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Abstract

For a prime p and a rational elliptic curve E/Q, set K = Q(E[p]) to denote the torsion field generated by

E[p] := ker{E
p
−→ E}. The class group ClK is a module over Gal(K/Q). Given a fixed odd prime number p,

we study the average nonvanishing of certain Galois stable quotients of the mod-p class group ClK /p ClK .
Here, E varies over all rational elliptic curves, ordered according to height. Our results are conditional,
since we assume that the p-primary part of the Tate–Shafarevich group is finite. Furthermore, we assume
predictions made by Delaunay for the statistical variation of the p-primary parts of Tate–Shafarevich
groups. We also prove results in the case when the elliptic curve E/Q is fixed and the prime p is allowed
to vary.

2020 Mathematics subject classification: primary 11G05; secondary 11R29, 11R32, 11R34, 11R45.
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1. Introduction

Given a family of number fields, it is natural to study the statistical variation
of class groups in the family. Of significant interest is the family of imaginary
quadratic extensions K/Q. Such investigations go back to the work of Gauss, who
was interested in the determination of all imaginary quadratic fields of a given class
number h. The problem was solved for h = 1 by Baker, Heegner and Stark, for h = 2
by Baker and Stark, and for h = 3 by Oesterlé. Watkins in [Wat04] computed the
imaginary quadratic fields for which h ≤ 100. Soundararajan showed that the number
of imaginary quadratic fields of class number < x is asymptotically 3ζ(2)/ζ(3)x2 as
x→ ∞. The story for real quadratic fields is significantly different. Predictions can
be made for the distribution of class groups via Cohen–Lenstra heuristics for all
quadratic number fields [CL84] and Cohen–Lenstra–Martinet heuristics for general
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number fields [MC90]. We refer to [Woo16] for a survey of these methods. The study
of class numbers on average in families of number fields has notably gained significant
momentum in the following works [Bha05, DH71, EPW17, EV07, FK07, Won99].
However, there has been much interest in the study of the p-ranks of class groups of the
cyclotomic extension Q(μp). The Herbrand–Ribet theorem (see [Was97]) establishes
a precise relationship between generalized Bernoulli numbers and the p-rank of the
class group of Q(μp). Ribet’s converse relates congruences between Eisenstein series
and cusp forms to the existence of p-cyclic unramified extensions of Q(μp). The rank
of the Eisenstein ideal is closely related to the Galois module structure of mod-p
class groups that arise from certain families of number fields of the form Q(N1/p),
where N ≡ 1 (mod p) is a prime, see [Lec18, Maz77, SS19, WWE20]. It is however
difficult to resolve distribution questions in this context, though there have been some
computational experiments done (see [WWE20, Introduction]).

Motivated by such developments, we consider the family of number field extensions
that are generated by the torsion in elliptic curves defined over Q. To be specific, given
an elliptic curve E/Q and a prime p, we let E[p] denote the p-torsion subgroup of E(Q̄).
Let K = Q(E[p]) be the field generated by E[p], defined to be the fixed field of the
residual representation

ρ̄ : Gal(Q̄/Q)→ GL2(Fp)

on E[p] � Fp ⊕ Fp. The extension K/Q in general is a nonabelian extension that
contains Q(μp). Let ClK be the class group of K. Note that G = Gal(K/Q) acts on
ClK and thus on the mod-p class group ClK /p ClK . We study Galois stable quotients
of the ClK /p ClK that are isomorphic to E[p] as a G-module. In some sense, such
investigations generalize the study of the p-rank of the class group of Q(μp). To be
precise, we study the following related questions.

(1) Let p be a fixed odd prime. As E varies over all elliptic curves defined over Q,
how often is HomG(ClK /p ClK , E[p]) nonvanishing?

(2) Let E/Q be a fixed elliptic curve. As p varies over all primes, how does the
dimension of HomG(ClK /p ClK , E[p]) vary?

In the context of the first question above, we order elliptic curves E/Q according
to height. We assume throughout that the p-primary part of the Tate–Shafarevich
group is finite. Our results also rely on heuristics for the statistical behaviour of
Tate–Shafarevich groups of elliptic curves. These heuristics were studied by Delaunay
[Del07]. Let Ep be the set of elliptic curves E/Q such that HomG(ClK , E[p]) � 0.
Given Δ ∈ Z<0 with Δ ≡ 0, 1 (mod 4), let H(Δ) be the Hurwitz class number, see
Definition 3.10. Given a set of elliptic curves S, we denote by d(S) the lower density
of Weierstrass equations for elliptic curves in S (see (3-1) for the definition of d(S)).

THEOREM (THEOREM 4.4). Let p be an odd prime and assume that Conjecture 4.2 is
satisfied. Then,

d(Ep) > (p−1 + p−3 − p−4)(1 − p−1 − dp − d′p),
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where

dp =

⎧⎪⎪⎨⎪⎪⎩ζ(p) − 1 if p ≥ 5,
(ζ(3) − 1) + (ζ(4) − 1) + (ζ(7) − 1) if p = 3,

d′p =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
( p − 1

2p2

)
H(1 − 4p) if p ≥ 7,( p − 1

2p2

)
(H(1 − 4p) + H(p2 + 1 − 6p)) if p ≤ 5.

We obtain the following corollary to the above result.

COROLLARY (COROLLARY 4.5). Let p be an odd prime and assume that
Conjecture 4.2 is satisfied. Then,

d(Ep) ≥ p−1 + O(p−3/2+ε).

In other words, for any choice of ε > 0, there is a constant C > 0, depending on ε and
independent of p, such that

d(Ep) ≥ p−1 − Cp−3/2+ε .

Next, we study the second question, where E is fixed and p varies. In this context,
we prove two results.

THEOREM (THEOREM 5.1). Let E/Q be an elliptic curve and assume that the following
conditions are satisfied:

(1) X(E/Q) is finite;
(2) rank E(Q) ≤ 1;
(3) E does not have complex multiplication.

Then, for 100% of primes p, we have that HomG(ClK /p ClK , E[p]) = 0.

THEOREM (THEOREM 5.2). Let E/Q be an elliptic curve and assume that the following
conditions are satisfied:

(1) X(E/Q) is finite;
(2) rank E(Q) ≥ 2;
(3) E does not have complex multiplication.

Then, for 100% (that is, for a Dirichlet density-1 set) of primes p,

dim HomG(ClK /p ClK , E[p]) ≥ rank E(Q) − 1.

Organization: In Section 2, we introduce preliminary notions and also recall
results of Prasad and Shekhar [PS21] on the Galois module structure of the class
group of the torsion field Q(E[p]). In Section 3, we study the density of elliptic
curves satisfying local conditions at a possibly infinite set of primes. Such results are
crucially used in proving the main results of the article. In Section 4, we fix an odd
prime p. The main results are Theorem 4.4 and Corollary 4.5, which establish that
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HomG(ClK /p ClK , E[p]) is nonvanishing for a positive density set of elliptic curves.
Furthermore, we prove a lower bound for this density explicitly. These results are
conditional since they rely on the heuristic of Delaunay. In Section 5, we fix an
elliptic curve E/Q that does not have complex multiplication and study the variation
of the dimension of HomG(ClK /p ClK , E[p]), where p varies over all prime numbers.
Finally, in Section 6, we provide explicit computations for the prime p = 3. These
computations do also illustrate cases of interest, when some of the hypotheses on E
and p are relaxed.

2. Preliminaries

Fix an algebraic closure Q̄ of Q and let E be an elliptic curve defined over Q. Let
p be a prime number and set Fp = Z/pZ to denote the finite field with p elements.
For n ≥ 1, denote by E[pn] the kernel of the multiplication map ×pn : E(Q̄)→ E(Q̄)
and set E[p∞] :=

⋃
n E[pn]. The absolute Galois group GQ := Gal(Q̄/Q) acts on

E[pn]. Choosing an isomorphism E[pn] � (Z/pnZ)2, let ρn be the associated Galois
representation on E[pn],

ρn : GQ → GL2(Z/pnZ).

Set ρ := lim←−−n
ρn to be the Galois representation on the p-adic Tate-module Tp(E) :=

lim←−−n
E[pn]. Set ρ̄ to denote the mod-p reduction of the characteristic-zero represen-

tation ρ : GQ → GL2(Zp). We refer to ρ̄ as the residual representation and identify
ρ1 : GQ → GL2(Fp) with ρ̄. Let χ : GQ → Z×p be the p-adic cyclotomic character and
χ̄ : GQ → F×p its mod-p reduction.

Given an integer r, set Zp(r) := Zp(χr) and given a Zp[GQ]-module M, set M(r) :=
M ⊗Zp Zp(χr) to denote the r th Tate-twist of M. Note that if M is an Fp[GQ]-module,
then, M(r) = M ⊗Fp Fp(r). Let Vρ̄ = E[p] be the underlying vector space for ρ̄. Given
i, j ∈ Z lying in the range 1 ≤ i ≤ (p − 1) and 1 ≤ j ≤ (p − 2), we set Vi,j = Vi,j

p,E to
denote Symi(Vρ̄)(j). Throughout, we assume that ρ̄ is irreducible. However, for the
sake of discussion, let us consider the special case when ρ̄ is surjective. Then, upon
choosing a basis of Vρ̄ = E[p], we may identify the image of ρ̄ with GL2(Fp) and thus
the module Vi,j is viewed as an irreducible representation of GL2(Fp). Note that any
irreducible representation of GL2(Fp) over Fp is of the form Vi,j. A semisimple module
M over Fp[GQ] decomposes into a direct sum

M �
⊕

i,j

(Vi,j)ri,j(M),

where ri,j(M) ≥ 0.
Let K = Q(E[p]) be the splitting field of ρ̄, taken to be the Galois extension of Q

given by K = Q̄ker ρ̄. Set G := Gal(K/Q) and identify G with the image of ρ̄. Note that
when ρ̄ is surjective, G is identified with GL2(Fp). There is a natural action of G on the
class group ClK , and thus on the mod-p class group ClK /p ClK . The study of the Galois
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module structure of ClK /p ClK is the primary focus of this paper. When ρ̄ is surjective,
its semisimplification decomposes into a direct sum of irreducible representations of
GL2(Fp),

(ClK /p ClK)ss �
⊕

i,j

(Vi,j)ni,j .

