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Abstract

Background. Alcohol use disorder (AUD) and schizophrenia (SCZ) frequently co-occur, and
large-scale genome-wide association studies (GWAS) have identified significant genetic corre-
lations between these disorders.
Methods.We used the largest published GWAS for AUD (total cases = 77 822) and SCZ (total
cases = 46 827) to identify genetic variants that influence both disorders (with either the same
or opposite direction of effect) and those that are disorder specific.
Results. We identified 55 independent genome-wide significant single nucleotide polymorph-
isms with the same direction of effect on AUD and SCZ, 8 with robust effects in opposite
directions, and 98 with disorder-specific effects. We also found evidence for 12 genes
whose pleiotropic associations with AUD and SCZ are consistent with mediation via gene
expression in the prefrontal cortex. The genetic covariance between AUD and SCZ was con-
centrated in genomic regions functional in brain tissues ( p = 0.001).
Conclusions. Our findings provide further evidence that SCZ shares meaningful genetic over-
lap with AUD.

Introduction

Schizophrenia (SCZ) and alcohol dependence or abuse (hereafter referred to as alcohol use dis-
order, AUD) are serious psychiatric disorders (Whiteford et al., 2013). AUD is more common
in individuals with SCZ [prevalence of 20–30% (Castillo-Carniglia, Keyes, Hasin, & Cerdá,
2019; Hunt, Large, Cleary, Lai, & Saunders, 2018), compared to ∼6% in the general population
(SAMHSA, 2019)] and a diagnosis of both is associated with greater psychiatric comorbidity
(Brady, Killeen, & Jarrell, 1993), more clinical complications (Duke, Pantelis, & Barnes, 1994),
and a lower likelihood of sustained medication adherence (Drake & Wallach, 1989) than either
disorder alone. Both SCZ and AUD are moderately to highly heritable [twin-h2 for SCZ = 81%
(Sullivan, Kendler, & Neale, 2003), AUD = 49% (Verhulst, Neale, & Kendler, 2015)], and
genome-wide association studies (GWAS) have consistently found positive genetic correlations
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of AUD with SCZ (e.g. rg = 0.34, p = 3.7e-21) (Kranzler et al.,
2019), suggesting that common genetic influences may potentially
contribute to their co-occurrence (although environmental factors
undoubtedly play a large role). Further, polygenic risk scores
(PRS) for AUD are significantly associated with SCZ risk
(Kranzler et al., 2019) and vice versa (Reginsson et al., 2018). In
contrast, the genetic correlation between SCZ and measures of
typical alcohol consumption is weak (e.g. drinks/week: rg = 0.01,
p = 0.67) (Liu et al., 2019), suggesting that SCZ might share sub-
stantial genetic liability only with the psychopathological aspects
of disordered drinking (Sanchez-Roige, Palmer, Fontanillas,
Elson, & Clarke, 2019) and not alcohol consumption per se.

Despite the substantial genetic correlation between AUD and
SCZ, there is little known regarding the underlying pleiotropic
mechanisms in terms of the specific risk alleles, genes, and molecu-
lar pathways involved. Although recent studies have begun to elu-
cidate the contributions of pleiotropic loci to shared genetic
variance amongst disorders and complex traits (Lam et al., 2019;
Lee et al., 2019), these efforts have not included AUD, one of
the most common psychiatric disorders; until recently, GWAS of
AUD were not well-powered. In addition to loci with a similar dir-
ection of effect on both disorders, modern cross-disorder GWAS
methods can also identify divergent variants, i.e. those that are
pleiotropic for two disorders but whose effect alleles operate in
opposite directions, conferring risk for one disorder and protective
effects for the other [e.g. potassium ion response genes that distin-
guish SCZ from bipolar disorder (Ruderfer et al., 2018)]. The iden-
tification of such variants is fundamental to identifying the
pathways that contribute to diagnostic boundaries.

