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This study investigates the strong influence of a splitter plate on two- and three-
dimensional wake transitions of a circular cylinder. Direct numerical simulations and
Floquet analyses are conducted over a parameter space including Reynolds numbers (Re)
of 10–480 and non-dimensional plate lengths (L/D) of 0–6. With the increase in L/D,
the critical Re for the onset of vortex shedding (Recr2D) increases monotonically. The
delayed onset of vortex shedding with elongation of the body is physically explained.
The critical Re for the onset of three-dimensionality (Recr3D) and the three-dimensional
wake instability modes and structures are also significantly altered by the splitter plate.
Compared with an isolated cylinder, the Recr3D for L/D = 1 is significantly reduced via
a long wavelength mode, whereas the Recr3D for L/D = 2–6 is significantly increased
via other modes. For each L/D, with increasing Re over the wake transition process, the
spanwise wavelength of the wake structure gradually decreases, and the wake structure
becomes increasingly chaotic. The strong influence of the splitter plate on the formation
of the primary vortices and three-dimensional wake structures alter the hydrodynamic
characteristics strongly. In particular, optimal lift reduction is achieved at L/D ∼ 1. In
addition, the existence/absence of a hysteresis effect at the onset of three-dimensionality
is identified by three methods. Among which, the method involving the Landau equation
may be contaminated by initial transients induced by stable Floquet modes and may thus
lead to a false conclusion on the existence/absence of hysteresis.
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H. Jiang

1. Introduction
Steady incoming flow past a smooth circular cylinder has been a classical problem
in fluid mechanics owing to its fundamental significance and extensive practical
applications (Zdravkovich 1997). Although this canonical scenario is governed by a single
dimensionless parameter, i.e. the Reynolds number Re (= UD/ν, where U is the velocity
of the incoming flow, D is the diameter of the cylinder and v is the kinematic viscosity of
the fluid), several flow transitions and flow regimes have been observed (e.g. Williamson
1996; Zdravkovich 1997). These include

(i) onset of two-dimensional (2-D) vortex shedding at Re ∼ 47, where the wake starts to
display the classical primary (Kármán) vortex street;

(ii) onset of three-dimensionality at Re ∼ 190, where a relatively large-scale three-
dimensional (3-D) wake structure (called mode A, with a spanwise period of ∼4D)
develops between adjacent primary vortices;

(iii) a gradual transition from mode A to a finer-scale 3-D structure (called mode B, with
a spanwise period less than 1D) over Re ∼ 230–260;

(iv) successive transitions to turbulence in the wake, the separating shear layer and the
boundary layer at Re ∼ 270, 1200 and 2 × 105, respectively.

The flow regimes/transitions and the associated flow characteristics and hydrodynam-
ic/aerodynamic behaviours of the body may be altered via various flow control techniques
(Choi, Jeon & Kim 2008). Examples of passive control include attaching splitter plates to
the cylinder (Roshko 1954, 1961; Apelt, West & Szewczyk 1973; Kwon & Choi 1996),
adding small control cylinders (Strykowski & Sreenivasan 1990; Wang, Zhang & Wu
2006; Marquet, Sipp & Jacquin 2008) or other small bodies (Prasad & Williamson 1997)
near the main cylinder, changing the surface roughness on the cylinder (Shih et al. 1993),
etc. Examples of active control include applying various blowing/suction patterns on the
cylinder surface (Dong, Triantafyllou & Karniadakis 2008; Poncet et al. 2008; Feng &
Wang 2010), oscillating the cylinder in line with the incident flow (Xu, Zhou & Wang
2006), transverse to the incident flow (Williamson & Roshko 1988; Carberry, Sheridan &
Rockwell 2005) or about its axis (Tokumaru & Dimotakis 1991), among many others.
Although the flow control techniques may differ between one another, common purposes
include (i) suppression of vortex shedding, (ii) suppression/mitigation of the fluctuating
lift force and the associated vortex-induced vibration (VIV) (e.g. Cui, Feng & Hu 2022;
Sun et al. 2022) and acoustic noise (e.g. You et al. 1998; Duan & Wang 2021) and
(iii) drag force reduction.

One of the simplest yet effective flow control techniques in achieving the above-
mentioned three purposes is to attach a splitter plate to the rear end of the cylinder. This
arrangement delays the interaction between the two shear layers separated from the two
sides of the cylinder and affects the vortex formation pattern (Roshko 1955). The basic
scenario of a rear-attached splitter plate has also been extended upon by using e.g. a
detached plate in the wake (Roshko 1954; Ozono 1999; Hwang, Yang & Sun 2003; Serson
et al. 2014), dual rear-attached plates (Wang et al. 2019), a rear-attached wavy (Zhu &
Liu 2020) or flexible plate (Duan & Wang 2021), a front-attached plate (Qiu et al. 2014;
Chutkey, Suriyanarayanan & Venkatakrishnan 2018; Gao et al. 2019), both front- and rear-
attached plates (Qiu et al. 2014; Gao et al. 2019) and by using a rear-attached splitter
plate for bluff bodies other than a circular cylinder, e.g. a square cylinder (Ali, Doolan &
Wheatley 2011; Chauhan et al. 2018), an elliptic cylinder (Soumya & Prakash 2017) or
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Vortex shedding
Reference L/D Re Mean drag from cylinder

Roshko (1954) 5 1.45 × 104 Marked reduction Suppressed
Roshko (1961) 2.67 3.5 × 106–1 × 107 Small reduction Suppressed
Gerrard (1966) 0–2 2 × 104

Apelt et al. (1973) 0–2 1 × 104–5 × 104 Marked reduction
Apelt & West (1975) 2–7 1 × 104–5 × 104 Marked reduction Suppressed by L/D > 5
Kourta et al. (1987) 4.12 4.8 × 103 Marked reduction Suppressed
Anderson &
Szewczyk (1997)

0–1.75 3.5 × 104–4.6 × 104 Marked reduction

Qiu et al. (2014) 3 6.9 × 104–3 × 105 Marked reduction Suppressed
Gao et al. (2019) 0–2 3.33 × 104 Marked reduction

Table 1. Experimental studies for flow past a circular cylinder with a rear-attached splitter plate.

a half-ellipse with a blunt trailing edge (Bearman 1965). Most of the above-mentioned
scenarios produced various levels of reductions in the mean drag and/or fluctuating lift, as
well as alterations in the vortex shedding frequency.

The present study focuses on the most canonical scenario of a circular cylinder with a
rear-attached splitter plate. Early studies by Roshko (1954, 1961) examined both subcritical
and transcritical Re values, and showed that a splitter plate was effective in reducing the
mean drag and base pressure on the cylinder. For example, at a subcritical Re of 1.45
× 104, the use of a splitter plate with a non-dimensional length L/D = 5 resulted in
a marked reduction in the mean drag coefficient from 1.15 to 0.72 (Roshko 1954,1961).
Similar drag reduction behaviours were also observed by most of the experimental studies
summarised in table 1. In addition, Gao et al. (2019) also reported a significant reduction
in the fluctuating lift on the cylinder with L/D up to 2.