We are specifically interested in the space of homomorphisms HomG(ClK /p ClK , E[p]).
Note that HomG(ClK /p ClK , E[p]) � 0 precisely when there is a G-stable quotient of
ClK /p ClK that is isomorphic to E[p]. By class field theory, this corresponds to the
existence of an unramified (Z/pZ)2-extension L of K that is Galois over Q, such that
Gal(L/K) � E[p] as a module over G = Gal(K/Q). We have that

n1,0 ≥ dimFp HomG(ClK /p ClK , E[p]),

with equality in the special case when the representation of G on ClK /p ClK is
semisimple.

Given a prime number �, let E be the Néron model of E over Z�. Let E0(Q�)
be the subset of points of E(Q�) = E(Z�) that reduce modulo � to the identity
component of E/F� . Fix an absolute value | · |p : Q×p → Q×, normalized by |p|−1

p = p.
The Tamagawa number at � is set to be c�(E) := [E(Q�) : E0(Q�)], and set c(p)

�
(E) :=

|c�(E)|−1
p . Therefore, c�(E) is a unit in Zp if and only if c(p)

�
(E) = 1. We denote by

Selp(E/Q) the p-Selmer group of E over Q defined by

Selp(E/Q) := ker{H1(Q̄/Q, E[p])→
∏
�

H1(Q̄�/Q�, E(Q̄�))[p]},

where the restriction map for the prime � is the composite

H1(Q̄/Q, E[p])→ H1(Q̄�/Q�, E[p])→ H1(Q̄�/Q�, E(Q̄�))[p].

The Tate–Shafarevich group

X(E/Q) := ker{H1(Q̄/Q, E(Q̄))→
∏

l

H1(Q̄l/Ql, E(Q̄l))},

fits into an exact sequence

0→ E(Q)/pE(Q)→ Selp(E/Q)→X(E/Q)[p]→ 0;

see [Coa00, page 8, (1)].
Note that dimFp E(Q)/pE(Q) = rank E(Q) + dimFp E(Q)[p], and since ρ̄ is irre-

ducible, E(Q)[p] = 0, and thus, dimFp E(Q)/pE(Q) = rank E(Q). Hence, we find that

dimFp Selp(E/Q) = rank E(Q) + dimFp X(E/Q)[p].

Due to the Cassels–Tate pairing, the Fp-dimension of X(E/Q)[p] is even. The
following result shows that there is an explicit relationship between ClK /p ClK and the
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p-torsion in the Tate–Shafarevich group X(E/Q), and is key to constructing quotients
of ClK /p ClK that are isomorphic to E[p].

THEOREM 2.1 (Prasad and Shekhar). Let E be an elliptic curve over Q and p be an
odd prime number at which E has good reduction. With respect to the notation above,
suppose that the following assumptions hold:

(1) c(p)
�

(E) = 1 for all primes � � p;
(2) E(Qp)[p] = 0.

Then,

dimFp HomG(ClK /p ClK , E[p]) ≥ rank E(Q) + dimFp X(E/Q)[p] − 1. (2-1)

In particular, under the above assumptions, if X(E/Q)[p] � 0, or rank E(Q) ≥ 2, then,
Hom(ClK /p ClK , E[p]) is nonzero.

PROOF. Equation (2-1) follows from [PS21, Theorem 3.1]. The second assertion
follows from Corollary 3.2 of loc. cit. �

DEFINITION 2.2. Let I = Ip(E) be the set of primes � � p such that:

• E has split multiplicative reduction at � and E(Q�)[p] has rank 1;
• E has nonsplit multiplicative reduction at � and E(Q�)[p], and E(Qnr

� )[p] has rank 1.

THEOREM 2.3 (Prasad and Shekhar). Let E/Q be an elliptic curve and p an odd prime
at which the conditions of Theorem 2.1 are satisfied. Let I be the finite set from
Definition 2.2. Then, the following bound is satisfied

dimFp Hom(ClK /p ClK , E[p]) ≤ rank E(Q) + dimFp X(E/Q)[p] − 1 + #I.

PROOF. The above result is [PS21, Theorem 4.2]. �

Theorem 2.1 is crucially used in the proof of Theorem 4.4, which is our main result.
However, both Theorems 2.1 and 2.3 are applied to prove results in the case when E is
a fixed elliptic curve and p varies over all primes at which E has good reduction; see
Section 5.

3. Density results for Weierstrass equations with local conditions

In this section, we recall results due to Cremona and Sadek [CS23] for the density
of elliptic curves E/Q satisfying local conditions at a prescribed set of primes. This
set of primes may in fact be infinite. The results in this section are used to study
the proportion of elliptic curves E/Q, ordered according to height, that satisfy the
conditions of Theorem 2.1. As always, we fix an odd prime p. Given a tuple of integers
a = (a1, a2, a3, a4, a6), we have an associated elliptic curve Ea defined by the long
Weierstrass equation

Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6.

https://doi.org/10.1017/S1446788724000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000156


[7] Class group statistics for torsion fields 7

The height of Ea is defined as follows:

ht(a) = ht(Ea) := maxi{|ai|1/i}.