The current study outlines the nature of the shared genetic
underpinnings of AUD and SCZ by conducting cross-disorder
analyses of large genome-wide datasets of both European- and
African-ancestry individuals (see Fig. 1 for overview). We con-
ducted ancestry-specific cross-disorder meta-analyses to systemat-
ically identify pleiotropic loci with significant convergent and
divergent effects on both SCZ and AUD, and loci specific to
each disorder. We also linked pleiotropic variants to gene expres-
sion data from the frontal cortex in an effort to prioritize the
genes that are more likely to be causal. Because the extent to
which the correlation between AUD and SCZ is attributable to
salient functional categories remains unknown, we partitioned
the genetic covariance between AUD and SCZ into relevant
annotations.

Materials and Methods

Samples

Alcohol use disorder
For the European-ancestry subset, we meta-analyzed a subset of the
GWAS data from the largest available AUD meta-analysis (Zhou
et al., 2020b) (N = 313 959; Ncases = 57 564): we meta-analyzed
two GWAS of alcohol dependence and abuse (MVP + PGC), and
did not include the GWAS of the problem sub-scale of the
AUDs Identification Test in the UK Biobank. In the Million
Veteran Program (MVP), case status was derived from
International Classification of Diseases codes of alcohol depend-
ence and abuse in electronic health records. In the Psychiatric
Genomics Consortium (PGC) alcohol dependence GWAS
(Walters et al., 2018), cases were defined by DSM-IV diagnoses.

We also meta-analyzed two published GWAS to create the
African-ancestry subset: the MVP Phase 1 GWAS of AUD

(Kranzler et al., 2019) (N = 56 648; Ncases = 17 267), and the PGC
GWAS of alcohol dependence (Walters et al., 2018) (N = 5799;
Ncases = 2991). We used METAL (Willer, Li, & Abecasis,
2010) (which combines genome-wide summary statistics across
multiple samples) to generate the African-ancestry summary sta-
tistics by meta-analyzing the GWAS data from the MVP Phase 1
AUD and PGC alcohol dependence GWAS using an inverse
variance-weighted fixed-effects model, excluding single nucleotide
polymorphisms (SNPs) with INFO score <0.8 and/or minor allele
frequency <0.01 within each sample.

Schizophrenia
For the European-ancestry sample, we used the PGC Phase 2 +
CLOZUK (a sample of individuals with SCZ who were treated
with clozapine) SCZ GWAS meta-analysis (Pardiñas et al.,
2018) (total N = 105 318; Ncases = 40 675). We used the summary
statistics from the Genomic Psychiatry Cohort (GPC) SCZ
GWAS (Bigdeli et al., 2020) (N = 10 070; Ncases = 6152) for the
African-ancestry cross-disorder analysis.

Analysis

Cross-disorder association analysis
We used ‘Association analysis based on SubSETs’ (ASSET)
(Bhattacharjee et al., 2012) to combine the genome-wide associ-
ation data for AUD and SCZ (separately by ancestry), using the
two-tailed meta-analysis approach to obtain a single cross-
disorder association statistic, correcting for sample overlap.
Unlike traditional meta-analysis approaches, ASSET takes into
account SNPs with significant effects on multiple disorders even
if the effects on the traits are in opposite directions. Default para-
meters were applied using the ‘h.traits’ function, and we used LD
Score Regression (Bulik-Sullivan et al., 2015a, b) (LDSC) to obtain
a rough estimate of sample overlap, which we accounted for in the
additional covariance term. We then separated the ASSET results
into four subsets: a ‘convergent’ subset (effect allele with the same
direction of effect for both disorders), a ‘divergent’ subset (effect
allele with opposite directions of effect on the disorders), a subset
of SNPs with AUD-specific effects, and a subset of SNPs with
effects only on SCZ (online Supplementary Fig. S1).