As for the influence on the vortex shedding, Apelt & West (1975) examined a range of
L/D = 2–7 and found that, for L/D > 5, vortex shedding from the cylinder was suppressed
by the plate, and instead vortex shedding developed from the trailing edge of the plate.
This phenomenon was also reported by Roshko (1961), Kourta et al. (1987) and Qiu et al.
(2014), where relatively long plates (L/D ≥ 2.67) were tested. In contrast, Gerrard (1966),
Apelt et al. (1973), Anderson & Szewczyk (1997) and Gao et al. (2019) examined cases
with L/D ≤ 2 and did not report suppression of vortex shedding from the cylinder. Instead,
Gerrard (1966), Apelt et al. (1973) and Anderson & Szewczyk (1997) focused on the
influence of L/D on the vortex shedding frequency, and found that the shedding frequency
was altered in a non-monotonic fashion with the increase in L/D.

While the experimental studies summarised in table 1 generally focused on the
range of Re � O(104), previous numerical studies, summarised in table 2, focused on
Re ∼ O(102–103) instead. Specifically, Kwon & Choi (1996), Vu, Ahn & Hwang (2016)
and de Araujo, Schettini & Silvestrini (2018) conducted 2-D numerical simulations and
quantified the influence of Re and L/D on the vortex shedding frequency and the marked
reductions in the mean drag and fluctuating lift coefficients. In addition, Serson et al.
(2014) and de Araujo et al. (2018) extended the numerical simulations to a few 3-D cases,
and examined the influence of Re and L/D on the vortex shedding frequency (but not on
the drag or lift coefficient). Although the 3-D results were limited to only a few cases on
the vortex shedding frequency, they suggested that the flow three-dimensionality played a
significant role in altering the hydrodynamic characteristics.
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Reference Dimensions L/D Re Mean drag Fluctuating lift

Kwon and Choi (1996) 2-D 0–8 80–160 Marked reduction
Vu et al. (2016) 2-D 0–6 60–240 Marked reduction Marked reduction
de Araujo et al. (2018) 2-D 0–4.5 100, 160 Marked reduction
Serson et al. (2014) 3-D 1 200, 300
de Araujo et al. (2018) 3-D 0–2 300, 1250

Table 2. Two- and three-dimensional numerical studies for flow past a circular cylinder with a rear-attached
splitter plate.

In addition, the Floquet analyses of Serson et al. (2014) and Wang et al. (2019), for the
cases of a detached splitter plate (with L/D = 1 and a gap between the cylinder and the plate
being G/D = 0.5–3) and dual-attached splitter plates, respectively, showed that different
types of placement of plates in the cylinder wake may significantly alter the critical Re for
the 3-D wake transition and the 3-D wake instability modes.

However, for the more canonical scenario of an attached splitter plate, there has been
no investigation in the literature on the onset of 3-D wake transition, (linear) 3-D wake
instability modes, (nonlinear) 3-D wake structures and the significant influence of the
three-dimensionality on the hydrodynamic characteristics (other than merely a few cases
on the vortex shedding frequency).

To address these knowledge gaps, the present study carries out a systematic investigation
on the influence of an attached splitter plate on the 2-D and 3-D wake transitions, 3-D wake
instability modes, 3-D wake structures and the influence of the three-dimensionality on the
hydrodynamic characteristics (e.g. the mean drag and fluctuating lift on the cylinder and
the splitter plate). A relatively large parameter space of Re = 10–480 and L/D = 0–6 is
examined, covering both the 2-D and 3-D wake transition regimes.

2. Numerical model

2.1. Numerical method
In the present study, the flow was solved by the direct numerical simulation (DNS)
framework embedded in the open-source code Nektar++ (Cantwell et al. 2015). The
governing equations for the flow were the continuity and incompressible Navier–Stokes
equations

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = −∇ p + ν∇2u, (2.2)

where u(x, t) = (ux, uy, uz)(x, y, z, t) is the velocity field, ux, uy and uy denote the
velocity components in the streamwise (x), transverse (y) and spanwise (z) directions,
respectively, p(x, t) is the kinematic pressure (pressure divided by fluid density), t is time
and ν is kinematic viscosity of the fluid. Equations (2.1) and (2.2) were solved by the
unsteady Navier–Stokes solver embedded in Nektar++, together with the use of a velocity
correction scheme (Karniadakis, Israeli & Orszag 1991), a second-order implicit–explicit
time-integration scheme and a continuous Galerkin projection. A high-order spectral
element method (Karniadakis & Sherwin 2005) was used for the x–y plane. For the 3-D
DNS, a Fourier expansion was used in the geometrically homogeneous spanwise direction
(Karniadakis 1990).
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Figure 1. Computational domain and mesh for the case of flow past a circular cylinder with a splitter plate
attached: (a) schematic model of the computational domain (not to scale), and (b) close-up view of the macro-
element mesh near the cylinder–plate system for the case L/D = 3. The splitter plate is highlighted in blue.

2.2. Computational domain and mesh
A hexahedral computational domain, as sketched in figure 1(a), was used for the 3-D DNS,
while the corresponding domain in the x–y plane was used for the 2-D DNS. A circular
cylinder was placed at (x, y) = (0, 0), while a splitter plate of zero thickness, as highlighted
in blue, was attached to the rear end of the cylinder. The boundary conditions for the
computational domain included a uniform velocity (ux, uy, uz) = (U, 0, 0) at the inlet and
transverse sides, a zero normal velocity gradient at the outlet and a no-slip condition at the
cylinder and plate surfaces. The boundary conditions for the pressure included a reference
value of zero at the outlet, and a high-order Neumann condition (Karniadakis et al. 1991)
at all other boundaries. For the 3-D DNS, periodic boundary conditions were employed
at the two boundaries perpendicular to the cylinder span. The internal flow followed an
impulsive start.

The computational mesh in the x–y plane consisted of approximately 10 000 macro-
elements. Figure 1(b) shows a close-up view of the macro-element mesh near the
cylinder–plate system for the case L/D = 3. Local mesh refinements were made around
the cylinder and plate. The cylinder surface was discretised with 64 macro-elements, while
the height of the first layer of elements next to the cylinder was 0.00553D. At the trailing
edge of the splitter plate, the element size was locally refined to 0.0667D × 0.0320D. To
capture detailed wake evolution along the streamwise direction, a relatively high resolution
was used in the wake region by specifying the streamwise size of the elements at the
wake centreline (y = 0) increasing linearly from 0.167D at x/D = (L/D + 1) to 0.5D
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Case description St CD,cyl C ′
L ,cyl CD,plate C ′

L ,plate

Np = 3 0.1230 0.8861 0.2002 −0.0523 1.2813
Np = 4 0.1230 0.8859 0.1992 −0.0522 1.2783
Np = 5 (Reference case) 0.1230 0.8859 0.1992 −0.0520 1.2782
Np = 6 0.1230 0.8859 0.1992 −0.0519 1.2782

Table 3. Results of the 2-D mesh dependence study for the case L/D = 4 and Re = 480.

at x/D = 30.5. The macro-elements were then subdivided using high-order Lagrange
polynomials on the Gauss–Lobatto–Legendre points for the quadrilateral expansions.
Fifth-order polynomials (Np = 5) were used for the 2-D DNS and Floquet analysis, while
fourth-order polynomials (Np = 4) were used for the 3-D DNS. The non-dimensional
time-step size �tU/D was 0.0025 for Np = 5 and 0.004 for Np = 4, which corresponded
to a Courant–Friedrichs–Lewy limit of no more than 0.6.