We let

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a2

3 − a2
4,

Δ(a) = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

Given a ring R, we let

W(R) = R5 = {a = (a1, a2, a3, a4, a6) | ai ∈ R},

and let Δ(a) = Δ(Ea) be the associated discriminant. Given a prime �, letWM(Z�) be
the subset of W(Z�) consisting of equations that are minimal in the sense of [Sil09,
Section VII.1]. Recall that if E is an elliptic curve over Q�, the Kodaira type is one of
the following choices:

• I0 if E has good reduction;
• I≥1 if E has bad multiplicative reduction, of type Im for some m ≥ 1;
• finally, if E has bad additive reduction, we have the following choices: II, III, IV,

II∗, III∗, IV∗, I∗0, I∗≥1, the latter meaning type I∗m for some m ≥ 1.

We refer to [Sil94, IV, Section 9] for a comprehensive study of Kodaira types and
how they may be detected via Tate’s algorithm. For a ∈ W(Z�), we say that a has
Kodaira type T if the associated elliptic curve Ea has Kodaira type T. Note that
this definition applies to nonminimal Weierstrass equations as well. Given a Kodaira
type T, let WT (Z�) be the subset of W(Z�) of tuples a of Kodaira type T and set
WT

M(Z�) =WT (Z�) ∩WM(Z�). Let μ be the Haar measure on W(Z�) � Z5
� and set

ρM(�) := μ(WM(Z�)). Given a Kodaira type T at the prime �, set

ρM
T (�) := μ(WT

M(Z�)),

ρT (�) := μ(WT (Z�)).

According to [CS23, Proposition 2.6], we have that ρT (�) = (1 − �−10)−1ρM
T (�). These

local densities are calculated in loc. cit., and these calculations are summarized here.

THEOREM 3.1 (Cremona and Sadek). Let � be a prime, then ρM(�) = 1 − �−10. For
each Kodaira type T, the local density ρM

T (�) is given by the values in Table 1.

PROOF. The above result follows from [CS23, Propositions 2.1(3), 2.2, 2.5]. �

Let S be a subset ofW(Z) � Z5, the density of S is taken to be the following limit

d(S) := lim
x→∞

#{a ∈ S | ht(a) < x}
#{a ∈ Z5 | ht(a) < x}

,

= lim
x→∞

2−5x−16#{a ∈ S | |ai| < xi for i = 1, 2, 3, 4, 6}. (3-1)
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TABLE 1. Local densities: Kodaira types.

T ρM
T (�)

I0 (� − 1)/�
II (� − 1)/�3

III (� − 1)/�4

IV (� − 1)/�5

I∗0 (� − 1)/�6

I∗≥1 (� − 1)/�7

IV∗ (� − 1)/�8

III∗ (� − 1)/�9

II∗ (� − 1)/�10

Im (� − 1)2/�m+2

I≥m (� − 1)/�m+1.

Note that the above limit may not exist. We let d(S) and d(S) be the upper and lower
limits, respectively. Note that d(S) and d(S) are defined by replacing the limit by
lim sup and lim inf, respectively, and that these limits do exist unconditionally. If S
is a set of elliptic curves E/Q, we by abuse of notation denote by S the subset of
W(Z) consisting of all tuples a = (a1, a2, a3, a4, a6) such that Ea ∈ S. Note that since
we work with long Weierstrass equations, the choice of a for a given isomorphism
class of elliptic curves is not unique. According to [CS23, Theorem 1.1], the proportion
of integral Weierstrass equations that are globally minimal is 1/ζ(10) = 93 555/π10 ≈
99.99%. Let Φ be a possibly infinite set of prime numbers and for each prime � ∈ Φ,
let U� be a subset ofW(Z�) defined by a set of congruence classes. In other words, U�
is the inverse image of a subset ofW(Z/�MZ) for some integer M > 0. Let U be the
family of conditions {U� | � ∈ Φ}. Given N > 0, let

ZN(U) := {a ∈ W(Z) | a ∈ U� for some prime � > N}.

DEFINITION 3.2. The family U = {U� | � ∈ Φ} is said to be admissible if

lim
N→∞
d(ZN(U)) = 0.

LetWU be the set of integral Weierstrass equations a ∈ W(Z) not satisfying U� at
any prime � ∈ Φ.

PROPOSITION 3.3. Let U be an admissible family and s� = μ(U�). Then,
∑
�∈Φ s�

converges and

d(WU) =
∏
�∈Φ

(1 − s�).

PROOF. The above result follows from [CS23, Proposition 3.4]. �
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DEFINITION 3.4. Given a Kodaira type T, let U(T) be the family of conditions on
the set of primes � � p, where U� consists of local Weierstrass equations a ∈ W(Z�)
satisfying T. Thus, WU(T) consists of integral Weierstrass equations a ∈ W(Z) such
that Ea does not satisfy T at any prime � � p.

LEMMA 3.5. Let T be a Kodaira type such that U(T) is admissible, then, the density
ofWU(T) exists and equals

d(WU(T)) =
∏
��p

(1 − ρT (�)) ≥ 1 −
∑
��p

ρT (�).

PROOF. The result follows directly from Proposition 3.3. �

THEOREM 3.6. Let p and � be distinct prime numbers, and E an elliptic curve over Q�.
The following assertions hold.