In the European-ancestry sample, we then uploaded the subset
results (i.e. convergent, divergent, AUD-only, and SCZ-only SNPs
from ASSET output) to FUMA v1.3.6a (Watanabe, Taskesen, van
Bochoven, & Posthuma, 2017) for annotation and identification
of genome-wide significant risk loci and independent lead
SNPs. We further subset these convergent and divergent loci to
exclude top lead SNPs with p > 0.05 in either individual disorder
GWAS, to create a more conservative set of cross-disorder var-
iants with at least nominal significance in both disorders
(although the full subsets were used for gene-set and pathway
analyses).

In the African-ancestry samples, which were smaller and
accordingly lacked power for more extensive analyses, we focused
on the overall set of pleiotropic cross-disorder variants, rather
than parsing the pleiotropic variants into subsets with convergent
and divergent effects.

To examine specificity of genetic overlap, we also examined the
effect sizes and p values of the top pleiotropic loci identified for
AUD and SCZ in GWAS of attention deficit hyperactivity dis-
order (ADHD) (Demontis et al., 2019), bipolar disorder (Stahl
et al., 2019), depression (Howard et al., 2019), cigarettes per day
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(Liu et al., 2019), cannabis use disorder (Johnson et al., 2020), and
opioid use disorder (Zhou et al., 2020a).

Gene, gene-set, and pathway analyses
In both the European-ancestry and African-ancestry samples,
gene-based analyses in MAGMA (v1.08) (de Leeuw, Mooij,
Heskes, & Posthuma, 2015) were conducted on the subset results
(i.e. convergent and divergent SNPs from ASSET output) via the
FUMA (Watanabe et al., 2017) platform. These analyses included
gene-set analyses using curated gene-sets and GO terms from
MsigDB (Liberzon et al., 2011) (an online collection of annotated
gene-sets) and gene-property analyses based on tissue expression
data from GTEx (Aguet et al., 2017) v8 (a repository of expression
data by brain region from autopsies of 960 donors) and brain
samples at different developmental stages and specific ages from
BrainSpan (Miller et al., 2014) (more details in Supplementary
Materials).

Summary data-based eQTL analyses
To examine whether the effects of pleiotropic variants with con-
vergent effects on AUD and SCZ may be mediated by gene
expression patterns, we conducted a summary data-based
Mendelian randomization (Zhu et al., 2016) (SMR) analysis on

a set of expression quantitative trait loci (eQTL) data in the pre-
frontal cortex (meta-analyzed to combine data from ROSMAP
(De Jager et al., 2018), PsychENCODE (Akbarian et al., 2015),
and COGA-INIA datasets (Kapoor et al., 2019); total N = 1986).
SMR is a Mendelian randomization-based analysis that integrates
GWAS summary statistics with eQTL data to test whether the
effect size of a SNP on the phenotype of interest is mediated by
gene expression. SMR does not require raw eQTL data to build
the weights. We excluded variants with pleiotropic effects signifi-
cantly different from what would be expected under a causal
model using the HEIDI-outlier method (Zhu et al., 2018) (exclud-
ing SNPs with HEIDI-outlier p < 0.05).

Differential gene expression analyses using AUD and SCZ
post-mortem samples
We also examined whether genes mapped to pleiotropic loci by
MAGMA (with p < 0.05) were significantly enriched for genes
showing differential expression ( p < 0.05) in the prefrontal cortex
using two comparisons in independent samples: we compared
gene expression in 65 individuals with alcohol dependence and
73 healthy controls (Kapoor et al., 2019), and 258 individuals
with SCZ and 279 controls (Fromer et al., 2016) (details in
Supplementary Note) using Fisher’s exact test (Fisher, 1934).

Fig. 1. Conceptual overview of cross-disorder analysis of AUD and SCZ.
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Genetic correlations and partitioned covariance
We used LDSC (Bulik-Sullivan et al., 2015a, b) to estimate the
genetic correlations (rg) between AUD, SCZ, and two negative
control traits (height and chronic ischemic heart disease).