2.3. Mesh convergence
A mesh dependence study was performed based on the case L/D = 4 and Re = 480 (the
largest Re considered in the present study). Firstly, 2-D DNSs were used to examine the
adequacy of the mesh resolution in the x–y plane. In additional to the reference case with
Np = 5, three variation cases with Np = 3, 4 and 6 were computed. Table 3 lists the
numerical results predicted by different mesh resolutions. The Strouhal number (St) for the
cylinder–plate system and the drag and lift coefficients (CD and CL) on the cylinder/plate
are calculated as

St = fL D

U
, (2.3)

CD = FD

1
2
ρU 2 D

, (2.4)

CL = FL

1
2
ρU 2 D

, (2.5)

where f L is the peak frequency obtained from the fast Fourier transform of the time history
of CL, while FD and FL are the drag and lift forces on the cylinder/plate (per unit span
length). The time-averaged drag and lift coefficients are denoted CD and CL , respectively.
The root-mean-square lift coefficient (C ′

L ) is calculated as

C ′
L =

√√√√ 1
N

N∑
i=1

(
CL ,i − CL

)2
, (2.6)

where N is the data length in the time history of CL. The forces on the cylinder and plate
are distinguished by the subscripts ‘cyl’ and ‘plate’, respectively. As shown in table 3, the
hydrodynamic forces predicted with Np ≥ 4 are practically unchanged, which suggested
that the mesh resolution in the x–y plane was adequate.

The 3-D mesh dependence study focused on the adequacy of the spanwise domain
length (Lz/D = 16) and spanwise resolution (128 Fourier planes) used for the reference
case. Two variation cases were considered.

1014 A28-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
26

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10267


Journal of Fluid Mechanics

Case description St CD,cyl C ′
L ,cyl CD,plate C ′

L ,plate

Reference case 0.126 0.876 0.169 −0.0654 1.066
Increase in spanwise domain length 0.126 0.876 0.166 −0.0650 1.045
Increase in spanwise resolution 0.126 0.876 0.165 −0.0655 1.041

Table 4. Results of the 3-D mesh dependence study for the case L/D = 4 and Re = 480.

Case description St CD,cyl C ′
L ,cyl CD,plate C ′

L ,plate

Lz/D = 16 0.156 1.073 0.108 −0.0156 0.0936
Lz/D = 32 (Reference case) 0.154 1.073 0.0646 −0.0156 0.0558
Lz/D = 64 0.154 1.073 0.0526 −0.0156 0.0454

Table 5. Results of the Lz dependence study for the case L/D = 1 and Re = 180.

(i) Variation case 1: the spanwise domain length was increased by 1.5 times to Lz/D =
24, while the spanwise resolution was unchanged (i.e. 192 Fourier planes for Lz/D =
24); and.

(ii) variation case 2: the spanwise resolution was increased by 1.5 times through using
192 Fourier planes over Lz/D = 16.

For each 3-D case, at least 400 non-dimensional time units (defined as t∗ = tU/D) were
used to wash out the initial transients. After that, at least another 500 time units were
used for the statistics. Table 4 lists the hydrodynamic coefficients calculated with the three
cases. The close agreement in the coefficients suggested that the spanwise domain length
and resolution used by the reference case were adequate.

For L/D ≤ 0.5 and L/D ≥ 4, the most unstable spanwise wavelengths of the 3-D wake
instability modes predicted by the Floquet analysis (to be presented in § 4) were no more
than 4.11D, such that the use of Lz/D = 16 for the 3-D DNS accommodated at least three
spanwise periods of the unstable mode, which was deemed adequate (Jiang, Cheng & An
2017). For L/D = 1–3, however, the most unstable wavelengths for the 3-D wake instability
modes were more than 10D, such that an increased Lz/D of 32 was used (together with the
use of 256 Fourier planes so as to keep the spanwise resolution unchanged). The adequacy
of Lz/D = 32 was examined based on the case L/D = 1 and Re = 180 (the smallest Re for
the 3-D DNS of L/D = 1, where the unstable wavelength was the largest). Table 5 lists the
hydrodynamic coefficients obtained with Lz/D = 16, 32 and 64, which suggested that the
use of Lz/D = 32 was adequate.

3. Onset of vortex shedding
For an isolated circular cylinder, the 2-D vortex shedding emerges as a result of a Hopf
bifurcation at a critical Re (Recr2D) of approximately 47 (e.g. Henderson 1997). Similarly,
figure 2 quantifies the Recr2D values for a circular cylinder with a no-slip splitter plate
of L/D = 0–6. The Recr2D for each L/D is determined by the method introduced in
Appendix A. As shown in figure 2, with the increase in L/D, the Recr2D value increases
monotonically (but not linearly). Since the Recr2D–L/D relationship is not reported in
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Figure 2. Critical Re for the onset of vortex shedding for a circular cylinder with a rear-attached splitter plate
of either no-slip or slip boundary condition.

the literature, the present Recr2D–L/D relationship is compared with the Recr2D–L/D
relationship for a slightly different scenario by Sahu, Furquan & Mittal (2019), whose
rear-attached splitter plate had a finite thickness of 0.2D (in contrast to a zero thickness
plate for the present study). Although the results do not match quantitatively due to the
use of different plate thicknesses, the Recr2D–L/D relationship by Sahu et al. (2019) also
showed a monotonic but nonlinear increase in Recr2D, which is qualitatively similar to the
variation trend of the present Recr2D–L/D relationship.

For the present scenario with different L/D values, figure 3(a–d) illustrates instantaneous
spanwise vorticity (ωz) fields at Re slightly above Recr2D, where ωz is defined in a non-
dimensional form as

ωz =
(

∂uy

∂x
− ∂ux

∂y

)
D

U
. (3.1)

With the increase in L/D, the streamwise location of vortex shedding is pushed further
downstream. Physically, the splitter plate is a boundary with a no-penetration condition
(uy = 0) and a no-slip condition (ux = 0). The two conditions induce an increase in Recr2D
with increase in L/D through two effects.

(i) Effect of the no-penetration condition. The shear layers separated from the two sides
of the cylinder are gradually weakened with distance downstream (e.g. the vorticity
in the shear layer gradually reduces with distance downstream). When the instability
of the separating shear layers and the formation and shedding of the vortices are
restricted by the no-penetration condition of the plate and are forced to develop
further downstream with increasing L/D, the separating shear layers at the location of
vortex shedding are further weakened. Therefore, an increased Recr2D is required for
the shear layers to gain more strength to roll up into vortices.

(ii) Effect of the no-slip condition. The shear layers developed on the two sides of the
no-slip plate are of opposite sign of vorticity to the shear layers separated from the
cylinder (figure 3a–d) and further weaken the latter, which induces a further increased
Recr2D for the generation of vortices.
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Figure 3. Instantaneous spanwise vorticity fields at Re slightly above Recr2D: (a) (L/D, Re) = (0.5, 60),
(b) (L/D, Re) = (1, 70), (c) (L/D, Re) = (3, 110), (d) (L/D, Re) = (6, 180), (e) (L/D, Re) = (5, 120) with a
slip splitter plate and (f ) (L/D, Re) = (5, 130) with a slip splitter plate.

To quantitatively reveal individual contribution of the no-penetration condition and no-
slip condition, we introduce a specifically designed case with a splitter plate using a
slip boundary condition (∂ux/∂y = 0, uy = 0 and a high-order Neumann condition for
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the pressure). By replacing the no-slip plate with the slip plate, the no-slip condition is
removed whereas the no-penetration condition is preserved. The Recr2D values for the
cases with no-slip and slip plates are both shown in figure 2. For the slip plate cases, the
focus is placed on L/D ≤ 4, because for L/D = 5 an additional flow regime is observed
in between of the steady regime (Re � 110) and the vortex shedding regime (Re � 125;
figure 3f ), over which the separating shear layers display a low-frequency (∼1/6 times the
vortex shedding frequency) periodic flapping behaviour, without generation of vortices
(figure 3e). As shown in figure 2, the cases with the slip plate (the red curve) divide the
increase in Recr2D (the shaded area) into two parts. The darker area represents the increase
in Recr2D induced by the no-penetration condition, while the lighter area represents the
further increase in Recr2D induced by the no-slip condition. The contribution by the no-
penetration condition is more significant (which accounts for ∼60 %–70 % of the increase
in Recr2D), while the no-slip condition also plays an important role.

