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Abstract

The condition assessment of underground infrastructure (UI) is critical for maintaining the safety, functionality, and
longevity of subsurface assets like tunnels and pipelines. This article reviews various data acquisition techniques,
comparing their strengths and limitations in UI condition assessment. In collecting structured data, traditional
methods like strain gauge can only obtain relatively low volumes of data due to low sampling frequency, manual
data collection, and transmission, whereas more advanced and automatic methods like distributed fiber optic sensing
can gather relatively larger volumes of data due to automatic data collection, continuous sampling, or comprehensive
monitoring. Upon comparison, unstructured data acquisition methods can provide more detailed visual information
that complements structured data. Methods like closed-circuit television and unmanned aerial vehicle produce large
volumes of data due to their continuous video recording and high-resolution imaging, posing great challenges to data
storage, transmission, and processing, while ground penetration radar and infrared thermography produce smaller
volumes of image data that are more manageable. The acquisition of large volumes of UI data is the first step in its
condition assessment. To enable more efficient, accurate, and reliable assessment, it is recommended to (1) integrate
data analytics like artificial intelligence to automate the analysis and interpretation of collected data, (2) to develop
robust big data management platforms capable of handling large volumes of data storage, processing and analysis,
(3) to couple different data acquisition technologies to leverage the strengths of each technique, and (4) to
continuously improve data acquisition methods to ensure efficient and reliable data acquisition.

Impact Statement

The condition assessment of underground infrastructures (UIs) is crucial for maintaining their functionality,
longevity, and safety. The article synthesizes existing literature through comprehensively comparing both
structured and unstructured data acquisition techniques for UI condition assessment qualitatively and quanti-
tively, and evaluating their strengths and limitations. The comparisons highlight that advanced data acquisition
methods feature better data accuracy, data reliability, and operational efficiency than traditional ones. While
previous works have focused on individual methods, our review is the one of the first to comprehensively
compare and analyze these methods within a unified framework, offering new insights into UI condition
assessment. A more efficient, accurate, and reliable condition assessment could benefit from the integration
of data analytics, data management tools, method integration, and improvement in acquisition methods.
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1. Introduction

Underground infrastructure (UI) plays a critical role in supporting urban development, transportation
networks, and utilities. The condition assessment of UI is crucial for maintaining the functionality,
longevity, efficiency, and safety of subsurface assets such as tunnels, pipelines, and mine shafts. To
achieve such an assessment, the acquisition of various data and measurements from UI is essential.
Traditional methods of data acquisition often rely on manual inspection and point-based measuring,
which are time-consuming, labor-intensive, and prone to human error, and the data volume is rather
limited (Jiang et al., 2019), failing to produce higher levels of data quality and accuracy, and larger
amounts of data for more efficient, objective, accurate, and reliable UI condition assessment (Wang et al.,
2023b). With increasing complexity and scale of UIs, and ever increasingly stringent and rigorous
requirements in UI operation and maintenance, the need for a comprehensive understanding of UI
structural health and performance grows. This is based on the collection of large amounts of compre-
hensive and continuous data, which are essential for effective monitoring, maintenance, andmanagement
ofUI, enabling the application ofmore advanced techniques to ensure the reliability and longevity of these
critical assets.

To conduct a condition assessment of UI like tunnels, it is necessary to understand the type of data that
is needed. Generally, the data that are collected from UI can be broadly categorized into structured and
unstructured data (Hu et al., 2019). Structured data acquisition involves the collection of organized,
quantitative data such as stress, strain, and displacement measurements from UI. Traditionally, there are
many techniques that have been used for successful data acquisition, such as precise leveling, total station,
strain gauge, tape extensometer, and so forth (Bennett et al., 2010; Cheung et al., 2010; Di Murro, 2019;
Ganguly and Paddington, 2019; Jiang et al., 2021). With technological advancement and development,
methodologies based on Internet of Things, fiber optics, laser scanning, robotics, and so forth have
emerged as advanced and innovative solutions, enabling the collection of bigger amounts of accurate and
reliable structured datasets for UI condition assessment (Di Murro, 2019; Farahani et al., 2019; Montero
et al., 2017;Wang et al., 2021). Unstructured data acquisition, on the other hand, includes a diverse range
of formats such as images, videos, sensor logs, and so forth. Such type of data provides rich, detailed
information that structured data might miss. Typically, the collection of unstructured data, like images and
videos, relies on camera-based technologies, such as closed-circuit television and unmanned aerial
vehicles, which facilitates the generation of new insights into the condition of UIs (Kumar et al., 2018;
Liu et al., 2023; