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Sums of Independent Random Variables

In one way or another, most probabilistic analysis entails the study of large families of random
variables. The key to such analysis is an understanding of the relations among the family
members; and of all the possible ways in which members of a family can be related, by far
the simplest is when there is no relationship at all! For this reason, I will begin by looking at
families of mutually independent random variables.1

1.1 Independence
In this section I will introduce Kolmogorov’s way of describing independence and prove a
few of its consequences.

1.1.1 Mutually Independent 𝜎-Algebras
Let (Ω, F , P) be a probability space (i.e., Ω is a nonempty set, F is a 𝜎-algebra over Ω, and
P is a nonnegative measure on the measurable space (Ω, F ) having total mass 1), and, for each
𝑖 from the (nonempty) index setI, letF𝑖 be a sub-𝜎-algebra ofF . I will say that the𝜎-algebras
F𝑖, 𝑖 ∈ I, are mutually P-independent, or, less precisely, P-independent, if, for every finite
subset {𝑖1, . . . , 𝑖𝑛} of distinct elements of I and every choice of 𝐴𝑖𝑚 ∈ F𝑖𝑚 , 1 ≤ 𝑚 ≤ 𝑛,

P(𝐴𝑖1 ∩ · · · ∩ 𝐴𝑖𝑛 ) = P(𝐴𝑖1) · · · P(𝐴𝑖𝑛 ). (1.1)

In particular, if {𝐴𝑖 : 𝑖 ∈ I} is a family of sets from F , I will say that 𝐴𝑖, 𝑖 ∈ I, are
P-independent if the associated 𝜎-algebras F𝑖 = {∅, 𝐴𝑖, 𝐴{𝑖 ,Ω}, 𝑖 ∈ I, are. To gain an
appreciation for the intuition on which this definition is based, it is important to notice that
independence of the pair 𝐴1 and 𝐴2 in the present sense is equivalent to P(𝐴1 ∩ 𝐴2) =

P(𝐴1)P(𝐴2), the classical definition that one encounters in elementary treatments. Thus, the
notion of independence just introduced is no more than a simple generalization of the classical
notion of independent pairs of sets encountered in nonmeasure theoretic presentations,
and therefore the intuition that underlies the elementary notion applies equally well to the
definition given here. (See Exercise 1.1.1 for more information about the connection between
the present definition and the classical one.)

1 Most authors truncate “mutually independent” to “independent.” However, as my advisor Mark Kac pointed
out, unless one is talking about random variables that are constant, the random variables are not independent
of themselves but of each other. That is, they are mutually independent.
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2 Sums of Independent Random Variables

As will become increasingly evident as we proceed, infinite families of mutually indepen-
dent objects possess surprising properties. In particular, mutually independent 𝜎-algebras
tend to fill up space in a sense made precise by the following beautiful thought experiment
designed by A. N. Kolmogorov. Let I be any index set, {F𝑖 : 𝑖 ∈ I}, take F∅ = {∅,Ω}, and,
for each nonempty subset Λ ⊆ I, let

FΛ =
∨
𝑖∈Λ

F𝑖 ≡ 𝜎
(⋃
𝑖∈Λ

F𝑖

)
be the 𝜎-algebra generated by

⋃
𝑖∈Λ F𝑖 (i.e., FΛ is the smallest 𝜎-algebra containing

⋃
𝑖∈Λ F𝑖).

Next, define the tail 𝜎-algebra T to be the intersection over all finite Λ ⊆ I of the 𝜎-
algebras FI\Λ. When I itself is finite, T = {∅,Ω} and is therefore P-trivial in the sense that
P(𝐴) ∈ {0, 1} for every 𝐴 ∈ T . The interesting remark made by Kolmogorov is that even
whenI is infinite, T is P-trivial whenever the original F𝑖 are P-independent. To see this, for a
given nonempty Λ ⊆ I, let CΛ denote the collection of sets of the form 𝐴𝑖1 ∩ · · · ∩ 𝐴𝑖𝑛 , where
{𝑖1, . . . , 𝑖𝑛} are distinct elements ofΛ and 𝐴𝑖𝑚 ∈ F𝑖𝑚 for each 1 ≤ 𝑚 ≤ 𝑛. Clearly CΛ is closed
under intersection and FΛ = 𝜎(CΛ). In addition, by assumption, P(𝐴 ∩ 𝐵) = P(𝐴)P(𝐵) for
all 𝐴 ∈ CΛ and 𝐵 ∈ CI\Λ. Hence, by Exercise 1.1.4, FΛ is independent of FI\Λ. But this
means that T is independent of F𝐹 for every finite 𝐹 ⊆ I, and therefore, again by Exercise
1.1.4, T is independent of

F = 𝜎

(⋃
{F𝐹 : 𝐹 a finite subset of Λ}

)
.

Since T ⊆ F , this implies that T is independent of itself ; that is, P(𝐴 ∩ 𝐵) = P(𝐴)P(𝐵) for
all 𝐴, 𝐵 ∈ T . Hence, for every 𝐴 ∈ T , P(𝐴) = P(𝐴)2, or, equivalently, P(𝐴) ∈ {0, 1}, and
so I have now proved the following famous result.

Theorem 1.1.1 (Kolmogorov’s 0–1 Law) Let {F𝑖 : 𝑖 ∈ I} be a family of mutually P-
independent sub-𝜎-algebras of (Ω, F , P) and define the tail 𝜎-algebra T accordingly, as
discussed earlier. Then, for every 𝐴 ∈ T , P(𝐴) is either 0 or 1.

To develop a feeling for the kind of conclusions that can be drawn from Kolmogorov’s
0–1 Law (cf. Exercises 1.1.10 and 1.1.11 as well), let {𝐴𝑛 : 𝑛 ≥ 1} be a sequence of subsets
of Ω, and recall the notion of the limit superior of sets

lim
𝑛→∞

𝐴𝑛 ≡
∞⋂
𝑚=1

⋃
𝑛≥𝑚

𝐴𝑛 =
{
𝜔 : 𝜔 ∈ 𝐴𝑛 for infinitely many 𝑛 ∈ Z+

}
.

Obviously, lim𝑛→∞ 𝐴𝑛 is measurable with respect to the tail field determined by the sequence
of 𝜎-algebras {∅, 𝐴𝑛, 𝐴{𝑛 ,Ω}, 𝑛 ∈ Z+; and therefore, if the 𝐴𝑛 are mutually P-independent
elements of F , then

P
(
lim
𝑛→∞

𝐴𝑛

)
∈ {0, 1}.

This conclusion can be summarized in words as follows: for any sequence of mutually P-
independent events 𝐴𝑛, 𝑛 ∈ Z+, either P-almost every 𝜔 ∈ Ω is in infinitely many 𝐴𝑛 or
P-almost every 𝜔 ∈ Ω is in at most finitely many 𝐴𝑛. A more quantitative statement of
this same fact is contained in the second part of the following useful result, known as the
Borel–Cantelli Lemma.
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1.1 Independence 3

Lemma 1.1.2 (Borel–Cantelli Lemma) Let {𝐴𝑛 : 𝑛 ∈ Z+} ⊆ F be given. Then
∞∑︁
𝑛=1

P(𝐴𝑛) < ∞ =⇒ P
(
lim
𝑛→∞

𝐴𝑛

)
= 0. (1.2)

In fact, if the 𝐴𝑛 are P-independent sets, then
∞∑︁
𝑛=1

P(𝐴𝑛) = ∞ ⇐⇒ P
(
lim
𝑛→∞

𝐴𝑛

)
= 1. (1.3)

(See part (iii) of Exercise 5.2.3 and Lemma 11.4.6 for generalizations.)

Proof The first assertion, which is due to E. Borel, is an easy application of countable
additivity. Namely, by countable additivity,

P
(
lim
𝑛→∞

𝐴𝑛

)
= lim
𝑚→∞
P

(⋃
𝑛≥𝑚

𝐴𝑛

)
≤ lim
𝑚→∞

∑︁
𝑛≥𝑚
P(𝐴𝑛) = 0

if
∑∞
𝑛=1 P(𝐴𝑛) < ∞.

To complete the proof of (1.3) when the 𝐴𝑛 are mutually independent, note that, by
countable additivity, P

(
lim𝑛→∞ 𝐴𝑛

)
= 1 if and only if

P

((
lim
𝑛→∞

𝐴𝑛

){)
= P

(
∞⋃
𝑚=1

⋂
𝑛≥𝑚

𝐴{𝑛

)
= lim
𝑚→∞
P

(⋂
𝑛≥𝑚

𝐴{𝑛

)
= 0.

But, by independence and another application of countable additivity, for any given 𝑚 ≥ 1,
we have that

P

(
∞⋂
𝑛=𝑚

𝐴{𝑛

)
= lim
𝑁→∞

𝑁∏
𝑛=𝑚

(
1 − P(𝐴𝑛)

)
≤ lim
𝑁→∞

exp

[
−

𝑁∑︁
𝑛=𝑚

P
(
𝐴𝑛

) ]
= 0

if
∑∞
𝑛=1 P(𝐴𝑛) = ∞. (In the preceding equation, I have used the trivial inequality 1 − 𝑡 ≤

𝑒−𝑡 , 𝑡 ∈ [0,∞).) This part is due to F. Cantelli. �

A second, and perhaps more transparent, way of dealing with the contents of the preceding
result is to introduce the nonnegative random variable 𝑁 (𝜔) ∈ Z+ ∪ {∞}, which counts the
number of 𝑛 ∈ Z+ such that 𝜔 ∈ 𝐴𝑛. Then, by Tonelli’s Theorem,2 EP [𝑁] =

∑∞
𝑛=1 P(𝐴𝑛),

and so Borel’s contribution is equivalent to the EP [𝑁] < ∞ =⇒ P(𝑁 < ∞) = 1, which is
obvious, whereas, when combined with Kolmogorov’s 0–1 Law, Cantelli’s contribution is
that, for mutually independent 𝐴𝑛, P(𝑁 < ∞) > 0 =⇒ EP [𝑁] < ∞, which is not obvious.

1.1.2 Mutually Independent Functions
Having described what it means for the 𝜎-algebras to be P-independent, I will now transfer
the notion to random variables on (Ω, F , P). Namely, for each 𝑖 ∈ I, let 𝑋𝑖 be a random
2 Throughout this book, I use EP [𝑋, 𝐴] to denote the expected value under P of 𝑋 over the set 𝐴. That is,
EP [𝑋, 𝐴] =

∫
𝐴
𝑋 𝑑P. Finally, when 𝐴 = Ω, I will write EP [𝑋 ]. Tonelli’s Theorem is the version of Fubini’s

Theorem for nonnegative functions. Its virtue is that it applies whether or not the integrand is integrable.
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4 Sums of Independent Random Variables

variable (i.e., a measurable function on (Ω, F ) with values in the measurable space (𝐸𝑖,B𝑖)).
I will say that the random variables 𝑋𝑖, 𝑖 ∈ I, are mutually P-independent if the 𝜎-algebras

𝜎(𝑋𝑖) = 𝑋−1
𝑖

(
B𝑖

)
≡

{
𝑋−1
𝑖 (𝐵𝑖) : 𝐵𝑖 ∈ B𝑖

}
, 𝑖 ∈ I,

are mutually P-independent. If 𝐵(𝐸 ;R) denotes the space of bounded measurable R-valued
functions on the measurable space (𝐸,B), then it should be clear that P-independence of
{𝑋𝑖 : 𝑖 ∈ I} is equivalent to the statement that

EP
[
𝑓𝑖1 ◦ 𝑋𝑖1 · · · 𝑓𝑖𝑛 ◦ 𝑋𝑖𝑛

]
= EP

[
𝑓𝑖1 ◦ 𝑋𝑖1

]
· · ·EP

[
𝑓𝑖𝑛 ◦ 𝑋𝑖𝑛

]
for all finite subsets {𝑖1, . . . , 𝑖𝑛} of distinct elements ofI and all choices of 𝑓𝑖1 ∈ 𝐵

(
𝐸𝑖1 ;R

)
, . . . ,

𝑓𝑖𝑛 ∈ 𝐵
(
𝐸𝑖𝑛 ;R

)
. Finally, if 1𝐴 given by

1𝐴(𝜔) ≡
{

1 if 𝜔 ∈ 𝐴,
0 if 𝜔 ∉ 𝐴

denotes the indicator function of the set 𝐴 ⊆ Ω; notice that the sets {𝐴𝑖 : 𝑖 ∈ I} ⊆ F
are mutually P-independent if and only if the random variables 1𝐴𝑖 , 𝑖 ∈ I, are mutually
P-independent.

Thus far I have discussed only the abstract notion of independence and have yet to show
that the concept is not vacuous. In the modern literature, the standard way to construct lots
of independent quantities is to take products of probability spaces. Namely, if

(
𝐸𝑖,B𝑖, 𝜇𝑖

)
is

a probability space for each 𝑖 ∈ I, one sets Ω =
∏
𝑖∈I 𝐸𝑖; defines 𝜋𝑖 : Ω −→ 𝐸𝑖 to be the

natural projection map for each 𝑖 ∈ I; takes F𝑖 = 𝜋−1
𝑖 (B𝑖), 𝑖 ∈ I, and F =

∨
𝑖∈I F𝑖; and

shows that there is a unique probability measure P on (Ω, F ) with the properties that

P
(
𝜋−1
𝑖 Γ𝑖

)
= 𝜇𝑖

(
Γ𝑖) for all 𝑖 ∈ I and Γ𝑖 ∈ B𝑖,

and the 𝜎-algebras F𝑖, 𝑖 ∈ I, are P-independent. Although this procedure is extremely
powerful, it is rather mechanical. For this reason, I have chosen to defer the details of the
product construction to Exercises 1.1.6 and 1.1.7 and to, instead, spend the rest of this section
developing a more hands-on approach to constructing sequences of mutually independent,
real-valued random variables. Indeed, although the product method is more ubiquitous and
has become the construction of choice, the one that I am about to present has the advantage
that it shows independent random variables can arise “naturally” and even in a familiar
places.

1.1.3 The Rademacher Functions
Until further notice, take (Ω, F ) =

(
[0, 1),B[0,1)

)
(when 𝐸 is a metric space, I use B𝐸 to

denote the Borel field over 𝐸) and P to be the restriction 𝜆 [0,1) of Lebesgue measure 𝜆R to
[0, 1). Next define the Rademacher functions 𝑅𝑛, 𝑛 ∈ Z+, on Ω as follows. Take b𝑡c for
𝑡 ∈ R to be the integer part (i.e., the largest integer dominated by 𝑡) and consider the function
𝑅 : R −→ {−1, 1} given by

𝑅(𝑡) =
{
−1 if 𝑡 − b𝑡c ∈

[
0, 1

2
)
,

1 if 𝑡 − b𝑡c ∈
[ 1

2 , 1
)
.
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1.1 Independence 5

The function 𝑅𝑛 is then defined on [0, 1) by

𝑅𝑛 (𝜔) = 𝑅
(
2𝑛−1𝜔

)
, 𝑛 ∈ Z+ and 𝜔 ∈ [0, 1).

I will now show that the Rademacher functions are mutually P-independent. To this end, first
note that every real-valued function 𝑓 on {−1, 1} is of the form 𝛼+ 𝛽𝑥, 𝑥 ∈ {−1, 1}, for some
pair of real numbers 𝛼 and 𝛽. Thus, all that I have to show is that

EP
[
(𝛼1 + 𝛽1𝑅1) · · · (𝛼𝑛 + 𝛽𝑛𝑅𝑛)

]
= 𝛼1 · · · 𝛼𝑛

for any 𝑛 ∈ Z+ and (𝛼1, 𝛽1), . . . , (𝛼𝑛, 𝛽𝑛) ∈ R2. Since this is obvious when 𝑛 = 1, I will
assume that it holds for 𝑛 and need only check that it must also hold for 𝑛 + 1, and clearly
this comes down to checking that

EP
[
𝐹 (𝑅1, . . . , 𝑅𝑛) 𝑅𝑛+1

]
= 0

for any 𝐹 : {−1, 1}𝑛 −→ R. But (𝑅1, . . . , 𝑅𝑛) is constant on each interval

𝐼𝑚,𝑛 ≡
[
𝑚

2𝑛
,
𝑚 + 1

2𝑛

)
, 0 ≤ 𝑚 < 2𝑛,

whereas 𝑅𝑛+1 integrates to 0 on each 𝐼𝑚,𝑛. Hence, by writing the integral over Ω as the sum
of integrals over the 𝐼𝑚,𝑛, we get the desired result.

At this point I have produced a countably infinite sequence of mutually independent
Bernoulli random variables (i.e., two-valued random variables whose range is usually
either {−1, 1} or {0, 1}) with mean value 0. Of course, for all 𝑎 < 𝑏, any sequence of
mutually independent, {−1, 1}-valued Bernoulli random variables can be transformed into
{𝑎, 𝑏}-valued ones via a linear transformation.

In order to get more general random variables, I will combine Bernoulli random variables
together in a clever way.

Recall that a random variable𝑈 is said to be uniform on the finite interval [𝑎, 𝑏] if

P(𝑈 ≤ 𝑡) = 𝑡 − 𝑎
𝑏 − 𝑎 for 𝑡 ∈ [𝑎, 𝑏] .

Lemma 1.1.3 Let {𝑋ℓ : ℓ ∈ Z+} be a sequence of mutually P-independent {0, 1}-valued
Bernoulli random variables with mean value 1

2 on some probability space (Ω, F , P), and set

𝑈 =

∞∑︁
ℓ=1

𝑋ℓ

2ℓ
.

Then𝑈 is uniformly distributed on [0, 1] .

Proof Because the assertion only involves properties of distributions, it will be proved
in general as soon as I prove it for a particular realization of independent, mean value 1

2 ,
{0, 1}-valued Bernoulli random variables. Thus, by the preceding discussion, I need only
consider the random variables

𝜖𝑛 (𝜔) ≡
1 + 𝑅𝑛 (𝜔)

2
, 𝑛 ∈ Z+ and 𝜔 ∈ [0, 1),

on
(
[0, 1),B[0,1) , 𝜆 [0,1)

)
. But, as is easily checked (cf. part (i) of Exercise 1.1.8), for each

𝜔 ∈ [0, 1), 𝜔 =
∑∞
𝑛=1 2−𝑛𝜖𝑛 (𝜔). Hence, the desired conclusion is trivial in this case. �
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6 Sums of Independent Random Variables

Now let (𝑘, ℓ) ∈ Z+ × Z+ ↦−→ 𝑛(𝑘, ℓ) ∈ Z+ be any one-to-one mapping of Z+ × Z+ onto
Z+, and set

𝑌𝑘,ℓ =
1 + 𝑅𝑛(𝑘,ℓ)

2
, (𝑘, ℓ) ∈

(
Z+

)2
.

Clearly, each 𝑌𝑘,ℓ is a {0, 1}-valued, Bernoulli random variable with mean value 1
2 , and the

random variables
{
𝑌𝑘,ℓ : (𝑘, ℓ) ∈

(
Z+

)2} are mutually P-independent. Hence, by Lemma
1.1.3, each of the random variables

𝑈𝑘 ≡
∞∑︁
ℓ=1

𝑌𝑘,ℓ

2ℓ
, 𝑘 ∈ Z+,

is uniformly distributed on [0, 1). In addition, the 𝑈𝑘 are obviously mutually independent.
Hence, I have now produced a sequence of mutually independent random variables, each of
which is uniformly distributed on [0, 1). To complete our program, I use the time-honored
transformation that takes a uniform random variable into an arbitrary one. Namely, given
a distribution function 𝐹 on R (i.e., 𝐹 is a right-continuous, nondecreasing function that
tends to 0 at −∞ and 1 at +∞), define 𝐹−1 on [0, 1] to be the left-continuous inverse of 𝐹.
That is,

𝐹−1(𝑡) = inf{𝑠 ∈ R : 𝐹 (𝑠) ≥ 𝑡}, 𝑡 ∈ [0, 1] .

(Throughout, the infimum over the empty set is taken to be +∞.) It is then an easy matter to
check that when 𝑈 is uniformly distributed on [0, 1), the random variable 𝑋 = 𝐹−1 ◦𝑈 has
distribution function 𝐹:

P(𝑋 ≤ 𝑡) = 𝐹 (𝑡), 𝑡 ∈ R.

Hence, after combining this with what we already know, I have now completed the proof of
the following theorem.

Theorem 1.1.4 Let Ω = [0, 1), F = B[0,1) , and P = 𝜆 [0,1) . Then, for any sequence {𝐹𝑘 : 𝑘 ∈
Z+} of distribution functions on R, there exists a sequence {𝑋𝑘 : 𝑘 ∈ Z+} of mutually P-
independent random variables on (Ω, F , P) with the property that P

(
𝑋𝑘 ≤ 𝑡

)
= 𝐹𝑘 (𝑡), 𝑡 ∈ R,

for each 𝑘 ∈ Z+.

1.1.4 Exercises for §1.1
Exercise 1.1.1 As I pointed out, P

(
𝐴1 ∩ 𝐴2

)
= P

(
𝐴1)P

(
𝐴2

)
if and only if the 𝜎-algebra

generated by 𝐴1 is P-independent of the one generated by 𝐴2. Construct an example to show
that the analogous statement is false when dealing with three, instead of two, sets. That is,
just because

P
(
𝐴1 ∩ 𝐴2 ∩ 𝐴3

)
= P

(
𝐴1

)
P
(
𝐴2

)
P
(
𝐴3

)
,

show that it is not necessarily true that the three 𝜎-algebras generated by 𝐴1, 𝐴2, and 𝐴3 are
mutually P-independent.

Exercise 1.1.2 This exercise deals with three elementary, but important, properties of
mutually independent random variables. Throughout, (Ω, F , P) is a given probability space.
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(i) Let 𝑋1 and 𝑋2 be a pair of mutually P-independent random variables with values in the
measurable spaces (𝐸1,B1) and (𝐸2,B2), respectively. Given a B1×B2-measurable function
𝐹 : 𝐸1 × 𝐸2 −→ R that is bounded below, use Tonelli’s Theorem to show that

𝑥2 ∈ 𝐸2 ↦−→ 𝑓 (𝑥2) ≡ EP
[
𝐹
(
𝑋1, 𝑥2

) ]
∈ R

is B2-measurable and that

EP
[
𝐹
(
𝑋1, 𝑋2

) ]
= EP

[
𝑓
(
𝑋2

) ]
.

(ii) Suppose that 𝑋1, . . . , 𝑋𝑛 are mutually P-independent, real-valued random variables. If
each of the 𝑋𝑚 is P-integrable, show that 𝑋1 · · · 𝑋𝑛 is also P-integrable and that

EP
[
𝑋1 · · · 𝑋𝑛

]
= EP

[
𝑋1

]
· · ·EP

[
𝑋𝑛

]
.

(iii) Let {𝑋𝑛 : 𝑛 ∈ Z+} be a sequence of mutually independent random variables taking values
in some separable metric space 𝐸 . If P(𝑋𝑛 = 𝑥) = 0 for all 𝑥 ∈ 𝐸 and 𝑛 ∈ Z+, show that
P
(
𝑋𝑚 = 𝑋𝑛 for some 𝑚 ≠ 𝑛

)
= 0.

Exercise 1.1.3 As an application of Lemma 1.1.3 and part (ii) of Exercise 1.1.2, prove the
identity

sin 𝑧 = 𝑧
∞∏
𝑛=1

cos
(
2−𝑛𝑧

)
for all 𝑧 ∈ C.