We also used LDSC applied to Specifically Expressed Genes
(LDSC-SEG (Finucane et al., 2018)) to estimate the enrichment
of AUD and SCZ across 13 specific brain regions (annotations
defined using GTEx (Lonsdale et al., 2013) gene expression data).

We used GeNetic cOVariance Analyzer (GNOVA) (Lu et al.,
2017a) to partition the genetic covariance (ρg) between AUD
and SCZ into salient annotation categories. These included (1)
functional v. non-functional areas of the genome (GenoCanyon
(Lu et al., 2015) annotations, defined by integrating genomic con-
servation measures and biochemical annotation data to generate a
functional potential score for each genetic variant), (2) tissue- and
regional-specific functionality (GenoSkyline (Lu et al., 2017b; Lu,
Powles, Wang, He, & Zhao, 2016) annotations, which are tissue-
specific functional regions defined by integrating high-throughput
epigenetic annotations, (3) GTEx v6 (Lonsdale et al., 2013) brain
region annotations (adapted from LDSC cell-type specific ana-
lyses), and (4) minor allele frequency quartiles. We excluded the
MHC region (chr6:26000885 - chr6:33999991) from both the
LDSC-SEG and GNOVA analyses due to the long-range and com-
plex LD in this region.

In sensitivity analyses conducted on individuals of European
ancestry in the UK Biobank (from the Neale lab GWAS: https://
www.nealelab.is/uk-biobank), we calculated the genetic correl-
ation and partitioned genetic covariance between AUD, SCZ,
and two negative control traits: height (N = 360 388) and chronic
ischemic heart disease (CHD; N = 361 194; Ncases = 12 769).

Results

Identifying pleiotropic variants, genes, and pathways in
individuals of European ancestry

The cross-disorder analysis of AUD and SCZ in European-ancestry
individuals identified numerous pleiotropic loci: after genome-wide
clumping via FUMA (Watanabe et al., 2017), there were 55
independent risk loci (with 60 lead SNPs) with convergent effects
and 44 risk loci (56 lead SNPs) with divergent effects (i.e. effect
allele with opposite effects on AUD and SCZ; online
Supplementary Fig. S1, Tables S1–S3). We also identified disorder-
specific loci through ASSET: 90 with SCZ-only effects, and 8 with
AUD-only effects (online Supplementary Tables S4 and S5).
MAGMA gene-based analyses identified 119 significant genes
from the convergent subset and 105 genes from the divergent sub-
set (online Supplementary Fig. S2, Tables S6 and S7).

As ASSET (Bhattacharjee et al., 2012) searches for and deter-
mines the most likely subset for each SNP (i.e. classifying SNPs
as having an effect only on AUD, only on SCZ, or on both disor-
ders), some of the pleiotropic SNPs identified by ASSET were only
significant in one of the single-disorder GWAS. For a more conser-
vative description of pleiotropic loci of divergent effect, we further
considered only the eight loci where the top lead SNPs had opposite
effects but p < 0.05 for both AUD and SCZ (online Supplementary
Table S3; the convergent lead SNPs already had p < 0.05 for both
disorders). In the convergent subset, the strongest association was
on chromosome 11 (lead SNP rs6589386, cross-disorder p =
5.7 × 10−18; AUD p = 7.1 × 10−12, SCZ p = 1.6 × 10−8). The stron-
gest divergent signal was on chromosome 4 (lead SNP
rs13135092, cross-disorder p = 2.9 × 10−31; AUD p = 4.9 × 10−18,

SCZ p = 7.9 × 10−16), located in an intron of SLC39A8; the effect
allele (A) increases risk for AUD and decreases risk (i.e. is protect-
ive) for SCZ.

MAGMA competitive gene-set analyses identified two
significant GO terms in the convergent subset of variants, one
related to DNA binding (GO: 0043565, p = 1.3 × 10−6) and one
related to neuronal differentiation (GO: 0045664, p = 1.9 × 10−6;
online Supplementary Table S8). There were no significant gene-
sets identified for the divergent subset (online Supplementary
Table S9).

