of the nonlinearity term
− ρ̇(t)

ρ(t)
p + p(γ1 − cp) in problem (2.1), we can obtain that the positive steady-state solution p∗ of

problem (2.1) is unique and attracts all positive solutions of problem (2.1).
(ii) When R1

0 ≤ 1, Lemma 2.1 implies λ1
0 ≥ 0. Then, one can follow the statement in the proof of [18,

Theorem 28.1] to deduce that trivial solution 0 is globally asymptotically stable. This completes the
proof.

What’s more, the following result can also be regarded as a sufficient condition to ensure R1
0 > 1.

Remark 2.3. Suppose that p(y, t) is a positive T-periodic solution of problem (2.1). Then

pt − d1

ρ2(t)
pyy −

(
γ1 − ρ̇(t)

ρ(t)

)
p = −cp2 < 0.

According to [18, Theorem 16.6 and Remark 16.7], we can obtain λ1
0 < 0, which together with

Lemma 2.1 gives R1
0 > 1.

2.2. The threshold dynamics in plants-pollinators world

Since the case that R1
0 ≤ 1 only leads to the extinction of plants, and in view of the pollinators’ reliance on

plants, henceforth, we focus on the comprehensive investigations on the threshold dynamics of plants-
pollinators system given that R1

0 > 1.

2.2.1. The ecological reproduction index
We are going to define the ecological reproduction index R2

0 associated with the impulsive problem (1.6),
which plays a more critical role than R1

0. Linearising the problem (1.6) around (p, h) = (p∗, 0), then there
exists ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt − d1

ρ2(t)
pyy = α1

a
h + (γ1 − 2cp∗)p − ρ̇(t)

ρ(t)
p, y ∈ (0, l0), t> 0,

ht − d2

ρ2(t)
hyy = α2

a
h − γ2h − ρ̇(t)

ρ(t)
h, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

p(t, 0) = p(t, l0) = 0, h(t, 0) = h(t, l0) = 0, t> 0,

p(0, y) = p0(y), h(0, y) = h0(y), y ∈ [0, l0],

h((nT)+, y) = g′(0)h(nT , y), y ∈ (0, l0).

(2.4)

Furthermore, the second equation of problem (2.4) can be rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ht − d2

ρ2(t)
hyy =

(
α2

a
− γ2 − ρ̇(t)

ρ(t)

)
h, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

h(t, 0) = h(t, l0) = 0, t> 0,

h((nT)+, y) = g′(0)h(nT , y), y ∈ (0, l0).

(2.5)

To begin with, we consider the following auxiliary problem⎧⎪⎨⎪⎩
ht =

(
α2

a
− γ2 − ρ̇(t)

ρ(t)

)
h, t ∈ ((nT)+, (n + 1)T],

h((nT)+) = g′(0)h(nT).

(2.6)
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Motivated by [8], denote B(t,ω) the evolution operator of problem⎧⎪⎨⎪⎩
ht = −γ2 − ρ̇(t)

ρ(t)
h, t ∈ ((nT)+, (n + 1)T],

h((nT)+) = g′(0)h(nT).

(2.7)

Based on the theory of linear impulsive equations in [6], the evolution operator B(t,ω), t ≥ω, associated
with problem (2.7), can be written as

B(t,ω) = e− ∫ t
ω [γ2+ ρ̇(τ )

ρ(τ ) ]dτ (g′(0))k,

where k denotes the number of impulsive points on [ω, t). Due to the boundedness of
∫ t

ω

ρ̇(τ )
ρ(τ )

dτ , there
exists a positive constant K such that

‖B(t,ω)‖ ≤ K, t ≥ω, ω ∈R.

Furthermore, let CT be the Banach space given by

CT = {ς |ς ∈ C
(
(nT , (n + 1)T], ς (t + T) = ς (t) for t ∈R, ς ((nT)+) = ς (((n + 1)T)+), n ∈Z

)}
,

which is equipped with the maximum norm ‖ς‖ = supt∈[0,T] |ς (t)| and the positive cone
C+

T := {ς ∈ CT |ς (t) ≥ 0, ∀t ∈R}.
As in [23, 34], the linear operator L : CT → CT can be introduced by

[Lς ](t) =
∫ +∞

0

α2

a
B(t, t −ω)ς (t −ω)dω,

which is called as the next-generation operation. It is easily seen that L is continuous, compact on
CT × CT and positive (namely, L(C+

T × C+
T ) ⊂ (C+

T × C+
T )). Therefore, we define the spectral radius of L

as the basic reproduction number of problem (2.6), that is,

R0 := r(L).

Besides, we have the following significant conclusions.

Lemma 2.4. R2
0 =μ2

0, where μ2
0 is the principal eigenvalue of the following periodic parabolic

eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φt − d2

ρ2(t)
φyy = 1

R2
0

α2

a
φ − γ2φ − ρ̇(t)

ρ(t)
φ, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

φ(t, 0) = φ(t, l0) = 0, t> 0,

φ(0, y) = φ(T , y), y ∈ [0, l0],

φ((nT)+, y) = g′(0)φ(nT , y), y ∈ (0, l0).

(2.8)

For impulsive problem, its basic reproduction number theory is not established completely. However,
motivated by the above, we can present the ecological reproduction index R2

0 of impulsive problem by
solving problem (2.8), which can provide an explicit formula.

Theorem 2.5. The ecological reproduction index of problem (2.8) can be specifically represented as

R2
0 =

α2
a

γ2 + d2λ
∗

T

∫ T

0
1

ρ2(t)
dt − 1

T
ln g′(0)

, (2.9)

where λ∗ (> 0) is the principal eigenvalue of −∂yy in (0, l0) under the Dirichlet boundary condition.

Proof. Set

φ(y, t) = q(t)ϕ(y),
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where ϕ(y) is the eigenfunction corresponding to λ∗ in the Cauchy problem{ − ϕyy = λ∗ϕ, y ∈ (0, l0),

ϕ(0) = ϕ(l0) = 0.
(2.10)

Hence, problem (2.8) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇(t)ϕ(y) − d2

ρ2(t)
q(t)ϕyy

=
(

1

R2
0

α2

a
− γ2 − ρ̇(t)

ρ(t)

)
q(t)ϕ(y), y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

ϕ(0) = ϕ(l0) = 0,

q(0) = q(T),

q((nT)+) = g′(0)q(nT).

(2.11)

Substituting into problem (2.10), then the first equation of (2.11) becomes

q̇(t)

q(t)
= 1

R2
0

α2

a
− γ2 − ρ̇(t)

ρ(t)
− d2λ

∗

ρ2(t)
,

by solving the above equation, we derive

q(t) = Ce
∫ t

0 [ 1
R2

0

α2
a −γ2− ρ̇(τ )

ρ(τ ) − d2λ
∗

ρ2(τ )
]dτ

,

where the initial value C satisfies C = q(0+) = g′(0)q(0). We rewrite

q(T) = g′(0)q(0)e
∫ T

0 [ 1
R2

0

α2
a −γ2− ρ̇(τ )

ρ(τ ) − d2λ
∗

ρ2(τ )
]dτ

,

due to the periodicities of q and ρ, which yields

1

g′(0)
= e

∫ T
0 [ 1

R2
0

α2
a −γ2− d2λ

∗
ρ2(τ )

]dτ
.