(1) Suppose that p ≥ 5, then, p|c�(E) if and only if E has Kodaira type T = Ipm for
m ∈ Z≥1.

(2) Suppose that p = 3, then, p|c�(E) if and only if E has Kodaira type T = I3m for
m ∈ Z≥1, or T = IV, or T = IV∗.

PROOF. The result is well known, see [Sil94, Table 4.1, page 365]. �

We come to the main result of this section, which is subsequently used in the proof
of our main result in the next section.

DEFINITION 3.7. Recall that p is a fixed prime number. Let Sp be the set of elliptic
curves E/Q such that p|c�(E) for some prime � � p.

THEOREM 3.8. Let E be an elliptic curve and p an odd prime number. We have the
following assertions:

(1) if p ≥ 5, then,

d(Sp) < ζ(p) − 1;

(2) if p = 3, then,

d(Sp) < (ζ(3) − 1) + (ζ(4) − 1) + (ζ(7) − 1).

PROOF. We prove the result on a case by case basis.

(1) First, we consider the case when p ≥ 5. Then, by Theorem 3.6(1), we have that
p|c�(E) if and only if the Kodaira type T is Imp for some integer m ≥ 1. Let
U = U(I≥p) be the datum such that U� = I≥p at every prime � � p. It follows
directly from the proof of [CS23, Theorem 4.6] that the datum U(I≥2) is
admissible, and hence, so is U. From Lemma 3.5,

https://doi.org/10.1017/S1446788724000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000156


10 A. Ray and T. Weston [10]

d(WU) =
∏
��p

(1 − (1 − �−10)−1(1 − �−1)�−p)

≥
∏
��p

(1 − �−p)

≥1 −
∑
��p

�−p.

Since Sp is contained in the complement ofWU , we find that

d(Sp) ≤
∑
��p

�−p < ζ(p) − 1.

(2) We now consider the case when p = 3. By Theorem 3.6(2), we have that 3|c�(E)
if and only if the Kodaira type T is I3m for some integer m ≥ 1, or, T = IV or
T = IV∗. Let U be such that U� is the subset ofW(Z�) with Kodaira type I≥3, IV
or IV∗, respectively. Note that �2 divides Δ for such reduction types. Admissibility
is a direct consequence of the proof of [CS23, Theorem 4.6].

We find that

d(WU) ≥
∏
��p

(1 − ρI≥3 (�) − ρIV(�) − ρIV∗(�))

≥
∏
��p

(1 − (1 − �−10)−1(1 − �−1)(�−3 + �−4 + �−7))

≥
∏
��p

(1 − (�−3 + �−4 + �−7))

≥ 1 −
∑
��p

�−3 −
∑
��p

�−4 −
∑
��p

�−7.

> 1 − (ζ(3) − 1) − (ζ(4) − 1) − (ζ(7) − 1).

Thus, we find that

d(Sp) < (ζ(3) − 1) + (ζ(4) − 1) + (ζ(7) − 1). �

DEFINITION 3.9. Denote by S′p the set of elliptic curves E for which p � Δ(E) and
E(Qp)[p] � 0. Note that for such elliptic curves and p > 2, Ẽ(Fp)[p] � 0, where Ẽ is
the reduction of E.

Let Δ ∈ Z<0 with Δ ≡ 0, 1 (mod 4), and set

B(Δ) := {ax2 + bxy + cy2 ∈ Z[x, y] | a > 0, b2 − 4ac = Δ}.

The group SL2(Z) acts on Z[x, y], where a matrix σ = ( p q
r s ) sends x �→ (px + qy) and

y �→ (rx + sy). Thus, if f = ax2 + bxy + cy2, the matrix σ acts by

f ◦ σ = a(px + qy)2 + b(px + qy)(rx + sy) + c(rx + sy)2.
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We note that B(Δ) is stable under the action of SL2(Z) and B(Δ)/ SL2(Z) is finite; see
[Sch87] for additional details.

DEFINITION 3.10. The Hurwitz class number H(Δ) is the order of B(Δ)/ SL2(Z).

Let d(p) be the number of tuples a ∈ W(Fp) such that Ea(Fp)[p] � 0. Note that

d(p)
#W(Fp)

=
d(p)
p5 .

LEMMA 3.11. With respect to the notation above, d(S′p) ≤ d(p)/p5.

PROOF. Given a ∈ W(Fp), let Sa be the set of ã ∈ W(Z) that reduce to a. It is easy to
see that d(Sa) = 1/p5. Note that S′p is contained in the disjoint union

⊔
a Sa, where a

ranges over the tuples inW(Fp) such that Ea(Fp)[p] � 0. The result follows from this.
�

PROPOSITION 3.12. With respect to the notation above,

d(S′p) ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
( p − 1

2p2

)
H(1 − 4p) if p ≥ 7,( p − 1

2p2

)
(H(1 − 4p) + H(p2 + 1 − 6p)) if p ≤ 5.