Exercise 1.1.4 Given a nonempty set Ω, recall3 that a collection C of subsets of Ω is called
a 𝜋-system if C is closed under finite intersections. At the same time, recall that a collection
L is called a λ-system if Ω ∈ L, 𝐴 ∪ 𝐵 ∈ L whenever 𝐴 and 𝐵 are disjoint members of L,
𝐵 \ 𝐴 ∈ L whenever 𝐴 and 𝐵 are members of L with 𝐴 ⊆ 𝐵, and

⋃∞
1 𝐴𝑛 ∈ L whenever

{𝐴𝑛 : 𝑛 ≥ 1} is a nondecreasing sequence of members of L. Finally, Lemma 2.1.12 in [61]
says that if C is a 𝜋-system, then the 𝜎-algebra 𝜎(C) generated by C is the smallest L-system
L ⊇ C.

Show that if C is a 𝜋-system and F = 𝜎(C), then two probability measures P and Q are
equal on F if they are equal on C. Next use this to see that if {C𝑖 : 𝑖 ∈ I} is a family of
𝜋-systems contained in F and if (1.1) holds when the 𝐴𝑖 are from the C𝑖, then the 𝜎-algebras
{𝜎(C𝑖) : 𝑖 ∈ I} are mutually P-independent.

Exercise 1.1.5 In this exercise I discuss two criteria for determining when random variables
on the probability space (Ω, F , P) are mutually independent.
(i) Let 𝑋1, . . . , 𝑋𝑛 be bounded, real-valued random variables. Using Weierstrass’s Approx-
imation Theorem (cf. §1.2.3), show that the 𝑋𝑚 are mutually P-independent if and only
if

EP
[
𝑋
𝑚1
1 · · · 𝑋𝑚𝑛𝑛

]
= EP

[
𝑋
𝑚1
1

]
· · ·EP

[
𝑋𝑚𝑛𝑛

]
for all 𝑚1, . . . , 𝑚𝑛 ∈ N.
(ii) For those who are unfamiliar with Fourier analysis, attempting this exercise should be

3 See, for example, §3.1 in the author’s [61].
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8 Sums of Independent Random Variables

postponed until the content of §2.3.1 has been read. Let X : Ω −→ R𝑚 and Y : Ω −→ R𝑛 be
random variables. Show that X and Y are mutually P-independent if and only if

EP
[
exp

[
𝚤

( (
α,X

)
R𝑚

+
(
β,Y

)
R𝑛

)] ]
= EP

[
exp

[
𝚤
(
α,X

)
R𝑚

] ]
EP

[
exp

[
𝚤
(
β,Y

)
R𝑛

] ]
for all α ∈ R𝑚 and β ∈ R𝑛.
Hint: The only if assertion is obvious. To prove the if assertion, first check that X and Y are
mutually independent if

EP
[
𝑓 (X) 𝑔(Y)

]
= EP

[
𝑓 (X)

]
EP

[
𝑔(Y)

]
for all 𝑓 ∈ 𝐶∞

c
(
R𝑚;C

)
and 𝑔 ∈ 𝐶∞

c
(
R𝑛;C

)
. Second, given such 𝑓 and 𝑔, apply elementary

Fourier analysis to write

𝑓 (x) =
∫
R𝑚
𝑒𝚤 (α,x)R𝑚 𝜑(α) 𝑑α and 𝑔(y) =

∫
R𝑛
𝑒𝚤 (β,y)R𝑛 𝜓(β) 𝑑β,

where 𝜑 and 𝜓 are smooth functions with rapidly decreasing (i.e., tending to 0 as |x| → ∞
faster than any power of (1+ |x|)−1) derivatives of all orders. Finally, apply Fubini’s Theorem.

Exercise 1.1.6 Given a pair of measurable spaces (𝐸1,B1) and (𝐸2,B2), recall that their
product is the measurable space

(
𝐸1 × 𝐸2,B1 ×B2

)
, where B1 ×B2 is the 𝜎-algebra over the

Cartesian product space 𝐸1 × 𝐸2 generated by the sets Γ1 × Γ2, Γ𝑖 ∈ B𝑖. Further, recall that,
for any probability measures 𝜇𝑖 on (𝐸𝑖,B𝑖), there is a unique probability measure 𝜇1 × 𝜇2 on(
𝐸1 × 𝐸2,B1 × B2

)
such that

(𝜇1 × 𝜇2)
(
Γ1 × Γ2

)
= 𝜇1(Γ1)𝜇2(Γ2) for Γ𝑖 ∈ B𝑖 .

More generally, for any 𝑛 ≥ 2 and measurable spaces {(𝐸𝑖,B𝑖) : 1 ≤ 𝑖 ≤ 𝑛}, one takes
∏𝑛

1 B𝑖
to be the 𝜎-algebra over

∏𝑛
1 𝐸𝑖 generated by the sets

∏𝑛
1 Γ𝑖, Γ𝑖 ∈ B𝑖. Since

∏𝑛+1
1 𝐸𝑖 and∏𝑛+1

1 B𝑖 can be identified with
(∏𝑛

1 𝐸𝑖
)
× 𝐸𝑛+1 and

(∏𝑛
1 B𝑖

)
× B𝑛+1, respectively, one can

use induction to show that, for every choice of probability measures 𝜇𝑖 on (𝐸𝑖,B𝑖), there is
a unique probability measure

∏𝑛
1 𝜇𝑖 on

(∏𝑛
1 𝐸𝑖,

∏𝑛
1 B𝑖

)
such that

𝑛∏
1

𝜇𝑖

(
𝑛∏
1

Γ𝑖

)
=

𝑛∏
1

𝜇𝑖 (Γ𝑖), Γ𝑖 ∈ B𝑖 .

The purpose of this exercise is to generalize the preceding construction to infinite collec-
tions. Thus, let I be an infinite index set, and, for each 𝑖 ∈ I, let (𝐸𝑖,B𝑖) be a measurable
space. Given ∅ ≠ Λ ⊆ I, use EΛ to denote the Cartesian product space

∏
𝑖∈Λ 𝐸𝑖 and 𝜋Λ to

denote the natural projection map taking EI onto EΛ. Further, let BI =
∏
𝑖∈I B𝑖 stand for

the 𝜎-algebra over EI generated by the collection C of subsets

𝜋−1
𝐹

(∏
𝑖∈𝐹

Γ𝑖

)
, Γ𝑖 ∈ B𝑖,

as 𝐹 varies over nonempty, finite subsets of I (abbreviated by ∅ ≠ 𝐹 ⊂⊂ I). In the following
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1.1 Independence 9

steps, I outline a proof that, for every choice of probability measures 𝜇𝑖 on the (𝐸𝑖,B𝑖), there
is a unique probability measure

∏
𝑖∈I 𝜇𝑖 on

(
EI ,BI

)
with the property that∏

𝑖∈I
𝜇𝑖

(
𝜋−1
𝐹

(∏
𝑖∈𝐹

Γ𝑖

))
=

∏
𝑖∈𝐹

𝜇𝑖
(
Γ𝑖

)
, Γ𝑖 ∈ B𝑖, (1.4)

for every ∅ ≠ 𝐹 ⊂⊂ I. Not surprisingly, the probability space(∏
𝑖∈I

𝐸𝑖,
∏
𝑖∈I

B𝑖,
∏
𝑖∈I

𝜇𝑖

)
is called the product over I of the spaces

(
𝐸𝑖,B𝑖, 𝜇𝑖

)
; and when all the factors are the

same space
(
𝐸,B, 𝜇

)
, it is customary to denote it by

(
𝐸I ,BI , 𝜇I ) , and if, in addition,

I = {1, . . . , 𝑁}, one uses
(
𝐸𝑁 ,B𝑁 , 𝜇𝑁

)
.

(i) Because (cf. Exercise 1.1.4) two probability measures that agree on a 𝜋-system agree
on the 𝜎-algebra generated by that 𝜋-system, show that there is at most one probability
measure on

(
EI ,BI

)
that satisfies the condition in (1.4). Hence, the problem is purely one

of existence.
(ii) Let A be the algebra over EI generated by C and show that there is a finitely additive
𝜇 : A −→ [0, 1] with the property that

𝜇

(
𝜋−1
𝐹

(
Γ𝐹

) )
=

(∏
𝑖∈𝐹

𝜇𝑖

) (
Γ𝐹

)
, Γ𝐹 ∈ B𝐹 ,

for all ∅ ≠ 𝐹 ⊂⊂ I. Hence, all that one has to do is check that 𝜇 admits a𝜎-additive extension
to BI , and, by a standard extension theorem,4 this comes down to checking that 𝜇(𝐴𝑛) ↘ 0
whenever {𝐴𝑛 : 𝑛 ≥ 1} ⊆ A and 𝐴𝑛 ↘ ∅. Thus, let {𝐴𝑛 : 𝑛 ≥ 1} be a nonincreasing
sequence from A, and assume that 𝜇(𝐴𝑛) ≥ 𝜖 for some 𝜖 > 0 and all 𝑛 ∈ Z+. One must
show that

⋂∞
1 𝐴𝑛 ≠ ∅.

(iii) Referring to the last part of (ii), show that there is no loss in generality to assume that
𝐴𝑛 = 𝜋

−1
𝐹𝑛

(
Γ𝐹𝑛

)
, where, for each 𝑛 ∈ Z+, ∅ ≠ 𝐹𝑛 ⊂⊂ I and Γ𝐹𝑛 ∈ B𝐹𝑛 . In addition, show that

one may assume that 𝐹1 = {𝑖1} and that 𝐹𝑛 = 𝐹𝑛−1 ∪ {𝑖𝑛}, 𝑛 ≥ 2, where {𝑖𝑛 : 𝑛 ≥ 1} is a
sequence of distinct elements of I. Now, make these assumptions, and show that it suffices
to find 𝑎ℓ ∈ 𝐸𝑖ℓ , ℓ ∈ Z+, with the property that, for each 𝑚 ∈ Z+, (𝑎1, . . . , 𝑎𝑚) ∈ Γ𝐹𝑚 .
(iv) Continuing (iii), for each 𝑚, 𝑛 ∈ Z+, define 𝑔𝑚,𝑛 : E𝐹𝑚 −→ [0, 1] so that

𝑔𝑚,𝑛
(
x𝐹𝑚

)
= 1Γ𝐹𝑛

(
𝑥𝑖1 , . . . , 𝑥𝑖𝑛

)
if 𝑛 ≤ 𝑚

and

𝑔𝑚,𝑛
(
x𝐹𝑚

)
=

∫
E𝐹𝑛\𝐹𝑚

1Γ𝐹𝑛

(
x𝐹𝑚 , y𝐹𝑛\𝐹𝑚

) 𝑛∏
ℓ=𝑚+1

𝜇𝑖ℓ
(
𝑑y𝐹𝑛\𝐹𝑚

)
if 𝑛 > 𝑚.

After noting that, for each 𝑚 and 𝑛, 𝑔𝑚,𝑛+1 ≤ 𝑔𝑚,𝑛 and

𝑔𝑚,𝑛
(
x𝐹𝑚

)
=

∫
𝐸𝑖𝑚+1

𝑔𝑚+1,𝑛
(
x𝐹𝑚 , 𝑦𝑖𝑚+1

)
𝜇𝑖𝑚+1

(
𝑑𝑦𝑖𝑚+1

)
,

4 For example, Theorem 8.2.6 in my [61].
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10 Sums of Independent Random Variables

set 𝑔𝑚 = lim𝑛→∞ 𝑔𝑚,𝑛 and conclude that

𝑔𝑚
(
x𝐹𝑚

)
=

∫
𝐸𝑖𝑚+1

𝑔𝑚+1
(
x𝐹𝑚 , 𝑦𝑖𝑚+1

)
𝜇𝑖𝑚+1

(
𝑑𝑦𝑖𝑚+1

)
.

In addition, note that∫
𝐸𝑖1

𝑔1
(
𝑥𝑖1

)
𝜇𝑖1

(
𝑑𝑥𝑖1

)
= lim
𝑛→∞

∫
𝐸𝑖1

𝑔1,𝑛
(
𝑥𝑖1

)
𝜇𝑖1

(
𝑑𝑥𝑖1

)
= lim
𝑛→∞

𝜇(𝐴𝑛) ≥ 𝜖,

and proceed by induction to produce 𝑎ℓ ∈ 𝐸𝑖ℓ , ℓ ∈ Z+, so that

𝑔𝑚
(
(𝑎1, . . . , 𝑎𝑚)

)
≥ 𝜖 for all 𝑚 ∈ Z+.

Finally, check that {𝑎𝑚 : 𝑚 ≥ 1} is a sequence of the sort for which we were looking at the
end of part (iii).

Exercise 1.1.7 Recall that if Φ is a measurable map from one measurable space (𝐸,B)
into a second one (𝐸 ′,B ′), then the distribution of Φ under a measure 𝜇 on (𝐸,B) is the
pushforward measure Φ∗𝜇 (sometimes denoted by 𝜇 ◦Φ−1) defined on (𝐸 ′,B ′) by

Φ∗𝜇(Γ) = 𝜇
(
Φ−1(Γ)

)
for Γ ∈ B ′.

Given a nonempty index set I and, for each 𝑖 ∈ I, a measurable space (𝐸𝑖,B𝑖) and an
𝐸𝑖-valued random variable 𝑋𝑖 on the probability space (Ω, F , P), define X : Ω −→ ∏

𝑖∈I 𝐸𝑖
so that X(𝜔)𝑖 = 𝑋𝑖 (𝜔) for each 𝑖 ∈ I and 𝜔 ∈ Ω. Show that

{
𝑋𝑖 : 𝑖 ∈ I

}
is a family of

mutually P-independent random variables if and only if X∗P =
∏
𝑖∈I (𝑋𝑖)∗P. In particular,

given probability measures 𝜇𝑖 on (𝐸𝑖,B𝑖), set

Ω =
∏
𝑖∈I

𝐸𝑖, F =
∏
𝑖∈I

B𝑖, P =
∏
𝑖∈I

𝜇𝑖,

let 𝑋𝑖 : Ω −→ 𝐸𝑖 be the natural projection map from Ω onto 𝐸𝑖, and show that {𝑋𝑖 : 𝑖 ∈ I}
is a family of mutually P-independent random variables such that, for each 𝑖 ∈ I, 𝑋𝑖 has
distribution 𝜇𝑖.

Exercise 1.1.8 Define {𝜖𝑛 (𝜔) : 𝑛 ≥ 1} for 𝜔 ∈ [0, 1) as in the proof of Lemma 1.1.3.
(i) Show that {𝜖𝑛 (𝜔) : 𝑛 ≥ 1} is the unique sequence {𝛼𝑛 : 𝑛 ≥ 1} ⊆ {0, 1}Z+ such that
𝜔 − ∑𝑛

𝑚=1 2−𝑚𝛼𝑚 < 2−𝑛, and conclude that 𝜖1(𝜔) = b2𝜔c and 𝜖𝑛+1(𝜔) = b2𝑛+1𝜔c − 2b2𝑛𝜔c
for 𝑛 ≥ 1.
(ii) Define 𝐹 : [0, 1) −→ [0, 1)2 by

𝐹 (𝜔) =
(

∞∑︁
𝑛=1

2−𝑛𝜖2𝑛−1(𝜔),
∞∑︁
𝑛=1

2−𝑛𝜖2𝑛 (𝜔)
)
,

and show that 𝜆 [0,1)2 = 𝐹∗𝜆 [0,1) . That is, 𝜆 [0,1)
(
{𝜔 : 𝐹 (𝜔) ∈ Γ}

)
= 𝜆2

[0,1) (Γ) for all Γ ∈ B[0,1)2 .

(iii) Define 𝐺 : [0,∞)2 −→ [0, 1) by

𝐺
(
(𝜔1, 𝜔2)

)
=

∞∑︁
𝑛=1

2𝜖𝑛 (𝜔1) + 𝜖𝑛 (𝜔2)
4𝑛

,
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1.1 Independence 11

and show that 𝜆 [0,1) = 𝐺∗𝜆 [0,1)2 .
Hint: Set 𝑋𝑛 = 2𝜖𝑛 (𝜔1) + 𝜖 (𝜔2), and show that the 𝑋𝑛 are mutually independent, {0, 1, 2, 3}-
valued random variable that takes each of its values with probability 1

4 . Then, argue as in the
proof of Lemma 1.1.3 that

∑∞
𝑛=1 4−𝑛𝑋𝑛 has distribution 𝜆 [0,1) .

Parts (ii) and (iii) are special cases of a general principle that says, under very general
circumstances, measures can be transformed into one another.

Exercise 1.1.9 Although it does not entail infinite product spaces, an interesting example
of the way in which the preceding type of construction can be effectively applied is provided
by the following elementary version of a coupling argument.
(i) Let (Ω,B, P) be a probability space and 𝑋 and 𝑌 a pair of P-square integrable R-valued
random variables with the property that(

𝑋 (𝜔) − 𝑋 (𝜔′)
) (
𝑌 (𝜔) − 𝑌 (𝜔′)

)
≥ 0 for all (𝜔, 𝜔′) ∈ Ω2.

Show that
EP

[
𝑋 𝑌

]
≥ EP [𝑋] EP [𝑌 ] .

Hint: Define 𝑋𝑖 and 𝑌𝑖 on Ω2 for 𝑖 ∈ {1, 2} so that 𝑋𝑖 (𝜔) = 𝑋 (𝜔𝑖) and 𝑌𝑖 (𝜔) = 𝑌 (𝜔𝑖) when
𝜔 = (𝜔1, 𝜔2) and integrate the inequality

0 ≤
(
𝑋 (𝜔1) − 𝑋 (𝜔2)

) (
𝑌 (𝜔1) − 𝑌 (𝜔2)

)
=

(
𝑋1(𝜔) − 𝑋2(𝜔)

) (
𝑌1(𝜔) − 𝑌2(𝜔)

)
with respect to P2.
(ii) Let 𝑛 ∈ Z+, and suppose that 𝑓 and 𝑔 areR-valued, Borel measurable functions onR𝑛 that
are nondecreasing with respect to each coordinate (separately). Show that if X =

(
𝑋1, . . . , 𝑋𝑛

)
is an R𝑛-valued random variable on a probability space (Ω,B, P) whose coordinates are
mutually P-independent, then

EP
[
𝑓 (X) 𝑔(X)

]
≥ EP

[
𝑓 (X)

]
EP

[
𝑔(X)

]
so long as 𝑓 (X) and 𝑔(X) are both P-square integrable.
Hint: First check that the case when 𝑛 = 1 reduces to an application of (i). Next, describe
the general case in terms of a multiple integral, apply Fubini’s Theorem, and make repeated
use of the case when 𝑛 = 1.

Exercise 1.1.10 A 𝜎-algebra is said to be countably generated if it contains a countable
collection of sets that generate it. The purpose of this exercise is to show that just because a
𝜎-algebra is itself countably generated does not mean that all its sub-𝜎-algebras are.

Let (Ω, F , P) be a probability space and {𝐴𝑛 : 𝑛 ∈ Z+
}
⊆ F a sequence of mutually P-

independent sub-subsets of F with the property that 𝛼 ≤ P(𝐴𝑛) ≤ 1−𝛼 for some 𝛼 ∈ (0, 1).
Let F𝑛 be the sub-𝜎-algebra generated by 𝐴𝑛. Show that the tail 𝜎-algebra T determined by{
F𝑛 : 𝑛 ∈ Z+

}
cannot be countably generated.

Hint: Show that 𝐶 ∈ T is an atom in T (i.e., 𝐵 = 𝐶 whenever 𝐵 ∈ T \ {∅} is contained in
𝐶) only if one can write

𝐶 = lim
𝑛→∞

𝐶𝑛 ≡
∞⋃
𝑚=1

⋂
𝑛≥𝑚

𝐶𝑛,
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12 Sums of Independent Random Variables

where, for each 𝑛 ∈ Z+, 𝐶𝑛 equals either 𝐴𝑛 or 𝐴{𝑛 . Conclude that every atom in T must have
P-measure 0. Now suppose that T were generated by

{
𝐵ℓ : ℓ ∈ N

}
. By Kolmogorov’s 0–1

Law, P
(
𝐵ℓ

)
∈ {0, 1} for every ℓ ∈ N. Take

�̂�ℓ =

{
𝐵ℓ if 𝑃

(
𝐵ℓ

)
= 1

𝐵
{
ℓ

if 𝑃
(
𝐵ℓ

)
= 0

and set 𝐶 =
⋂
ℓ∈N

�̂�ℓ .

Note that, on the one hand, P(𝐶) = 1, while, on the other hand, 𝐶 is an atom in T and
therefore has probability 0.

Exercise 1.1.11 Here is an interesting application of Kolmogorov’s 0–1 Law to a property
of the real numbers.
(i) Referring to the discussion preceding Lemma 1.1.3 and part (i) of Exercise 1.1.8, define
the transformations 𝑇𝑛 : [0, 1) −→ [0, 1) for 𝑛 ∈ Z+ so that

𝑇𝑛 (𝜔) = 𝜔 − 𝑅𝑛 (𝜔)
2𝑛

, 𝜔 ∈ [0, 1),

and notice (cf. the proof of Lemma 1.1.3) that 𝑇𝑛 (𝜔) simply flips the 𝑛th coefficient in the
binary expansion 𝜔. Next, let Γ ∈ B[0,1) and show that Γ is measurable with respect to the
𝜎-algebra 𝜎

(
{𝑅𝑛 : 𝑛 > 𝑚}

)
generated by {𝑅𝑛 : 𝑛 > 𝑚} if and only if 𝑇𝑛 (Γ) = Γ for each

1 ≤ 𝑛 ≤ 𝑚. In particular, conclude that 𝜆 [0,1) (Γ) ∈ {0, 1} if 𝑇𝑛Γ = Γ for every 𝑛 ∈ Z+.
(ii) Let 𝔉 denote the set of all finite subsets of Z+, and for each 𝐹 ∈ 𝔉, define 𝑇𝐹 : [0, 1) −→
[0, 1) so that 𝑇 ∅ is the identity mapping and

𝑇𝐹∪{𝑚} = 𝑇𝐹 ◦ 𝑇𝑚 for each 𝐹 ∈ 𝔉 and 𝑚 ∈ Z+ \ 𝐹.

As an application of (i), show that for every Γ ∈ B[0,1) with 𝜆 [0,1) (Γ) > 0,

𝜆 [0,1)

(⋃
𝐹 ∈𝔉

𝑇𝐹 (Γ)
)
= 1.

In particular, this means that ifΓ has positive measure, then Lebesgue almost every𝜔 ∈ [0, 1)
can be moved to Γ by flipping a finite number of the coefficients in the binary expansion of𝜔.

1.2 The Weak Law of Large Numbers
Starting with this section, and for the rest of this chapter, I will be studying what happens
when one averages mutually independent, real-valued random variables. The remarkable
fact, which will be confirmed repeatedly, is that the limiting behavior of such averages
depends hardly at all on the variables involved. Intuitively, one can explain this phenomenon
by pretending that the random variables are building blocks that, in the averaging process,
first get homothetically shrunk and then reassembled according to a regular pattern. Hence,
by the time that one passes to the limit, the peculiarities of the original blocks get lost.

Throughout the discussion, (Ω, F , P) will be a probability space on which there is a
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1.2 The Weak Law of Large Numbers 13

sequence {𝑋𝑛 : 𝑛 ≥ 1} of real-valued random variables. Given 𝑛 ∈ Z+, use 𝑆𝑛 to denote the
partial sum 𝑋1 + · · · + 𝑋𝑛 and 𝑆𝑛 to denote the average:

𝑆𝑛

𝑛
=

1
𝑛

𝑛∑︁
ℓ=1

𝑋ℓ .

1.2.1 Orthogonal Random Variables
The first result is a very general one; in fact, it even applies to random variables that are not
necessarily independent and do not necessarily have mean 0.

Lemma 1.2.1 Assume that

EP
[
𝑋2
𝑛

]
< ∞ for 𝑛 ∈ Z+ and EP

[
𝑋𝑘 𝑋ℓ

]
= 0 if 𝑘 ≠ ℓ.