Both the convergent and divergent subsets of variants showed
enrichment in all 13 brain tissues in MAGMA gene-property ana-
lyses, and the divergent subset also showed enrichment in pituitary
tissues (online Supplementary Fig. S3). The convergent subset of
variants showed enrichment for the early-mid prenatal general
developmental stage in the BrainSpan data, but did not show any
significant enrichments in the 29 more specific age samples (online
Supplementary Fig. S3). The divergent subset did not show enrich-
ment in any of the specific ages or developmental stages.

Cross-disorder variants, genes, and pathways in
African-ancestry individuals

In the African-ancestry cross-disorder analysis, there was limited
power to identify pleiotropic loci, with results appearing to be pri-
marily driven by the larger AUD GWAS (e.g. the one genome-
wide significant SNP (rs150627184) that ASSET identified as
being pleiotropic had p > 0.05 for SCZ; online Supplementary
Table S10). There were three significant genes (ADH4, ADH1B,
and EIF4E) identified in the MAGMA gene-based analysis (online
Supplementary Fig. S4 and Table S11). No gene-sets passed
Bonferroni correction in the competitive gene-set analysis (online
Supplementary Table S12), and gene-property analyses did not
reveal significant enrichment for any tissues or developmental
stages (online Supplementary Fig. S5). While neither of the
two-specific gene-sets identified in the European-ancestry cross-
disorder analysis (related to DNA binding and neuron differenti-
ation) were significant in the African-ancestry analysis after mul-
tiple testing corrections, a gene-set related to the regulation of
dopaminergic neuron differentiation had p = 0.003.

Overlap of top loci with other psychiatric and substance use
GWAS

To assess the specificity of the identified divergent and convergent
loci, we examined the effect sizes of these loci in several
European-ancestry psychiatric and substance use GWAS (online
Supplementary Tables S13 and S14): ADHD, bipolar disorder,
depression, cigarettes per day, cannabis use disorder, and opioid
use disorder. Of the top lead SNPs at the 55 convergent loci, 22
showed statistically significant effects (Bonferroni corrected for
the 55 SNPs tested: α = 0.0009) across one or more of the six phe-
notypes tested. Depression shared the most convergent SNPs with
AUD and SCZ, with 10 of the 55 lead SNPs having p < 0.0009
in the depression GWAS. In the subset of 8 divergent SNPs
with p < 0.05 in both AUD and SCZ, 3 were significantly
associated (α = 0.00625) in one or more of the other GWAS. In
particular, cigarettes per day showed a strong association
( p = 1.2 × 10−123) with rs8042374, an intronic variant in the
CHRNA3 gene which exerts an effect in the same direction for
both the AUD and cigarettes per day GWAS and in the opposite
direction of effect for the SCZ GWAS.

Psychological Medicine 1199

https://doi.org/10.1017/S003329172100266X Published online by Cambridge University Press

https://www.nealelab.is/uk-biobank
https://www.nealelab.is/uk-biobank
https://www.nealelab.is/uk-biobank
https://doi.org/10.1017/S003329172100266X


Genetically regulated gene expression analyses

Of the 22 genes that survived Bonferroni correction (for the num-
ber of genes tested; pSMR <1.16 × 10−5), SMR analyses in the
European-ancestry sample identified 12 convergent genes whose
cross-disorder associations with AUD and SCZ were consistent
with mediation via gene expression in the prefrontal cortex
(PFC; the remaining 10 genes with pSMR <1.16 × 10−5 had
pHEIDI <0.05, indicating pleiotropy outlier status; Figure 2; signifi-
cant results in online Supplementary Table S15; full results in
online Supplementary Table S16).

Differential gene expression enrichment analyses

Neither the convergent nor divergent genes identified in the
European-ancestry sample were enriched in differential gene
expression analyses of postmortem PFC tissue of individuals
with SCZ (Ncases = 258) v. controls or of AUD (Ncases = 65) v.
controls.