Thus, we have

R2
0 =

α2
a

γ2 + d2λ
∗

T

∫ T

0
1

ρ2(t)
dt − 1

T
ln g′(0)

.

We notice that in the trivial case where g(h) = h, one yields

R2
0 =

α2
a

γ2 + d2λ
∗

T

∫ T

0
1

ρ2(t)
dt

, (2.12)

which naturally implies that the impulsive effect does not occur.

Remark 2.6. It suffices to emphasise g′(0) ≤ 1 to guarantee R2
0 > 0. If g′(0)> 1, the ecological repro-

duction index R2
0 is meaningless without positivity. For the second equation of problem (1.6), we have
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the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ht − d2

ρ2(t)
hyy

=
(

α2p

ap + bh
+ M∗

)
h − ρ̇(t)

ρ(t)
h − γ2h − M∗h, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

h(t, 0) = h(t, l0) = 0, t> 0,

h(0, y) = h0(y), y ∈ [0, l0],

h((nT)+, y) = g(h(nT , y)), y ∈ (0, l0).

Similarly, we also consider the following periodic eigenvalue problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt − d2

ρ2(t)
φyy

= 1

R∗
0

(α2

a
+ M∗

)
φ − γ2φ − ρ̇(t)

ρ(t)
φ − M∗φ, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

φ(t, 0) = φ(t, l0) = 0, t> 0,

φ(0, y) = φ(T , y), y ∈ [0, l0],

φ((nT)+, y) = g′(0)φ(nT , y), y ∈ (0, l0).

From the above analysis, the ecological reproduction index can be re-obtained by

R∗
0 =

α2
a

+ M∗

γ2 + d2λ
∗

T

∫ T

0
1

ρ2(t)
dt − 1

T
ln g′(0) + M∗

,

where M∗ = 1
T
| ln g′(0)| can guarantee R∗

0 > 0.
The following conclusion is well-known, which can be found in [23, 47]. Furthermore, it follows

from [25] that the result also holds for our impulsive problem.

Lemma 2.7. sign(1 − R2
0) = sign(λ2

0), where λ2
0 is the principal eigenvalue of the following eigenvalue

problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt − d2

ρ2(t)
φyy = α2

a
φ − γ2φ − ρ̇(t)

ρ(t)
φ + λ2

0φ, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

φ(t, 0) = φ(t, l0) = 0, t> 0,

φ(0, y) = φ(T , y), y ∈ [0, l0],

φ((nT)+, y) = g′(0)φ(nT , y), y ∈ (0, l0).

(2.13)

Similarly, we can also obtain λ2
0 = γ2 + d2λ

∗
T

∫ T

0
1

ρ2(t)
dt − α2

a
− 1

T
ln g′(0).

To present our coexistence results, we provide the following critical lemma.
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Lemma 2.8. The principal eigenvalue λ2
0 of problem (2.13) is also an eigenvalue for the following

eigenvalue problem with some strict positive eigenfunctions (�0,�0),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�t − d1

ρ2(t)
�yy = α1

a
�+ (γ1 − 2cp∗)� − ρ̇(t)

ρ(t)
� +��, y ∈ (0, l0), t> 0,

�t − d2

ρ2(t)
�yy = α2

a
�− γ2�− ρ̇(t)

ρ(t)
�+��, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

�(t, 0) =�(t, l0) = 0,�(t, 0) =�(t, l0) = 0, t> 0,

�(0, y) =�(T , y),�(0, y) =�(T , y), y ∈ [0, l0],

�((nT)+, y) = g′(0)�(nT , y), y ∈ (0, l0)

(2.14)

provided that λ2
0 < 0.

Proof. Assume that (λ2
0, ϕ0) is the eigenpair of problem (2.13) with λ2

0 < 0 and ϕ0 > 0. Thus, (λ2
0, ϕ0)

satisfies ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�t − d2

ρ2(t)
�yy = α2

a
�− γ2�− ρ̇(t)

ρ(t)
�+��, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

�(t, 0) =�(t, l0) = 0, t> 0,

�(0, y) =�(T , y), y ∈ [0, l0],

�((nT)+, y) = g′(0)�(nT , y), y ∈ (0, l0).

We then take into account the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�t − d1

ρ2(t)
�yy = α1

a
ϕ0 + (γ1 − 2cp∗)� − ρ̇(t)

ρ(t)
� + λ2

0�, y ∈ (0, l0), t> 0,

�(t, 0) =�(t, l0) = 0, t> 0,

�(0, y) =�(T , y), y ∈ [0, l0].

(2.15)

Since p∗ solves ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p∗

t − d1

ρ2(t)
p∗

yy = (γ1 − cp∗)p∗ − ρ̇(t)

ρ(t)
p∗, y ∈ (0, l0), t> 0,

p∗(t, 0) = p∗(t, l0) = 0, t> 0,

p∗(0, y) = p∗(T , y), y ∈ [0, l0],

as mentioned in [47] the monotonicity of the principal eigenvalue, we can obtain the following problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�t − d1

ρ2(t)
�yy = (γ1 − 2cp∗)� − ρ̇(t)

ρ(t)
� +��, y ∈ (0, l0), t> 0,

�(t, 0) =�(t, l0) = 0, t> 0,

�(0, y) =�(T , y), y ∈ [0, l0]

has a positive principal eigenvalue �0 > 0.
Therefore, recalling the positivity of α1

a
and ϕ0 together with [18, Theorem 16.6], we deduce that

problem (2.15) admits a unique solution �0(t, y) satisfying �0(t, y)> 0 for all (t, y) ∈ [0, T] × [0, l0]. In
conclusion, if the principal eigenvalue λ2

0 < 0, then it is still an eigenvalue of the eigenvalue problem
(2.14) with strict positive eigenfunctions (�0,�0)=(�0, ϕ0). This completes the proof of lemma.
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2.2.2. The extinction dynamics of plants-pollinators populations
For the further investigations, we first present the global existence, uniqueness and some estimates of
the solution (p, h)(t, y).

Hereafter, we always assume that the mortality γ2 is large sufficiently to compensate for the positive
effect due to the domain shrinking, i.e. γ2 > Aρ := min

t∈[0,T]

{
ρ̇(t)
ρ(t)

}
.