Then, for each 𝜖 > 0,

𝜖2 P
(��𝑆𝑛�� ≥ 𝜖 ) ≤ EP

[
𝑆

2
𝑛

]
=

1
𝑛2

𝑛∑︁
ℓ=1

EP
[
𝑋2
ℓ

]
for 𝑛 ∈ Z+. (1.5)

In particular, if

𝑀 ≡ sup
𝑛∈Z+
EP

[
𝑋2
𝑛

]
< ∞,

then

𝜖2 P
(��𝑆𝑛�� ≥ 𝜖 ) ≤ EP

[
𝑆

2
𝑛

]
≤ 𝑀

𝑛
, 𝑛 ∈ Z+ and 𝜖 > 0;

and so 𝑆𝑛 −→ 0 in 𝐿2(P;R) and therefore also in P-probability.

Proof To prove the equality in (1.5), note that, by orthogonality,

EP
[
𝑆 2
𝑛

]
=

𝑛∑︁
ℓ=1

EP
[
𝑋2
ℓ

]
.

The rest is just an application of Chebyshev’s inequality, the estimate that results after
integrating the inequality

𝜖21[𝜖 ,∞)
(
|𝑌 |

)
≤ 𝑌 21[𝜖 ,∞)

(
|𝑌 |

)
≤ 𝑌 2

for any random variable 𝑌 . �

1.2.2 Mutually Independent Random Variables
Although Lemma 1.2.1 does not require independence, mutually independent random vari-
ables provide a ready source of orthogonal functions. To wit, recall that for any P-square
integrable random variable 𝑋 , its variance Var(𝑋) satisfies

Var(𝑋) ≡ EP
[(
𝑋 − EP [𝑋]

)2]
= EP

[
𝑋2] − (

EP [𝑋]
)2 ≤ EP

[
𝑋2] .
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14 Sums of Independent Random Variables

In particular, if the random variables 𝑋𝑛, 𝑛 ∈ Z+, are P-square integrable and mutually
P-independent, then the random variables

�̂�𝑛 ≡ 𝑋𝑛 − EP
[
𝑋𝑛

]
, 𝑛 ∈ Z+,

are still P-square integrable, have mean value 0, and therefore are orthogonal. Hence, the
following statement is an immediate consequence of Lemma 1.2.1.

Theorem 1.2.2 Let
{
𝑋𝑛 : 𝑛 ∈ Z+

}
be a sequence of mutually P-independent, P-square

integrable random variables with mean value 𝑚 and variance dominated by 𝜎2. Then, for
every 𝑛 ∈ Z+ and 𝜖 > 0,

𝜖2 P
(��𝑆𝑛 − 𝑚�� ≥ 𝜖 ) ≤ EP

[ (
𝑆𝑛 − 𝑚

)2
]
≤ 𝜎2

𝑛
. (1.6)

In particular, 𝑆𝑛 −→ 𝑚 in 𝐿2(P;R) and therefore in P-probability.

As yet I have made only minimal use of independence: all that I have done is subtracted
the mean of mutually independent random variables and thereby made them orthogonal. In
order to bring the full force of independence into play, one has to exploit the fact that one can
compose mutually independent random variables with any (measurable) functions without
destroying their independence; in particular, truncating independent random variables does
not destroy independence. To see how such a property can be brought to bear, I will now
consider the problem of extending the last part of Theorem 1.2.2 to 𝑋𝑛 that are less than
P-square integrable. In order to understand the statement, recall that a family of random
variables

{
𝑋𝑖 : 𝑖 ∈ I

}
is said to be uniformly P-integrable if

lim
𝑅↗∞

sup
𝑖∈I
EP

[��𝑋𝑖 ��, ��𝑋𝑖 �� ≥ 𝑅

]
= 0.

As the proof of the following theorem illustrates, the importance of this condition is that
it allows one to simultaneously approximate the random variables 𝑋𝑖, 𝑖 ∈ I, by bounded
random variables.

Theorem 1.2.3 (The Weak Law of Large Numbers) Let
{
𝑋𝑛 : 𝑛 ∈ Z+

}
be a uniformly

P-integrable sequence of mutually P-independent random variables. Then

1
𝑛

𝑛∑︁
1

(
𝑋𝑚 − EP [𝑋𝑚]

)
−→ 0 in 𝐿1(P;R)

and therefore also in P-probability. In particular, if
{
𝑋𝑛 : 𝑛 ∈ Z+

}
is a sequence of mutually

P-independent, P-integrable random variables that are identically distributed, then 𝑆𝑛 −→
EP [𝑋1] in 𝐿1(P;R) and P-probability. (Cf. Exercise 1.2.1.)

Proof Without loss in generality, I will assume that EP [𝑋𝑛] = 0 for every 𝑛 ∈ Z+.
For each 𝑅 ∈ (0,∞), define 𝑓𝑅 (𝑡) = 𝑡 1[−𝑅,𝑅] (𝑡), 𝑡 ∈ R,

𝑚 (𝑅)
𝑛 = EP

[
𝑓𝑅 ◦ 𝑋𝑛

]
, 𝑋 (𝑅)

𝑛 = 𝑓𝑅 ◦ 𝑋𝑛 − 𝑚 (𝑅)
𝑛 , and 𝑌 (𝑅)

𝑛 = 𝑋𝑛 − 𝑋 (𝑅)
𝑛 ,

and set

𝑆
(𝑅)
𝑛 =

1
𝑛

𝑛∑︁
ℓ=1

𝑋
(𝑅)
ℓ

and 𝑇
(𝑅)
𝑛 =

1
𝑛

𝑛∑︁
ℓ=1

𝑌
(𝑅)
ℓ
.
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1.2 The Weak Law of Large Numbers 15

Since E[𝑋𝑛] = 0 =⇒ 𝑚
(𝑅)
𝑛 = −E

[
𝑋𝑛, |𝑋𝑛 | > 𝑅

]
,

EP
[
|𝑆𝑛 |

]
≤ EP

[
|𝑆 (𝑅)
𝑛 |

]
+ EP

[
|𝑇 (𝑅)
𝑛 |

]
≤ EP

[
|𝑆 (𝑅)
𝑛 |2

] 1
2 + 2 max

1≤ℓ≤𝑛
EP

[
|𝑋ℓ |, |𝑋ℓ | ≥ 𝑅

]
≤ 𝑅

√
𝑛
+ 2 max

ℓ∈Z+
EP

[
|𝑋ℓ |, |𝑋ℓ | ≥ 𝑅

]
;

and therefore, for each 𝑅 > 0,

lim
𝑛→∞
EP

[
|𝑆𝑛 |

]
≤ 2 sup

ℓ∈Z+
EP

[
|𝑋ℓ |, |𝑋ℓ | ≥ 𝑅

]
.

Hence, because the 𝑋ℓ are uniformly P-integrable, we get the desired convergence in 𝐿1(P;R)
by letting 𝑅 ↗ ∞. �

1.2.3 Approximate Identities
The name of Theorem 1.2.3 comes from a somewhat invidious comparison with the result
in Theorem 1.4.6. The reason why the appellation weak is not entirely fair is that, although
The Weak Law is indeed less refined than the result in Theorem 1.4.6, it is every bit as useful
as the one in Theorem 1.4.6 and maybe even more important when it comes to applications.
What the Weak Law provides is a ubiquitous technique for constructing an approximate
identity (i.e., a sequence of measures that approximate a point mass) and measuring how
fast the approximation is taking place. To illustrate how clever selections of the random
variables entering the Weak Law can lead to interesting applications, I will spend the rest of
this subsection discussing S. Bernstein’s approach to Weierstrass’s Approximation Theorem.

For a given 𝑝 ∈ [0, 1], let
{
𝑋𝑛 : 𝑛 ∈ Z+

}
be a sequence of mutually P-independent

{0, 1}-valued Bernoulli random variables with mean value 𝑝. Then

P
(
𝑆𝑛 = ℓ

)
=

(
𝑛

ℓ

)
𝑝ℓ (1 − 𝑝)𝑛−ℓ for 0 ≤ ℓ ≤ 𝑛.

Hence, for any 𝑓 ∈ 𝐶
(
[0, 1];R

)
, the 𝑛th Bernstein polynomial

𝐵𝑛 (𝑝; 𝑓 ) ≡
𝑛∑︁
ℓ=0

(
𝑛

ℓ

)
𝑓

(
ℓ

𝑛

)
𝑝ℓ (1 − 𝑝)𝑛−ℓ (1.7)

of 𝑓 at 𝑝 is equal to
EP

[
𝑓 ◦ 𝑆𝑛

]
.

In particular, �� 𝑓 (𝑝) − 𝐵𝑛 (𝑝; 𝑓 )
�� = ���EP [ 𝑓 (𝑝) − 𝑓 ◦ 𝑆𝑛

] ��� ≤ EP [�� 𝑓 (𝑝) − 𝑓 ◦ 𝑆𝑛
��]

≤ 2‖ 𝑓 ‖u𝑃
(��𝑆𝑛 − 𝑝�� ≥ 𝜖 ) + 𝜌(𝜖 ; 𝑓 ),

where ‖ 𝑓 ‖u is the uniform norm ‖ · ‖u of 𝑓 (i.e., the supremum of | 𝑓 | over the domain of
𝑓 ) and

𝜌(𝜖 ; 𝑓 ) ≡ sup
{
| 𝑓 (𝑡) − 𝑓 (𝑠) | : 0 ≤ 𝑠 < 𝑡 ≤ 1 with 𝑡 − 𝑠 ≤ 𝜖

}
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16 Sums of Independent Random Variables

is the modulus of continuity of 𝑓. Noting that Var
(
𝑋𝑛

)
= 𝑝(1 − 𝑝) ≤ 1

4 and applying (1.6),
we conclude that, for every 𝜖 > 0, 𝑓 (𝑝) − 𝐵𝑛 (𝑝; 𝑓 )


u ≤ ‖ 𝑓 ‖u

2𝑛𝜖2 + 𝜌(𝜖 ; 𝑓 ).

In other words, for all 𝑛 ∈ Z+, 𝑓 − 𝐵𝑛 (· ; 𝑓 )u ≤ 𝛽(𝑛; 𝑓 ) ≡ inf
{
‖ 𝑓 ‖u

2𝑛𝜖2 + 𝜌(𝜖 ; 𝑓 ) : 𝜖 > 0
}
. (1.8)

Obviously, (1.8) shows not only that, as 𝑛 → ∞, 𝐵𝑛 (· ; 𝑓 ) −→ 𝑓 uniformly on [0, 1], it
even provides a rate of convergence in terms of the modulus of continuity of 𝑓. Thus we
have done more than simply prove Weierstrass’s theorem; we have produced a rather explicit
and tractable sequence of approximating polynomials, the sequence

{
𝐵𝑛 (· ; 𝑓 ) : 𝑛 ∈ Z+

}
.

Although this sequence is, by no means, the most efficient one,5 as we are about to see, the
Bernstein polynomials have a lot to recommend them. In particular, they have the feature that
they provide nonnegative polynomial approximations to nonnegative functions. In fact, the
following discussion reveals much deeper nonnegativity preservation properties possessed
by the Bernstein approximation scheme.

In order to bring out the virtues of the Bernstein polynomials, it is important to replace
(1.7) with an expression in which the coefficients of 𝐵𝑛 ( · ; 𝑓 ) (as polynomials) are clearly
displayed. To this end, introduce the difference operator Δℎ for ℎ > 0 given by[

Δℎ 𝑓
]
(𝑡) = 𝑓 (𝑡 + ℎ) − 𝑓 (𝑡)

ℎ
.

A straightforward inductive argument (using Pascal’s Identity for binomial coefficients)
shows that

(−ℎ)𝑚
[
Δ𝑚ℎ 𝑓

]
(𝑡) =

𝑚∑︁
ℓ=0

(−1)ℓ
(
𝑚

ℓ

)
𝑓 (𝑡 + ℓℎ) for 𝑚 ∈ Z+,

where Δ(𝑚)
ℎ

denotes the 𝑚th iterate of the operator Δℎ. Taking ℎ = 1
𝑛
, we now see that

𝐵𝑛 (𝑝; 𝑓 ) =
𝑛∑︁
ℓ=0

𝑛−ℓ∑︁
𝑘=0

(
𝑛

ℓ

) (
𝑛 − ℓ
𝑘

)
(−1)𝑘 𝑓 (ℓℎ)𝑝ℓ+𝑘

=

𝑛∑︁
𝑟=0

𝑝𝑟
𝑟∑︁
ℓ=0

(
𝑛

ℓ

) (
𝑛 − ℓ
𝑟 − ℓ

)
(−1)𝑟−ℓ 𝑓 (ℓℎ)

=

𝑛∑︁
𝑟=0

(−𝑝)𝑟
(
𝑛

𝑟

) 𝑟∑︁
ℓ=0

(
𝑟

ℓ

)
(−1)ℓ 𝑓 (ℓℎ)

=

𝑛∑︁
𝑟=0

(
𝑛

𝑟

)
(𝑝ℎ)𝑟

[
Δ𝑟ℎ 𝑓

]
(0),

where Δ0
ℎ
𝑓 ≡ 𝑓. Hence, we have proved that

𝐵𝑛 (𝑝; 𝑓 ) =
𝑛∑︁
ℓ=0

𝑛−ℓ
(
𝑛

ℓ

) [
Δℓ1
𝑛

𝑓
]
(0)𝑝ℓ for 𝑝 ∈ [0, 1] . (1.9)

5 See G. G. Lorentz’s book [38] for a lot more information.
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1.2 The Weak Law of Large Numbers 17

The marked resemblance between the expression on the right-hand side of (1.9) and a
Taylor polynomial is more than coincidental. To demonstrate how one can exploit the relation-
ship between the Bernstein and Taylor polynomials, say that a function 𝜑 ∈ 𝐶∞ (

(𝑎, 𝑏);R
)

is
absolutely monotone if its 𝑚th derivative 𝜕𝑚𝜑 is nonnegative for every 𝑚 ∈ N. Also,
say that 𝜑 ∈ 𝐶∞ (

[0, 1]; [0, 1]) is a probability-generating function if there exists a{
𝑢𝑛 : 𝑛 ∈ N

}
⊆ [0, 1] such that

∞∑︁
𝑛=0

𝑢𝑛 = 1 and 𝜑(𝑡) =
∞∑︁
𝑛=0

𝑢𝑛𝑡
𝑛 for 𝑡 ∈ [0, 1] .

Obviously, every probability-generating function is absolutely monotone on (0, 1). The some-
what surprising (remember that most infinitely differentiable functions do not admit power
series expansions) fact that I am about to prove is that, apart from a multiplicative constant,
the converse is also true. In fact, one does not need to know, a priori, that the function is
smooth so long as it satisfies a discrete version of absolute monotonicity.

Theorem 1.2.4 Let 𝜑 ∈ 𝐶
(
[0, 1];R

)
with 𝜑(1) = 1 be given. Then the following are

equivalent:

(i) 𝜑 is a probability-generating function,
(ii) the restriction of 𝜑 to (0, 1) is absolutely monotone;
(iii)

[
Δ𝑚1
𝑛

𝜑
]
(0) ≥ 0 for every 𝑛 ∈ N and 0 ≤ 𝑚 ≤ 𝑛.

Proof The implication (i) =⇒ (ii) is trivial. To see that (ii) implies (iii), first observe that if
𝜓 is absolutely monotone on (𝑎, 𝑏) and ℎ ∈ (0, 𝑏 − 𝑎), then Δℎ𝜓 is absolutely monotone on
(𝑎, 𝑏 − ℎ). Indeed, because 𝜕 ◦ Δℎ𝜓 = Δℎ ◦ 𝜕𝜓 on (𝑎, 𝑏 − ℎ), we have that

ℎ
[
𝜕𝑚 ◦ Δℎ𝜓

]
(𝑡) =

∫ 𝑡+ℎ

𝑡

𝜕𝑚+1𝜓(𝑠) 𝑑𝑠 ≥ 0, 𝑡 ∈ (𝑎, 𝑏 − ℎ),

for any 𝑚 ∈ N. Returning to the function 𝜑, we now know that Δ𝑚
ℎ
𝜑 is absolutely monotone

on (0, 1 − 𝑚ℎ) for all 𝑚 ∈ N and ℎ > 0 with 𝑚ℎ < 1. In particular,

[Δ𝑚ℎ 𝜑] (0) = lim
𝑡↘0

[Δ𝑚ℎ 𝜑] (𝑡) ≥ 0 if 𝑚ℎ < 1,

and so
[
Δ𝑚
ℎ
𝜑
]
(0) ≥ 0 when ℎ = 1

𝑛
and 0 ≤ 𝑚 < 𝑛. Moreover, since

[Δ𝑛1
𝑛

𝜑] (0) = lim
ℎ↗ 1

𝑛

[Δ𝑛ℎ𝜑] (0),

we also know that
[
Δ𝑛
ℎ
𝜑
]
(0) ≥ 0 when ℎ = 1

𝑛
, and this completes the proof that (ii) implies

(iii).
Finally, assume that (iii) holds, and set 𝜑𝑛 = 𝐵𝑛 ( · ; 𝜑). Then, from (1.9) and the equality

𝜑𝑛 (1) = 𝜑(1) = 1, we see that each 𝜑𝑛 is a probability-generating function. Thus, in order to
complete the proof that (iii) implies (i), all that one has to do is check that a uniform limit of
probability-generating functions is itself a probability-generating function. To this end, write

𝜑𝑛 (𝑡) =
∞∑︁
ℓ=0

𝑢𝑛,ℓ 𝑡
ℓ , 𝑡 ∈ [0, 1] for each 𝑛 ∈ Z+.
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18 Sums of Independent Random Variables

Because the 𝑢𝑛,ℓ are all elements of [0, 1], one can use a diagonalization procedure to choose
{𝑛𝑘 : 𝑘 ∈ Z+} so that

lim
𝑘→∞

𝑢𝑛𝑘 ,ℓ = 𝑢ℓ ∈ [0, 1]

exists for each ℓ ∈ N. But, by Lebesgue’s Dominated Convergence Theorem, this means that

𝜑(𝑡) = lim
𝑘→∞

𝜑𝑛𝑘 (𝑡) =
∞∑︁
ℓ=0

𝑢ℓ 𝑡
ℓ for every 𝑡 ∈ [0, 1).

Finally, by the Monotone Convergence Theorem, the preceding extends immediately to
𝑡 = 1, and so 𝜑 is a probability-generating function. (Notice that the argument just given
does not even use the assumed uniform convergence and shows that the pointwise limit of
probability-generating functions is again a probability-generating function.) �

The preceding is only one of many examples in which The Weak Law leads to useful ways
of forming an approximate identity. A second example is given in Exercises 1.2.2 and 1.2.3.
My treatment of these is based on that of W. Feller.6

1.2.4 Exercises for §1.2
Exercise 1.2.1 Although, for historical reasons, the Weak Law is usually thought of as a
theorem about convergence in P-probability, the forms in which I have presented it are clearly
results about convergence in either P-mean or even P-square mean. Thus, it is interesting to
discover that one can replace the uniform integrability assumption made in Theorem 1.2.3
with a weak uniform integrability assumption if one is willing to settle for convergence
in P-probability. Namely, let 𝑋1, . . . , 𝑋𝑛, . . . be mutually P-independent random variables,
assume that

𝐹 (𝑅) ≡ sup
𝑛∈Z+

𝑅P
(
|𝑋𝑛 | ≥ 𝑅

)
−→ 0 as 𝑅 ↗ ∞,

and set

𝑚𝑛 =
1
𝑛

𝑛∑︁
ℓ=1

EP
[
𝑋ℓ , |𝑋ℓ | ≤ 𝑛

]
, 𝑛 ∈ Z+.

Show that, for each 𝜖 > 0,

P
(��𝑆𝑛 − 𝑚𝑛�� ≥ 𝜖 ) ≤ 1

(𝑛𝜖)2

𝑛∑︁
ℓ=1

EP
[
𝑋2
ℓ ,

��𝑋ℓ �� ≤ 𝑛] + P( max
1≤ℓ≤𝑛

��𝑋ℓ �� > 𝑛)
≤ 2
𝑛𝜖2

∫ 𝑛

0
𝐹 (𝑡) 𝑑𝑡 + 𝐹 (𝑛),

and conclude that
��𝑆𝑛 −𝑚𝑛�� −→ 0 in P-probability. (See part (ii) of Exercises 1.4.6 and 1.4.7

for a partial converse to this statement.)
Hint: Use the formula

Var(𝑌 ) ≤ EP
[
𝑌 2] = 2

∫
[0,∞)

𝑡 P
(
|𝑌 | > 𝑡

)
𝑑𝑡.

6 Feller provides several other similar applications of the Weak Law, including the ones in the following
exercises.
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Exercise 1.2.2 Show that, for each 𝑇 ∈ [0,∞) and 𝑡 ∈ (0,∞),

lim
𝑛→∞

𝑒−𝑛𝑡
∑︁

0≤𝑘≤𝑛𝑇

(𝑛𝑡)𝑘
𝑘!

=

{
1 if 𝑇 > 𝑡,

0 if 𝑇 < 𝑡.

Hint: Let 𝑋1, . . . , 𝑋𝑛, . . . be mutually P-independent, N-valued Poisson random variables
with mean value 𝑡. That is, the 𝑋𝑛 are mutually P-independent and

P
(
𝑋𝑛 = 𝑘

)
= 𝑒−𝑡

𝑡𝑘

𝑘!
for 𝑘 ∈ N.

Show that 𝑆𝑛 is anN-valued Poisson random variable with mean value 𝑛𝑡, and conclude that,
for each 𝑇 ∈ [0,∞) and 𝑡 ∈ (0,∞),

𝑒−𝑛𝑡
∑︁

0≤𝑘≤𝑛𝑇

(𝑛𝑡)𝑘
𝑘!

= 𝑃
(
𝑆𝑛 ≤ 𝑇

)
.

Exercise 1.2.3 Given a right-continuous function 𝐹 : [0,∞) −→ R of bounded variation
with 𝐹 (0) = 0, define its Laplace transform 𝜑(𝜆), 𝜆 ∈ [0,∞), by the Riemann–Stieltjes
integral:

𝜑(𝜆) =
∫
[0,∞)

𝑒−𝜆𝑡 𝑑𝐹 (𝑡).

Using Exercise 1.2.2, show that

𝑒−𝑛𝑡
∑︁
𝑘≤𝑛𝑇

(−𝑛𝑡)𝑘
𝑘!

= 𝐹 (𝑇) as 𝑛→ ∞

for each𝑇 ∈ [0,∞) at which 𝐹 is continuous. Conclude, in particular, that 𝐹 can be recovered
from its Laplace transform. Although this is not the most practical recovery method, it is
distinguished by the fact that it does not involve complex analysis.

1.3 Cramér’s Theory of Large Deviations
From Theorem 1.2.2, we know that if

{
𝑋𝑛 : 𝑛 ∈ Z+

}
is a sequence of mutually P-independent,

P-square integrable random variables with mean value 0, and if the averages 𝑆𝑛, 𝑛 ∈ Z+, are
defined accordingly, then, for every 𝜖 > 0,

P
(��𝑆𝑛�� ≥ 𝜖 ) ≤ max1≤𝑚≤𝑛 Var(𝑋𝑚)

𝑛𝜖2 , 𝑛 ∈ Z+.

Thus, so long as
Var(𝑋𝑛)

𝑛
−→ 0 as 𝑛→ ∞,

the 𝑆𝑛 are becoming more and more concentrated near 0, and the rate at which this concen-
tration is occurring can be estimated in terms of the variances Var(𝑋𝑛). In this section, we
will see that, by placing more stringent integrability requirements on the 𝑋𝑛, one can gain
more information about the rate at which the 𝑆𝑛 are concentrating at 0.

In all of this analysis, the trick is to see how independence can be combined with 0 mean
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20 Sums of Independent Random Variables

value to produce unexpected cancellations; and, as a preliminary warm-up exercise, I begin
with the following.