Genetic covariance and correlation

There was a significant positive genetic correlation (rg) between
AUD and SCZ (rg = 0.392, p = 1.2 × 10−42). In sensitivity tests,
the negative control measure of chronic ischemic heart disease
was not significantly correlated with AUD but height showed a
small negative correlation (rg =−0.093, S.E. = 0.021, p = 7.54 ×
10−6). SCZ showed a nominal genetic correlation with heart dis-
ease (rg =−0.063, S.E. = 0.029, p = 0.032), but none with height.

LDSC-SEG (Finucane et al., 2018) analyses that partitioned
heritability enrichment by tissue-specific gene expression revealed
significant enrichment for SCZ in three of 13 brain regions: the
cortex, frontal cortex, and anterior cingulate cortex (FDR q-values
<2 × 10−5), and for AUD in the anterior cingulate cortex (FDR
q-value = 0.007; online Supplementary Fig. S6).

The genetic covariance (ρg) of AUD and SCZ was significantly
attributable both to functional regions of the genome ( p = 1.0 ×
10−8), including those specifically functional in brain tissues
( p = 0.001; see Fig. 3a, online Supplementary Table S17) and
non-functional regions ( p = 1.5 × 10−19; online Supplementary
Table S18), as well as all minor allele frequency quartiles except
the lowest frequency quartile ( p = 2.9 × 10−5–3.9 × 10−9; online
Supplementary Table S19). While the point estimate of genetic
covariance was highest in genes functional in immune tissues
(ρg = 0.017), this estimate had a relatively large standard error
(0.007) and did not reach significance after multiple testing cor-
rections. There were no significant findings when partitioning
the genetic covariance between AUD and height or SCZ and
heart disease into tissue-specific categories with GNOVA.

Because the genetic covariance of AUD and SCZ was signifi-
cantly concentrated in brain tissues, we partitioned it further
into 13 specific brain regions. We found significant concentra-
tions of genetic covariance in all 13 brain regions tested,
with the greatest concentrations in the anterior cingulate
cortex ( p = 7.6 × 10−12), frontal cortex ( p = 3.3 × 10−9), cortex
( p = 1.2 × 10−7), and amygdala ( p = 3.1 × 10−9; online
Supplementary Table S20, Fig. S3b).

Discussion

The prevalence of AUD is elevated in those with SCZ, relative to
the general population. Although environmental factors likely

play a large role in this comorbidity, there is some evidence
that shared genetic influences may also contribute, with recent
large GWAS of AUD documenting robust genetic correlations
between AUD and SCZ (Zhou et al., 2020b). Utilizing a subset-
based meta-analytic approach, our cross-disorder analysis of
AUD and SCZ identified 55 convergent loci with the same direc-
tion of effect on AUD and SCZ and eight divergent loci with
opposite directions of effect that had lead SNPs with p < 0.05 in
both individual disorders. The genetic covariance between AUD
and SCZ was concentrated in genes functional in the brain, and
eQTL analyses of the convergent subset of variants identified 12
genes whose association with AUD and SCZ may be mediated
via gene expression in brain tissues.

In contrast to the robust genetic correlation between AUD and
SCZ, prior studies have found that SCZ is uncorrelated with mea-
sures of typical alcohol consumption (e.g. with drinks/week, rg =
0.01, p = 0.67 (Liu et al., 2019)) or frequency of use (Marees et al.,
2020). Genetic correlations with indices that encompass heavy
episodic drinking, such as the consumption sub-scale of the
Alcohol Use Disorders Identification Test (AUDIT-C), are also
lower (rg =−0.0003−0.04) (Kranzler et al., 2019; Sanchez-Roige
et al., 2019) than those noted for AUD. A recent study suggests
that indices of socioeconomic status may influence genetic corre-
lations between measures of substance use and psychopathology
(Marees et al., 2021); however, even after co-varying for SES,
the genetic correlation between alcohol frequency and SCZ
remained non-significant. The genetic correlation between drinks
per week and SCZ remained significant and relatively unchanged
(rg = 0.14–0.16), but markedly lower than the AUD-SCZ genetic
correlation. This suggests that SCZ shares genetic variation pri-
marily with the psychopathological aspects of problem drinking
and AUD. Future studies that employ symptom-level GWAS, or
GWAS of clinically relevant phenotypes (e.g. negative symptoms
of SCZ), may yield further insights into whether this genetic over-
lap is specific to certain symptoms or aspects of these psychiatric
disorders.