Lemma 2.9. Problem (1.6) admits a unique global solution (p, h)(t, y), and
(p, h)(t, y) ∈ C1,2((0, +∞) × (0, l0)) × PC1,2((0, +∞) × (0, l0))

:= {(p, h)(t, y) | (p, h)(t, y) ∈ C1,2((0, +∞) × (0, l0)) × C1,2((nT , (n + 1)T] × (0, l0))}.
In addition, there are positive constants Sp and Sh such that the solution (p, h)(t, y) satisfying

(0, 0)< (p, h)(t, y) ≤ (Sp, Sh)

holds for all t ≥ 0, y ∈ [0, l0], provided that (0, 0) �≡, ≤ (p0, h0)(y) ≤ (Sp, Sh) for y ∈ [0, l0].

Proof. First, we notice that the reaction function ph
ap+bh

is locally Lipschitz continuous in the whole first
quadrant by extending the definition to be zero when either p = 0 or h = 0. Therefore, by employing the
methods used in [48], we obtain the local existence, uniqueness and regularity of the solution of problem
(1.6) defined for some T > 0 in C1,2([0, T] × [0, l0]) × C1,2([0, T] × [0, l0]).

Next, we exhibit the estimates of solution (p, h)(t, y). Recalling the strong maximum principle, it
suffices to ensure the strict positivity of solution. Moreover, it follows from the first equation of problem
(1.6), we obtain that

pt − d1

ρ2(t)
pyy = − ρ̇(t)

ρ(t)
p + p

(
γ1 − cp + α1h

ap + bh

)

≤ p

(
γ1 + α1

b
− ρ̇(t)

ρ(t)
− cp

)
≤ p

(
γ1 + α1

b
− Aρ − cp

)
for all t ≥ 0, y ∈ [0, l0], which yields that

p(t, y) ≤ max

{
1

c

(
γ1 + α1

b
− Aρ

)
, ‖p0‖∞

}
� Sp

for all t ≥ 0, y ∈ [0, l0], where Aρ is defined above.
And similarly, from the second equation of problem (1.6), for t ∈ ((nT)+, (n + 1)T], y ∈ (0, l0), we

obtain that

ht − d2

ρ2(t)
hyy = − ρ̇(t)

ρ(t)
h + h

(
−γ2 + α2p

ap + bh

)

≤ h

(
−γ2 + α2Sp

bh
− Aρ

)
.

Particularly, for t ∈ (0+, T], y ∈ (0, l0), consider initial function h(0+, y) = g(h0(y)) and use the compari-
son principle to deduce that h(t, y) ≤ Ĥ(t), where Ĥ(t) satisfies the following problem⎧⎪⎨⎪⎩

dĤ(t)

dt
= h

(
−Aρ − γ2 + α2Sp

bh

)
, t ∈ (0+, T],

Ĥ(0+) = ‖g(h0(y))‖∞.

Hence, we have

h(t, y) ≤ sup
0<t≤T

Ĥ(t) = max

{
α2Sp

b(γ2 + Aρ)
, ‖g(h0(y))‖∞

}
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for all t ∈ [0+, T], y ∈ [0, l0]. Due to the inequality 0< g(H)/H ≤ 1 in (A1), it is easily shown that

h(t, y) ≤ max

{
α2Sp

b(γ2 + Aρ)
, ‖h0‖∞

}
� Sh

for t ∈ [0, T], y ∈ [0, l0]. Taking n = 1, 2, 3, . . . and using the same procedures, we get that h(t, y) ≤ Sh

for t ≥ 0, y ∈ [0, l0]. The proof is completed.

The above-mentioned preliminaries allow us to investigate the asymptotic behaviours of the solution
to problem (1.6).

Theorem 2.10. If R2
0 ≤ 1, then the solution (p, h)(t, y) of problem (1.6) satisfies

lim
t→∞

(p, h)(t, y) = (p∗, 0)

uniformly for y ∈ [0, l0].

Proof. Let

h�(t, y) = Me
α2
a

(
1− 1

R2
0

)
t

φ(t, y),

where φ(t, y) satisfying ‖φ‖∞ = 1 is the normalised eigenfunction associated with R2
0, M is a sufficient

large positive constant to be chosen later. It deduces that

h�
t − d2

ρ2(t)
h�

yy − α2p

ap + bh� h� + γ2h
� + ρ̇(t)

ρ(t)
h�

≥h�
t − d2

ρ2(t)
h�

yy − α2

a
h� + γ2h

� + ρ̇(t)

ρ(t)
h�

= α2

a
(1 − 1

R2
0

)Me
α2
a (1− 1

R2
0

)t
φ + Me

α2
a (1− 1

R2
0

)t
φt − Me

α2
a (1− 1

R2
0

)t d2

ρ2(t)
φyy

−α2

a
Me

α2
a (1− 1

R2
0

)t
φ + γ2Me

α2
a (1− 1

R2
0

)t
φ + ρ̇(t)

ρ(t)
Me

α2
a (1− 1

R2
0

)t
φ

= α2

a
(1 − 1

R2
0

)Me
α2
a (1− 1

R2
0

)t
φ + Me

α2
a (1− 1

R2
0

)t
[

d2

ρ2(t)
φyy + 1

R2
0

α2

a
φ − γ2φ − ρ̇(t)

ρ(t)
φ

]
−Me

α2
a (1− 1

R2
0

)t d2

ρ2(t)
φyy − α2

a
Me

α2
a (1− 1

R2
0

)t
φ + γ2Me

α2
a (1− 1

R2
0

)t
φ + ρ̇(t)

ρ(t)
Me

α2
a (1− 1

R2
0

)t
φ

= h�
[
α2

a

(
1 − 1

R2
0

)
+ 1

R2
0

α2

a
− α2

a

]
= 0.

Now we can easily verify that h� is a solution of the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ht − d2

ρ2(t)
hyy = α2

a
h − γ2h − ρ̇(t)

ρ(t)
h, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

h(t, 0) = h(t, l0) = 0, t> 0,

h(0, y) = Mφ(0, y), y ∈ [0, l0],

h((nT)+, y) = g′(0)h(nT , y), y ∈ (0, l0).

(2.16)

Recalling the assumption (A1), we obtain that
g(h)

h
≤ lim

ε→0

g(ε) − g(0)

ε
= g′(0)
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holds for small enough ε > 0, which deduces that

h�((nT)+, y) = g′(0)h�(nT , y) ≥ g(h�(nT , y)).

What’s more, for any initial function h(0, y), we select a large enough constant M such that h�(0, y) ≥
h(0, y). Since the reaction term in problem (2.16) is larger than that in problem (1.6), it yields that h�(t, y)
is a upper solution of problem (1.6). Due to the comparison principle, we have

h(t, y) ≤ h�(t, y), t ≥ 0, y ∈ [0, l0].

If R2
0 ≤ 1, one can obtain that lim

t→∞
h�(t, y) = 0 for all y ∈ [0, l0]. Hence, we have lim

t→∞
h(t, y) = 0 uniformly

for y ∈ [0, l0].
In addition, by the nearly parallel approach adopted in [31], we can also provide that lim

t→∞
p(t, y) =

p∗(t, y) holds uniformly for all t ≥ 0, y ∈ [0, l0].