Theorem 1.3.1 Let {𝑋𝑛 : 𝑛 ∈ Z+} be a sequence of mutually P-independent, P-integrable
random variables with mean value 0, and assume that

𝑀4 ≡ sup
𝑛∈Z+
EP

[
𝑋 4
𝑛

]
< ∞.

Then, for each 𝜖 > 0,

𝜖4P
(
|𝑆𝑛 | ≥ 𝜖

)
≤ EP

[
𝑆𝑛

4] ≤ 3𝑀4

𝑛2 , 𝑛 ∈ Z+. (1.10)

In particular, 𝑆𝑛 −→ 0 P-almost surely.

Proof Obviously, in order to prove (1.10), it suffices to check the second inequality, which
is equivalent to EP

[
𝑆4
𝑛

]
≤ 3𝑀4𝑛

2. But

EP
[
𝑆4
𝑛

]
=

𝑛∑︁
𝑚1 ,...,𝑚4=1

EP
[
𝑋𝑚1 · · · 𝑋𝑚4

]
,

and, by Hölder’s Inequality, each of these terms is dominated by 𝑀4. In addition, of these
terms, the only ones that do not vanish have either all their factors the same or two pairs of
equal factors. Thus, the number of nonvanishing terms is 𝑛 + 3𝑛(𝑛 − 1) = 3𝑛2 − 2𝑛.

Given (1.10), the proof of the last part becomes an application of the easy part of the
Borel–Cantelli Lemma. Indeed, for any 𝜖 > 0, we know from (1.10) that

∞∑︁
𝑛=1

P
(��𝑆𝑛�� ≥ 𝜖 ) < ∞,

and therefore, by (1.2), that P
(
lim𝑛→∞

��𝑆𝑛�� ≥ 𝜖 ) = 0. �

Remark 1.3.2 The final assertion in Theorem 1.3.1 is a primitive version of the Strong
Law of Large Numbers. Although the Strong Law will be taken up again, and considerably
refined, in §1.4, the principle on which its proof here was based is an important one: namely,
control more moments and you will get better estimates; get better estimates and you will
reach more refined conclusions.

With the preceding adage in mind, I will devote the rest of this section to examining
what one can say when one has all moments at one’s disposal. In fact, from now on, I will
be assuming that 𝑋1, . . . , 𝑋𝑛, . . . are mutually independent random variables with common
distribution 𝜇 having the property that the moment-generating function

𝑀𝜇 (𝜉) ≡
∫
R

𝑒 𝜉 𝑥 𝜇(𝑑𝑥) < ∞ for all 𝜉 ∈ R. (1.11)

Obviously, (1.11) is more than sufficient to guarantee that the 𝑋𝑛 have moments of all orders.
In fact, as an application of Lebesgue’s Dominated Convergence Theorem, one sees that
𝜉 ∈ R ↦−→ 𝑀 (𝜉) ∈ (0,∞) is infinitely differentiable and that

EP
[
𝑋𝑛1

]
=

∫
R

𝑥𝑛 𝜇(𝑑𝑥) = 𝑑𝑛𝑀

𝑑𝜉𝑛
(0) for all 𝑛 ∈ N.
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1.3 Cramér’s Theory of Large Deviations 21

In the discussion that follows, I will use 𝑚 and 𝜎2 to denote, respectively, the common mean
value and variance of the 𝑋𝑛.

In order to develop some intuition for the considerations that follow, I will first consider an
example, which, for many purposes, is the canonical example in probability theory. Namely,
let 𝑔 : R −→ (0,∞) be the Gauss kernel

𝑔(𝑦) ≡ 1
√

2𝜋
exp

[
− |𝑦 |2

2

]
, 𝑦 ∈ R, (1.12)

and recall that a random variable 𝑋 is standard normal if

P
(
𝑋 ∈ Γ

)
=

∫
Γ

𝑔(𝑦) 𝑑𝑦, Γ ∈ BR.

In spite of their somewhat insultingly bland moniker, standard normal random variables are
the building blocks for the most honored family in all of probability theory. Indeed, given
𝑚 ∈ R and𝜎 ∈ [0,∞), the random variable𝑌 is said to be normal (or Gaussian) with mean
value𝑚 and variance 𝜎2 (often this is abbreviated by saying that 𝑋 is an 𝑁 (𝑚, 𝜎2)-random
variable and written as 𝑋 ∈ 𝑁 (𝑚, 𝜎2)) if and only if the distribution of 𝑌 is 𝛾𝑚,𝜎2 , where
𝛾𝑚,𝜎2 is the distribution of the variable 𝜎𝑋 + 𝑚 when 𝑋 is standard normal. That is, 𝑌 is an
𝑁 (𝑚, 𝜎2) random variable if, when 𝜎 = 0, P(𝑌 = 𝑚) = 1 and, when 𝜎 > 0,

P
(
𝑌 ∈ Γ

)
=

1
𝜎

∫
Γ

𝑔

( 𝑦 − 𝑚
𝜎

)
𝑑𝑦 for Γ ∈ BR.

There are two obvious reasons for the honored position held by Gaussian random variables.
In the first place, they certainly have finite moment-generating functions. In fact, since∫

R

𝑒 𝜉 𝑦 𝑔(𝑦) 𝑑𝑦 = exp
(
𝜉2

2

)
, 𝜉 ∈ R,

it is clear that

𝑀𝛾
𝑚,𝜎2 (𝜉) = exp

[
𝜉𝑚 + 𝜎

2𝜉2

2

]
. (1.13)

Secondly, they add nicely. To be precise, it is a familiar fact from elementary probability
theory that if 𝑋 is an 𝑁 (𝑚, 𝜎2)-random variable and �̂� is an 𝑁 (�̂�, �̂�2)-random variable
that is independent of 𝑋 , then 𝑋 + �̂� is an 𝑁

(
𝑚 + �̂�, 𝜎2 + �̂�2)-random variable. In particular,

if 𝑋1, . . . , 𝑋𝑛 are mutually independent, standard normal random variables, then 𝑆𝑛 is an
𝑁

(
0, 1

𝑛

)
-random variable. That is,

P
(
𝑆𝑛 ∈ Γ

)
=

√︂
𝑛

2𝜋

∫
Γ

exp
[
−𝑛|𝑦 |

2

2

]
𝑑𝑦.

Thus (cf. Exercise 1.3.1), for any Γ we see that

lim
𝑛→∞

1
𝑛

log
[
𝑃
(
𝑆𝑛 ∈ Γ

) ]
= −ess inf

{
|𝑦 |2
2

: 𝑦 ∈ Γ

}
, (1.14)

where the “ess” in (1.14) stands for essential and means that whatever follows it is taken
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modulo a set of measure 0. (Hence, apart from a minus sign, the right-hand side of (1.14) is
the greatest number dominated by |𝑦 |2

2 for Lebesgue-almost every 𝑦 ∈ Γ.) In fact, because∫ ∞

𝑥

𝑔(𝑦) 𝑑𝑦 ≤ 𝑥−1𝑔(𝑥) for all 𝑥 ∈ (0,∞),

we have the rather precise upper bound

P
(
|𝑆𝑛 | ≥ 𝑅

)
≤

√︂
2

𝑛𝜋𝑅2 exp
[
−𝑛𝜖

2

2

]
for 𝑅 > 0.

At the same time, it is clear that, for 0 < 𝜖 < |𝑎 |,

𝑃
(
|𝑆𝑛 − 𝑎 | < 𝜖

)
≥

√︂
2𝜖2𝑛

𝜋
exp

[
−𝑛( |𝑎 | + 𝜖)

2

2

]
.

More generally, if the 𝑋𝑛 are mutually independent 𝑁 (𝑚, 𝜎2)-random variables, then one
finds that

P
(
|𝑆𝑛 − 𝑚 | ≥ 𝜎𝑅

)
≤

√︂
2

𝑛𝜋𝑅2 exp
[
−𝑛𝑅

2

2

]
for 𝑅 > 0;

and, for 0 < 𝜖 < |𝑎 | and sufficiently large 𝑛,

𝑃
(
|𝑆𝑛 − (𝑚 + 𝑎) | < 𝜎𝜖

)
≥

√︂
2𝜖2𝑛

𝜋
exp

[
−𝑛( |𝑎 | + 𝜖)

2

2

]
.

Of course, in general one cannot hope to have such an explicit expression for the distribution
of 𝑆𝑛. Nonetheless, on the basis of the preceding, one can start to see what is going on. Namely,
when the distribution 𝜇 falls off rapidly outside of compact subsets, averaging 𝑛 mutually
independent random variables with distribution 𝜇 has the effect of building an exponentially
deep well in which the mean value 𝑚 lies at the bottom. More precisely, if one believes
that the Gaussian random variables are normal in the sense that they are typical, then one
should conjecture that, even when the random variables are not normal, the behavior of
P
(��𝑆𝑛 − 𝑚�� ≥ 𝜖

)
for large 𝑛 should resemble that of Gaussians with the same variance; and

it is in the verification of this conjecture that the moment-generating function 𝑀𝜇 plays a
central role. Namely, although an expression in terms of 𝜇 for the distribution of 𝑆𝑛 is seldom
readily available, the moment-generating function for 𝑆𝑛 is easily expressed in terms of 𝑀𝜇.
To wit, as a trivial application of independence, we have

EP
[
𝑒 𝜉𝑆𝑛

]
= 𝑀𝜇 (𝜉)𝑛, 𝜉 ∈ R.

Hence, by Markov’s Inequality applied to 𝑒 𝜉𝑆𝑛 , we see that, for any 𝑎 ∈ R,

P
(
𝑆𝑛 ≥ 𝑎

)
≤ 𝑒−𝑛𝜉𝑎 𝑀𝜇 (𝜉)𝑛 = exp

[
−𝑛

(
𝜉𝑎 − Λ𝜇 (𝜉)

) ]
, 𝜉 ∈ [0,∞),

where
Λ𝜇 (𝜉) ≡ log

(
𝑀𝜇 (𝜉)

)
(1.15)

is the logarithmic moment-generating function of 𝜇. The preceding relation is one of those
lovely situations in which a single quantity is dominated by a whole family of quantities,
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which means that one should optimize by minimizing over the dominating quantities. Thus,
we now have

P
(
𝑆𝑛 ≥ 𝑎

)
≤ exp

[
−𝑛 sup

𝜉 ∈[0,∞)

(
𝜉𝑎 − Λ𝜇 (𝜉)

) ]
. (1.16)

Notice that (1.16) is really very good. For instance, when the 𝑋𝑛 are 𝑁 (𝑚, 𝜎2)-random
variables and 𝜎 > 0, then (cf. (1.13)) the preceding leads quickly to the estimate

P
(
𝑆𝑛 − 𝑚 ≥ 𝜖

)
≤ exp

(
− 𝑛𝜖

2

2𝜎2

)
,

which is essentially the upper bound at which we arrived before.
Taking a hint from the preceding, I now introduce the Legendre transform

𝐼𝜇 (𝑥) ≡ sup
{
𝜉𝑥 − Λ𝜇 (𝜉) : 𝜉 ∈ R

}
, 𝑥 ∈ R, (1.17)

ofΛ𝜇 and, before proceeding further, make some elementary observations about the structure
of the functions Λ𝜇 and 𝐼𝜇.

Lemma 1.3.3 The function Λ𝜇 is infinitely differentiable. In addition, for each 𝜉 ∈ R, the
probability measure 𝜈𝜉 on R given by

𝜈𝜉 (Γ) =
1

𝑀𝜇 (𝜉)

∫
Γ

𝑒 𝜉 𝑥 𝜇(𝑑𝑥) for Γ ∈ BR

has moments of all orders,∫
R

𝑥 𝜈𝜉 (𝑑𝑥) = Λ′
𝜇 (𝜉), and

∫
R

𝑥2 𝜈𝜉 (𝑑𝑥) −
(∫
R

𝑥 𝜈𝜉 (𝑑𝑥)
)2

= Λ′′
𝜇 (𝜉).

Next, the function 𝐼𝜇 is a [0,∞]-valued, lower semicontinuous, convex function that vanishes
at 𝑚. Moreover,

𝐼𝜇 (𝑥) = sup
{
𝜉𝑥 − Λ𝜇 (𝜉) : 𝜉 ≥ 0

}
for 𝑥 ∈ [𝑚,∞)

and

𝐼𝜇 (𝑥) = sup
{
𝜉𝑥 − Λ𝜇 (𝜉) : 𝜉 ≤ 0

}
for 𝑥 ∈ (−∞, 𝑚] .

Finally, if

𝛼 = inf
{
𝑥 ∈ R : 𝜇

(
(−∞, 𝑥]

)
> 0

}
and 𝛽 = sup

{
𝑥 ∈ R : 𝜇

(
[𝑥,∞)

)
> 0

}
,

then 𝐼𝜇 is smooth on (𝛼, 𝛽) and identically +∞ off of [𝛼, 𝛽]. In fact, either 𝜇({𝑚}) = 1 and
𝛼 = 𝑚 = 𝛽 or 𝑚 ∈ (𝛼, 𝛽), in which case Λ′

𝜇 is a smooth, strictly increasing mapping from R
onto (𝛼, 𝛽),

𝐼𝜇 (𝑥) = Ξ𝜇 (𝑥) 𝑥 − Λ𝜇
(
Ξ𝜇 (𝑥)

)
, 𝑥 ∈ (𝛼, 𝛽), where Ξ𝜇 =

(
Λ′
𝜇

)−1

is the inverse of Λ′
𝜇, 𝜇({𝛼}) = 𝑒−𝐼𝜇 (𝛼) if 𝛼 > −∞, and 𝜇({𝛽}) = 𝑒−𝐼𝜇 (𝛽) if 𝛽 < ∞.
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Proof For notational convenience, I will drop the subscript “𝜇” during the proof. Further,
note that the smoothness of Λ follows immediately from the positivity and smoothness of 𝑀 ,
and the identification of Λ′(𝜉) and Λ′′(𝜉) with the mean and variance of 𝜈𝜉 is an application
of elementary calculus combined with the remark following (1.11). Thus, I will concentrate
on the properties of the function 𝐼.

As the pointwise supremum of functions that are linear, 𝐼 is certainly lower semicontinuous
and convex. Also, because Λ(0) = 0, it is obvious that 𝐼 ≥ 0. Next, by Jensen’s Inequality,

Λ(𝜉) ≥ 𝜉
∫
R

𝑥 𝜇(𝑑𝑥) = 𝜉 𝑚,

and, therefore, 𝜉𝑥 − Λ(𝜉) ≤ 0 if 𝑥 ≤ 𝑚 and 𝜉 ≥ 0 or if 𝑥 ≥ 𝑚 and 𝜉 ≤ 0. Hence, because 𝐼
is nonnegative, this proves the one-sided extremal characterizations of 𝐼𝜇 (𝑥) depending on
whether 𝑥 ≥ 𝑚 or 𝑥 ≤ 𝑚.

Turning to the final part, note first that there is nothing more to do in the case when
𝜇({𝑚}) = 1. Thus, assume that 𝜇({𝑚}) < 1, in which case it is clear that𝑚 ∈ (𝛼, 𝛽) and that
none of the measures 𝜈𝜉 is degenerate (i.e., concentrated at one point). In particular, because
Λ′′(𝜉) is the variance of the 𝜈𝜉 , we know that Λ′′ > 0 everywhere. Hence, Λ′ is strictly
increasing and therefore admits a smooth inverse Ξ on its image. Furthermore, because Λ′(𝜉)
is the mean of 𝜈𝜉 , it is clear that the image of Λ′ is contained in (𝛼, 𝛽). At the same time,
given an 𝑥 ∈ (𝛼, 𝛽), note that

𝑒−𝜉 𝑥
∫
R

𝑒 𝜉 𝑦 𝜇(𝑑𝑦) −→ ∞ as |𝜉 | → ∞,

and therefore 𝜉  𝜉𝑥 −Λ(𝜉) achieves a maximum at some point 𝜉𝑥 ∈ R. In addition, by the
first derivative test, Λ′(𝜉𝑥) = 𝑥, and so 𝜉𝑥 = Ξ(𝑥). Finally, suppose that 𝛽 < ∞. Then

𝑒−𝜉𝛽
∫
R

𝑒 𝜉 𝑦 𝜇(𝑑𝑦) =
∫
(−∞,𝛽 ]

𝑒−𝜉 (𝛽−𝑦) 𝜇(𝑑𝑦) ↘ 𝜇({𝛽}) as 𝜉 → ∞,

and therefore 𝑒−𝐼 (𝛽) = inf 𝜉 ≥0 𝑒
−𝜉𝛽𝑀 (𝜉) = 𝜇({𝛽}). Since the same reasoning applies when

𝛼 > −∞, we are done. �

Theorem 1.3.4 (Cramér’s Theorem) Let {𝑋𝑛 : 𝑛 ≥ 1} be a sequence of mutually P-
independent random variables with common distribution 𝜇, assume that the associated
moment-generating function 𝑀𝜇 satisfies (1.11), set 𝑚 =

∫
R
𝑥 𝜇(𝑑𝑥), and define 𝐼𝜇 accord-

ingly, as in (1.17). Then,

P
(
𝑆𝑛 ≥ 𝑎

)
≤ 𝑒−𝑛𝐼𝜇 (𝑎) for all 𝑎 ∈ [𝑚,∞),

P
(
𝑆𝑛 ≤ 𝑎

)
≤ 𝑒−𝑛𝐼𝜇 (𝑎) for all 𝑎 ∈ (−∞, 𝑚] .

Moreover, for 𝑎 ∈ (𝛼, 𝛽) (cf. Lemma 1.3.3), 𝜖 > 0, and 𝑛 ∈ Z+,

P
(��𝑆𝑛 − 𝑎�� < 𝜖 ) ≥

(
1 −

Λ′′
𝜇

(
Ξ𝜇 (𝑎)

)
𝑛𝜖2

)
exp

[
−𝑛

(
𝐼𝜇 (𝑎) + 𝜖 |Ξ𝜇 (𝑎) |

)]
,

where Λ𝜇 is the function given in (1.15) and Ξ𝜇 ≡
(
Λ′
𝜇

)−1.
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Proof To prove the first part, suppose that 𝑎 ∈ [𝑚,∞), and apply the second part of Lemma
1.3.3 to see that the exponent in (1.16) equals −𝑛𝐼𝜇 (𝑎). After replacing {𝑋𝑛 : 𝑛 ≥ 1} by
{−𝑋𝑛 : 𝑛 ≥ 1}, one also gets the desired estimate when 𝑎 ≤ 𝑚.

To prove the lower bound, let 𝑎 ∈ [𝑚, 𝛽) be given, and set 𝜉 = Ξ𝜇 (𝑎) ∈ [0,∞). Next,
recall the probability measure 𝜈𝜉 described in Lemma 1.3.3, and remember that 𝜈𝜉 has mean
value 𝑎 = Λ′

𝜇 (𝜉) and variance Λ′′
𝜇 (𝜉). Further, if

{
𝑌𝑛 : 𝑛 ∈ Z+

}
is a sequence of mutually

independent, identically distributed random variables with common distribution 𝜈𝜉 , then it
is an easy matter to check that, for any 𝑛 ∈ Z+ and every BR𝑛 -measurable 𝐹 : R𝑛 −→ [0,∞),

EP
[
𝐹
(
𝑌1, . . . , 𝑌𝑛

) ]
=

1
𝑀𝜇 (𝜉)𝑛

EP
[
𝑒 𝜉𝑆𝑛 𝐹

(
𝑋1, . . . , 𝑋𝑛

) ]
.

In particular, if

𝑇𝑛 =

𝑛∑︁
ℓ=1

𝑌ℓ and 𝑇𝑛 =
𝑇𝑛

𝑛
,

then, because 𝐼𝜇 (𝑎) = 𝜉𝑎 − Λ𝜇 (𝜉),

P
(��𝑆𝑛 − 𝑎�� < 𝜖 ) = 𝑀 (𝜉)𝑛EP

[
𝑒−𝜉𝑇𝑛 ,

��𝑇𝑛 − 𝑎�� < 𝜖 ]
≥ 𝑒−𝑛𝜉 (𝑎+𝜖 ) 𝑀 (𝜉)𝑛 P

(��𝑇𝑛 − 𝑎�� < 𝜖 )
= exp

[
−𝑛

(
𝐼𝜇 (𝑎) + 𝜉𝜖

)]
P
(��𝑇𝑛 − 𝑎�� < 𝜖 ) .

Finally, because the mean value and variance of the 𝑌𝑛 are, respectively, 𝑎 and Λ′′
𝜇 (𝜉), (1.6)

leads to

P
(��𝑇𝑛 − 𝑎�� ≥ 𝜖 ) ≤

Λ′′
𝜇 (𝜉)
𝑛𝜖2 .

The case when 𝑎 ∈ (𝛼, 𝑚] is handled in the same way. �

Results like the ones obtained in Theorem 1.3.4 are examples of a class of results known
as large deviations estimate. They are large deviations because the probability of their
occurrence is exponentially small. Although large deviation estimates are available in a
variety of circumstances,7 in general one has to settle for the cruder sort of information
contained in the following.

Corollary 1.3.5 For any Γ ∈ BR,

− inf
𝑥∈Γ◦

𝐼𝜇 (𝑥) ≤ lim
𝑛→∞

1
𝑛

log
[
𝑃
(
𝑆𝑛 ∈ Γ

) ]
≤ lim
𝑛→∞

1
𝑛

log
[
𝑃
(
𝑆𝑛 ∈ Γ

) ]
≤ − inf

𝑥∈Γ
𝐼𝜇 (𝑥).

(I use Γ◦ and Γ to denote the interior and closure of a set Γ. Also, recall that I take the
infimum over the empty set to be +∞.)
7 In fact, some people have written entire books on the subject. See, for example, [14].
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Proof To prove the upper bound, let Γ be a closed set, and define Γ+ = Γ ∩ [𝑚,∞) and
Γ− = Γ ∩ (−∞, 𝑚]. Clearly,

P
(
𝑆𝑛 ∈ Γ

)
≤ 2P

(
𝑆𝑛 ∈ Γ+

)
∨ P

(
𝑆𝑛 ∈ Γ−

)
.

Moreover, if Γ+ ≠ ∅ and 𝑎+ = min{𝑥 : 𝑥 ∈ Γ+}, then, by Lemma 1.3.3 and Theorem 1.3.4,

𝐼𝜇 (𝑎+) = inf
{
𝐼𝜇 (𝑥) : 𝑥 ∈ Γ+

}
and 𝑃

(
𝑆𝑛 ∈ Γ+

)
≤ 𝑒−𝑛𝐼𝜇 (𝑎+) .

Similarly, if Γ− ≠ ∅ and 𝑎− = max{𝑥 : 𝑥 ∈ Γ−}, then

𝐼𝜇 (𝑎−) = inf
{
𝐼𝜇 (𝑥) : 𝑥 ∈ Γ−

}
and 𝑃

(
𝑆𝑛 ∈ Γ−

)
≤ 𝑒−𝑛𝐼𝜇 (𝑎−) .