It is worth noting that, in the present context, the onset/suppression of vortex shedding
quantified in figure 2 is with respect to the entire cylinder–plate system, which is different
from the ‘suppression’ of vortex shedding from the cylinder and a transfer of vortex
shedding to the trailing edge of the plate reported by Roshko (1961), Apelt & West (1975),
Kourta et al. (1987) and Qiu et al. (2014) with Re � O(104) and relatively long plate
lengths (L/D ≥ 2.67). When the vortex shedding is directed away from the cylinder by the
plate, the effect of vortex shedding on the cylinder is weakened but not fully eliminated.
This feature is reflected by a reduction (but not suppression) in the fluctuating lift on the
cylinder shown later on in figure 17(b). The ‘suppression’ of vortex shedding from the
cylinder reported by the experimental studies of Roshko (1961), Apelt & West (1975),
Kourta et al. (1987) and Qiu et al. (2014) may be better interpreted as a mitigation of the
effect of vortex shedding on the cylinder.

4. Three-dimensional wake transition
Beyond a specific critical Re for the onset of three-dimensionality (denoted Recr3D), 3-D
flow structures develop in the wake and may alter the hydrodynamic forces on the cylinder
and the plate. In this section, the 3-D wake transitions for L/D = 0–6 are examined through
both Floquet stability analysis and 3-D DNS. The Floquet analysis, which follows that
reported by Barkley & Henderson (1996), is used to determine the Recr3D value for the
onset of three-dimensionality and to identify the 3-D wake instability modes. Figure 4
summarises the critical Re and spanwise wavelength (λ) for the 3-D wake instability modes
determined by the Floquet analysis. With the increase in L/D, the first 3-D wake instability
mode observed at Recr3D changes in the sequence of (i) mode A for L/D = 0–0.5, (ii) mode
AL for L/D = 1, (iii) mode BL for L/D = 2–3 and (iv) mode QP3 for L/D = 4–6. For modes
AL and BL, the first letter represents a spatio-temporal symmetry pattern similar to that
for mode A or B for an isolated cylinder, i.e.

Symmetry pattern of the mode A type

ωx (x, y, z, t) = −ωx (x, −y, z, t + T/2) . (4.1)

Symmetry pattern of the mode B type

ωx (x, y, z, t) = ωx (x, −y, z, t + T/2) , (4.2)

where ωx is the streamwise vorticity defined in a non-dimensional form as

ωx =
(

∂uz

∂y
− ∂uy

∂z

)
D

U
, (4.3)
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Figure 4. Floquet analysis results for various L/D conditions: (a) critical Re for the 3-D wake instability
modes, and (b) critical λ/D for these modes.

and T is the vortex shedding period. The second letter, L, indicates a long spanwise
wavelength (of more than ten times larger than that for the conventional mode A or
B for an isolated cylinder, see figure 4b). In addition, three quasi-periodic (QP) modes
are observed for the cases with a splitter plate, which are named QP1, QP2 (for L/D
= 0.5) and QP3 (for L/D = 4–6). It is worth noting that the Recr3D values and 3-D
wake instability modes summarised in figure 4 for the present scenario with an attached
splitter plate are significantly different from those reported by Serson et al. (2014) and
Wang et al. (2019) for the scenarios with other types of placement of plates in the
cylinder wake (a detached splitter plate and dual-attached splitter plates, respectively),
which demonstrates the necessity of the present investigation.

In addition to the Floquet analysis, 3-D DNSs are used to reveal the unstable modes
and overall wake structures for the real 3-D flows, and to obtain statistically stationary
hydrodynamic forces over the 3-D wake transition regimes. For each 3-D case, the
statistical time period spans at least 400 non-dimensional time units, after discarding an
initial transient period of at least another 400 time units.

Owing to the significant variations in the 3-D wake instability modes and the critical
Re and λ/D values with L/D (figure 4), the Floquet analysis and 3-D DNS results for
L/D = 0–0.5, 1, 2–3 and 4–6 are presented separately in §§ 4.1–4.4, respectively.

4.1. Three-dimensional results for L/D = 0–0.5
The 3-D results for L/D = 0.5 are relatively similar to those for an isolated cylinder, and
are therefore reported first. Figure 5(a) shows the dependence of the dominant Floquet
multiplier μ on the spanwise wavenumber β (= 2π/λ) for several Re values, where four
wake instability modes are detected. Based on the |μ|–β relationships predicted at a
number of Re values, the neutral instability curves for the four modes are mapped out
in figure 5(b).

Figure 6 shows the streamwise perturbation vorticity fields for the four modes. The
perturbation patterns shown in figure 6(a,d), which display opposite signs and same sign
for the two sides of the wake centreline, respectively, agree with the patterns of modes A
and B for an isolated cylinder (see e.g. Carmo, Meneghini & Sherwin 2010). In addition,
the critical spanwise wavelengths for modes A and B, which are determined at the left tip
of the corresponding neutral curve (figure 5b) as 4.11D and 0.94D, respectively, remain
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Figure 5. Floquet analysis results for L/D = 0.5: (a) the |μ|–β relationships for several Re values, and (b) the
neutral instability curves for the 3-D wake instability modes.

similar to those of modes A and B for an isolated cylinder (e.g. 3.97D and 0.83D by
Posdziech & Grundmann (2001)). As for the critical Re values for modes A and B, the
present results of 219.6 and 266.2 are slightly larger than those for an isolated cylinder
(e.g. 190.2 and 261.0 by Posdziech & Grundmann (2001)), which suggests that a short
splitter plate is able to delay the onset of three-dimensionality slightly.

In addition to the synchronous modes A and B, two QP modes are observed for
L/D = 0.5 (figure 5). The streamwise perturbation vorticity fields for the two QP
modes display irregular arrangement of both signs at each side of the wake centreline
(figure 6b,c). The critical Re values for the two QP modes (262.3 and 267.9) are much
smaller than that for the QP mode of an isolated cylinder (e.g. 377 by Blackburn,
Marques & Lopez (2005)).

To further confirm the existence of the four unstable modes shown in figures 5 and 6, 3-D
DNSs are used to reveal their 3-D structures. The 3-D DNSs are performed with Re and
Lz (= λ) close to the left tip of each neutral instability curve (marked by + in figure 5b),
such that the wake is only unstable to one mode, and the 3-D structure is relatively regular.
Figure 7 shows the streamwise and spanwise vorticity structures corresponding to the four
modes. The modes A and B structures shown in figure 7(a,d) display out-of-phase and
in-phase sequences between the neighbouring streamwise vortices along the streamwise
direction, respectively, which are consistent with those for the modes A and B structures
for an isolated cylinder (see e.g. Williamson 1996). In contrast, the two QP structures
display travelling waves moving in the spanwise direction, which are similar to the QP
structure for an isolated cylinder reported by Blackburn et al. (2005). The travelling waves
for the QP modes explain the irregular patterns of the streamwise perturbation vorticity
fields shown in figure 6(b,c).