PROOF. The number of isomorphism classes of elliptic curves E over Fp such that
E(Fp)[p] � 0 is ⎧⎪⎪⎨⎪⎪⎩H(1 − 4p) if p ≥ 7,

H(1 − 4p) + H(p2 + 1 − 6p) if p ≤ 5;

see [RS23, Corollary 3.11] for additional details. Given a ∈ W(Fp) and associated
integral Weierstrass model Ea, then, after a transformation (X, Y) �→ (X + r, Y + sX + t),
we obtain an elliptic curve with a short Weierstrass equation. Note that two elliptic
curves

Ec,d : Y2 = X3 + cX + d

Ec′,d′ : Y2 = X3 + c′X + d′

are isomorphic over Fp if there exists s ∈ F×p such that

c′ = s4c and d′ = s6d.

It is thus easy to see that the number of Weierstrass equations in a given isomorphism
class is at most p3((p − 1)/2). Thus, we find that

d(p) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p3
( p − 1

2

)
H(1 − 4p) if p ≥ 7,

p3
( p − 1

2

)
(H(1 − 4p) + H(p2 + 1 − 6p)) if p ≤ 5. �
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4. Results for a fixed prime and varying elliptic curve

In this section, we prove our main results. Throughout, we fix an odd prime
number p. Given a set of rational elliptic curves S, we obtain a subset of W(Z)
consisting of all a such that Ea ∈ S. By abuse of notation, we refer to this set as S as
well. The density d(S) is defined as in (3-1). Recall that the upper and lower densities,
denoted d(S) and d(S), are always defined even if d(S) need not be. Let Ep be the set
of elliptic curves E/Q such that HomG(ClK , E[p]) � 0. Note that for E ∈ Ep, we have in
particular that p | # ClK .

Recall from Definition 3.7 that Sp is the set of elliptic curves E/Q such that p|c�(E)
for some prime � � p. Recall from Definition 3.9 that S′p is the set of elliptic curves E
for which p � Δ(E) and E(Qp)[p] � 0. Denote by S′′p the set of elliptic curves E/Q with
bad reduction at p. Let Tp be the elliptic curves E such that X(E/Q)[p∞] is finite and
X(E/Q)[p] � 0.

PROPOSITION 4.1. Let p be an odd prime. Then,

d(Ep) ≥ d(Tp\(Sp ∪ S′p ∪ S′′p )).

PROOF. Suppose E is an elliptic curve in Tp\(Sp ∪ S′p ∪ S′′p ), then, since E ∈ Tp, we
have that X(E/Q)[p] � 0, and since E � Sp ∪ S′p ∪ S′′p , we have that p � c�(E) for
all primes � � p, and E(Qp)[p] = 0. So long as the residual representation on E[p] is
irreducible, it follows from Theorem 2.1 that HomG(ClK , E[p]) � 0. As a result, E is
contained in Ep. By a well-known result of Duke [Duk97], the residual representation
on E[p] is irreducible for 100% of elliptic curves, and the result follows. �

Throughout, we assume that for any elliptic curve E/Q, the p-primary part of the
Tate–Shafarevich group X(E/Q)[p∞] is finite. The density of elliptic curves E/Q such
that X(E/Q)[p∞] � 0 was studied by Delaunay [Del07].

CONJECTURE 4.2 (Delaunay). With respect to the notation above,

d(Tp) ≥ 1 −
∏
i≥1

(1 − p−(2i−1)) > p−1 + p−3 − p−4.

Moreover, given a set E of elliptic curves defined by local congruence conditions,

d(Tp ∩ E) = d(Tp)d(E).

REMARK 4.3. For the purposes of this article, we use only the second lower bound
predicted by the above conjecture: that is, we assume that

d(Tp ∩ E) > (p−1 + p−3 − p−4)d(E),

where E is taken to be the complement of Sp ∪ S′p ∪ S′′p .

THEOREM 4.4. Let p be an odd prime and assume the above conjecture. Then,

d(Ep) > (p−1 + p−3 − p−4)(1 − p−1 − dp − d′p),
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where

dp =

⎧⎪⎪⎨⎪⎪⎩ζ(p) − 1 if p ≥ 5,
(ζ(3) − 1) + (ζ(4) − 1) + (ζ(7) − 1) if p = 3,

d′p =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
( p − 1

2p2

)
H(1 − 4p) if p ≥ 7,( p − 1

2p2

)
(H(1 − 4p) + H(p2 + 1 − 6p)) if p ≤ 5.

PROOF. Let E be the set of elliptic curves in the complement of Sp ∪ S′p ∪ S′′p . We
have from Theorem 3.8 (respectively Proposition 3.12) that d(Sp) = dp (respectively
d(S′p) = d′p). Furthermore, we have from Theorem 3.1 and Proposition 3.3 that
d(S′′p ) = 1/p. From Proposition 4.1, we have that d(Ep) ≥ d(Tp\(Sp ∪ S′p ∪ S′′p )).
According to our assumption,

d(Tp\(Sp ∪ S′p ∪ S′′p )) = d(Tp ∩ E)

≥
(
1 −
∏
i≥1

(1 − p−(2i−1))
)
d(E)

> (p−1 + p−3 − p−4)d(E)

= (p−1 + p−3 − p−4)(1 − p−1 − dp − d′p),

and the result follows. �

COROLLARY 4.5. Assume Conjecture 4.2. Then,

d(Ep) ≥ p−1 + O(p−3/2+ε).