Hence, either Γ = ∅, and there is nothing to do anyhow, or

P
(
𝑆𝑛 ∈ Γ

)
≤ 2 exp

[
−𝑛 inf

{
𝐼𝜇 (𝑥) : 𝑥 ∈ Γ

}]
, 𝑛 ∈ Z+,

which certainly implies the asserted upper bound.
To prove the lower bound, assume that Γ is a nonempty open set. What I have to show is

that

lim
𝑛→∞

1
𝑛

log
[
𝑃
(
𝑆𝑛 ∈ Γ

) ]
≥ −𝐼𝜇 (𝑎)

for every 𝑎 ∈ Γ. If 𝑎 ∈ Γ∩ (𝛼, 𝛽), choose 𝛿 > 0 so that (𝑎 − 𝛿, 𝑎 + 𝛿) ⊆ Γ and use the second
part of Theorem 1.3.4 to see that

lim
𝑛→∞

1
𝑛

log
[
𝑃
(
𝑆𝑛 ∈ Γ

) ]
≥ −𝐼𝜇 (𝑎) − 𝜖

��Ξ𝜇 (𝑎)��
for every 𝜖 ∈ (0, 𝛿). If 𝑎 ∉ [𝛼, 𝛽], then 𝐼𝜇 (𝑎) = ∞, and so there is nothing to do. Finally, if
𝑎 ∈ {𝛼, 𝛽}, then 𝜇({𝑎}) = 𝑒−𝐼𝜇 (𝑎) and therefore,

P
(
𝑆𝑛 ∈ Γ

)
≥ 𝑃

(
𝑆𝑛 = 𝑎

)
≥ 𝑒−𝑛𝐼𝜇 (𝑎) . �

Remark 1.3.6 The upper bound in Theorem 1.3.4 is often called Chernoff’s Inequality.
The idea underlying its derivation is rather mundane by comparison to the subtle idea
underlying the proof of the lower bound. Indeed, it may not be immediately obvious what
that idea was! Thus, consider once again the second part of the proof of Theorem 1.3.4. What
I had to do is estimate the probability that 𝑆𝑛 lies in a neighborhood of 𝑎. When 𝑎 is the mean
value 𝑚, such an estimate is provided by the Weak Law. On the other hand, when 𝑎 ≠ 𝑚,
the Weak Law for the 𝑋𝑛 has very little to contribute. Thus, what Cramér did is replace
the original 𝑋𝑛 by random variables 𝑌𝑛, 𝑛 ∈ Z+, whose mean value is 𝑎.8 Furthermore, the
transformation from the 𝑋𝑛 to the 𝑌𝑛 was sufficiently simple that it was easy to estimate
𝑋𝑛-probabilities in terms of 𝑌𝑛-probabilities. Finally, the Weak Law applied to the 𝑌𝑛 gave
strong information about the rate of approach of 1

𝑛

∑𝑛
ℓ=1𝑌ℓ to 𝑎.

I close this section by verifying the conjecture (cf. the discussion preceding Lemma 1.3.3)
that the Gaussian case is normal. In particular, I want to check that the well around 𝑚 in
which the distribution of 𝑆𝑛 becomes concentrated looks Gaussian, and, in view of Theorem
1.3.4, this comes down to the following.
8 This technique was introduced by F. Esscher and is called Esscher tilting.
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Theorem 1.3.7 Let everything be as in Lemma 1.3.3, and assume that the variance 𝜎2 > 0.
There exists a 𝛿 ∈ (0, 1] and a 𝐾 ∈ (0,∞) such that [𝑚 − 𝛿, 𝑚 + 𝛿] ⊆ (𝛼, 𝛽) (cf. Lemma
1.3.3),

��Λ′′
𝜇

(
Ξ(𝑥)

) �� ≤ 𝐾 ,��Ξ𝜇 (𝑥)�� ≤ 𝐾 |𝑥 − 𝑚 |, and
����𝐼𝜇 (𝑥) − (𝑥 − 𝑚)2

2𝜎2

���� ≤ 𝐾 |𝑥 − 𝑚 |3

for all 𝑥 ∈ [𝑚 − 𝛿, 𝑚 + 𝛿]. In particular, if 0 < 𝜖 < 𝛿, then

P
(
|𝑆𝑛 − 𝑚 | ≥ 𝜖

)
≤ 2 exp

[
−𝑛

(
𝜖2

2𝜎2 − 𝐾𝜖3
)]
,

and if |𝑎 − 𝑚 | < 𝛿 and 𝜖 > 0, then

P
(
|𝑆𝑛 − 𝑎 | < 𝜖

)
≥

(
1 − 𝐾

𝑛𝜖2

)
exp

[
−𝑛

(
|𝑎 − 𝑚 |2

2𝜎2 + 𝐾 |𝑎 − 𝑚 |
(
𝜖 + |𝑎 − 𝑚 |2

) )]
.

Proof Without loss in generality (cf. Exercise 1.3.2), I will assume that 𝑚 = 0 and 𝜎2 = 1.
Since, in this case, Λ𝜇 (0) = Λ′

𝜇 (0) = 0 and Λ′′
𝜇 (0) = 1, it follows that Ξ𝜇 (0) = 0 and

Ξ′
𝜇 (0) = 1. Hence, we can find an 𝑀 ∈ (0,∞) and a 𝛿 ∈ (0, 1] with 𝛼 < −𝛿 < 𝛿 < 𝛽

for which
��Ξ𝜇 (𝑥) − 𝑥�� ≤ 𝑀 |𝑥 |2 and

��Λ𝜇 (𝜉) − 𝜉 2

2

�� ≤ 𝑀 |𝜉 |3 whenever |𝑥 | ≤ 𝛿 and |𝜉 | ≤
(𝑀 + 1)𝛿, respectively. In particular, this leads immediately to

��Ξ𝜇 (𝑥)�� ≤ (𝑀 + 1) |𝑥 | for
|𝑥 | ≤ 𝛿, and the estimate for 𝐼𝜇 comes easily from the preceding combined with equation
𝐼𝜇 (𝑥) = Ξ(𝑥)𝑥 − Λ𝜇

(
Ξ𝜇 (𝑥)

)
. �

1.3.1 Exercises for §1.3
Exercise 1.3.1 Let

(
𝐸, F , 𝜇

)
be a measure space and 𝑓 a nonnegative, F -measurable

function. If either 𝜇(𝐸) < ∞ or 𝑓 is 𝜇-integrable, show that

‖ 𝑓 ‖𝐿𝑝 (𝜇;R) −→ ‖ 𝑓 ‖𝐿∞ (𝜇;R) as 𝑝 → ∞.

Hint: Handle the case 𝜇(𝐸) < ∞ first, and treat the case when 𝑓 ∈ 𝐿1(𝜇;R) by considering
the measure 𝜈(𝑑𝑥) = 𝑓 (𝑥) 𝜇(𝑑𝑥).

Exercise 1.3.2 Assume that 𝜇 is a nondegenerate (i.e., it is not concentrated at a single
point) probability measure on R for which (1.11) holds. Next, let 𝑚 and 𝜎2 be the mean and
variance of 𝜇, use 𝜈 to denote the distribution of

𝑥 ∈ R ↦−→ 𝑥 − 𝑚
𝜎

∈ R under 𝜇,

and define Λ𝜈 , 𝐼𝜈 , and Ξ𝜈 accordingly, as in Lemma 1.3.3. Show that

Λ𝜈 (𝜉) = −𝜉𝑚
𝜎

+ Λ𝜇

(
𝜉

𝜎

)
, 𝜉 ∈ R,

𝐼𝜈 (𝑥) = 𝐼𝜇
(
𝜎(𝑥 + 𝑚)

)
, 𝑥 ∈ R,

Image
(
Λ′
𝜈

)
=
−𝑚 + Image

(
Λ′
𝜇

)
𝜎

,

Ξ𝜈 (𝑥) = 𝜎Ξ𝜇
(
𝜎(𝑥 + 𝑚)

)
, 𝑥 ∈ Image

(
Λ′
𝜈

)
.
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Exercise 1.3.3 Continue with the same notation as in the preceding.
(i) Show that 𝐼𝜈 ≤ 𝐼𝜇 if 𝑀𝜇 ≤ 𝑀𝜈 .

(ii) Show that

𝐼𝜇 (𝑥) =
(𝑥 − 𝑚)2

2𝜎2 , 𝑥 ∈ R,

when 𝜇 = 𝛾𝑚,𝜎2 with 𝜎 > 0, and show that

𝐼𝜇 (𝑥) =
𝑥 − 𝑎
𝑏 − 𝑎 log

𝑥 − 𝑎
(1 − 𝑝) (𝑏 − 𝑎) +

𝑏 − 𝑥
𝑏 − 𝑎 log

𝑏 − 𝑥
𝑝(𝑏 − 𝑎) , 𝑥 ∈ (𝑎, 𝑏),

when 𝑎 < 𝑏, 𝑝 ∈ (0, 1), and 𝜇({𝑎}) = 1 − 𝜇({𝑏}) = 𝑝.

(iii) When 𝜇 is the centered Bernoulli distribution given by 𝜇
(
{±1}

)
= 1

2 , show that 𝑀𝜇 (𝜉) ≤
exp

[
𝜉 2

2

]
, 𝜉 ∈ R, and conclude that 𝐼𝜇 (𝑥) ≥ 𝑥2

2 , 𝑥 ∈ R. More generally, given 𝑛 ∈ Z+,
{𝜎𝑘 : 1 ≤ 𝑘 ≤ 𝑛} ⊆ R, and mutually independent random variables 𝑋1, . . . , 𝑋𝑛 with this 𝜇
as their common distribution, let 𝜈 denote the distribution of 𝑆 ≡ ∑𝑛

1 𝜎𝑘𝑋𝑘 and show that
𝐼𝜈 (𝑥) ≥ 𝑥2

2Σ2 , where Σ2 ≡ ∑𝑛
1 𝜎

2
𝑘
. In particular, conclude that

P
(
|𝑆 | ≥ 𝑎

)
≤ 2 exp

[
− 𝑎2

2Σ2

]
, 𝑎 ∈ [0,∞).

Exercise 1.3.4 Although it is not exactly the direction in which I have been going, it
seems appropriate to include here a derivation of Stirling’s formula. Namely, recall Euler’s
Gamma function:

Γ(𝑡) ≡
∫
[0,∞)

𝑥𝑡−1𝑒−𝑥 𝑑𝑥, 𝑡 ∈ (−1,∞). (1.18)

The goal of this exercise is to prove that

Γ(𝑡 + 1) ∼
√

2𝜋𝑡
( 𝑡
𝑒

) 𝑡
as 𝑡 ↗ ∞, (1.19)

where the tilde “∼” means that the two sides are asymptotic to one another in the sense that
their ratio tends to 1. (See Exercise 2.1.5 for another approach.)

The first step is to make the problem look like one to which Exercise (1.3.1) is applicable.
Thus, make the substitution 𝑥 = 𝑡𝑦, and apply Exercise 1.3.1 to see that(

Γ(𝑡 + 1)
𝑡𝑡+1

) 1
𝑡

=

(∫
[0,∞)

𝑦𝑡 𝑒−𝑡 𝑦 𝑑𝑦

) 1
𝑡

−→ 𝑒−1.

This is, of course, far less than we want to know. Nonetheless, it does show that all the action
is going to take place near 𝑦 = 1 and that the principal factor in the asymptotic of Γ(𝑡+1)

𝑡 𝑡+1 is
𝑒−𝑡 . In order to highlight these observations, make the substitution 𝑦 = 𝑧 + 1 and obtain

Γ(𝑡 + 1)
𝑡𝑡+1𝑒−𝑡

=

∫
(−1,∞)

(1 + 𝑧)𝑡 𝑒−𝑡 𝑧 𝑑𝑧.

Before taking the next step, introduce the function

𝑅(𝑧) = log(1 + 𝑧) − 𝑧 + 𝑧
2

2
for 𝑧 ∈ (−1, 1),
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and check that 𝑅(𝑧) ≤ 0 if 𝑧 ∈ (−1, 0] and that

|𝑅(𝑧) | ≤ |𝑧 |3
3(1 − |𝑧 |) and (1 + 𝑧)𝑡𝑒−𝑡 𝑧 = 𝑒− 𝑡𝑧

2
2 𝑒𝑡𝑅 (𝑧) everywhere in (−1, 1).

Now let 𝛿 ∈ (0, 1) be given, and show that∫ −𝛿

−1

(
1 + 𝑧

) 𝑡
𝑒−𝑡 𝑧 𝑑𝑧 ≤ exp

[
− 𝑡𝛿

2

2

]
and ∫ ∞

𝛿

(
1 + 𝑧

) 𝑡
𝑒−𝑡 𝑧 𝑑𝑧 ≤

[ (
1 + 𝛿

)
𝑒−𝛿

] 𝑡−1
∫ ∞

𝛿

(1 + 𝑧)𝑒−𝑧 𝑑𝑧

≤ 2 exp
[
(𝑡 − 1)

(
−𝛿

2

2
+ 𝛿3

3(1 − 𝛿)

)]
.

Next write ∫
|𝑧 | ≤𝛿

(
1 + 𝑧

) 𝑡
𝑒−𝑡 𝑧 𝑑𝑧 =

∫
|𝑧 | ≤𝛿

𝑒−
𝑡𝑧2

2 𝑑𝑧 + 𝐸 (𝑡, 𝛿),

where

𝐸 (𝑡, 𝛿) ≡
∫
|𝑧 | ≤𝛿

𝑒−
𝑡𝑧2

2
(
𝑒𝑡𝑅 (𝑧) − 1

)
𝑑𝑧 =

∫ 𝛿

0
𝑒−

𝑡𝑧2
2
(
𝑒𝑡𝑅 (𝑧) + 𝑒𝑡𝑅 (−𝑧) − 2

)
𝑑𝑧.

Check that �����∫|𝑧 | ≤𝛿
𝑒−

𝑡𝑧2
2 𝑑𝑧 −

√︂
2𝜋
𝑡

����� = 𝑡− 1
2

∫
|𝑧 | ≥𝑡

1
2 𝛿

𝑒−
𝑧2
2 𝑑𝑧 ≤ 2

𝑡𝛿
𝑒−

𝑡 𝛿2
2 .

At the same time, by Taylor’s Theorem,

𝑒𝑡𝑅 (𝑧) + 𝑒𝑡𝑅 (−𝑧) − 2 = 𝑡
(
𝑅(𝑧) + 𝑅(−𝑧)

)
+ 𝐹 (𝑡, 𝑧)

where |𝐹 (𝑡, 𝑧) | ≤ 𝑡2

2
(
𝑅(𝑧)2 + 𝑅(−𝑧)2)𝑒𝑡𝑅 ( |𝑧 |) .

Since |𝑅(𝑧) + 𝑅(−𝑧) | =
∑∞
𝑚=2

𝑧2𝑚

𝑚
≤ 𝑧4

2(1−𝑧2) , one can dominate |𝐸 (𝑡, 𝛿) | uniformly for
0 < 𝛿 ≤ 1

2 by a constant times

𝑡

∫ 𝛿

0
|𝑧 |4𝑒− 𝑡𝑧

2
2 𝑑𝑧 + 𝑡2

∫ 𝛿

0
|𝑧 |6𝑒− 𝑡𝑧

2
2 𝑑𝑧,

and so there is a 𝐶 < ∞ such that |𝐸 (𝑡, 𝛿) | ≤ 𝐶𝑡− 3
2 for all 𝑡 ≥ 1 and 0 < 𝛿 ≤ 1

2 . Finally, take
𝛿 =

√︁
3𝑡−1 log 𝑡 to arrive at �����Γ(𝑡 + 1)

𝑡𝑡+1𝑒−𝑡
−

√︂
2𝜋
𝑡

����� ≤ 𝐶𝑡− 3
2

for 𝑡 ≥ 9, and from this and the earlier estimates arrive at (1.19).

Exercise 1.3.5 Inspired by T. H. Carne [12],9 here is a rather different sort of application
9 As Carne points out, what he is doing is the discrete analog of Hadamard’s representation, via the Weierstrass

transform, of solutions to heat equations in terms of solutions to the wave equations.
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of large deviation estimates. Namely, the goal is to show that for each 𝑛 ≥ 2 and 1 ≤ 𝑚 < 𝑛,
there exists an (𝑚 − 1)st-order polynomial 𝑝𝑚,𝑛 with the property that��𝑥𝑛 − 𝑝𝑚,𝑛 (𝑥)�� ≤ 2 exp

[
−𝑚

2

2𝑛

]
for 𝑥 ∈ [−1, 1] .

(i) Given a C-valued 𝑓 on Z, define A 𝑓 : Z −→ C by

A 𝑓 (𝑛) = 𝑓 (𝑛 + 1) + 𝑓 (𝑛 − 1)
2

, 𝑛 ∈ Z,

and show that, for any 𝑛 ≥ 1, A𝑛 𝑓 = EP
[
𝑓 (𝑆𝑛)

]
, where 𝑆𝑛 is the sum of 𝑛 mutually

P-independent, {−1, 1}-valued Bernoulli random variables with mean value 0.

(ii) Show that, for each 𝑧 ∈ C, there is a unique sequence {𝑄(𝑚, 𝑧) : 𝑚 ∈ Z} ⊆ C satisfying
𝑄(0, 𝑧) = 1,

𝑄(−𝑚, 𝑧) = 𝑄(𝑚, 𝑧), and
[
A𝑄( · , 𝑧)

]
(𝑚) = 𝑧𝑄(𝑚, 𝑧) for all 𝑚 ∈ Z.

In fact, show that, for each 𝑚 ∈ Z+ : 𝑄(𝑚, · ) is a polynomial of degree 𝑚 and

𝑄(𝑚, cos 𝜃) = cos(𝑚𝜃), 𝜃 ∈ C.

In particular, this means that |𝑄(𝑛, 𝑥) | ≤ 1 for all 𝑥 ∈ [−1, 1]. (It also means that 𝑄(𝑛, · ) is
the 𝑛th Chebychev polynomial.)

(iii) Using induction on 𝑛 ∈ Z+, show that[
A𝑛𝑄( · , 𝑧)

]
(𝑚) = 𝑧𝑛𝑄(𝑚, 𝑧), 𝑚 ∈ Z and 𝑧 ∈ C,

and conclude that
𝑧𝑛 = E

[
𝑄

(
𝑆𝑛, 𝑧

) ]
, 𝑛 ∈ Z+ and 𝑧 ∈ C.

In particular, if

𝑝𝑚,𝑛 (𝑧) ≡ E
[
𝑄

(
𝑆𝑛, 𝑧),

��𝑆𝑛�� < 𝑚]
= 2−𝑛

∑︁
|2ℓ−𝑛 |<𝑚

(
𝑛

ℓ

)
𝑄(2ℓ − 𝑛, 𝑧),

conclude that (cf. Exercise 1.3.3)

sup
𝑥∈[−1,1]

|𝑥𝑛 − 𝑝𝑚,𝑛 (𝑥) | ≤ 𝑃
(
|𝑆𝑛 | ≥ 𝑚

)
≤ 2 exp

[
−𝑚

2

2𝑛

]
for all 1 ≤ 𝑚 ≤ 𝑛.

(iv) Suppose that 𝐴 is a self-adjoint contraction on the real or complex Hilbert space 𝐻
(i.e., ( 𝑓 , 𝐴𝑔)𝐻 = (𝑔, 𝐴 𝑓 )𝐻 and ‖𝐴 𝑓 ‖𝐻 ≤ ‖ 𝑓 ‖𝐻 for all 𝑓 , 𝑔 ∈ 𝐻). Next, assume that(
𝑓 , 𝐴ℓ𝑔

)
𝐻
= 0 for some 𝑓 , 𝑔 ∈ 𝐻 and each 0 ≤ ℓ < 𝑚. Show that�� ( 𝑓 , 𝐴𝑛𝑔)

𝐻

�� ≤ 2‖ 𝑓 ‖𝐻 ‖𝑔‖𝐻 exp
[
−𝑚

2

2𝑛

]
for 𝑛 ≥ 𝑚.

(See Exercise 2.3.8 for an application.)

Hint: Note that
(
𝑓 , 𝑝𝑚,𝑛 (𝐴)𝑔

)
𝐻

= 0, and use the Spectral Theorem to see that, for any
polynomial 𝑝,

‖𝑝(𝐴) 𝑓 ‖𝐻 ≤ sup
𝑥∈[−1,1]

|𝑝(𝑥) | ‖ 𝑓 ‖𝐻 , 𝑓 ∈ 𝐻.
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1.4 The Strong Law of Large Numbers 31

1.4 The Strong Law of Large Numbers
In this section I will discuss a few almost sure convergence properties of averages of inde-
pendent random variables. Thus, once again, {𝑋𝑛 : 𝑛 ≥ 1} will be a sequence of mutually
independent random variables on a probability space

(
Ω, F , 𝑃

)
, and 𝑆𝑛 and 𝑆𝑛 will be,

respectively, the sum and average of 𝑋1, . . . , 𝑋𝑛. Throughout this section, the reader should
notice how much more immediately important a role independence (as opposed to just
orthogonality) plays than it did in Section 1.2.

To get started, observe that, for both {𝑆𝑛 : 𝑛 ≥ 1} and
{
𝑆𝑛 : 𝑛 ≥ 1

}
, the set on which

convergence occurs has P-measure either 0 or 1. In fact, we have the following simple
application of Kolmogorov’s 0–1 Law (Theorem 1.1.1).

Lemma 1.4.1 For any sequence
{
𝑎𝑛 : 𝑛 ∈ Z+

}
⊆ R and any sequence

{
𝑏𝑛 : 𝑛 ∈ Z+

}
⊆

(0,∞) that converges to an element of (0,∞], the set on which

lim
𝑛→∞

𝑆𝑛 − 𝑎𝑛
𝑏𝑛

exists in R

has P-measure either 0 or 1. In fact, if 𝑏𝑛 −→ ∞ as 𝑛→ ∞, then both

lim
𝑛→∞

𝑆𝑛 − 𝑎𝑛
𝑏𝑛

and lim
𝑛→∞

𝑆𝑛 − 𝑎𝑛
𝑏𝑛

are P-almost surely constant.

Proof Simply observe that all of the events and functions involved can be expressed in
terms of {𝑆𝑚+𝑛 − 𝑆𝑚 : 𝑛 ≥ 1} for each 𝑚 ∈ Z+ and are therefore tail-measurable. �

The following beautiful statement, which was proved originally by Kolmogorov, is the
driving force behind many of the almost sure convergence results about both {𝑆𝑛 : 𝑛 ≥ 1}
and

{
𝑆𝑛 : 𝑛 ≥ 1

}
.

Theorem 1.4.2 If the 𝑋𝑛 are mutually independent, P-square integrable random variables,
then

∞∑︁
𝑛=1

Var
(
𝑋𝑛) < ∞ (1.20)

implies that
∞∑︁
𝑛=1

(
𝑋𝑛 − EP

[
𝑋𝑛

] )
converges P-almost surely.

Note that, since

sup
𝑛≥𝑁
P

(����� 𝑛∑︁
ℓ=𝑁

(
𝑋ℓ − EP

[
𝑋ℓ

] )����� ≥ 𝜖
)
≤ 1
𝜖2

∞∑︁
ℓ=𝑁

Var
(
𝑋ℓ

)
, (1.21)

Equation (1.21) certainly implies that the series
∑∞
𝑛=1

(
𝑋𝑛 −EP [𝑋𝑛]

)
converges in P-measure.

Thus, all that I am attempting to do here is replace a convergence in measure statement with
an almost sure one. Obviously, this replacement would be trivial if the “sup𝑛≥𝑁 ” in (1.21)
appeared on the other side of P. The remarkable fact that we are about to prove is that, in
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the present situation, the “sup𝑛≥𝑁 ” can be brought inside! The key idea introduced here by
Kolmogorov’s was to think of {𝑆𝑛 : 𝑛 ≥ 1} as an evolving dynamical system.

Theorem 1.4.3 (Kolmogorov’s Inequality) If the 𝑋𝑛 are mutually independent and P-
square integrable, then

P

(
sup
𝑛≥1

����� 𝑛∑︁
ℓ=1

(
𝑋ℓ − EP

[
𝑋ℓ

] )����� ≥ 𝜖
)
≤ 1
𝜖2

∞∑︁
𝑛=1

Var
(
𝑋𝑛

)
(1.22)

for each 𝜖 > 0. (See Exercise 1.4.2 for more information.)