2.2.3. The coexistence dynamics of plants-pollinators populations
To explore the periodic steady-state coexistence solutions of problem (1.6) and their attractivity, we first
consider the following periodic problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt − d1

ρ2(t)
pyy = − ρ̇(t)

ρ(t)
p + p

(
γ1 − cp + α1h

ap + bh

)
, y ∈ (0, l0), t> 0,

ht − d2

ρ2(t)
hyy = − ρ̇(t)

ρ(t)
h + h

(
−γ2 + α2p

ap + bh

)
, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

p(t, 0) = p(t, l0) = 0, h(t, 0) = h(t, l0) = 0, t> 0,

p(0, y) = p(T , y), h(0, y) = h(T , y), y ∈ [0, l0],

h((nT)+, y) = g(h(nT , y)), y ∈ (0, l0).

(2.17)

The definition of upper and lower solutions to (2.17) with pulses are presented as follows.

Definition 2.11. Let (̃p, h̃) and (̂p, ĥ) be a pair of ordered upper and lower solutions of problem (2.17),
if (0, 0) ≤ (̂p, ĥ) ≤ (̃p, h̃) ≤ (Sp, Sh) and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̃t − d1

ρ2(t)
p̃yy ≥ − ρ̇(t)

ρ(t)
p̃ + p̃

(
γ1 − c̃p + α1̃h

ãp + b̃h

)
, y ∈ (0, l0), t> 0,

h̃t − d2

ρ2(t)
h̃yy ≥ − ρ̇(t)

ρ(t)
h̃ + h̃

(
−γ2 + α2̃p

ãp + b̃h

)
, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

p̂t − d1

ρ2(t)
p̂yy ≤ − ρ̇(t)

ρ(t)
p̂ + p̂

(
γ1 − ĉp + α1̂h

âp + b̂h

)
, y ∈ (0, l0), t> 0,

ĥt − d2

ρ2(t)
ĥyy ≤ − ρ̇(t)

ρ(t)
ĥ + ĥ

(
−γ2 + α2̂p

âp + b̂h

)
, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

p̂(t, y) = 0 ≤ p̃(t, y), ĥ(t, y) = 0 ≤ h̃(t, y), y ∈ [0, l0], t> 0,

p̃(0, y) ≥ p̃(T , y), h̃(0, y) ≥ h̃(T , y), y ∈ [0, l0],

p̂(0, y) ≤ p̂(T , y), ĥ(0, y) ≤ ĥ(T , y), y ∈ [0, l0],

h̃((nT)+, y) ≥ g(̃h(nT , y)), y ∈ (0, l0),

ĥ((nT)+, y) ≤ g(̂h(nT , y)), y ∈ (0, l0).

(2.18)
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For further analysis, we let f1 = − ρ̇(t)
ρ(t)

p + p
(
γ1 − cp + α1h

ap+bh

)
, f2 = − ρ̇(t)

ρ(t)
h + h

(
−γ2 + α2p

ap+bh

)
and

choose

k1 = max
t∈[0,T]

{
ρ̇(t)

ρ(t)

}
+ Sp, k2 = max

t∈[0,T]

{
ρ̇(t)

ρ(t)

}
+ γ2

such that

F1(p, h) = k1p + f1(p, h), F2(p, h) = k2h + f2(p, h).

Then, problem (2.17) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt − d1

ρ2(t)
pyy + k1p = F1(p, h), y ∈ (0, l0), t> 0,

ht − d2

ρ2(t)
hyy + k2h = F2(p, h), y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

p(t, 0) = p(t, l0) = 0, h(t, 0) = h(t, l0) = 0, t> 0,

p(0, y) = p(T , y), h(0, y) = h(T , y), y ∈ [0, l0],

h((nT)+, y) = g(h(nT , y)), y ∈ (0, l0).

It is easy to verify that both F1(p, h) and F2(p, h) are nondecreasing with respect to p and h.
Furthermore, we consider the following iteration process associated with the initial values

(p(0), h
(0)

)=(̃p, h̃), (p(0), h(0))=(̂p, ĥ) and the iteration sequences
{
(p(m), h

(m)
)
}

and
{
(p(m), h(m))

}
by the

following process⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(m)
t − d1

ρ2(t)
p(m)

yy + k1p(m) = F1(p(m−1), h
(m−1)

), y ∈ (0, l0), t> 0,

h
(m)

t − d2

ρ2(t)
h

(m)

yy + k2h
(m) = F2(p(m−1), h

(m−1)
), y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

p(m)

t
− d1

ρ2(t)
p(m)

yy
+ k1p(m) = F1(p(m−1), h(m−1)), y ∈ (0, l0), t> 0,

h(m)
t − d2

ρ2(t)
h(m)

yy + k2h(m) = F2(p(m−1), h(m−1)), y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

p(m)(t, y) = h
(m)

(t, y) = p(m)(t, y) = h(m)(t, y) = 0, y ∈ [0, l0], t> 0,

p(m)(y, 0) = p(m−1)(y, T), h
(m)

(y, 0) = h
(m−1)

(y, T), y ∈ [0, l0],

p(m)(y, 0) = p(m−1)(y, T), h(m)(y, 0) = h(m−1)(y, T), y ∈ [0, l0],

h
(m)

((nT)+, y) = g(h
(m−1)

((n + 1)T , y)), y ∈ (0, l0),

h(m)((nT)+, y) = g(h(m−1)((n + 1)T , y)), y ∈ (0, l0).

(2.19)

Motivated by [30], we present the following lemma to expound the monotone property of the iteration
sequences.

Lemma 2.12. Let (̃p, h̃) and (̂p, ĥ) be a pair of ordered upper and lower solutions of problem (2.17),
respectively. Then, the sequence

{
(p(m), h

(m)
)
}

decreases and converges monotonically to (p, h) which is a
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maximal T-periodic solution of problem (2.17), while the sequence
{
(p(m), h(m))

}
increases and converges

monotonically to (p, h) which is a minimal T-periodic solution of problem (2.17), that is,

(̂p, ĥ) ≤ (p(m), h(m)) ≤ (p(m+1), h(m+1)) ≤ (p, h)

≤ (p, h) ≤ (p(m+1), h
(m+1)

) ≤ (p(m), h
(m)

) ≤ (̃p, h̃).
(2.20)

Theorem 2.13. If R2
0 > 1, then there exists the following statements hold:

(i) There are a pair of minimal and maximal positive T-periodic solutions (p, h) ≤ (p, h) of prob-
lem (2.17) over (p∗, 0), besides, if (p, h)(0, y) = (p, h)(0, y), then (p, h) = (p, h) := (p∗∗, h∗∗) is the
unique positive T-periodic solution to problem (2.17);

(ii) Let (p, h)(t, y;p0, h0) be the solution of problem (1.6) with bounded and continuous initial con-
ditions (0, 0) �≡, ≤ (p0, h0)(y) ≤ (Sp, Sh) on [0, l0]. Then (p, h) ≤ (p, h) is attractive in the sense
that

(p, h)(t, y) = lim inf
m→∞

(p, h)(t + mT , y; p0, h0)

≤ lim sup
m→∞

(p, h)(t + mT , y; p0, h0) = (p, h)(t, y)
(2.21)

holds on [0, ∞) × [0, l0], that is,

lim
m→∞

(p, h)(t + mT , y; p0, h0) → (p∗∗, h∗∗)(t, y).