To allow for complex interactions among the wake instability modes, 3-D DNSs are
also performed with a sufficiently long spanwise domain length of Lz/D = 16, which
may accommodate four spanwise periods of the longest wavelength mode. As Re exceeds
Recr3D of 219.6, the first flow regime observed at Re = 220 and 230 is represented by the
development of four spanwise periods of ordered mode A structure (figure 8a), followed
by the development of vortex dislocations and disordered mode A structure in the fully
developed flow (figure 8b). With the increase in Re to 240 and 260, a mode swapping (over
time) between the relatively large-scale mode A structure and the finer-scale structures
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Figure 6. Streamwise perturbation vorticity fields for the case (L/D, Re) = (0.5, 280): (a) mode A predicted at
βD = 1.4, (b) mode QP1 predicted at βD = 2.7, (c) mode QP2 predicted at βD = 3.9 and (d) mode B predicted
at βD = 6.5. Red and blue denote positive and negative vorticity values, respectively.

(figure 8c) is observed. Owing to the influence of the mode A streamwise vortices and their
influence back onto the spanwise vortices (i.e. the base flow), the finer-scale structures
appear in the real 3-D flow earlier than their critical Re values predicted by the Floquet
analysis (at Re ≥ 262.3). As Re increases from 240 to 260, the dominant wake pattern
changes from the mode A structure to the finer-scale structures. A difference to the mode
swapping between modes A and B for the case of an isolated cylinder (Williamson 1996)
is that, for the case of L/D = 0.5, it is difficult to determine the types of modes for the
finer-scale structures, since mode B and the two QP modes become unstable to the base
flow at very similar Re values (figure 5b). Beyond the mode swapping regime, the present
DNSs show that the wakes of Re = 280–400 are always represented by the small-scale
structures (e.g. figure 8d). Regardless of the types of modes for the small-scale structures,
over this flow regime the wake becomes increasingly chaotic and turbulent.
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Figure 7. Instantaneous vorticity fields for the 3-D wake instability modes observed for L/D = 0.5: (a) mode A
structure at (Re, Lz/D) = (220, 4.0), (b) mode QP1 structure at (Re, Lz/D) = (263, 2.3), (c) mode QP2 structure
at (Re, Lz/D) = (270, 1.62) and (d) mode B structure at (Re, Lz/D) = (269, 0.94). The translucent iso-surfaces
represent spanwise vortices with |ωz | = 0.5, while the opaque iso-surfaces represent streamwise vortices with
|ωx | = 0.5, 0.1, 0.1 and 0.2 for panels (a–d), respectively. Dark grey and light yellow denote positive and
negative vorticity values, respectively. The flow is from left to right past the cylinder on the left.

4.2. Three-dimensional results for L/D = 1
The 3-D results for L/D = 1 are completely different from those for L/D = 0 and 0.5.
Figure 9(a) shows the first three unstable modes for L/D = 1 predicted by the Floquet
analysis, while figure 10 shows the streamwise perturbation vorticity fields for the three
modes. For L/D = 1, the first unstable mode is a long wavelength mode AL with a spatio-
temporal symmetry pattern of the mode A type (figure 10a). Figure 9(b) shows the neutral
instability curve for mode AL. Unlike conventional 3-D wake instability modes which
are unstable over a finite range of spanwise wavelengths (cf. e.g. figure 5), mode AL is
marginally unstable towards βD → 0 (figure 9a), i.e. λ/D → ∞ (figure 9b). The critical
Re for the onset of mode AL is well below 100, while the unstable wavelength λ/D is of the
order of 102. The emergence of the unconventional mode AL for L/D = 1 coincides with
the strong influence of a splitter plate of L/D = 1 in altering the base flow by directing the
vortex formation downstream of the plate.

In addition to mode AL, two additional synchronous modes are observed in figure 9(a),
and their spatio-temporal symmetry patterns are of the mode A and B types, respectively
(figure 10b,c). Nevertheless, the perturbation pattern shown in figure 10(c) is somewhat
different from that of the conventional mode B shown in figure 6(d). Although the three
synchronous modes observed in figure 9 may not represent a complete set of the unstable
modes over the wake transition regimes, Floquet analyses are limited to Re ≤ 200, because
(i) above this the real 3-D flow is expected to be governed by complex interactions of
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Figure 8. Instantaneous vorticity fields for L/D = 0.5: (a) Re = 220 (ordered mode A structure before
evolution to dislocations), (b) Re = 220 (disordered mode A structure in the fully developed flow),
(c) Re = 260 (disordered finer-scale structure) and (d) Re = 400 (increasingly disordered finer-scale structure).
The translucent iso-surfaces represent spanwise vortices with |ωz | = 0.5, while the opaque iso-surfaces
represent streamwise vortices with |ωx | = 0.07, 0.7, 0.7 and 1.0 for panels (a–d), respectively. Dark grey and
light yellow denote positive and negative vorticity values, respectively. The flow is from left to right past the
cylinder on the left.
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Figure 9. Floquet analysis results for L/D = 1: (a) the |μ|–β relationships for several Re values, and (b) the
neutral instability curve for mode AL.
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Figure 10. Streamwise perturbation vorticity fields for the case (L/D, Re) = (1, 180): (a) mode AL predicted at
βD = 0.3, (b) mode A predicted at βD = 1.44 and (c) a synchronous mode of mode B type symmetry pattern
predicted at βD = 1.68. Red and blue denote positive and negative vorticity values, respectively.

multiple modes rather than a single mode, and (ii) the 2-D base flow becomes aperiodic at
Re > 240, which prohibits a strict Floquet analysis.

To reveal complex mode interactions in the real 3-D flows, 3-D DNSs are performed
with Lz/D = 32. Although the onset of three-dimensionality is well below Re = 100, the
3-D DNSs are performed for Re ≥ 180, because

(i) In addition to mode AL, other modes identified by the Floquet analysis become
unstable at Re � 180 (figure 9a). Therefore, in the real 3-D flow, mode interactions
may be expected at Re � 180.

(ii) With the increase in Re, the critical λ/D for the mode AL instability decreases
significantly (figure 9b), such that a reduced Lz may be used for the DNS. At
Re = 180, the critical λ/D for the mode AL instability (= 12.8) is well below Lz/D =
32 used for the DNS. The adequacy of Lz/D = 32 for the present DNS is validated in
table 5 by an Lz dependence study at Re = 180.

Figure 11 illustrates the wake structures predicted by the 3-D DNS with Lz/D = 32.
At Re = 180, the wake is represented by one spanwise period of mode AL (figure 11a).
The periodicity of the mode AL structure is confirmed by an additional 3-D DNS with
Lz/D = 64, where two spanwise periods of mode AL are observed (not shown). With the
increase in Re to 190, a mixture of mode AL and the smaller-scale mode A (e.g. over
z/D ∼ 16–21 in figure 11b) is observed. The emergence of mode A in the real 3-D flow is
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Figure 11. Instantaneous vorticity fields for L/D = 1: (a) Re = 180 (one spanwise period of mode AL),
(b) Re = 190 (a mixture of modes AL and A), (c) Re = 200 (disappearance of mode AL) and (d) Re = 280
(chaotic fine-scale structures). The translucent iso-surfaces represent spanwise vortices with |ωz | = 0.5, while
the opaque iso-surfaces represent streamwise vortices with |ωx | = 0.15, 0.35, 0.4 and 0.7 for panels (a–d),
respectively.

consistent with the mode A instability predicted by the Floquet analysis at the critical Re of
186.8. With the further increase in Re to 200 and beyond, mode AL is no longer observed.
The wake is dominated by disordered smaller-scale (λ/D ∼ 5) mode A type structures
at Re = 200 (figure 11c) and even finer-scale structures (λ/D ∼ 1) over Re = 240–400
(figure 11d).