Proof Without loss in generality, assume that each 𝑋𝑛 has mean value 0.
Given 1 ≤ 𝑛 < 𝑁 , note that

𝑆2
𝑁 − 𝑆2

𝑛 =
(
𝑆𝑁 − 𝑆𝑛

)2 + 2
(
𝑆𝑁 − 𝑆𝑛

)
𝑆𝑛 ≥ 2

(
𝑆𝑁 − 𝑆𝑛

)
𝑆𝑛;

and therefore, since 𝑆𝑁 − 𝑆𝑛 has mean value 0 and is independent of the 𝜎-algebra
𝜎

(
{𝑋1, . . . , 𝑋𝑛}

)
,

EP
[
𝑆2
𝑁 , 𝐴𝑛

]
≥ EP

[
𝑆2
𝑛, 𝐴𝑛

]
for any 𝐴𝑛 ∈ 𝜎

(
{𝑋1, . . . , 𝑋𝑛}

)
. (∗)

In particular, if 𝐴1 =
{
|𝑆1 | > 𝜖

}
and

𝐴𝑛+1 =
{��𝑆𝑛+1

�� > 𝜖 and max
1≤ℓ≤𝑛

��𝑆ℓ �� ≤ 𝜖}, 𝑛 ∈ Z+,

then, the 𝐴𝑛 are mutually disjoint,

𝐵𝑁 ≡
{

max
1≤𝑛≤𝑁

��𝑆𝑛�� > 𝜖} =

𝑁⋃
𝑛=1

𝐴𝑛,

and so (∗) implies that

EP
[
𝑆2
𝑁 , 𝐵𝑁

]
=

𝑁∑︁
𝑛=1

EP
[
𝑆2
𝑁 , 𝐴𝑛

]
≥

𝑁∑︁
𝑛=1

EP
[
𝑆2
𝑛, 𝐴𝑛

]
≥ 𝜖2

𝑁∑︁
𝑛=1

P
(
𝐴𝑛

)
= 𝜖2P

(
𝐵𝑁

)
.

Thus,

𝜖2P

(
sup
𝑛≥1

��𝑆𝑛�� > 𝜖 ) = lim
𝑁→∞

𝜖2P
(
𝐵𝑁

)
≤ lim
𝑁→∞

EP
[
𝑆2
𝑁

]
≤

∞∑︁
𝑛=1

EP
[
𝑋2
𝑛

]
,

and so the result follows after one takes left limits with respect to 𝜖 > 0. �

Proof of Theorem 1.4.2 Again assume that the 𝑋𝑛 have mean value 0. By (1.22) applied to{
𝑋𝑁+𝑛 : 𝑛 ∈ Z+

}
, we see that (1.20) implies

P

(
sup
𝑛>𝑁

��𝑆𝑛 − 𝑆𝑁 �� ≥ 𝜖 ) ≤ 1
𝜖2

∞∑︁
𝑛=𝑁+1

EP
[
𝑋2
𝑛

]
−→ 0 as 𝑁 → ∞

for every 𝜖 > 0, which is equivalent to the P-almost sure Cauchy convergence of
{𝑆𝑛 : 𝑛 ≥ 1}. �
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In order to convert the conclusion in Theorem 1.4.2 into a statement about
{
𝑆𝑛 : 𝑛 ≥ 1

}
, I

will use the following elementary summability fact about sequences of real numbers.

Lemma 1.4.4 (Kronecker) Let
{
𝑏𝑛 : 𝑛 ∈ Z+

}
be a nondecreasing sequence of positive

numbers that tend to ∞, and set 𝛽𝑛 = 𝑏𝑛 − 𝑏𝑛−1, where 𝑏0 ≡ 0. If {𝑠𝑛 : 𝑛 ≥ 1} ⊆ R is a
sequence that converges to 𝑠 ∈ R, then

1
𝑏𝑛

𝑛∑︁
ℓ=1

𝛽ℓ 𝑠ℓ −→ 𝑠.

In particular, if {𝑥𝑛 : 𝑛 ≥ 1} ⊆ R, then
∞∑︁
𝑛=1

𝑥𝑛

𝑏𝑛
converges in R =⇒ 1

𝑏𝑛

𝑛∑︁
ℓ=1

𝑥ℓ −→ 0 as 𝑛→ ∞.

Proof To prove the first part, assume that 𝑠 = 0, and for given 𝜖 > 0, choose 𝑁 ∈ Z+ so that
|𝑠ℓ | < 𝜖 for ℓ ≥ 𝑁 . Then, with 𝑀 = sup𝑛≥1 |𝑠𝑛 |,����� 1

𝑏𝑛

𝑛∑︁
ℓ=1

𝛽ℓ 𝑠ℓ

����� ≤ 𝑀𝑏𝑁

𝑏𝑛
+ 𝜖 −→ 𝜖 as 𝑛→ ∞.

Turning to the second part, set 𝑦ℓ =
𝑥ℓ
𝑏ℓ

, 𝑠0 = 0, and 𝑠𝑛 =
∑𝑛
ℓ=1 𝑦ℓ . After summation by

parts,
1
𝑏𝑛

𝑛∑︁
ℓ=1

𝑥ℓ = 𝑠𝑛 −
1
𝑏𝑛

𝑛∑︁
ℓ=1

𝛽ℓ 𝑠ℓ−1;

and so, since 𝑠𝑛 −→ 𝑠 ∈ R as 𝑛→ ∞, the first part gives the desired conclusion. �

After combining Theorem 1.4.2 with Lemma 1.4.4, we arrive at the following interesting
statement.

Corollary 1.4.5 Assume that {𝑏𝑛 : 𝑛 ≥ 1} ⊆ (0,∞) increases to infinity as 𝑛 → ∞,
and suppose that {𝑋𝑛 : 𝑛 ≥ 1} is a sequence of mutually independent, P-square integrable
random variables. If

∞∑︁
𝑛=1

Var
(
𝑋𝑛

)
𝑏2
𝑛

< ∞,

then
1
𝑏𝑛

𝑛∑︁
ℓ=1

(
𝑋ℓ − EP

[
𝑋ℓ

] )
−→ 0 P-almost surely.

As an immediate consequence of the preceding, we see that 𝑆𝑛 −→ 𝑚 P-almost surely
if the 𝑋𝑛 are identically distributed and P-square integrable. In fact, without very much
additional effort, we can also prove the following much more significant refinement of the
last part of Theorem 1.3.1.

Theorem 1.4.6 (Kolmogorov’s Strong Law) Let
{
𝑋𝑛 : 𝑛 ∈ Z+

}
be a sequence of mutually

P-independent, identically distributed random variables. If 𝑋1 is P-integrable and has mean
value 𝑚, then, as 𝑛 → ∞, 𝑆𝑛 −→ 𝑚 P-almost surely and in 𝐿1(P;R). Conversely, if 𝑆𝑛
converges (in R) on a set of positive P-measure, then 𝑋1 is P-integrable.
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Proof Assume that 𝑋1 is P-integrable and that EP
[
𝑋1

]
= 0. Next, set 𝑌𝑛 = 𝑋𝑛1[0,𝑛]

(
|𝑋𝑛 |

)
,

and note that
∞∑︁
𝑛=1

P
(
𝑌𝑛 ≠ 𝑋𝑛

)
=

∞∑︁
𝑛=1

P
(
|𝑋𝑛 | > 𝑛

)
≤

∞∑︁
𝑛=1

∫ 𝑛

𝑛−1
P
(
|𝑋1 | > 𝑡

)
𝑑𝑡 = EP

[
|𝑋1 |

]
< ∞.

Thus, by the first part of the Borel–Cantelli Lemma,

P
(
∃𝑛 ∈ Z+ ∀𝑁 ≥ 𝑛 𝑌𝑁 = 𝑋𝑁

)
= 1.

In particular, if 𝑇𝑛 = 1
𝑛

∑𝑛
ℓ=1𝑌ℓ for 𝑛 ∈ Z+, then, for P-almost every 𝜔 ∈ Ω, 𝑇𝑛 (𝜔) −→ 0

if and only if 𝑆𝑛 (𝜔) −→ 0. Finally, to see that 𝑇𝑛 −→ 0 P-almost surely, first observe that,
because EP [𝑋1] = 0, by the first part of Lemma 1.4.4,

lim
𝑛→∞

1
𝑛

𝑛∑︁
ℓ=1

EP [𝑌ℓ] = lim
𝑛→∞
EP

[
𝑋1, |𝑋1 | ≤ 𝑛

]
= 0,

and therefore, by Corollary 1.4.5, it suffices for us to check that
∞∑︁
𝑛=1

EP [𝑌 2
𝑛 ]

𝑛2 < ∞.

To this end, set

𝐶 = sup
ℓ∈Z+

ℓ

∞∑︁
𝑛=ℓ

1
𝑛2 ,

and note that
∞∑︁
𝑛=1

EP [𝑌 2
𝑛 ]

𝑛2 =

∞∑︁
𝑛=1

1
𝑛2

𝑛∑︁
ℓ=1

EP
[
𝑋2

1 , ℓ − 1 < |𝑋1 | ≤ ℓ
]

=

∞∑︁
ℓ=1

EP
[
𝑋2

1 , ℓ − 1 < |𝑋1 | ≤ ℓ
] ∞∑︁
𝑛=ℓ

1
𝑛2

≤ 𝐶
∞∑︁
ℓ=1

1
ℓ
EP

[
𝑋2

1 , ℓ − 1 < |𝑋1 | ≤ ℓ
]
≤ 𝐶 EP

[
|𝑋1 |

]
< ∞.

Thus, the P-almost sure convergence is now established, and the 𝐿1(P;R)-convergence result
was proved already in Theorem 1.2.3.

Turning to the converse assertion, first note that (by Lemma 1.4.1) if 𝑆𝑛 converges in R on
a set of positive P-measure, then it converges P-almost surely to some 𝑚 ∈ R. In particular,

lim
𝑛→∞

|𝑋𝑛 |
𝑛

= lim
𝑛→∞

��𝑆𝑛 − 𝑆𝑛−1
�� = 0 P-almost surely;

and so, if 𝐴𝑛 ≡
{
|𝑋𝑛 | > 𝑛

}
, thenP

(
lim𝑛→∞ 𝐴𝑛

)
= 0. But the 𝐴𝑛 are mutually independent, and
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therefore, by the second part of the Borel–Cantelli Lemma, we now know that
∑∞
𝑛=1 P

(
𝐴𝑛

)
<

∞. Hence,

EP
[
|𝑋1 |

]
=

∫ ∞

0
P
(
|𝑋1 | > 𝑡

)
𝑑𝑡 ≤ 1 +

∞∑︁
𝑛=1

P
(
|𝑋𝑛 | > 𝑛

)
< ∞. �

Remark 1.4.7 A reason for being interested in the converse part of Theorem 1.4.6 is
that it provides a reconciliation between the Kolmogorov’s measure theoretic vs. von Mises’s
frequency schools of probability theory. That is, it shows that averaging the results of repeated
independently performed measurements will converge almost surely to a finite number if and
only if the quantity being measured is integrable, in which case the averages converge to its
expected value.

Although Theorem 1.4.6 is the centerpiece of this section, I want to give another approach
to the study of the almost sure convergence properties of {𝑆𝑛 : 𝑛 ≥ 1}. In fact, following
P. Lévy, I am going to show that {𝑆𝑛 : 𝑛 ≥ 1} converges P-almost surely if it converges in
P-measure. Hence, for example, Theorem 1.4.2 can be proved as a direct consequence of
(1.21), without appeal to Kolmogorov’s Inequality.

The key to Lévy’s analysis lies in a version of the reflection principle, whose statement
requires the introduction of a new concept. Given an R-valued random variable 𝑌 , say that
𝛼 ∈ R is a median of 𝑌 and write 𝛼 ∈med(𝑌 ), if

P
(
𝑌 ≤ 𝛼

)
∧ P

(
𝑌 ≥ 𝛼

)
≥ 1

2 . (1.23)

Notice that (as distinguished from a mean value) every 𝑌 admits a median; for example, it is
easy to check that

𝛼 ≡ inf
{
𝑡 ∈ R : P

(
𝑌 ≤ 𝑡

)
≥ 1

2

}
is a median of 𝑌 . In addition, it is clear that

med(−𝑌 ) = −med(𝑌 ) and med (𝛽 + 𝑌 ) = 𝛽 + med (𝑌 ) for all 𝛽 ∈ R.

On the other hand, the notion of median is flawed by the fact that, in general, a random
variable will admit an entire nondegenerate interval of medians. (See Exercise 1.4.3 for more
information.) In addition, it is neither easy to compute the medians of a sum in terms of
the medians of the summands nor to relate the medians of an integrable random variable to
its mean value. Nonetheless, at least if 𝑌 ∈ 𝐿 𝑝 (P;R) for some 𝑝 ∈ [1,∞), the following
estimate provides some information. Namely, since, for 𝛼 ∈ med(𝑌 ) and 𝛽 ∈ R,

|𝛼 − 𝛽 |𝑝
2

≤ |𝛼 − 𝛽 |𝑝
(
P
(
𝑌 ≥ 𝛼

)
∧ P

(
𝑌 ≤ 𝛼

) )
≤ EP

[
|𝑌 − 𝛽 |𝑝

]
,

we see that, for any 𝑝 ∈ [1,∞) and 𝑌 ∈ 𝐿 𝑝 (P;R),

|𝛼 − 𝛽 | ≤
(
2EP

[
|𝑌 − 𝛽 |𝑝

] ) 1
𝑝

for all 𝛽 ∈ R and 𝛼 ∈ med (𝑌 ).

In particular, if 𝑌 ∈ 𝐿2(P;R) and 𝑚 is the mean value of 𝑌 , then

|𝛼 − 𝑚 | ≤
√︁

2Var(𝑌 ) for all 𝛼 ∈ med(𝑌 ). (1.24)
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Theorem 1.4.8 (Lévy’s Reflection Principle) Let
{
𝑋𝑛 : 𝑛 ∈ Z+

}
be a sequence of mutually

P-independent random variables, and, for 𝑘 ≤ ℓ, choose 𝛼ℓ,𝑘 ∈ med
(
𝑆ℓ − 𝑆𝑘

)
. Then, for any

𝑁 ∈ Z+ and 𝜖 > 0,

P

(
max

1≤𝑛≤𝑁

(
𝑆𝑛 + 𝛼𝑁 ,𝑛

)
≥ 𝜖

)
≤ 2P

(
𝑆𝑁 ≥ 𝜖

)
, (1.25)

and therefore

P

(
max

1≤𝑛≤𝑁

��𝑆𝑛 + 𝛼𝑁 ,𝑛�� ≥ 𝜖 ) ≤ 2P
(
|𝑆𝑁 | ≥ 𝜖

)
. (1.26)

Proof Clearly (1.26) follows by applying (1.25) to both the sequences
{
𝑋𝑛 : 𝑛 ≥ 1} and

{−𝑋𝑛 : 𝑛 ≥ 1} and then adding the two results.

To prove (1.25), set 𝐴1 =
{
𝑆1 + 𝛼𝑁 ,1 ≥ 𝜖

}
and

𝐴𝑛+1 =

{
max
1≤ℓ≤𝑛

(
𝑆ℓ + 𝛼𝑁 ,ℓ

)
< 𝜖 and 𝑆𝑛+1 + 𝛼𝑁 ,𝑛+1 ≥ 𝜖

}
for 1 ≤ 𝑛 < 𝑁 . Obviously, the 𝐴𝑛 are mutually disjoint and

𝑁⋃
𝑛=1

𝐴𝑛 =

{
max

1≤𝑛≤𝑁

(
𝑆𝑛 + 𝛼𝑁 ,𝑛

)
≥ 𝜖

}
.

In addition,

{𝑆𝑁 ≥ 𝜖
}
⊇ 𝐴𝑛 ∩

{
𝑆𝑁 − 𝑆𝑛 ≥ 𝛼𝑁 ,𝑛

}
for each 1 ≤ 𝑛 ≤ 𝑁.

Hence,

P
(
𝑆𝑁 ≥ 𝜖

)
≥

𝑁∑︁
𝑛=1

P
(
𝐴𝑛 ∩

{
𝑆𝑁 − 𝑆𝑛 ≥ 𝛼𝑁 ,𝑛

})
≥ 1

2

𝑁∑︁
𝑛=1

P
(
𝐴𝑛

)
=

1
2
P

(
max

1≤𝑛≤𝑁

(
𝑆𝑛 + 𝛼𝑁 ,𝑛

)
≥ 𝜖

)
,

where, in the passage to the last line, I have used the independence of the sets 𝐴𝑛 and{
𝑆𝑁 − 𝑆𝑛 ≥ 𝛼𝑁 ,𝑛

}
. �

Corollary 1.4.9 Let
{
𝑋𝑛 : 𝑛 ∈ Z+

}
be a sequence of mutually independent random vari-

ables, and assume that
{
𝑆𝑛 : 𝑛 ∈ Z+

}
converges in P-measure to anR-valued random variable

𝑆. Then 𝑆𝑛 −→ 𝑆 P-almost surely. (Cf. Exercise 1.4.5 as well.)

Proof What I must show is that, for each 𝜖 > 0, there is an 𝑀 ∈ Z+ such that

sup
𝑁 ≥1
P
(

max
1≤𝑛≤𝑁

��𝑆𝑛+𝑀 − 𝑆𝑀
�� ≥ 𝜖 ) < 𝜖.

To this end, let 0 < 𝜖 < 1 be given, and choose 𝑀 ∈ Z+ so that

P
(��𝑆𝑛+𝑀 − 𝑆𝑘+𝑀

�� ≥ 𝜖

2

)
<
𝜖

2
for all 1 ≤ 𝑘 < 𝑛.
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1.4 The Strong Law of Large Numbers 37

Next, for a given 𝑁 ∈ Z+, choose 𝛼𝑁 ,𝑛 ∈ med
(
𝑆𝑀+𝑁 − 𝑆𝑀+𝑛

)
for 0 ≤ 𝑛 ≤ 𝑁 . Then

|𝛼𝑁 ,𝑛 | ≤ 𝜖

2 , and so, by (1.26) applied to {𝑋𝑀+𝑛 : 𝑛 ≥ 1},

P

(
max

1≤𝑛≤𝑁

��𝑆𝑀+𝑛 − 𝑆𝑀
�� ≥ 𝜖 ) ≤ P

(
max

1≤𝑛≤𝑁

��𝑆𝑀+𝑛 − 𝑆𝑀 + 𝛼𝑁 ,𝑛
�� ≥ 𝜖

2

)
≤ 2P

(��𝑆𝑀+𝑁 − 𝑆𝑀
�� ≥ 𝜖

2

)
< 𝜖. �

Remark 1.4.10 The most beautiful and startling feature of Lévy’s line of reasoning is
that it requires no integrability assumptions, even though, of course, in most applications of
Corollary 1.4.9, integrability considerations enter into the proof that {𝑆𝑛 : 𝑛 ≥ 1} converges
in P-measure. Finally, a word of caution may be in order. Namely, the result in Corollary
1.4.9 applies to the quantities 𝑆𝑛 themselves; it does not apply to associated quantities like
𝑆𝑛. Indeed, suppose that {𝑋𝑛 : 𝑛 ≥ 1} is a sequence of mutually independent, identically
distributed random variables that satisfy

P
(
𝑋𝑛 ≤ −𝑡

)
= P

(
𝑋𝑛 ≥ 𝑡

)
=

( (
1 + 𝑡2

)
log

(
𝑒4 + 𝑡2

) )− 1
2

for all 𝑡 ≥ 0.

On the one hand, by Exercise 1.2.1, we know that the associated averages 𝑆𝑛 tend to 0
in probability. On the other hand, by the second part of Theorem 1.4.6, we know that the
sequence

{
𝑆𝑛 : 𝑛 ≥ 1

}
diverges almost surely.

1.4.1 Exercises for §1.4
Exercise 1.4.1 Let 𝑋 and 𝑌 be nonnegative random variables, and suppose that

P
(
𝑋 ≥ 𝑡

)
≤ 1
𝑡
EP

[
𝑌, 𝑋 ≥ 𝑡

]
, 𝑡 ∈ (0,∞). (1.27)

Show that (
EP

[
𝑋 𝑝

] ) 1
𝑝 ≤ 𝑝

𝑝 − 1

(
EP

[
𝑌 𝑝

] ) 1
𝑝

, 𝑝 ∈ (1,∞). (1.28)

Hint: First, reduce to the case when 𝑋 is bounded. Next, recall that, for any 𝜎-finite measure
space

(
𝐸, F , 𝜇

)
, any nonnegative, measurable 𝑓 on

(
𝐸, F

)
, and any 𝛼 ∈ (0,∞),∫

𝐸

𝑓 (𝑥)𝛼 𝜇(𝑑𝑥) = 𝛼
∫
(0,∞)

𝑡𝛼−1 𝜇
(
𝑓 > 𝑡

)
𝑑𝑡 = 𝛼

∫
(0,∞)

𝑡𝛼−1 𝜇
(
𝑓 ≥ 𝑡

)
𝑑𝑡.

Use this together with (1.27) to justify the relation

EP
[
𝑋 𝑝

]
≤ 𝑝

∫
(0,∞)

𝑡 𝑝−2 EP
[
𝑌, 𝑋 ≥ 𝑡

]
𝑑𝑡

= 𝑝EP
[
𝑌

∫ 𝑋

0
𝑡 𝑝−2 𝑑𝑡

]
=

𝑝

𝑝 − 1
EP

[
𝑋 𝑝−1𝑌

]
,

and arrive at (1.28) after an application of Hölder’s Inequality.

Exercise 1.4.2 Let {𝑋𝑛 : 𝑛 ≥ 1} be a sequence of mutually independent, P-square integrable
random variables with mean value 0, and assume that

∑∞
1 E

[
𝑋2
𝑛

]
< ∞. Let 𝑆 denote the

random variable (guaranteed to exist by Theorem 1.4.2) to which {𝑆𝑛 : 𝑛 ≥ 1} converges
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P-almost surely, and, using elementary orthogonality considerations, check that 𝑆𝑛 −→ 𝑆 in
𝐿2(P;R) as well. Next, after examining the proof of Kolmogorov’s Inequality (cf. (1.22)),
show that

P

(
sup
𝑛∈Z+

��𝑆𝑛��2 ≥ 𝑡
)
≤ 1
𝑡
EP

[
𝑆2, sup

𝑛∈Z+

��𝑆𝑛��2 ≥ 𝑡
]
, 𝑡 > 0.

Finally, by applying (1.28), show that

EP
[
sup
𝑛∈Z+

��𝑆𝑛��2𝑝] ≤
(
𝑝

𝑝−1

) 𝑝
EP

[��𝑆��2𝑝] , 𝑝 ∈ (1,∞), (1.29)

and conclude from this that, for each 𝑝 ∈ (2,∞), {𝑆𝑛 : 𝑛 ≥ 1} converges to 𝑆 in 𝐿 𝑝 (𝑃) if
and only if 𝑆 ∈ 𝐿 𝑝 (P).

Exercise 1.4.3 If 𝑋 ∈ 𝐿2(P;R), then it is easy to characterize its mean 𝑚 as the 𝑐 ∈ R that
minimizes EP

[
(𝑋 − 𝑐)2] . Assuming that 𝑋 ∈ 𝐿1(P;R), show that 𝛼 ∈ med(𝑋) if and only if

EP
[
|𝑋 − 𝛼 |

]
= min

𝑐∈R
EP

[
|𝑋 − 𝑐 |

]
.

Hint: Show that, for any 𝑎, 𝑏 ∈ R,

EP
[
|𝑋 − 𝑏 |

]
− EP

[
|𝑋 − 𝑎 |

]
=

∫ 𝑏

𝑎

[
P(𝑋 ≤ 𝑡) − P(𝑋 ≥ 𝑡)

]
𝑑𝑡.