Proof. (i) The proof of this part is not particularly difficult but is too long; thus, we divide it into two
steps to help the reader understand.

Step 1 The existence of the positive T-periodic solution to problem (2.17).
We first construct the upper solution of problem (2.17). Let (̃p, h̃)=(M1U(t), M2V(t)), M1, M2 > 1,

where (U(t), V(t)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut(t) = − ρ̇(t)

ρ(t)
U(t) + γ1U(t) + α1

b
U(t) − cU2(t), t> 0,

Vt(t) = − ρ̇(t)

ρ(t)
V(t) − γ2V(t) + α2U(t)

aU(t) + bV(t)
V(t), t ∈ ((nT)+, (n + 1)T],

U(t) = U(t + T), V(t) = V(t + T), t ≥ 0,

V((nT)+) = g′(0)V(nT) ≥ g(V(nT)).

(2.22)

Now, it is necessary to explain the existence of solutions U(t) and V(t) to problem (2.22). For the equation
of U, by direct calculation, we can conclude that

U(t) = e(γ1+ α1
b )tρ−1(t)(e(γ1+ α1

b )T − 1)∫ t

nT
ce(γ1+ α1

b )τ

ρ(τ )
dτ (e(γ1+ α1

b )T − 1) + e(γ1+ α1
b )nT

∫ T

0
ce(γ1+ α1

b )τ

ρ(τ )
dτ

.

And for the equation of V , since R2
0 > 1, V(t) can also be obtained by using the upper and lower solution

method similar to the logistic equation.
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Furthermore, we have

∂ p̃

∂t
−
[

d1

ρ2(t)
p̃yy − ρ̇(t)

ρ(t)
p̃ + γ1̃p − c̃p2 + α1̃h̃p

ãp + b̃h

]

>
∂ p̃

∂t
−
[

d1

ρ2(t)
p̃yy − ρ̇(t)

ρ(t)
p̃ + γ1̃p − c̃p2 + α1

b
p̃

]

= M1

[
− ρ̇(t)

ρ(t)
U(t) + γ1U(t) + α1

b
U(t) − cU2(t)

]
−
[

d1

ρ2(t)
p̃yy − ρ̇(t)

ρ(t)
p̃ + γ1̃p − c̃p2 + α1

b
p̃

]

= M1

[
− ρ̇(t)

ρ(t)
U(t) + γ1U(t) + α1

b
U(t) − cU2(t)

]
−
[
− ρ̇(t)

ρ(t)
p̃ + γ1̃p − c̃p2 + α1

b
p̃

]
= 0,

which implies that p̃ is the upper solution of the first equation to problem (2.17). Since the nonlinear term
α2p

ap+bh
is strictly increasing in p, and considering the cooperative relationship, we can deduce that h̃ is the

upper solution of the second equation to problem (2.17). Hence, we obtain that (̃p, h̃)=(M1U(t), M2V(t))
with M1 and M2 > 1 is an upper solution of problem (2.17).

In the following, we aim to consider the lower solution and define (̂p, ĥ) = (p∗ + δ�ε̃, δ�ε̃) with ĥ
satisfying

ĥ(t, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ�ε̃(nT , y), t = nT ,

δ
ρ1

g′(0)
�ε̃((nT)+, y), t = (nT)+,

δ
ρ1

g′(0)
e[−(λ2

0)ε̃−ξ](t−nT)�ε̃(t, y), t ∈ ((nT)+, (n + 1)T],

(2.23)

where ξ + (λ2
0)ε̃ < 0 with a positive constant ξ and ρ1 = e((λ2

0)ε̃+ξ )Tg′(0) such that ĥ(nT , y) = ĥ((n +
1)T , y). δ is a small enough positive constant to be chosen later, and the positive eigenfunctions (�ε̃,�ε̃)
satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�ε̃)t − d1

ρ2(t)
(�ε̃)yy

= α1p∗

ε̃+ ap∗�ε̃ + (γ1 − 2cp∗)�ε̃ − ρ̇(t)

ρ(t)
�ε̃ +��ε̃, y ∈ (0, l0), t> 0,

(�ε̃)t − d2

ρ2(t)
(�ε̃)yy

= α2p∗

ε̃+ ap∗�ε̃ − γ2�ε̃ − ρ̇(t)

ρ(t)
�ε̃ +��ε̃, y ∈ (0, l0), t ∈ ((nT)+, (n + 1)T],

�ε̃(t, 0) =�ε̃(t, l0) = 0,�ε̃(t, 0) =�ε̃(t, l0) = 0, t> 0,

�ε̃(0, y) =�ε̃(T , y),�ε̃(0, y) =�ε̃(T , y), y ∈ [0, l0],

�ε̃((nT)+, y) = g′(0)�ε̃(nT , y), y ∈ (0, l0),

(2.24)

which is similar to problem (2.14) and can be obtained by perturbation theory for sufficiently small ε̃,
and one could refer to Kato [20] for more details about this point. By Lemma 2.8, we can also obtain
that (λ2

0)ε̃ < 0 if ε̃ is sufficiently small. For t ∈ ((nT)+, (n + 1)T] and y ∈ (0, l0), if δ < δ1, we can obtain
that
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∂ ĥ

∂t
−
[

d2

ρ2(t)
ĥyy − ρ̇(t)

ρ(t)
ĥ + ĥ

(
−γ2 + α2̂p

âp + b̂h

)]
= [−(λ2

0)ε̃ − ξ
]× δ

ρ1

g′(0)
e[−(λ2

0)ε̃−ξ ](t−nT)�ε̃

+ δ
ρ1

g′(0)
e[−(λ2

0)ε̃−ξ](t−nT) ×
[

d2

ρ2(t)
(�ε̃)yy + α2p∗

ε̃+ ap∗�ε̃ − γ2�ε̃ − ρ̇(t)

ρ(t)
�ε̃ + (λ2

0)ε̃�ε̃

]

− δ
ρ1

g′(0)
e[−(λ2

0)ε̃−ξ](t−nT) ×
[

d2

ρ2(t)
(�ε̃)yy −

(
ρ̇(t)

ρ(t)
+ γ2

)
�ε̃

]