4.3. Three-dimensional results for L/D = 2–3
As L/D increases from 1 to 2, the onset of three-dimensionality is significantly delayed to
Recr3D > 320 (figure 4a). For L/D = 2 and 3, mode BL is the only unstable mode up to at
least Re = 400, and its neutral instability curve is presented in figure 12(b). Figure 12(a)
also reveals a marginally stable mode for L/D = 2 (not observed for L/D = 3). Based on a
curve fitting of the peak |μ| values for Re = 300–360, the largest |μ| value for this mode,
i.e. |μ| = 0.998 at Re = 331, is confirmed to be less than 1.0.

Figure 13 shows the streamwise perturbation vorticity fields for mode BL and the stable
mode. The symmetry pattern for mode BL (figure 13a) is similar to that of the conventional
mode B observed for L/D = 0–0.5 (e.g. figure 6d). However, mode BL differs from mode
B in that (i) its spanwise wavelength is more than ten times larger than that for mode B
(figure 4b), and (ii) the neighbouring streamwise vortices along the streamwise direction
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Figure 12. Floquet analysis results for L/D = 2 and 3: (a) the |μ|–β relationships for L/D = 2, and (b) the
neutral instability curves for the 3-D wake instability mode, i.e. mode BL.

4

0

–4
0 5 10 15 20 25 30

y/D

(a)

(b)
4

0

–4
0 5 10 15 20 25 30

y/D

x/D

Figure 13. Streamwise perturbation vorticity fields for the case (L/D, Re) = (2, 330): (a) mode BL predicted at
βD = 0.4, and (b) mode A predicted at βD = 2.0. Red and blue denote positive and negative vorticity values,
respectively.

are disconnected (figure 13a). As for the stable mode shown in figure 13(b), its pattern
resembles that of the conventional mode A (figure 6a), such that it is termed stable mode
A in figure 12(a). It is also noticed in figure 13 that the 3-D modes are mainly developed
based on the interactions of the neighbouring primary vortices that occur downstream of
the splitter plate, rather than based on the primary vortices initially generated on the two
sides of the plate. This phenomenon may contribute to the delayed 3-D wake transition for
L/D ≥ 2, as the strength of the primary vortices decays with distance downstream.

Figure 14 illustrates the overall wake structures for L/D = 2 predicted by the 3-D DNS
with Lz/D = 32. For Re slightly above the Recr3D of 325.5, e.g. at Re = 330, nine spanwise
periods of the stable mode A structure are observed at the initial stage of the simulation
(figure 14a). The spanwise wavelength of the stable mode A structure is approximately
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Figure 14. Instantaneous vorticity fields for L/D = 2: (a) Re = 330 (stable mode A structure before evolution
to mode BL), (b) Re = 330 (ordered mode BL structure in the fully developed flow), (c) Re = 400 (disordered
mode BL structure) and (d) Re = 480 (chaotic fine-scale structures). The translucent iso-surfaces represent
spanwise vortices with |ωz | = 0.5, while the opaque iso-surfaces represent streamwise vortices with |ωx | =
0.08, 0.2, 0.5 and 1.0 for panels (a–d), respectively.

3.6D, which is close to the most unstable wavelength predicted by the Floquet analysis
(i.e. 3.3D at Re = 330). With the evolution in time, the stable mode A structure decays
gradually. The gradual decay of the stable mode A structure over the initial stage is also
observed for Re = 320 (<Recr3D), which indicates that the stable mode A structure is
triggered by the initial disturbance prescribed in the domain for the generation of flow
three-dimensionality. Since the stable mode A is marginally stable (figure 12a), it may be
triggered by the initial disturbance but cannot persist indefinitely. As shown in figure 14(b),
the fully developed wake for Re = 330 is represented by two spanwise periods of ordered
mode BL structure, because mode BL is the only unstable mode (figure 12a). As Re
increases to 360, 400 and 440, the mode BL structure becomes increasingly disordered
(e.g. figure 14c), yet the symmetry pattern of mode BL is still visible. With the further
increase in Re to 480, the mode BL structure is no longer visible, and the wake is
represented by chaotic finer-scale structures (figure 14d).

4.4. Three-dimensional results for L/D = 4–6
While mode BL dominates the 3-D wake patterns for L/D = 2–3, it becomes a marginally
stable mode for L/D = 4 (figure 15a), and is no longer detected for L/D = 5 and 6
(omitted for brevity). For the mode BL peak observed in figure 15(a), a curve fitting of
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Figure 15. Floquet analysis results for L/D = 4–6: (a) the |μ|–β relationships for L/D = 4, and (b) the neutral
instability curves for the 3-D wake instability mode, i.e. mode QP3.

the peak |μ| values for Re = 340–400 indicates that the most unstable condition occurs at
Re = 368, with the largest |μ| value of 0.97, which confirms that mode BL is now stable.
For L/D = 4–6, the only unstable mode up to at least Re = 440 is a QP mode called QP3,
and its neutral instability curve is presented in figure 15(b).

Figure 16 shows the 3-D DNS results for L/D = 4, where the 3-D wake pattern is now
dominated by mode QP3. For Re slightly above the Recr3D of 352.8, e.g. at Re = 360,
six relatively ordered spanwise periods of the mode QP3 structure are observed in the
fully developed flow (figure 16a). The spanwise wavelength of the mode QP3 structure
is approximately 2.7D, which is close to the most unstable wavelength predicted by the
Floquet analysis (i.e. 2.9D at Re = 360). With the further increase in Re over 360–480, the
mode QP3 structure becomes increasingly disordered (figure 16).

4.5. Summary of the 3-D wake transition process
The Floquet analysis and 3-D DNS results presented in §§ 4.1 to 4.4 reveal significantly
different 3-D unstable modes and wake structures for different L/D conditions.
Nevertheless, the 3-D wake transition processes for different L/D conditions share some
general similarities. Specifically, over a certain range of Re above the Recr3D value, the real
3-D flow is dominated by the first unstable mode predicted by the Floquet analysis, which
is reasonable. With the increase in Re, the spanwise wavelength of the wake structure
gradually decreases, and the wake structure becomes increasingly chaotic. This process is
realised through either emergence of additional finer-scale unstable modes in the 3-D flow
(e.g. L/D = 0.5 and 1), or progressive irregularity and breakdown of the modal structure
itself (e.g. L/D ≥ 2). In any case, the wake is dominated by chaotic small-scale structures
(with λ/D � 1) at the largest Re simulated in this study, and the wake is expected to become
increasingly chaotic and turbulent with further increase in Re.

Over the wake transition process from two to three dimensions and eventually to chaos
and turbulence, the monotonic decrease in the spanwise wavelength of the 3-D wake
structures with increasing Re appears to be a common phenomenon in various bluff-
body flows. Other than the present scenarios, this phenomenon is also observed for
the flow around a circular cylinder (Jiang et al. 2016), a square cylinder with various
incidence angles (Yoon, Yang & Choi 2012; Jiang, Cheng & An 2018; Jiang 2021), a
rectangular cylinder with various cross-sectional aspect ratios (Ju & Jiang 2024), etc.
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Figure 16. Instantaneous vorticity fields for L/D = 4: (a) Re = 360, (b) Re = 380, (c) Re = 420 and
(d) Re = 480. The translucent iso-surfaces represent spanwise vortices with |ωz | = 0.5, while the opaque
iso-surfaces represent streamwise vortices with |ωx | = 0.3, 0.6, 1.0 and 1.0 for panels (a–d), respectively.