Exercise 1.4.4 Let {𝑋𝑛 : 𝑛 ≥ 1} be a sequence of P-square integrable random variables
that converges in probability to a random variable 𝑋 , and assume that sup𝑛≥1 Var(𝑋𝑛) < ∞.
Show that 𝑋 is square integrable and that EP

[
|𝑋𝑛 − 𝑋 |

]
−→ 0. In particular, if, in addition,

Var(𝑋𝑛) −→ Var(𝑋), show that EP
[
|𝑋𝑛 − 𝑋 |2

]
−→ 0.

Hint: Let 𝛼𝑛 ∈ med(𝑋𝑛), and show that 𝛼+ = lim𝑛→∞ 𝛼𝑛 and 𝛼− = lim
𝑛→∞ 𝛼𝑛 are both

elements of med(𝑋). Combine this with (1.24) to conclude that sup𝑛≥1
��EP [𝑋𝑛]�� < ∞ and

therefore that sup𝑛≥1 E
P [𝑋2

𝑛] < ∞.

Exercise 1.4.5 The following variant of Theorem 1.4.8 is sometimes useful and has the
advantage that it avoids the introduction of medians. Namely, show that, for any 𝑡 ∈ (0,∞)
and 𝑛 ∈ Z+,

P
(

max
1≤𝑚≤𝑛

|𝑆𝑚 | ≥ 2𝑡
)
≤

P
(
|𝑆𝑛 | ≥ 𝑡

)
1 − max

1≤𝑚≤𝑛
P
(
|𝑆𝑛 − 𝑆𝑚 | ≥ 𝑡

) .
Note that this can be used in place of (1.26) when proving results like the one in Corollary
1.4.9.

Exercise 1.4.6 A random variable 𝑋 is said to be symmetric if−𝑋 has the same distribution
as 𝑋 itself. Obviously, the most natural choice of median for a symmetric random variable is
0; and thus, because sums of independent, symmetric random variables are again symmetric,
(1.25) and (1.26) are particularly useful when the 𝑋𝑛 are symmetric, since the 𝛼ℓ,𝑘 can then
be taken to be 0. In this connection, consider the following interesting variation on the theme
of Theorem 1.4.8.
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1.4 The Strong Law of Large Numbers 39

(i) Let 𝑋1, . . . , 𝑋𝑛, . . . be mutually independent, symmetric random variables, set 𝑀𝑛 (𝜔) =
max1≤ℓ≤𝑛 |𝑋ℓ (𝜔) |, let 𝜏𝑛 (𝜔) be the smallest 1 ≤ ℓ ≤ 𝑛 with the property that

��𝑋ℓ (𝜔)�� =
𝑀𝑛 (𝜔), and define

𝑌𝑛 (𝜔) = 𝑋𝜏𝑛 (𝜔) (𝜔) and 𝑆𝑛 = 𝑆𝑛 − 𝑌𝑛.

Show that

𝜔 ∈ Ω ↦−→
(
𝑆𝑛 (𝜔), 𝑌𝑛 (𝜔)

)
∈ R2 and 𝜔 ∈ Ω ↦−→

(
−𝑆𝑛 (𝜔), 𝑌𝑛 (𝜔)

)
∈ R2

have the same distribution, and conclude first that

P
(
𝑌𝑛 ≥ 𝑡

)
≤ P

(
𝑌𝑛 ≥ 𝑡 & 𝑆𝑛 ≥ 0

)
+ P

(
𝑌𝑛 ≥ 𝑡 & 𝑆𝑛 ≤ 0

)
= 2P

(
𝑌𝑛 ≥ 𝑡 & 𝑆𝑛 ≥ 0

)
≤ 2P

(
𝑆𝑛 ≥ 𝑡

)
for all 𝑡 ∈ R, and then that

P

(
max
1≤ℓ≤𝑛

��𝑋ℓ �� ≥ 𝑡) ≤ 2P
(��𝑆𝑛�� ≥ 𝑡) , 𝑡 ∈ [0,∞).

(ii) Continuing in the same setting, add the assumption that the 𝑋𝑛 are identically distributed,
and use part (i) to show that

lim
𝑛→∞
P
(
|𝑆𝑛 | ≤ 𝐶

)
= 1 for some 𝐶 ∈ (0,∞)

=⇒ lim
𝑛→∞

𝑛P
(
|𝑋1 | ≥ 𝑛

)
= 0.

Hint: Note that

P

(
max
1≤ℓ≤𝑛

|𝑋ℓ | > 𝑡
)
= 1 − P( |𝑋1 | ≤ 𝑡)𝑛

and that 1−(1−𝑥)𝑛
𝑥

−→ 𝑛 as 𝑥 ↘ 0.

In conjunction with Exercise 1.2.1, this proves that if {𝑋𝑛 : 𝑛 ≥ 1} is a sequence of
mutually independent, identically distributed symmetric random variables, then 𝑆𝑛 −→ 0 in
P-probability if and only if 𝑛P

(
|𝑋1 | ≥ 𝑛

)
−→ 0.

Exercise 1.4.7 Let 𝑋 and 𝑋 ′ be a pair of mutually independent random variables that have
the same distribution, let 𝛼 be a median of 𝑋 , and set 𝑌 = 𝑋 − 𝑋 ′.

(i) Show that 𝑌 is symmetric and that

P
(
|𝑋 − 𝛼 | ≥ 𝑡

)
≤ 2P

(
|𝑌 | ≥ 𝑡

)
for all 𝑡 ∈ [0,∞),

and conclude that, for any 𝑝 ∈ (0,∞),

2− 1
𝑝
∨1EP

[
|𝑋 |𝑝

] 1
𝑝 ≤

( (
2EP

[
|𝑌 |𝑝

] ) 1
𝑝 + |𝛼 |

)
.

In particular, |𝑋 |𝑝 is integrable if and only if |𝑌 |𝑝 is.

(ii) The result in (i) leads to my final refinement of the Weak Law of Large Numbers.
Namely, let {𝑋𝑛 : 𝑛 ≥ 1} be a sequence of mutually independent, identically distributed
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random variables. By combining Exercise 1.2.1, part (ii) in Exercise 1.4.6, and part (i)
above, show that10

lim
𝑛→∞
P
(��𝑆𝑛�� ≤ 𝐶)

= 1 for some 𝐶 ∈ (0,∞)

=⇒ lim
𝑛→∞

𝑛P
(
|𝑋1 | ≥ 𝑛

)
= 0

=⇒ 𝑆𝑛 − EP
[
𝑋1, |𝑋1 | ≤ 𝑛

]
−→ 0 in P-probability.

Exercise 1.4.8 Let {𝑋𝑛 : 𝑛 ≥ 1} be a sequence of mutually independent, identically dis-
tributed, P-integrable random variables with mean value 𝑚. As we already know, when
𝑚 > 0, the partial sums 𝑆𝑛 tend, P-almost surely, to +∞ at an asymptotic linear rate 𝑚; and,
of course, when 𝑚 < 0, the situation is analogous at −∞. On the other hand, when 𝑚 = 0,
we know that, if |𝑆𝑛 | tends to ∞ at all, then, P-almost surely, it does so at a strictly sublinear
rate. In this exercise, you are to sharpen this statement by proving that

𝑚 = 0 =⇒ lim
𝑛→∞

|𝑆𝑛 | < ∞ P-almost surely.

A classic result (cf. Exercise 5.2.6) due to K. L. Chung and W. H. Fuchs sharpens this
statement even further: it says that lim

𝑛→∞ |𝑆𝑛 | = 0 P-almost surely. The beautiful argument
given below is due to Y. Guivarc’h, but its full power cannot be fully appreciated in the
present context (cf. Exercise 6.3.4).

In order to prove the assertion here, assume that lim𝑛→∞ |𝑆𝑛 | = ∞ with positive P-
probability, use Kolmogorov’s 0–1 Law to see that |𝑆𝑛 | −→ ∞ P-almost surely, and proceed
as follows.

(i) Show that there must exist an 𝜖 > 0 with the property that

P
(
∀ℓ > 𝑘

��𝑆ℓ − 𝑆𝑘 �� ≥ 𝜖 ) ≥ 𝜖
for some 𝑘 ∈ Z+ and therefore that

P(𝐴) ≥ 𝜖, where 𝐴 ≡
{
𝜔 : ∀ℓ ∈ Z+

��𝑆ℓ (𝜔)�� ≥ 𝜖}.
(ii) For each 𝜔 ∈ Ω and 𝑛 ∈ Z+, set

Γ𝑛 (𝜔) =
{
𝑡 ∈ R : ∃1 ≤ ℓ ≤ 𝑛

��𝑡 − 𝑆ℓ (𝜔)�� < 𝜖

2

}
and

Γ′
𝑛 (𝜔) =

{
𝑡 ∈ R : ∃1 ≤ ℓ ≤ 𝑛

��𝑡 − 𝑆′ℓ (𝜔)�� < 𝜖

2

}
,

where 𝑆′𝑛 ≡ ∑𝑛
ℓ=1 𝑋ℓ+1. Next, let 𝑅𝑛 (𝜔) and 𝑅′

𝑛 (𝜔) denote the Lebesgue measure of Γ𝑛 (𝜔)
and Γ′

𝑛 (𝜔), respectively; and, using the translation invariance of Lebesgue measure, show
that

𝑅𝑛+1(𝜔) − 𝑅′
𝑛 (𝜔) ≥ 𝜖1𝐴′ (𝜔),

where 𝐴′ ≡
{
𝜔 : ∀ℓ ≥ 2

��𝑆ℓ (𝜔) − 𝑆1(𝜔)
�� ≥ 𝜖}.

10 These ideas are taken from volume II of the book by W. Feller [20]. They become even more elegant when
combined with a theorem due to E. J. G. Pitman, which is given in Feller’s book.
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On the other hand, show that

EP
[
𝑅′
𝑛

]
= EP

[
𝑅𝑛

]
and P(𝐴′) = P(𝐴),

and conclude first that

𝜖P(𝐴) ≤ EP
[
𝑅𝑛+1 − 𝑅𝑛

]
, 𝑛 ∈ Z+,

and then that

𝜖P(𝐴) ≤ lim
𝑛→∞

1
𝑛
EP

[
𝑅𝑛

]
.

(iii) In view of parts (i) and (ii), what remains to be done is show that

𝑚 = 0 =⇒ lim
𝑛→∞

1
𝑛
EP

[
𝑅𝑛

]
= 0.

But, clearly, 0 ≤ 𝑅𝑛 (𝜔) ≤ 𝑛𝜖 . Thus, it is enough to show that, when 𝑚 = 0, 𝑅𝑛
𝑛

−→ 0
P-almost surely; and, to this end, first check that

𝑆𝑛 (𝜔)
𝑛

−→ 0 =⇒ 𝑅𝑛 (𝜔)
𝑛

−→ 0,

and, finally, apply the Strong Law of Large Numbers.

Exercise 1.4.9 As I have already said, for many applications the Weak Law of Large
Numbers is just as good as and even preferable to the Strong Law. Nonetheless, here is an
application in which the full strength of the Strong Law plays an essential role. Namely, I
want to use the Strong Law to produce examples of continuous, strictly increasing functions
𝐹 on [0, 1] with the property that their derivative

𝐹 ′(𝑥) ≡ lim
𝑦→𝑥

𝐹 (𝑦) − 𝐹 (𝑥)
𝑦 − 𝑥 = 0 at Lebesgue-almost every 𝑥 ∈ (0, 1).

By familiar facts about functions of a real variable, one knows that such functions 𝐹 are in
one-to-one correspondence with nonatomic, Borel probability measures 𝜇 on [0, 1], which
charge every nonempty open subset but are singular to Lebesgue’s measure. Namely, 𝐹 is
the distribution function determined by 𝜇 : 𝐹 (𝑥) = 𝜇

(
(−∞, 𝑥]

)
.

(i) Set Ω = {0, 1}Z+ , and, for each 𝑝 ∈ (0, 1), take 𝑀𝑝 = (𝛽𝑝)Z
+ , where 𝛽𝑝 on {0, 1} is the

Bernoulli measure with 𝛽𝑝 ({1}) = 𝑝 = 1 − 𝛽𝑝 ({0}). Next, define

𝜔 ∈ Ω ↦−→ 𝑌 (𝜔) ≡
∞∑︁
𝑛=1

2−𝑛𝜔𝑛 ∈ [0, 1],

and let 𝜇𝑝 denote the 𝑀𝑝-distribution of 𝑌 . Given 𝑛 ∈ Z+ and 0 ≤ 𝑚 < 2𝑛, show that

𝜇𝑝
( [
𝑚2−𝑛, (𝑚 + 1)2−𝑛] ) = 𝑝ℓ𝑚,𝑛 (1 − 𝑝)𝑛−ℓ𝑚,𝑛 ,

where ℓ𝑚,𝑛 =
∑𝑛
𝑘=1 𝜔𝑘 and (𝜔1, . . . , 𝜔𝑛) ∈ {0, 1}𝑛 is determined by 𝑚2−𝑛 =

∑𝑛
𝑘=1 2−𝑘𝜔𝑘 .

Conclude, in particular, that 𝜇𝑝 is nonatomic and charges every nonempty open subset of
[0, 1].

https://doi.org/10.1017/9781009549035.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009549035.003


42 Sums of Independent Random Variables

(ii) Given 𝑥 ∈ [0, 1) and 𝑛 ∈ Z+, define

𝜖𝑛 (𝑥) =
{

1 if 2𝑛−1𝑥 − b2𝑛−1𝑥c ≥ 1
2 ,

0 if 2𝑛−1𝑥 − b2𝑛−1𝑥c < 1
2 ,

where b𝑠c denotes the integer part of 𝑠. If {𝜖𝑛 : 𝑛 ≥ 1} ⊆ {0, 1} satisfies 𝑥 =
∑∞

1 2−𝑚𝜖𝑚, show
that 𝜖𝑚 = 𝜖𝑚(𝑥) for all 𝑚 ≥ 1 if and only if 𝜖𝑚 = 0 for infinitely many 𝑚 ≥ 1. In particular,
conclude first that 𝜔𝑛 = 𝜖𝑛

(
𝑌 (𝜔)

)
, 𝑛 ∈ Z+, for 𝑀𝑝-almost every 𝜔 ∈ Ω and, second, by the

Strong Law, that

1
𝑛

𝑛∑︁
𝑚=1

𝜖𝑛 (𝑥) −→ 𝑝 for 𝜇𝑝-almost every 𝑥 ∈ [0, 1] .

Thus, 𝜇𝑝1 ⊥ 𝜇𝑝2 whenever 𝑝1 ≠ 𝑝2.

(iii) By Lemma 1.1.3, we know that 𝜇 1
2

is Lebesgue measure 𝜆 [0,1] on [0, 1]. Hence, we now
know that 𝜇𝑝 ⊥ 𝜆 [0,1] when 𝑝 ≠ 1

2 . In view of the introductory remarks, this completes the
proof that, for each 𝑝 ∈ (0, 1)\{ 1

2 }, the function 𝐹𝑝 (𝑥) = 𝜇𝑝
(
(−∞, 𝑥]

)
is a strictly increasing,

continuous function on [0, 1] whose derivative vanishes at Lebesgue-almost every point. In
fact, one can describe a set of full Lebesgue measure on which the derivative is 0. Namely,
referring to part (iii), let Δ𝑝 denote the set of 𝑥 ∈ [0, 1) such that

lim
𝑛→∞

1
𝑛
Σ𝑛 (𝑥) = 𝑝, where Σ𝑛 (𝑥) ≡

𝑛∑︁
𝑚=1

𝜖𝑚(𝑥).

We know that Δ 1
2

has Lebesgue measure 1. Show that, for each 𝑥 ∈ Δ 1
2

and 𝑝 ∈ (0, 1) \ { 1
2 },

𝐹𝑝 is differentiable with derivative 0 at 𝑥.

Hint: Given 𝑥 ∈ [0, 1), define

𝐿𝑛 (𝑥) =
𝑛∑︁
𝑚=1

2−𝑚𝜖𝑚(𝑥) and 𝑅𝑛 (𝑥) = 𝐿𝑛 (𝑥) + 2−𝑛.

Show that

𝐹𝑝
(
𝑅𝑛 (𝑥)

)
− 𝐹𝑝

(
𝐿𝑛 (𝑥)

)
= 𝑀𝑝

(
𝑛∑︁
𝑚=1

2−𝑚𝜔𝑚 = 𝐿𝑛 (𝑥)
)
= 𝑝Σ𝑛 (𝑥) (1 − 𝑝)𝑛−Σ𝑛 (𝑥) .

When 𝑝 ∈ (0, 1) \ { 1
2 } and 𝑥 ∈ Δ 1

2
, use this together with 4𝑝(1 − 𝑝) < 1 to show that

lim
𝑛→∞

𝑛 log
(
𝐹𝑝

(
𝑅𝑛 (𝑥)

)
− 𝐹𝑝

(
𝐿𝑛 (𝑥)

)
𝑅𝑛 (𝑥) − 𝐿𝑛 (𝑥)

)
< 0.

To complete the proof, for given 𝑥 ∈ Δ 1
2

and 𝑛 ≥ 2 such that Σ𝑛 (𝑥) ≥ 2, let 𝑚𝑛 (𝑥) denote
the largest 𝑚 < 𝑛 such that 𝜖𝑚(𝑥) = 1, and show that 𝑚𝑛 (𝑥)

𝑛
−→ 1 as 𝑛 → ∞. Hence, since

2−𝑛−1 < ℎ ≤ 2−𝑛 implies that

𝐹𝑝 (𝑥) − 𝐹𝑝 (𝑥 − ℎ)
ℎ

≤ 2𝑛−𝑚𝑛 (𝑥)+1 𝐹𝑝
(
𝑅𝑛 (𝑥)

)
− 𝐹𝑝

(
𝐿𝑛 (𝑥)

)
𝑅𝑛 (𝑥) − 𝐿𝑛 (𝑥)

,

one concludes that 𝐹𝑝 is left-differentiable at 𝑥 and has left derivative equal to 0 there. To
get the same conclusion about right derivatives, simply note that 𝐹𝑝 (𝑥) = 1 − 𝐹1−𝑝 (1 − 𝑥).
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1.5 The Law of the Iterated Logarithm 43

(iv) Again let 𝑝 ∈ (0, 1) \ { 1
2 } be given, but this time choose 𝑥 ∈ Δ𝑝. Show that

lim
ℎ↘0

𝐹𝑝 (𝑥 + ℎ) − 𝐹𝑝 (𝑥)
ℎ

= +∞.

The argument is similar to the one used to handle part (iii). However, this time the role played
by the inequality 4𝑝𝑞 < 1 is played here by (2𝑝) 𝑝 (2𝑞)𝑞 > 1 when 𝑞 = 1 − 𝑝.

1.5 The Law of the Iterated Logarithm
Let 𝑋1, . . . , 𝑋𝑛, . . . be a sequence of mutually independent, identically distributed random
variables with mean value 0 and variance 1. In this section, we will investigate exactly how
large {𝑆𝑛 : 𝑛 ∈ Z+} can become as 𝑛→ ∞. To get a feeling for what one should be expecting,
first note that, by Corollary 1.4.5, for any nondecreasing {𝑏𝑛 : 𝑛 ≥ 1} ⊆ (0,∞),

𝑆𝑛

𝑏𝑛
−→ 0 P-almost surely if

∞∑︁
𝑛=1

1
𝑏2
𝑛

< ∞.

Thus, for example, 𝑆𝑛 grows more slowly than 𝑛 1
2 log 𝑛. On the other hand, if the 𝑋𝑛 are

𝑁 (0, 1)-random variables, then so are the random variables 𝑆𝑛√
𝑛
; and therefore, for every

𝑅 ∈ (0,∞),

P

(
lim
𝑛→∞

𝑆𝑛√
𝑛
≥ 𝑅

)
= lim
𝑁→∞

P

(⋃
𝑛≥𝑁

{
𝑆𝑛√
𝑛
≥ 𝑅

})
≥ lim
𝑁→∞

P

(
𝑆𝑁√
𝑁

≥ 𝑅

)
> 0.

Hence, at least for normal random variables, one can use Lemma 1.4.1 to see that

lim
𝑛→∞

𝑆𝑛√
𝑛
= ∞ P-almost surely;

and so 𝑆𝑛 grows faster than 𝑛 1
2 .

If, as we did in Section 1.3, we proceed on the assumption that Gaussian random variables
are typical, we should expect the growth rate of the 𝑆𝑛 to be something between 𝑛 1

2 and
𝑛

1
2 log 𝑛. What, in fact, turns out to be the precise growth rate is

Λ𝑛 ≡
√︃

2𝑛 log(2) (𝑛 ∨ 3), (1.30)

where log(2) 𝑥 ≡ log
(
log 𝑥

)
(not the logarithm with base 2) for 𝑥 ∈ [𝑒,∞). That is, one has

the Law of the Iterated Logarithm:

lim
𝑛→∞

𝑆𝑛

Λ𝑛
= 1 P-almost surely. (1.31)

This remarkable fact was discovered first for Bernoulli random variables by Khinchine, was
extended by Kolmogorov to random variables possessing 2 + 𝜖 moments, and eventually
achieved its final form in the work of Hartman and Wintner. The approach that I will
adopt here is based on ideas (taught to me by M. Ledoux) introduced originally to handle
generalizations of (1.31) to random variables with values in a Banach space.11 This approach
11 See Theorem 8.4.3 for the Banach space Θ(R𝑁 ) of continuous R𝑁 -valued paths with sublinear growth, and

for much more information, M. Ledoux and M. Talagrand’s [39].
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consists of two steps. The first establishes a preliminary version of (1.31) that, although it is
far cruder than (1.31) itself, will allow me to justify a reduction of the general case to the
case of bounded random variables. In the second step, I deal with bounded random variables
and more or less follow Khinchine’s strategy for deriving (1.31) once one has estimates like
the ones provided by Theorem 1.3.7.

In what follows, I will use the notation

Λ𝛽 = Λ b𝛽c and 𝑆𝛽 =
𝑆 b𝛽c

Λ𝛽
for 𝛽 ∈ [3,∞),

where b𝛽c is the integer part of 𝛽.

Lemma 1.5.1 Let {𝑋𝑛 : 𝑛 ≥ 1} be a sequence of mutually independent, identically distri-
buted random variables with mean value 0 and variance 1. Then, for any 𝑎 ∈ (0,∞) and
𝛽 ∈ (1,∞),12

lim
𝑛→∞

��𝑆𝑛�� ≤ 𝑎 (a.𝑠., P) if
∞∑︁
𝑚=1

P
(��𝑆𝛽𝑚 �� ≥ 𝑎 𝛽− 1

2

)
< ∞.

Proof Let 𝛽 ∈ (1,∞) be given and, for each 𝑚 ∈ N and 1 ≤ 𝑛 ≤ 𝛽𝑚, let 𝛼𝑚,𝑛 be a median
(cf. (1.23)) of 𝑆 b𝛽𝑚 c − 𝑆𝑛. Noting that, by (1.24),

��𝛼𝑚,𝑛�� ≤ √︁
2𝛽𝑚, we know that

lim
𝑛→∞

��𝑆𝑛�� = lim
𝑚→∞

max
𝛽𝑚−1≤𝑛≤𝛽𝑚

��𝑆𝑛�� ≤ 𝛽
1
2 lim
𝑚→∞

max
𝛽𝑚−1≤𝑛≤𝛽𝑚

��𝑆𝑛��
Λ𝛽𝑚

≤ 𝛽
1
2 lim
𝑚→∞

max
𝑛≤𝛽𝑚

��𝑆𝑛 + 𝛼𝑚,𝑛��
Λ𝛽𝑚

,

and therefore

P
(
lim
𝑛→∞

��𝑆𝑛�� ≥ 𝑎) ≤ P
(

lim
𝑚→∞

max
𝑛≤𝛽𝑚

��𝑆𝑛 + 𝛼𝑚,𝑛��
Λ𝛽𝑚

≥ 𝑎 𝛽− 1
2

)
.