− δ
ρ1

g′(0)
e[−(λ2

0)ε̃−ξ](t−nT)�ε̃ ×
⎡⎣ α2(p∗ + δ�ε̃)

a(p∗ + δ�ε̃) + bδ ρ1

g
′
(0)

e[−(λ2
0)ε̃−ξ](t−nT)�ε̃

⎤⎦
= δ

ρ1

g′(0)
e[−(λ2

0)ε̃−ξ](t−nT)�ε̃

×
⎧⎨⎩[−(λ2

0)ε̃ − ξ
]+ (λ2

0)ε̃ + α2p∗

ε̃+ ap∗ − α2(p∗ + δ�ε̃)

a(p∗ + δ�ε̃) + bδ ρ1

g
′
(0)

e[−(λ2
0)ε̃−ξ](t−nT)�ε̃

⎫⎬⎭
= δ

ρ1

g′(0)
e[−(λ2

0)ε̃−ξ](t−nT)�ε̃

×
⎧⎨⎩−ξ +

−α2ε̃p∗ + δ
[
aα2p∗�ε̃ + bα2p∗ ρ1

g
′
(0)

e[−(λ2
0)ε̃−ξ](t−nT)�ε̃ − α2(ε̃+ ap∗)�ε̃

]
(ε̃+ ap∗)

[
a(p∗ + δ�ε̃) + bδ ρ1

g
′
(0)

e[−(λ2
0)ε̃−ξ](t−nT)�ε̃

]
⎫⎬⎭ .

If taking δ = 0 in the last term of the equation above, we have −α2 ε̃

a(ε̃+ap∗)
< 0. One thus could choose δ1

small sufficiently such that the last term of the equation above is negative uniformly.
Thus, this yields that

∂ ĥ

∂t
−
[

d2

ρ2(t)
ĥyy − ρ̇(t)

ρ(t)
ĥ + ĥ

(
−γ2 + α2̂p

âp + b̂h

)]
< 0.

Besides, if δ < δ2 :=
(

g
′
(0)−ρ1

D

) 1
ν−1

, it follows from the assumption A3 that

g(̂h(nT , y)) − ĥ((nT)+, y) = g(̂h(nT , y)) − δ
ρ1

g′(0)
�ε̃((nT)+, y)

= g(̂h(nT , y)) − ρ1̂h(nT , y)

≥ (g′(0) − ρ1)̂h(nT , y) − D(δ�ε̃(nT , y))ν

= [(g′(0) − ρ1) − D(δ�ε̃(nT , y))ν−1]δ�ε̃(nT , y)

≥ 0.

Similarly, we can also verify that

∂ p̂

∂t
−
[

d1

ρ2(t)
p̂yy − ρ̇(t)

ρ(t)
p̂ + p̂

(
γ1 − ĉp + α1̂h

âp + b̂h

)]
< 0.

Consequently, we infer that (̂p, ĥ) = (p∗ + δ�ε̃, δ�ε̃) is the lower solution of problem (2.17).
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Next, we select the (p(0), h
(0)

) = (̃p, h̃) and (p(0), h(0)) = (̂p, ĥ) as initial iteration, the sequences{
(p(m), h

(m)
)
}

and
{
(p(m), h(m))

}
are defined by (2.19). It follows from Lemma 2.12 that we have

(̂p, ĥ) ≤ (p(m), h(m)) ≤ (p(m+1), h(m+1)) ≤ (p(m+1), h
(m+1)

) ≤ (p(m), h
(m)

) ≤ (̃p, h̃).

Based on the monotone convergence theorem, we obtain that the limits of the sequences
{
(p(m), h

(m)
)
}

and
{
(p(m), h(m))

}
exist and

lim
m→∞

(p(m), h
(m)

) = (p, h), lim
m→∞

(p(m), h(m)) = (p, h),

where (p, h) and (p, h) are T-periodic solutions of problem (2.17) satisfying (p∗, 0) ≤ (p, h) ≤ (p, h).
Moreover,

(̂p, ĥ) ≤ (p(m), h(m)) ≤ (p(m+1), h(m+1)) ≤ (p, h)

≤ (p, h) ≤ (p(m+1), h
(m+1)

) ≤ (p(m), h
(m)

) ≤ (̃p, h̃).

Now we claim that (p, h) and (p, h) are the maximal and minimal positive T-periodic solutions of
problem (2.17). In fact, for any positive periodic solution (p∗∗, h∗∗) of problem (2.17) over (p∗, 0) sat-
isfies (̂p, ĥ) ≤ (p∗∗, h∗∗) ≤ (̃p, h̃). Employing the same iteration as problem (2.19), we choose (̃p, h̃) and
(p∗∗, h∗∗) as the initial iteration with (p(0), h

(0)
) = (̃p, h̃) and (p(0), h(0)) = (p∗∗, h∗∗), it follows that

(p∗∗, h∗∗) ≤ (p, h), t ≥ 0, y ∈ [0, l0],

thus, (p, h) is the maximal positive T-periodic solution of problem (2.17). Similarly, (p, h) is the minimal
positive T-periodic solution of problem (2.17).

Step 2 we now present the uniqueness of the positive T-periodic solution of problem (2.17).
Indeed, since the two components of the system are weakly coupled, we can refer to [39] to prove the

uniqueness.
We remark that (p, h) = (p, h) := (p∗∗, h∗∗) provided with (p, h)(0, y) = (p, h)(0, y). In fact, choosing

the initial condition p(y, 0) = p0(y), one can regard problem (2.17) as an initial boundary value problem
and then acquire its uniqueness condition through the standard existence-uniqueness theorem on the
initial boundary value parabolic problem. On the other hand, assume that h1 and h2 are the two solutions
and define set

η= {ς ∈ [0, 1], ςh1 ≤ h2, t = 0, t = 0+, t ∈ (0+, T], y ∈ [0, l0]
}

,

which can be shown that η possesses a right neighbourhood around 0. We say that 1 ∈ η. Suppose not,
then we have that ς0 = sup η < 1. We note that F(p, h, t) = f (p, h, t) + k2h is nondecreasing and f (p,h,t)

h
is

decreasing in h on [0, max
[0,l0]×[0,T]

h2], it yields that

(h2 − ς0h1)t − d2

ρ2(t)
(h2 − ς0h1)yy + k2(h2 − ς0h1) ≥

(
− ρ̇(t)

ρ(t)
− γ2

)
(h2 − ς0h1) + k2(h2 − ς0h1)

= f2(h2, t) + k2h2 − ς0(f2(h1, t) + k2h1)

≥ f2(ς0h1, t) + k2ς0h1 − ς0(f2(h1, t) + k2h1)

≥ 0

for t ∈ (0+, T] and y ∈ (0, l0). By assumptions A1 and A2, we deduce that

h2(0+, y) − ς0h1(0+, y) = g(h2(0, y)) − ς0g(h1(0, y))

≥ g(ς0h1(0, y)) − ς0g(h1(0, y)) ≥ 0
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for y ∈ (0, l0). However, for t> 0,

h2(t, 0) − ς0h1(t, 0) = h2(t, l0) − ς0h1(t, l0) = 0.