In other words, for any choice of ε > 0, there is a constant C > 0, depending on ε and
independent of p, such that

d(Ep) ≥ p−1 − Cp−3/2+ε .

PROOF. According to Theorem 4.4,

d(Ep) > (p−1 + p−3 − p−4)(1 − p−1 − dp − d′p)

> p−1 − p−1(p−1 + dp + d
′
p).

We have that

ζ(p) − 1 = 2−p +
∑
n≥3

n−p < 2−p +

∫ ∞
2

x−pdx = 2−p
( p + 1

p − 1

)
,

and hence,

dp = O(2−p) = O(p−1/2+ε).

However, it follows from known results that

d′p = O(p−1/2 log p(log log p)2) = O(p−1/2+ε),

(see [LJ87, Proposition 1.9]) and the result follows. �
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5. Results for a fixed elliptic curve and varying prime

In this section, we prove results for a fixed elliptic curve E/Q and varying prime
p. We assume throughout that E does not have complex multiplication, and that the
Tate–Shafarevich group X(E/Q) is finite. Given a prime p, we let Kp = Q(E[p]). We
make a number of observations with regards to the variation of ClKp /p ClKp , where p
varies over all primes p.

THEOREM 5.1. Let E/Q be an elliptic curve; assume that the following conditions are
satisfied:

(1) X(E/Q) is finite;
(2) rank E(Q) ≤ 1;
(3) E does not have complex multiplication.

Then, for 100% of primes p, we have that HomG(ClKp/p ClKp , E[p]) = 0.

PROOF. Note that for all but finitely many primes p:

(1) E has good reduction at p;
(2) E(Q�)[p] = 0 for all primes � at which E has bad reduction;
(3) X(E/Q)[p] = 0;
(4) the representation on E[p] is irreducible;
(5) c(p)

�
(E) = 1 for all primes � at which E has bad reduction.

Thus, it follows from Theorem 2.3 that we have that HomG(ClKp /p ClKp , E[p]) = 0
provided E(Qp)[p] = 0. Let Ẽ be the reduction of E over Fp. The formal group Ê(Zp)
of E at p has no nontrivial p-torsion. Thus, if p is a prime of good reduction, the natural
map E(Qp)→ Ẽ(Fp) induces an injection

E(Qp)[p]→ Ẽ(Fp)[p].

A prime p at which E has good reduction is called an anomalous prime if Ẽ(Fp)[p] � 0.
It is well known that for a non-CM elliptic curve, 100% of primes are nonanomalous
(see for instance [Mur97]). Thus, E(Qp)[p] = 0 for 100% of primes p, and thus the
result follows. �

THEOREM 5.2. Let E/Q be an elliptic curve and assume that the following conditions
are satisfied:

(1) X(E/Q) is finite;
(2) rank E(Q) ≥ 2;
(3) E does not have complex multiplication.

Then, for 100% of primes p,

dim HomG(ClKp /p ClKp , E[p]) ≥ rank E(Q) − 1.
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PROOF. It follows from the proof of Theorem 5.1 that for 100% of primes p, all of the
following conditions are satisfied:

(1) E has good reduction at p;
(2) the representation on E[p] is irreducible;
(3) c(p)

�
(E) = 1 for all primes � at which E has bad reduction;

(4) E(Qp)[p] = 0.

It follows from Theorem 2.1 that

dim HomG(ClKp /p ClKp , E[p]) ≥ rank E(Q) − 1. �

6. Computational results

In this section, we present some computations of ClK /3 ClK , where K = Q(E[3]),
for certain families of elliptic curves E. Due to the difficulty of computing statistics
for larger extensions, we primarily restrict ourselves to the case where Gal(K/Q) ⊂
GL2(F3) is the normalizer of a split Cartan subgroup. This is the smallest irreducible
subgroup of GL2(F3). We include also a few additional calculations where the Galois
group is the normalizer of a nonsplit Cartan subgroup.

We note that the hypotheses of [PS21] are often violated in these cases. Specifically,
a majority of such E has bad reduction at 3. In addition, all ramification at 3 is tame as
the Galois group has order prime to 3: thus, any such E for which a3(E) ≡ 1 (mod 3)
has 3 as a local torsion prime. We computed our examples without regard to these
considerations. We have verified that every computation violating the lower bound of
[PS21] does not satisfy their hypotheses.

6.1. Normalizer of a split Cartan: varying j-invariants. We use the formula of
Zywina [Zyw15, Theorem 1.2],

j2(t) = 27
(t + 1)3(t − 3)3

t3

such that any elliptic curve with such a j-invariant has Gal(Q(E[3])/Q) contained in
the normalizer of a split Cartan subgroup. For any t, let Et denote the elliptic curve
of smallest conductor with j-invariant j2(t) and let Kt denote the field Q(Et[3]). We
computed Sel3(Et/Q) as well as the Galois module structure of ClKt /3 for the 599
elliptic curves in the set

S0 = {Ea/b | |a| ≤ 50, 1 ≤ b ≤ 10, [Kt : Q] = 8}.