But, by Theorem 1.4.8,

P

(
max
𝑛≤𝛽𝑚

��𝑆𝑛 + 𝛼𝑚,𝑛��
Λ𝛽𝑚

≥ 𝑎𝛽 − 1
2

)
≤ 2P

(��𝑆𝛽𝑚 �� ≥ 𝑎𝛽− 1
2

)
,

and so the desired result follows from the Borel–Cantelli Lemma. �

Lemma 1.5.2 For any sequence {𝑋𝑛 : 𝑛 ≥ 1} of mutually independent, identically dis-
tributed random variables with mean value 0 and variance 𝜎2,

lim
𝑛→∞

��𝑆𝑛�� ≤ 8𝜎 (a.𝑠., P). (1.32)

Proof Without loss in generality, I assume throughout that 𝜎 = 1; and, for the moment, I
will also assume that the 𝑋𝑛 are symmetric (cf. Exercise 1.4.6). By Lemma 1.5.1, we will
know that (1.32) holds with 8 replaced by 4 once I show that

∞∑︁
𝑚=0

P
(��𝑆2𝑚

�� ≥ 2
3
2

)
< ∞. (∗)

12 Here and elsewhere, I use (a.s., P) to abbreviate “P-almost surely.”
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In order to take maximal advantage of symmetry, let (Ω, F , P) be the probability space on
which the 𝑋𝑛 are defined, use {𝑅𝑛 : 𝑛 ≥ 1} to denote the sequence of Rademacher functions
on [0, 1) introduced in Section 1.1, and set Q = 𝜆 [0,1) × P on

(
[0, 1) × Ω,B[0,1) × F

)
. It is

then an easy matter to check that symmetry of the 𝑋𝑛 is equivalent to the statement that

𝜔 ∈ Ω −→
(
𝑋1(𝜔), . . . , 𝑋𝑛 (𝜔), . . .

)
∈ RZ+

has the same distribution under P as

(𝑡, 𝜔) ∈ [0, 1) ×Ω ↦−→
(
𝑅1(𝑡)𝑋1(𝜔), . . . , 𝑅𝑛 (𝑡)𝑋𝑛 (𝜔), . . .

)
∈ RZ+

has under Q. Next, using the last part of (iii) in Exercise 1.3.3 with 𝜎𝑘 = 𝑋𝑘 (𝜔), note that

𝜆 [0,1)

({
𝑡 ∈ [0, 1) :

���� 2𝑚∑︁
𝑛=1

𝑅𝑛 (𝑡)𝑋𝑛 (𝜔)
���� ≥ 𝑎})

≤ 2 exp
[
− 𝑎2

2
∑2𝑚
𝑛=1 𝑋𝑛 (𝜔)2

]
, 𝑎 ∈ [0,∞) and 𝜔 ∈ Ω.

Hence, if

𝐴𝑚 ≡
{
𝜔 ∈ Ω :

1
2𝑚

2𝑚∑︁
𝑛=1

𝑋𝑚(𝜔)2 ≥ 2

}
and

𝐹𝑚(𝜔) ≡ 𝜆 [0,1)

({
𝑡 ∈ [0, 1) :

����� 2𝑚∑︁
𝑛=1

𝑅𝑛 (𝑡)𝑋𝑛 (𝜔)
����� ≥ 2

3
2 Λ2𝑚

})
,

then, by Tonelli’s Theorem,

P
({
𝜔 ∈ Ω :

��𝑆2𝑚 (𝜔)
�� ≥ 2

3
2 Λ2𝑚

})
=

∫
Ω

𝐹𝑚
(
𝜔) P(𝑑𝜔)

≤ 2
∫
Ω

exp
[
−

8Λ2
2𝑚

2
∑2𝑚
𝑛=1 𝑋𝑛 (𝜔)2

]
P(𝑑𝜔) ≤ 2 exp

[
−4 log(2) 2𝑚

]
+ 2P

(
𝐴𝑚

)
.

Thus, (∗) comes down to proving that
∑∞
𝑚=0 P

(
𝐴𝑚

)
< ∞; and, in order to check this, I argue

in much the same way as I did when I proved the converse statement in Kolmogorov’s Strong
Law. Namely, set

𝑇𝑚 =

2𝑚∑︁
𝑛=1

𝑋2
𝑛, 𝐵𝑚 =

{
𝑇𝑚+1 − 𝑇𝑚

2𝑚
≥ 2

}
, and 𝑇𝑚 =

𝑇𝑚

2𝑚

for 𝑚 ∈ N. Clearly, P
(
𝐴𝑚

)
= 𝑃

(
𝐵𝑚

)
. Moreover, the sets 𝐵𝑚, 𝑚 ∈ N, are mutually indepen-

dent; and therefore, by the Borel–Cantelli Lemma, I need only check that

P
(

lim
𝑚→∞

𝐵𝑚

)
= 𝑃

(
lim
𝑚→∞

𝑇𝑚+1 − 𝑇𝑚
2𝑚

≥ 2
)
= 0.

But, by the Strong Law, we know that 𝑇𝑚 −→ 1 (a.s.,P), and therefore, since the 𝑋𝑛 are
identically distributed, it is clear that

𝑇𝑚+1 − 𝑇𝑚
2𝑚

−→ 1 (a.s.,P).

https://doi.org/10.1017/9781009549035.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009549035.003


46 Sums of Independent Random Variables

I have now proved (1.32) with 4 replacing 8 for symmetric random variables. To eliminate
the symmetry assumption, again let (Ω, F , P) be the probability space on which the 𝑋𝑛 are
defined, and define the random variables 𝑌𝑛 on (Ω2, F 2, P2) by

𝑌𝑛 (𝜔1, 𝜔2) = 𝑋𝑛 (𝜔1) − 𝑋𝑛 (𝜔2).

Since the 𝑌𝑛 are obviously (cf. part (i) of Exercise 1.4.2) symmetric, the result that I have
already proved says that

lim
𝑛→∞

��𝑆𝑛 (𝜔1) − 𝑆𝑛 (𝜔2)
��

Λ𝑛
≤ 2

5
2 ≤ 8 for Q-almost every (𝜔1, 𝜔2) ∈ Ω2.

Now suppose that lim𝑛→∞
|𝑆𝑛 |
Λ𝑛

> 8 on a set of positive P-measure. Then, by Kolmogorov’s
0–1 Law, there would exist an 𝜖 > 0 such that

lim
𝑛→∞

|𝑆𝑛 (𝜔) |
Λ𝑛

≥ 8 + 𝜖 for P-almost every 𝜔 ∈ Ω;

and so, by Fubini’s Theorem,13 we would have that, for P2-almost every (𝜔1, 𝜔2) ∈ Ω2, there
is a

{
𝑛𝑚(𝜔1) : 𝑚 ∈ Z+

}
⊆ Z+ such that 𝑛𝑚(𝜔1) ↗ ∞, the limit lim𝑚→∞

𝑆𝑛𝑚 (𝜔1 ) (𝜔1)
Λ𝑛𝑚 (𝜔)

≥ 8 + 𝜖
exists, and

lim
𝑚→∞

��𝑆𝑛𝑚 (𝜔1) (𝜔2)
��

Λ𝑛𝑚 (𝜔1)

≥ lim
𝑚→∞

��𝑆𝑛𝑚 (𝜔1) (𝜔1)
��

Λ𝑛𝑚 (𝜔1)
− lim
𝑚→∞

��𝑆𝑛𝑚 (𝜔) (𝜔1) − 𝑆𝑛𝑚 (𝜔) (𝜔2)
��

Λ𝑛𝑚 (𝜔1)
≥ 𝜖 .

But, again by Fubini’s Theorem, this would mean that there exists a {𝑛𝑚 : 𝑚 ∈ Z+} ⊆ Z+

such that 𝑛𝑚 ↗ ∞ and lim
𝑚→∞

��𝑆𝑛𝑚 (𝜔2)
��

Λ𝑛𝑚
≥ 𝜖 for P-almost every 𝜔2 ∈ Ω, and obviously this

contradicts

EP
′

[(
𝑆𝑛

Λ𝑛

)2
]
=

1
2 log(2) 𝑛

−→ 0. �

We have now got the crude statement alluded to above. In order to get the more precise
statement contained in (1.31), I will need the following application of the results in §1.3.

Lemma 1.5.3 Let {𝑋𝑛 : 𝑛 ≥ 1} be a sequence of mutually independent random variables
with mean value 0, variance 1, and common distribution 𝜇. Further, assume that (1.11) holds.
Then, for each 𝑅 ∈ (0,∞), there is an 𝑁 (𝑅) ∈ Z+ such that

P
(��𝑆𝑛�� ≥ 𝑅

)
≤ 2 exp

− ©«1 − 𝐾

√︄
8𝑅 log(2) 𝑛

𝑛

ª®¬ 𝑅2 log(2) 𝑛

 (1.33)

for 𝑛 ≥ 𝑁 (𝑅). In addition, for each 𝜖 ∈ (0, 1], there is an 𝑁 (𝜖) ∈ Z+ such that, for all
𝑛 ≥ 𝑁 (𝜖) and |𝑎 | ≤ 1

𝜖
,

P
(��𝑆𝑛 − 𝑎�� < 𝜖 ) ≥ 1

2
exp

[
−
(
𝑎2 + 4𝐾 |𝑎 |𝜖

)
log(2) 𝑛

]
. (1.34)

13 This is Fubini at his best and subtlest. Namely, I am using Fubini to switch between horizontal and vertical
sets of measure 0.
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In both (1.33) and (1.34), the constant 𝐾 ∈ (0,∞) is the one in Theorem 1.3.7.

Proof Set

𝜆𝑛 =
Λ𝑛

𝑛
=

(2 log(2) (𝑛 ∨ 3)
𝑛

) 1
2

.

To prove (1.33), simply apply the upper bound in the last part of Theorem 1.3.7 to see that,
for sufficiently large 𝑛 ∈ Z+,

P
(��𝑆𝑛�� ≥ 𝑅

)
= P

(��𝑆𝑛�� ≥ 𝑅𝜆𝑛

)
≤ 2 exp

[
−𝑛

(
(𝑅𝜆𝑛)2

2
− 𝐾

(
𝑅𝜆𝑛

)3
)]
.

To prove (1.34), first note that

P
(��𝑆𝑛 − 𝑎�� < 𝜖 ) = P(��𝑆𝑛 − 𝑎𝑛�� < 𝜖𝑛) ,

where 𝑎𝑛 = 𝑎𝜆𝑛 and 𝜖𝑛 = 𝜖𝜆𝑛. Thus, by the lower bound in the last part of Theorem 1.3.7,

𝑃

(��𝑆𝑛 − 𝑎�� < 𝜖 ) ≥
(
1 − 𝐾

𝑛𝜖2
𝑛

)
exp

[
−𝑛

(
𝑎2
𝑛

2
+ 𝐾 |𝑎𝑛 |

(
𝜖𝑛 + 𝑎2

𝑛

) )]
≥

(
1 − 𝐾

2𝜖2 log(2) 𝑛

)
exp

[
−
(
𝑎2 + 2𝐾 |𝑎 |

(
𝜖 + 𝑎2𝜆𝑛

) )
log(2) 𝑛

]
for sufficiently large 𝑛. �

Theorem 1.5.4 (Law of Iterated Logarithm) The equation (1.31) holds for any sequence
{𝑋𝑛 : 𝑛 ≥ 1} of mutually independent, identically distributed random variables with mean
value 0 and variance 1. In fact, P-almost surely, the set of limit points of

{
𝑆𝑛
Λ𝑛

: 𝑛 ≥ 1
}

coincides with the entire interval [−1, 1]. Equivalently, for any 𝑓 ∈ 𝐶
(
R;R

)
,

lim
𝑛→∞

𝑓

(
𝑆𝑛

Λ𝑛

)
= sup
𝑡 ∈[−1,1]

𝑓 (𝑡) (a.s.,P). (1.35)

(Cf. Exercise 1.5.1 for a converse statement and Theorem 8.4.3 for a related result.)

Proof I begin with the observation that, because of (1.32), I may restrict my attention to
the case when the 𝑋𝑛 are bounded random variables. Indeed, for any 𝑋𝑛 and any 𝜖 > 0, an
easy truncation procedure allows us to find an 𝜓 ∈ 𝐶b(R;R) such that 𝑌𝑛 ≡ 𝜓 ◦ 𝑋𝑛 again
has mean value 0 and variance 1 while 𝑍𝑛 ≡ 𝑋𝑛 −𝑌𝑛 has variance less than 𝜖2. Hence, if the
result is known when the random variables are bounded, then, by (1.32) applied to the 𝑍𝑛,

lim
𝑛→∞

��𝑆𝑛 (𝜔)�� ≤ 1 + lim
𝑛→∞

����∑𝑛
𝑚=1 𝑍𝑚(𝜔)

Λ𝑛

���� ≤ 1 + 8𝜖,

and, for 𝑎 ∈ [−1, 1],

lim
𝑛→∞

��𝑆𝑛 (𝜔) − 𝑎�� ≤ lim
𝑛→∞

����∑𝑛
𝑚=1 𝑍𝑚(𝜔)

Λ𝑛

���� ≤ 8𝜖

for P-almost every 𝜔 ∈ Ω.
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In view of the preceding, from now on I may and will assume that the 𝑋𝑛 are bounded. To
prove that lim𝑛→∞ 𝑆𝑛 ≤ 1 (a.s.,P), let 𝛽 ∈ (1,∞) be given, and use (1.33) to see that

P
(��𝑆𝛽𝑚 �� ≥ 𝛽

1
2

)
≤ 2 exp

[
−𝛽 1

2 log(2) b𝛽𝑚c
]

for all sufficiently large𝑚 ∈ Z+. Hence, by Lemma 1.5.1 with 𝑎 = 𝛽, we see that lim𝑛→∞
��𝑆𝑛�� ≤

𝛽 (a.s.,P) for every 𝛽 ∈ (1,∞). To complete the proof, I must still show that, for every
𝑎 ∈ (−1, 1) and 𝜖 > 0,

P
(
lim
𝑛→∞

��𝑆𝑛 − 𝑎�� < 𝜖 ) = 1.

Because I want to get this conclusion as an application of the second part of the Borel–
Cantelli Lemma, it is important that we be dealing with independent events, and for this
purpose I use the result just proved to see that, for every integer 𝑘 ≥ 2,

lim
𝑛→∞

��𝑆𝑛 − 𝑎�� ≤ inf
𝑘≥2

lim
𝑚→∞

��𝑆𝑘𝑚 − 𝑎
��

≤ lim
𝑘→∞

lim
𝑚→∞

����𝑆𝑘𝑚 − 𝑆𝑘𝑚−1

Λ𝑘𝑚
− 𝑎

���� P-almost surely.

Thus, because the events

𝐴𝑘,𝑚 ≡
{����𝑆𝑘𝑚 − 𝑆𝑘𝑚−1

Λ𝑘𝑚
− 𝑎

���� < 𝜖} , 𝑚 ∈ Z+,

are mutually independent for each 𝑘 ≥ 2, all that I need to do is check that
∞∑︁
𝑚=1

P
(
𝐴𝑘,𝑚

)
= ∞ for sufficiently large 𝑘 ≥ 2.

But

P
(
𝐴𝑘,𝑚

)
= P

(����𝑆𝑘𝑚−𝑘𝑚−1 − Λ𝑘𝑚𝑎

Λ𝑘𝑚−𝑘𝑚−1

���� < Λ𝑘𝑚𝜖

Λ𝑘𝑚−𝑘𝑚−1

)
,

and, because

lim
𝑘→∞

max
𝑚∈Z+

���� Λ𝑘𝑚

Λ𝑘𝑚−𝑘𝑚−1
− 1

���� = 0,

everything reduces to showing that
∞∑︁
𝑚=1

P
(��𝑆𝑘𝑚−𝑘𝑚−1 − 𝑎

�� < 𝜖 ) = ∞ (∗)

for each 𝑘 ≥ 2, 𝑎 ∈ (−1, 1), and 𝜖 > 0. Finally, referring to (1.34), choose 𝜖0 > 0 so small
that 𝜌 ≡ 𝑎2 + 4𝐾𝜖0 |𝑎 | < 1, and conclude that, when 0 < 𝜖 < 𝜖0,

P
(��𝑆𝑛 − �� < 𝜖 ) ≥ 1

2
exp

[
−𝜌 log(2) 𝑛

]
for all sufficiently large 𝑛, from which (∗) is easy. �
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Remark 1.5.5 The reader should notice that the Law of the Iterated Logarithm provides
a naturally occurring sequence of functions that converge in measure but diverges almost
everywhere. Indeed, it is obvious that 𝑆𝑛 −→ 0 in 𝐿2(P;R), but the Law of the Iterated
Logarithm says that

{
𝑆𝑛 : 𝑛 ≥ 1

}
is wildly divergent when looked at in terms of P-almost

sure convergence.

1.5.1 Exercises for §1.5
Exercise 1.5.1 Let {𝑋𝑛 : 𝑛 ≥ 1} be a sequence of mutually independent, identically dis-
tributed random variables for which

P

(
lim
𝑛→∞

|𝑆𝑛 |
Λ𝑛

< ∞
)
> 0. (1.36)

In this exercise you are to show that 𝑋1 is P-square integrable, EP
[
𝑋1

]
= 0, and

lim
𝑛→∞

𝑆𝑛

Λ𝑛
= − lim

𝑛→∞

𝑆𝑛

Λ𝑛
= EP

[
𝑋2

1
] 1

2 (a.s.,P). (1.37)

Although V. Strassen was the first to prove this result, the following outline is taken from
Feller’s [21].
(i) Using Lemma 1.4.1, show that there is a 𝜎 ∈ [0,∞) such that

lim
𝑛→∞

��𝑆𝑛��
Λ𝑛

= 𝜎 (a.s.,P). (1.38)

Next, assuming that 𝑋1 is P-square integrable, use the Strong Law of Large Numbers together
with Theorem 1.5.4 to show that EP

[
𝑋1

]
= 0 and

𝜎 = EP
[
𝑋2

1
] 1

2 = lim
𝑛→∞

𝑆𝑛

Λ𝑛
= − lim

𝑛→∞

𝑆𝑛

Λ𝑛
(a.s.,P).

In other words, everything comes down to proving that (1.36) implies that 𝑋1 is P-square
integrable.
(ii) Assume that the 𝑋𝑛 are symmetric. For 𝑡 ∈ (0,∞), set

�̌� 𝑡𝑛 = 𝑋𝑛 1[0,𝑡 ]
(
|𝑋𝑛 |

)
− 𝑋𝑛 1(𝑡 ,∞)

(
|𝑋𝑛 |

)
,

and show that (
�̌� 𝑡1, . . . , �̌�

𝑡
𝑛, . . .

)
and

(
𝑋1, . . . , 𝑋𝑛, . . .

)
have the same distribution. Conclude first that, for all 𝑡 ∈ [0, 1),

lim
𝑛→∞

��∑𝑛
𝑚=1 𝑋𝑛 1[0,𝑡 ]

(
|𝑋𝑛 |

) ��
Λ𝑛

≤ 𝜎 (a.s.,P),

where 𝜎 is the number in (1.38), and second that

EP
[
𝑋2

1
]
= lim
𝑡↗∞
EP

[
𝑋2

1 , |𝑋1 | ≤ 𝑡
]
≤ 𝜎2.
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Hint: Use the equation

𝑋𝑛 1[0,𝑡 ]
(
|𝑋𝑛 |

)
=
𝑋𝑛 + �̌� 𝑡𝑛

2
,

and apply part (i).
(iii) For general {𝑋𝑛 : 𝑛 ≥ 1}, produce an independent copy {𝑋 ′

𝑛 : 𝑛 ≥ 1} (as in the proof of
Lemma 1.5.2), and set 𝑌𝑛 = 𝑋𝑛 − 𝑋 ′

𝑛. After checking that

lim
𝑛→∞

��∑𝑛
𝑚=1𝑌𝑚

��
Λ𝑛

≤ 2𝜎 (a.s.,P),

conclude first that EP
[
𝑌 2

1

]
≤ 4𝜎2 and then (cf. part (i) of Exercise 1.4.7) that EP

[
𝑋2

1

]
< ∞.

Finally, apply (i) to arrive at EP [𝑋1] = 0 and (1.37).

Exercise 1.5.2 Let {𝑠𝑛 : 𝑛 ≥ 1} be a sequence of real numbers that possess the properties
that

lim
𝑛→∞

𝑠𝑛 = 1, lim
𝑛→∞

𝑠𝑛 = −1, and lim
𝑛→∞

��𝑠𝑛+1 − 𝑠𝑛
�� = 0.

Show that the set of subsequential limit points of {𝑠𝑛 : 𝑛 ≥ 1} coincides with [−1, 1]. Apply
this observation to show that, in order to get the final statement in Theorem 1.5.4, I need only
have proved (1.35) for the function 𝑓 (𝑥) = 𝑥, 𝑥 ∈ R.
Hint: In proving the last part, use the square integrability of 𝑋1 to see that

∞∑︁
𝑛=1

P

(
𝑋2
𝑛

𝑛
≥ 1

)
< ∞,

and apply the Borel–Cantelli Lemma to conclude that 𝑆𝑛 − 𝑆𝑛−1 −→ 0 (a.s.,P).

Exercise 1.5.3 Let {X𝑛 : 𝑛 ≥ 1} be a sequence ofR𝑁 -valued, identically distributed random
variables on (Ω, F , P) with the property that, for each e ∈ S𝑁−1 = {x ∈ R𝑁 : |x| = 1},(
e,X1

)
R𝑁

has mean value 0 and variance 1. Set S𝑛 =
∑𝑛
𝑚=1 X𝑚 and S̃𝑛 = S𝑛

Λ𝑛
, and show that

lim𝑛→∞ |S̃𝑛 | = 1 P-almost surely. Here are some steps that you might want to follow.
(i) Let {e𝑘 : 𝑘 ≥ 1} be a countable, dense subset of S𝑁−1 for which {e1, . . . , e𝑁 } is or-
thonormal, and suppose that the sequence {S̃𝑛 : 𝑛 ≥ 1} ⊆ R𝑁 has the property that
lim𝑛→∞

�� (e𝑘 , S̃𝑛)R𝑁 �� = 1 for each 𝑘 ≥ 1. Note that |S̃𝑛 | ≤ 𝑁
1
2 max1≤𝑘≤𝑁

��(e𝑘 , S̃𝑛)R𝑁 ��, and
conclude that 𝐶 ≡ sup𝑛≥1 |S̃𝑛 | ∈ [1,∞).
(ii) Continuing (i), for a given 𝜖 > 0, choose ℓ ≥ 1 so that S𝑁−1 ⊆ ⋃ℓ

𝑘=1 𝐵
(
e𝑘 , 𝜖𝐶

)
. Show that

|S̃𝑛 | ≤ max
1≤𝑘≤ℓ

�� (e𝑘 , S̃𝑛)R𝑁 �� + 𝜖,
and conclude first that lim𝑛→∞ |S̃𝑛 | ≤ 1 + 𝜖 and then that lim𝑛→∞ |S̃𝑛 | ≤ 1. At the same time,
since |S̃𝑛 | ≥

�� (e1, S̃𝑛
)
R𝑁

��, show that lim𝑛→∞ |S̃𝑛 | ≥ 1. Thus lim𝑛→∞ |S̃𝑛 | = 1.
(iii) Let {e𝑘 : 𝑘 ≥ 1} be as in (i), and apply Theorem 1.5.4 to show that, forP-almost all𝜔 ∈ Ω,
the sequence {S̃𝑛 (𝜔) : 𝑛 ≥ 1} satisfies the condition in (i). Thus, by (ii), lim𝑛→∞ |S̃𝑛 (𝜔) | = 1
for P-almost every 𝜔 ∈ Ω.
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