Due to the strong maximum principle [33], we have significant statements as follows:

(a) h2 − ς0h1 > 0 holds for t = 0+, t ∈ (0+, T] and y ∈ (0, l0). Since h1 and h2 are T-periodic solutions,
that is, h1(0, y) = h1(T , y) and h2(0, y) = h2(T , y) for y ∈ (0, l0), and utilising the strong maximum
principle implies h2 − ς0h1 > 0 for t ∈ (0, T] and y ∈ (0, l0). Based on the Hopf’s boundary lemma,
we deduce that ∂

∂n |y=0 (h2 − ς0h1)> 0 and ∂

∂n |y=l0 (h2 − ς0h1)< 0, where n is the outward unit
normal vector. Then, there is a constant ε > 0 such that h2 − ς0h1 > 0 ≥ εh1, which leads to ς0 +
ε ∈ η. This contradicts the maximality of ς0.

(b) h2 − ς0h1 ≡ 0 for t = 0+, t ∈ (0+, T] and y ∈ (0, l0). In this case, we have f2(h2, t) = ς0f2(h1, t).
However, recalling ς0 < 1, f2(h2, t) = f2(ς0h1, t)>ς0f2(h1, t); thus, it is also impossible.

To sum up, problem (2.17) admits a unique positive T-periodic solution (p∗∗, h∗∗).
(ii) Due to the Hopf’s boundary lemma, we obtain that φy(0, 0)> 0 and φy(0, l0)< 0, and we select

a small enough δ to make sure δφ(0, y) ≤ h(0, y). Meanwhile, a large enough M2 can be chosen such
that h(0, y) ≤ M2U(0). For given δ, M1 and M2, the function (̃p, h̃)=(M1U(t), M2V(t)) with (U(t), V(t))
defined in (2.22) and (̂p, ĥ) = (p∗ + δψ , δφ) with ĥ defined in (2.23), satisfies

(0, ĥ)(0, y) ≤ (p, h)(0, y) ≤ (̃p, h̃)(0, y), y ∈ [0, l0].

It follows from (A2) that g is nondecreasing with respect to h, we obtain that

ĥ(0+, y) ≤ g(̂h(0, y)) ≤ g(h(0, y)) = h(0+, y) ≤ g(̃h(0, y)) = h̃(0+, y).

The classical comparison principal yields ĥ(t, y) ≤ h(t, y) ≤ h̃(t, y), t ∈ (0+, T], y ∈ [0, l0]. Induction
reveals that ĥ(t, y) ≤ h(t, y) ≤ h̃(t, y), t = nT , (nT)+, t ∈ ((nT)+, (n + 1)T], y ∈ [0, l0].

Therefore,

h(0)(t, y) ≤ h(t, y) ≤ h
(0)

(t, y), t = nT , (nT)+, t ∈ ((nT)+, (n + 1)T], y ∈ [0, l0].

Moreover,

h(0)(T , y) ≤ h(T , y) ≤ h
(0)

(T , y), y ∈ [0, l0], (2.25)

which together with h(1)(0, y) = h(0)(T , y) and h
(1)

(0, y) = h
(0)

(T , y) yields

h(1)(0, y) ≤ h(T , y) ≤ h
(1)

(0, y), y ∈ [0, l0].

By the assumption (A2) and (2.25), we obtain that

g(h(0)(T , y)) ≤ g(h(T , y)) ≤ g(h
(0)

(T , y)), y ∈ [0, l0].

Recalling problems (2.19) and (1.6), ones deduce that
h(1)(0+, y) = g(h(0)(T , y)) ≤ g(h(T , y))

= h(T+, y) ≤ g(h
(0)

(T , y)) = h
(1)

(0+, y), y ∈ [0, l0],

that is,

h(1)(0+, y) ≤ h(T+, y) ≤ h
(1)

(0+, y), y ∈ [0, l0].

The comparison principle shows that h(1)(t, y) ≤ h(t + T , y) ≤ h
(1)

(t, y) holds for t ∈ (0+, T] and y ∈ [0, l0].
Utilising induction again, we have

h(1)(t, y) ≤ h(t + T , y) ≤ h
(1)

(t, y), t = nT , (nT)+, t ∈ ((nT)+, (n + 1)T], y ∈ [0, l0],

and combining with the last two equations in problem (2.19) that

h(m)(t, y) ≤ h(t + mT , y) ≤ h
(m)

(t, y), t ≥ 0, y ∈ [0, l0],
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since the above inequality holds for m = 0 and m = 1. Similarly, we do some same work for p.
Recalling the uniqueness of the periodic solution of problem (2.17) provided with

lim
m→∞

(p(m), h(m))(t, y) = lim
m→∞

(p(m), h
(m)

)(t, y) = (p∗∗, h∗∗) in (i), we have

lim
m→∞

(p, h)(t + mT , y;p0, h0) → (p∗∗, h∗∗)(t, y).

Remark 2.14. Considering the cooperative characteristics of problem (2.17), one can still use the sub-
homogeneity of the nonlinear term to obtain the uniqueness of the positive periodic equilibrium solution
of problem (2.17). However, in the current paper, we prefer to apply more detailed differential equation
analysis techniques based on the maximum principle in order to reveal more details of problem (2.17).

3. the impacts of the evolution rate and impulsive effect

In this section, we will perform some numerical simulations to verify the theoretical results obtained in
the previous section. We aim to investigate how the domain evolution and impulse affect these dynamical
behaviours in plants-pollinators world and set R2

0(ρ) to emphasise such dependence. In all simulations,
we always consider the interval [0, l(t)] = [0, ρ(t)l0], where l0 = π , and we first fix

d1 = 0.3, d2 = 0.005, α1 = 0.1, α2 = 0.01, γ1 = 0.1, γ2 = 0.09, a = 0.047, b = 0.01, c = 0.01

and then provide λ∗ =
(
π

l0

)2 = 1. We select

p0(y) = 5 sin (y), h0(y) = 0.5 sin (y) + 0.2 sin (3y)

as initial function.
In fact, we must note that, if ρ(t) ≡ 1 and l(t) = l(0), then we can easily obtain the corresponding

problem on fixed domain for problem (1.6). The ecological reproduction index is represented as �2
0 =

R2
0(1) = α2

a

γ2+d2λ
∗− 1

T ln g
′
(0)

by the identical arguments with Lemma (2.4), and we have the threshold scenario
completely similar to Theorems (2.10) and (2.13). Here we omit it and refer to [43] for more details.

The following assertions can help to explain more graphically the influence of the periodically evolv-
ing domain on the persistence of pollinators, which is obtained directly from Theorem (2.5). Specifically,
if the evolution rate of domain is small, then we have R2

0 <�2
0, which means the evolving domain is not

conducive to pollinators survival, that is, the evolving domain has a negative influence on the persis-
tence of pollinators. While the evolution rate of domain is large, then we have R2

0 >�2
0, which implies the

evolving domain can promote diffusion of pollinators such that pollinators have more space for transmis-
sion. If ρ(t) = 1, then we have R2

0 = �2
0, which gives that pollinators can persist on the evolving domain

at the same scope of diffusive rate on the fixed domain, that is, the evolving domain has no influence on
the persistence of pollinators.