The top divergent SNP, rs13135092, in an intron of SLC39A8,
was strongly associated with both AUD ( p = 4.9 × 10−18) and SCZ
( p = 7.9 × 10−16), with the A allele exerting a risk-increasing effect
on AUD and a protective effect on SCZ. Comparison of summary
statistics for over 4756 traits (Watanabe et al., 2019) indicated that
the A allele was also associated with greater alcohol consumption,
greater risk-taking, higher waist-hip ratio, lower bioelectrical
impedance (i.e. greater adiposity) and higher systolic blood pres-
sure, consistent with the direction of genetic association between
these measures and AUD. However, the A allele was also asso-
ciated with increasing cognitive performance, higher intelligence
and with higher educational attainment – while the direction of
these effects is consistent with the ‘protective’ effect of the A allele
on risk for SCZ, it contradicts prior research showing an inverse
genetic correlation between educational attainment and AUD.
Given the convergent direction of associations with AUD and
alcohol consumption, risk-taking, and cardio-metabolic traits,
but divergent direction of associations with SCZ and cognition,
we speculate that the A allele of rs13135092 may be related to
milder AUD, typified by positive reward-related drinking and
impulsivity that is effectively regulated by enhanced cognitive
functioning.

Our top convergent SNP, rs6589386, is intergenic and is an
eQTL for DRD2 in cerebellar hemisphere tissue; DRD2 has
been implicated in both AUD (Kranzler et al., 2019) and SCZ
(Consortium, 2014) GWAS. In addition to AUD and SCZ, this
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variant has been implicated in GWAS of neuroticism (Baselmans
et al., 2019), subjective well-being (Baselmans et al., 2019), alcohol
consumption (Liu et al., 2019), and cigarette smoking (Liu et al.,
2019).

Consistent with recent reports demonstrating broad levels of
pleiotropy amongst psychiatric disorders (Lee et al., 2019), includ-
ing substance use disorders (Hatoum et al., 2021), we found that
22 of the 55 top convergent SNPs and three of the eight divergent
SNPs showed at least nominal significance across one or more of
the six psychiatric disorders and substance use traits that we
assessed. Depression showed the greatest extent of overlap with
the convergent SNPs, with 10 of the 55 convergent SNPs having
p < 0.0009 in the depression GWAS and only one of those exerting
a different direction of effect relative to AUD and SCZ. Of the
eight top SNPs in the divergent subset, both cigarettes per day
and opioid use disorder were significantly ( p < 0.00625) asso-
ciated with two of those SNPs, with both variants showing the
same direction of effect as for AUD (and opposite direction of
effect from SCZ), again consistent with the pleiotropy observed
among different substance use traits. While there may be individ-
ual loci and pathways that contribute uniquely to AUD and SCZ,
it is evident that much of this genetic overlap may also be shared
with other psychiatric disorders and substance use traits.

SMR eQTL analyses suggest that the effects of pleiotropic var-
iants on AUD and SCZ may be mediated by expression levels of
several genes in the prefrontal cortex (PFC; Figure 2). Several of
the identified genes were previously implicated in GWAS of meta-
bolic traits [including NAT8, TRPS1 (up-regulated), BAG5,
PPP1R13B (down-regulated)], immunological traits (e.g. RERE,
TRPS1, both up-regulated) and psychiatric phenotypes (e.g.
up-regulated: LRP8, down-regulated: PPP1R13B). The data cur-
rently available do not permit examination of whether these find-
ings extend to other brain regions.