Let Lt denote the unique biquadratic subfield of Kt; note that Lt necessarily contains
Q(
√
−3). In each case, there was dt ≥ 0 such that there was an isomorphism

ClKt/3 � ClLt/3 ⊕ Et[3]dt

as Gal(Kt/Q)-modules. Note that Gal(Kt/Q) acts on ClLt/3 via its abelianization.
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TABLE 2. Mod 3 class group data.

dim ClLt /3 # t

0 447
1 123
2 28
3 1

TABLE 3. 3 Selmer group data (i).

dim Sel3(Et/Q) dt # t

0 0 103
0 1 26
1 0 228
1 1 52
1 2 2
2 0 95
2 1 74
2 2 2
3 0 4
3 1 12
3 2 1

Our interest here is primarily in comparing Sel3(Et/Q) and dt. We briefly report
the data for ClLt/3 in Table 2. The only curve in our sample with dim ClLt/3 = 3 was
E−46/3 with Lt = Q(

√
−3,
√

2917).
Please see Table 3 for the other quantities.
We remark that the restriction to E with specified 3-torsion fields obviously biases

the distribution of 3-Selmer groups. Although it is unwise to extrapolate too much
from this limited data, we note that for t with dim Sel3(Et/Q) ≤ 1, the dimension
of ClKt/3 appears to be roughly the same (being nonzero around 19% of the time)
whether the Selmer group has dimension zero or one. By contrast, for Selmer groups
of dimension two, the proportion having dt ≥ 1 is much larger at 44%. For Selmer
groups of dimension three, it is much larger than that in this limited sample.

Granting the limits of this data set, it certainly appears that Sel3(Et/Q) has a
significant effect on dt, but there are additional influences as well that are not currently
clear.

6.2. Normalizer of a split Cartan: fixed j-invariants. We also investigated two
quadratic twist families. Let E1 denote the elliptic curve

y2 + xy + y = x3 − 141x + 624
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TABLE 4. 3 Selmer group data (ii).

dim Sel3(E1,t/Q) d1,t # t

0 0 341
0 1 1
1 0 74
1 1 31
1 2 2
2 1 140
2 2 18
3 2 1

with j(E1) = 857 375/8 and conductor 10 082 = 2 · 712. For any squarefree t, let E1,t
denote the quadratic twist of E1 by t and let K1,t denote the field Q(E1,t[3]). Then,
Gal(K1,t/Q) is the normalizer of a split Cartan subgroup of GL2(F3). We note that
each K1,t contains the biquadratic field L1 = Q(

√
−3,
√
−71), which has trivial 3-class

group.
Consider the set of 608 elliptic curves

S1 = {E1,t | 1 ≤ t ≤ 1000, t squarefree}.

In each case, we computed a Gal(K1,t/Q)-isomorphism

ClK1,t/3 � E1,t[3]d1,t

for some d1,t. We computed the data as seen in Table 4.
We note here that the dependence of d1,t on Sel3(E1,t/Q) is more clear than in

the case of varying j-invariants: the lower bound of [PS21] (although, as noted, the
hypotheses are often violated in this data set) appears to control most of the behaviour
of d1,t.

We computed analogous data for the elliptic curve E2 given by

y2 = x3 − 83 667 346 875x − 10 711 930 420 406 250

with j(E2) = −42 875/8 and conductor 6962 = 2 · 592. With notation as above, we
consider the set of 608 quadratic twists

S2 = {E2,t | 1 ≤ t ≤ 1000, t squarefree}.

Each 3-division field field K2,t has Galois group the normalizer of a split Cartan
subgroup and contains the biquadratic field L2 = Q(

√
−3,
√
−59). This field has class

group Z/3, and for each t, we computed a Gal(K2,t/Q)-isomorphism

ClK2,t/3 � ClL2/3 ⊕ E2,t[3]d2,t

for some d2,t (see Table 5).
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TABLE 5. 3 Selmer group data (iii).

dim Sel3(E2,t/Q) d2,t # t

0 0 54
0 1 18
1 0 332
1 1 165
2 0 18
2 1 13
2 2 2
3 2 6

TABLE 6. 3 Selmer group data (iv).

dim Sel3(E3,t/Q) d3,t # t

0 0 18
0 1 2
1 0 18
1 1 14
1 2 1
2 1 8

This behaviour appears somewhat less straightforward than for S1. The distribution
of Sel3(E2,t/Q) is obviously quite different from that of Sel3(E1,t/Q) and the effect
on d2,t is less clear. We do note that the distributions of d1,t and d2,t ignoring Selmer
groups are similar, which is somewhat curious.

6.3. Normalizer of a nonsplit Cartan: fixed j-invariant. We compiled very
limited data in one case where the mod 3 Galois image is the normalizer of a nonsplit
Cartan subgroup. Consider the elliptic curve E3 given by

y2 = x3 + x2 − 2x − 8

with j(E3) = −64 and conductor 1568 = 25 · 72. We consider its set of 61 twists

S3 = {E3,t | 1 ≤ t ≤ 100, t squarefree}.

For each t, we have an isomorphism of Gal(K3,t/Q)-modules

ClK3,t/3 � E3,t[3]d3,t

for some d3,t (see Table 6).
There is too little data here to provide anything more than wild speculations;

unfortunately the computations rapidly became very time consuming beyond this
point.
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