3.1. The impact of the evolution rate

We select different ρ(t) to emphasise the impact of the domain evolution rate on the dynamical
behaviours of pollinators when the impulsive effect occurs every time T = 2. We first fix n1 = 8 and
n2 = 10 in (1.2).

Example 3.1. Take g(H) = 8H
10+H

and then g′(0) = 0.8. Let ρ1(t) = e−0.1(1−cos (π t)). Then from (2.9), we
calculate that

R2
0(ρ1) =

α2
a

γ2 + d2λ
∗

T

∫ T

0
1

ρ2(t)
dt − 1

T
ln g′(0)

≈ 0.9627< 1.
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Figure 2. ρ1(t) = e−0.1(1−cos (π t)), n1 = 8 and n2 = 10. The domain is periodically evolving with ρ1 and
R2

0 < 1. Graphs (a)-(c) show that the population H(t, x) decays to 0. Graphs (b) and (c) are the cross–
sectional view and projection of H on the t − H− plane, respectively. The colour bar in graph (b) shows
the density of H(t, x).

Figure 3. ρ2(t) = e0.1(1−cos (π t)), n1 = 8, n2 = 10, and R2
0 > 1. Graph (a) shows the dynamics of pollinators

H(t, x), which implies that pollinators tend to a positive periodic steady state, it also shows pollinators
can coexist with plants on the periodically evolving domain. Graph (b) is the cross-sectional view and
indicates the periodic evolution of the domain. The appearance of impulsive effect every time T = 2 can
be seen in graph (c), which is the projection of H on the t − H−plane.

In Figure 2, there is a clear trend of h decreases 0, which is consistent with Theorem 2.10 that pollinators
suffer extinction eventually.

Next, let ρ2(t) = e0.1(1−cos (π t)) in (2.9). Then we have

R2
0(ρ2) =

α2
a

γ2 + d2λ
∗

T

∫ T

0
1

ρ2(t)
dt − 1

T
ln g′(0)

≈ 1.0343> 1.

It is shown in Figure 3 that h approaches a positive periodic steady state. And it agrees with
Theorem 2.13 that pollinators can coexist with plants.

The results, as shown in Example 3.1, indicate that the evolution rate of the domain is crucial to
the persistence and extinction of the population. Specifically, the larger the evolution rate is conducive
for pollinators‘ survival, that is, a large domain evolution rate has a positive influence on the survival
of pollinators when impulsive effect takes place. Nevertheless, that pollinators eventually extinct in a
periodically evolving domain with a small evolution rate.
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Figure 4. ρ1(t) = e−0.1(1−cos (π t)) and without pulse. In this case, R2
0 < 1. Graphs (a)-(c) imply that polli-

nators H(t, x) decreases to 0. Graphs (b) and (c) are the cross-sectional view and projection of H on the
plane t − H, respectively.

Figure 5. ρ2(t) = e0.1(1−cos (π t)) and without pulse. In this situation, R2
0 > 1. Graphs (a)-(c) show that

population H(t, x) approaches to a positive periodic steady state.

3.2. The impact of impulsive effect

In order to study how pulse affects the dynamical behaviours of pollinators in a periodically evolving
domain, we first employ numerical simulations to illustrate the case when impulsive effect does not
occur.

Example 3.2. Fix ρ1(t) = e−0.1(1−cos (π t)). From (2.12), it yields that R2
0 < 1 and without impulsive effect.

Observing Figure 4, we find that pollinators suffer extinction eventually. Comparing Figure 2, we obtain
that pollinators suffer extinction at a faster speed when impulsive effect occurs.

Next, we fix ρ2(t) = e0.1(1−cos (π t)), and assume that impulsive effect does not occur. By (2.12), we have
R2

0 > 1. It is easily seen from Figure 5 that pollinators stabilise to a positive periodic steady state.

Finally, we select the impulsive function with n1 = 5 and n2 = 10, that is, g(H) = 5H/(10 + H). One
can see from Figure 6 that pollinators now decay to extinction. Figures 5 and 6 show that pollinators
survive in an evolving domain with a large evolution rate, but vanishes when the impulsive effect takes
place.

Example 3.2 reveals that when pollinators live in a periodically evolving domain with a small evolu-
tion rate, impulsive effect can speed up the extinction of pollinators. Taken together, impulsive effect has
a negative influence on the survival of pollinators and, eventually, leads to the extinction of pollinators.
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Figure 6. In the case with impulsive effect, ρ2(t) = e0.1(1−cos (π t)) and g(H) is chosen with n1 = 5 and
n2 = 10, this implies R2

0 < 1. Graph (a) suggests that the population will go to extinction eventually.
Graph (b) is the case where the domain is periodically evolving. We can also clearly observe the impact
of impulsive effect every time T = 2 from graph (c), in which the population suffers extinction.

4. Discussion

In this paper, we have combined the periodic evolution of domain and impulsive effect into the plants-
pollinators cooperative system, which makes it more reasonable for describing the persistence and
extinction of species. Based on the interdependence of pollinators and plants, through the current paper,
we focus on discussing the case when plants are survival given that R1

0 > 1. The main purpose is to
examine the threshold dynamics scenario of pollinators under the influence of plants.

Firstly, we define the ecological reproduction index R2
0 of pulse problem and provide an explicit

formula. Then, utilising the monotone iteration technique with the proper upper and lower solutions,
we establish dynamical behaviours of the solution to problem (1.6) when the impulsive function is
monotone. We conclude that in the case of R2

0 ≤ 1, the solution (p, h)(t, y) = (p∗, 0), which sees details
from Theorem 2.10. On the contrary, when R2

0 > 1, Theorem 2.13 implies that the solution converges
to a positive periodic steady state, indicating that pollinators can coexist with plants. In addition, our
numerical simulations further illustrate that pollinators suffer extinction with a small evolution rate of
domain (see Figure 2), but survive in one with a large evolution rate of domain (see Figure 3). Meanwhile,
a large evolution rate of domain is beneficial to the survival of the pollinators. Another notable result is
that the impulsive effect can speed up the pollinators‘ extinction (see Figures 2 and 4) and has a negative
influence on the pollinators’ survival (see Figures 5 and 6), and, eventually, leads to the extinction of
pollinators (see Figure 6). Which is consistent with our theoretical results.

We still note that the current analysis is based on the one-dimensional case for plants-pollinators
cooperative system. Fazly et al. [14] have recently expanded the aforementioned findings of seasonal
birth pulse in [22] to a higher dimensional for logistic model without domain evolution. They pro-
vided domain parameters and discussed species extinction and persistence as a function of domain
shape and size. However, it remains to be further investigated whether our approach can be applied
to higher dimensional evolving domains with impulsive effects in plant-pollinator systems. In addition,
it is also worth considering that the combination of free boundary and impulsive effect in plant-pollinator
systems.
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