We found no evidence for enrichment of genes pleiotropically
associated with both AUD and SCZ when considering genes dif-
ferentially expressed in the brains of individuals with AUD or
SCZ (compared to respective controls). Unlike the SMR eQTL
analysis described above, which reflects the genetically regulated
portion of gene expression, the differential gene expression mea-
sured in autopsy samples likely reflects pathological consequences
of the disorders (AUD and SCZ) and their treatments. However,
our lack of findings could be due to limited statistical power in the
RNAseq whole-genome transcriptome datasets, especially the
post-mortem sample of individuals with AUD (Ncases = 65).

There are several limitations of the current study. First, nearly
all GWAS, gene expression reference datasets, and other bioinfor-
matic resources are based on European-ancestry samples. Our
African-ancestry GWAS samples were under-powered relative to
the European-ancestry samples, and the SCZ sample more so
than the AUD sample. Likely due to the statistical power differen-
tial, the African-ancestry results appeared to be driven almost
entirely by the larger AUD GWAS. One of our motivations for
conducting this cross-disorder analysis is to reduce inequity in
downstream analyses of non-European populations; the genome-
wide summary statistics from our cross-disorder GWAS could be
used to generate PRS in independent cohorts of African-ancestry
participants. Our findings underscore the need for vastly larger
African-ancestry samples for studies of severe psychiatric condi-
tions. Second, given the available data, we were limited to studying
common genetic variation (minor allele frequencies >1%); thus,
there may be rare variants of importance underlying the
comorbidity between AUD and SCZ that are outside the scope
of the current study. Third, in our sensitivity analysis, we found
a significant negative genetic correlation between AUD and height
(rg = −0.093, S.E. = 0.021, p = 7.54 × 10−6), which is likely driven in
part by the large sample sizes and polygenic nature of both traits,

Fig. 2. Genes in the convergent subset whose association with AUD and SCZ may be mediated by gene expression in the prefrontal cortex, analyzed using SMR.
Genes in red show up-regulated gene expression, and genes in blue show down-regulated gene expression. The 12 labeled genes are significant after Bonferroni
corrections and were not excluded as pleiotropic outliers (HEIDI-outlier method p > 0.05).
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though there is some evidence for this relationship in the litera-
ture. One previous study found a negative genetic correlation
between alcohol consumption and childhood height in males
(Clarke et al., 2017) (rg =−0.23, p = 0.002) and another study
found a negative correlation between problematic alcohol use
and comparative height at age 10 (rg =−0.09, p = 7.3 × 10−5),
though this was not significant when a Bonferroni correction
was applied for the 715 traits tested (Zhou et al., 2020b).
Another limitation of our cross-sectional design is that we are
unable to establish whether shared genetic influences, as identi-
fied in this and previous studies, are causal factors for the
comorbidity of AUD and SCZ. While we focused exclusively on
genetic factors that influence the risk of AUD and SCZ, social
and environmental factors are likely to play at least as large a
role as genetic ones in the development and co-occurrence of
these disorders, and our findings should be interpreted in light
of this. Finally, while most of the AUD samples were screened
for SCZ, some individuals among the SCZ samples very likely
also had AUD. These potential cases of unknown comorbidity
could have biased our estimates of genetic correlation and pleio-
tropic loci. Unfortunately, there are no data currently available on
which SCZ samples were screened for substance use disorders to
permit an estimation of such a bias.

While prior cross-disorder studies have provided foundational
results for common psychiatric disorders, ours is amongst the first
studies to focus on identifying pleiotropic loci for a substance use
disorder, AUD, and SCZ. To understand the shared biology
between substance use disorders and other psychiatric disorders,
future efforts must include large numbers of individuals with

AUD or problematic alcohol use rather than simple measures of
consumption.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003329172100266X.
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