This phenomenon suggests that, with the increase in Re, new unstable Floquet modes
with decreasing (rather than increasing) spanwise wavelengths are much more likely to be
actually manifested in the real 3-D flow. Eventually, the small-scale 3-D wake structures
become increasingly chaotic with increasing Re, which facilitates evolution of turbulence
in the wake.

4.6. Variations in the hydrodynamic forces
The effects of flow three-dimensionality on the hydrodynamic forces are reflected by a
comparison of the forces computed by the 2-D and 3-D DNSs. Figure 17(a,b) shows the
mean drag and fluctuating lift on the cylinder for various L/D conditions. For the cases
with a splitter plate (i.e. L/D ≥ 0.5), the mean drag is hardly affected by the flow three-
dimensionality, while the fluctuating lift is affected to a greater extent. This is because
the fluctuating lift is completely induced by the alternate formation of the low pressure
regions in the near wake, such that it is more sensitive to the influence of the flow three-
dimensionality on the low pressure regions.

The effects of flow three-dimensionality on the fluctuating lift on the cylinder are
examined in detail. As shown in figure 17(b), for L/D = 0.5 and 1, the flow three-
dimensionality has a strong effect in reducing the fluctuating lift. In general, this effect
increases with increasing Re, because the increasingly finer-scale and chaotic 3-D wake
structures result in an increased degree of flow three-dimensionality. For L/D ≥ 2, however,
the effect of flow three-dimensionality on the lift reduction becomes rather weak (the
lift reduction induced by the flow three-dimensionality is less than 10 % of that induced
by the alteration of the 2-D flow by the splitter plate). With the increase in L/D from
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Figure 18. Hydrodynamic coefficients computed by the 3-D DNS at Re = 400: (a) the mean drag coefficient,
and (b) the root-mean-square lift coefficient.

1 to 2, the streamwise location for the formation of the primary vortices moves from
downstream of the splitter plate to the two sides of the plate. Nevertheless, the 3-D wake
structures are destabilised downstream of the plate based on the interaction of the primary
vortices of opposite signs (figure 13). Therefore, the low pressure regions, which govern
the fluctuating lift on the cylinder, are mainly shaped by the formation of the primary
vortices on the two sides of the plate, and are relatively less affected by the flow three-
dimensionality developed further downstream (in contrast to L/D ≤ 1 where the primary
vortices and the 3-D wake structures are both developed downstream of the plate).

For L/D ≤ 1, in addition to the relatively strong contribution of the 3-D wake structures
on the lift reduction, the relatively small Recr3D values also contribute to an early start
(in terms of Re) for the influence of flow three-dimensionality on the lift reduction, such
that, when compared at the same Re value, relatively large lift reductions are observed
for L/D ≤ 1. For example, after taking into account the 3-D effects, L/D = 0.5 may even
outperform L/D = 4 in the lift reduction (and the associated suppression/mitigation of the
VIV and acoustic noise).

Figure 17(c) examines the fluctuating lift on the plate. For each 3-D case, the flow three-
dimensionality results in almost identical percentage reductions in the fluctuating lift on
the cylinder and the plate. A combination of figure 17(b,c) suggests that the use of a plate of
L/D = 1 may suppress the fluctuating lift on the cylinder–plate system almost completely.

To reveal this optimal suppression more clearly, figure 18 shows the mean drag and
fluctuating lift coefficients computed by the 3-D DNS at a fixed Re of 400. The minimum
fluctuating lift is indeed observed at L/D = 1 (figure 18b). For L/D ∼ 0.5–1.3, the
fluctuating lift remains at a relatively small level, and the mean drag also displays a local
trough, which suggests good performance of the splitter plate over this range of L/D.

4.7. Hysteresis effect at the onset of three-dimensionality
The existence or absence of a hysteresis effect at the onset of three-dimensionality may be
identified by several methods, as summarised in table 6. With the availability of the 3-D
hydrodynamic forces shown in figure 17, the simplest method (method 1 in table 6) is to
identify the sudden or gradual variation in the 3-D forces at Recr3D. A sudden variation in
the forces arises from a sudden increase in the degree of three-dimensionality at Recr3D
due to a specific 3-D wake instability mode, which corresponds to a subcritical instability
(hysteretic condition) of the flow (Jiang et al. 2018). In contrast, a gradual variation in the
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Method L/D = 0 and 0.5 L/D = 2 L/D = 4

1. Based on sudden or gradual variation
in the forces at Recr3D

Hysteretic Non-hysteretic Non-hysteretic

2. Based on direct 3-D DNS of the
decreasing Re branch

Hysteretic Non-hysteretic Non-hysteretic

3. Based on the use of Landau equation Hysteretic Hysteretic (incorrect) Non-hysteretic

Table 6. Hysteresis effect at the onset of three-dimensionality identified by different methods.

forces at Recr3D corresponds to a supercritical instability (non-hysteretic condition) of the
flow (Jiang et al. 2018). As shown in figure 17, sudden variations in the forces at Recr3D are
observed for L/D = 0 and 0.5, which indicates that the corresponding mode A instability is
subcritical (hysteretic). In contrast, gradual variations in the forces at Recr3D are observed
for L/D = 2 and 4, which indicates that the corresponding modes BL and QP3 instabilities,
respectively, are both supercritical (non-hysteretic).

The hysteresis effect can also be confirmed by additional 3-D DNS of the decreasing
Re branch (method 2 in table 6), where a fully developed flow field with Re slightly above
Recr3D is employed as the initial condition, and additional DNSs with a stepwise decrease
in Re can reveal the critical Re below which the wake transitions back to two-dimensional.
To minimise the computational cost for this set of DNSs, the spanwise domain length
Lz may be set to the most unstable spanwise wavelength of the first 3-D wake instability
mode, such that only one spanwise period of the 3-D mode is resolved. For L/D = 0.5, the
initial condition for the additional 3-D DNS is a spanwise period of the mode A structure
obtained at Re = 220 (> Recr3D = 219.6), and a stepwise decrease in Re at an interval of 1
reveals the critical Re of 214 for the 3-D-to-2-D transition, which confirms that the mode
A instability is hysteretic. In contrast, the initial conditions of a spanwise period of mode
BL structure for L/D = 2 at Re = 326 (> Recr3D = 325.5) and a spanwise period of mode
QP3 structure for L/D = 4 at Re = 353.5 (> Recr3D = 352.8) both decay to two dimensions
after a decrease in Re by 1, which confirms that the modes BL and QP3 instabilities are
non-hysteretic.

The Landau equation (Landau & Lifshitz 1976) (method 3 in table 6) is also commonly
used in the literature for the identification of the hysteresis effect (e.g. Dušek, Le Gal &
Fraunié 1994; Henderson & Barkley 1996; Thompson, Leweke & Provansal 2001; Sheard,
Thompson & Hourigan 2004; Carmo et al. 2008). For the amplitude A(t) of a 3-D
perturbation mode, the Landau equation can be written up to third order as

dA

dt
= (σ + iω) A − l (1 + ic) |A|2 A + . . . , (4.4)

where σ is the linear growth rate of the perturbation, ω is the angular oscillation
frequency during the linear growth phase and c is the Landau constant. The l-coefficient is
determined by plotting d(log|A|)/dt against |A|2, where the slope of the curve near |A|2 = 0
gives –l. The hysteresis of the wake instability mode is determined based on the sign of
the l-coefficient, where a positive l corresponds to a non-hysteretic flow, while a negative l
corresponds to a hysteretic flow. More details on this method can be found in Dušek et al.
(1994), Sheard et al. (2004) and Carmo et al. (2008).

In the present study, the Landau equation is applied to the cases with Re slightly above
Recr3D and Lz close to the most unstable spanwise wavelength of the first 3-D wake
instability mode, i.e. (L/D, Re, Lz) = (0.5, 220, 4) for mode A, (2, 327, 13.67) for mode
BL and (4, 355, 2.91) for mode QP3. Figure 19(a–c) shows the time evolution of the mode
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Figure 19. Identification of the hysteresis effect using the Landau equation: (a) time evolution of the mode
amplitude |A| for the case (L/D, Re, Lz) = (0.5, 220, 4), (b) time evolution of |A| for the case (L/D, Re, Lz) =
(2, 327, 13.67), (c) time evolution of |A| for the case (L/D, Re, Lz) = (4, 355, 2.91) and (d–f ) the [d(log|A|)/dt]
–|A|2 relationships for the corresponding cases shown in panels (a–c), respectively.

amplitude |A|, which is measured from the envelope of the fluctuation of the spanwise
velocity sampled at (x/D, y/D) = (5, 1) and a z/D within the 3-D mode structure. Based on
the corresponding l-coefficient determined from figure 19(d–f ), the cases with L/D = 0.5,
2 and 4 are deemed hysteretic, hysteretic and non-hysteretic, respectively.

As summarised in table 6, the three methods lead to consistent conclusions for the cases
with L/D = 0, 0.5 and 4, but discrepancies for the case with L/D = 2. We believe that the
error lies in the use of the Landau equation for the case with (L/D, Re, Lz) = (2, 327, 13.67).
For this case, the flow is initialised with several spanwise periods of the marginally stable
mode A (figure 12a) structure, followed by the dominance of a spanwise period of the
unstable mode BL (figure 12a) structure at t∗ � 1000 (similar to the flow evolution shown
in figure 14a,b). Although the Landau equation is applied to the time range of t∗ � 1350
(figure 19b), which corresponds to the dominance of the unstable mode BL only, the time
evolution of |A| may still be contaminated by the initial development of the stable mode
A and lead to a false conclusion on the existence of hysteresis. In comparison, methods
1 and 2 are based on the fully developed flow only, and are thus unaffected by the initial
transients.

5. Conclusions
This paper investigates the 2-D and 3-D wake transitions, 3-D wake instability modes, 3-D
wake structures and 2-D and 3-D hydrodynamic characteristics for a circular cylinder with
a rear-attached splitter plate, over a parameter space of Re = 10–480 and L/D = 0–6.

With the increase in L/D, the Recr2D value increases monotonically. This is because
when the vortex shedding is forced to occur further downstream by the increase in L/D,
the separating shear layers at the location of vortex shedding are further weakened by
(i) the elongation of the separating shear layers, and (ii) the shear layers developed on the
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two sides of the no-slip plate. Therefore, an increased Re is required for the separating
shear layers to gain more strength to roll up into vortices.

The Recr3D value and the 3-D unstable modes and structures are also significantly altered
by the splitter plate. Compared with Recr3D = 189.8 for an isolated cylinder, the onset of
three-dimensionality is brought forward to Recr3D < 100 for L/D = 1 and significantly
delayed to Recr3D > 320 for L/D = 2–6. With the increase in L/D, the first 3-D unstable
mode/structure changes in the sequence of (i) mode A for L/D = 0–0.5, (ii) mode AL
for L/D = 1, (iii) mode BL for L/D = 2–3 and (iv) mode QP3 for L/D = 4–6. For each
L/D category, the 3-D wake transition process and mode interactions are revealed by the
DNSs. A general similarity is that the spanwise wavelength of the 3-D wake structures
decreases monotonically with increasing Re, which is realised through either emergence of
additional finer-scale unstable modes in the 3-D flow (e.g. L/D = 0.5 and 1), or progressive
irregularity and breakdown of the modal structure itself (e.g. L/D ≥ 2). Eventually, the
small-scale 3-D wake structures become increasingly chaotic with increasing Re, which
facilitates evolution of turbulence in the wake.

The strong influence of the splitter plate on the formation of the primary vortices and
3-D wake structures alter the hydrodynamic characteristics strongly. In particular, optimal
lift reduction is achieved at L/D ∼ 1 (rather than at very large L/D), and its physical reason
is explained based on the spanwise and streamwise wake structures and the Recr3D values
examined in this study.

At the onset of three-dimensionality, a hysteresis effect is identified for the mode A
instability for L/D = 0 and 0.5, but not for the modes BL and QP3 instabilities for L/D = 2
and 4, respectively. In addition, we discussed strength and limitation of the three methods
for the identification of the hysteresis effect (based on (i) sudden or gradual variation in
the forces at Recr3D, (ii) direct 3-D DNS of the decreasing Re branch and (iii) the use
of Landau equation). The first two methods draw conclusion from the fully developed
flow only, whereas the third method may be contaminated by initial transients induced by
stable Floquet modes and may thus lead to a false conclusion on the existence/absence of
hysteresis.

Funding. H.J. would like to acknowledge support from National Natural Science Foundation of China (Grant
No. 52301341).

Declaration of interests. The author reports no conflict of interest.

Appendix A. Method for the determination of Recr2D

For each L/D condition, the Recr2D is determined by the following three steps:
(i) computing the cases near the Recr2D at an interval of �Re = 1, (ii) calculating the
exponential growth/decay rate of the amplitude of CL for the two cases immediately before
and after the instability and (iii) determining the Recr2D at neutral instability (i.e. zero
growth/decay rate) through linear interpolation of the growth/decay rates.

For example, figure 20 shows time histories of CL for L/D = 0.5 and Re = 52
and 53, where the amplitude of CL displays exponential decay and exponential growth,
respectively. This feature suggests that Recr2D is within Re = 52–53. To determine the
precise value of Recr2D, the growth/decay rate of the amplitude of CL is quantified.
Specifically, the upper and lower envelopes of the time history of CL are each fitted with
an exponential function

CL = A exp(Bt∗) + C, (A1)
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Figure 20. Time history of CL for L/D = 0.5 and (a) Re = 52, and (b) Re = 53. The black curves show
exponential fitting of the upper and lower envelopes.
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Figure 21. Relationship between the growth/decay rate and the Reynolds number.

where A, B and C are curve fitting coefficients. After discarding the initial transients of
t∗ < 100, the coefficient of determination (denoted R2) for the fitted curves is 1.0000,
which suggests perfect exponential fitting. Based on the growth/decay rates B obtained at
Re = 52 and 53, figure 21 shows a linear fit of the B–Re relationship. The precise value of
Recr2D (= 52.67) can be determined at the zero growth/decay rate (B = 0).

It is worth noting that at Re close to Recr2D, the fully developed flow with vortex
shedding may be established after time evolution of a long period (with t∗ > 104), which
requires a significant computational cost. The merit of the present method is that it does
not require vortex shedding to be visualised. The precise Recr2D value can be determined
at t∗ well within 103.
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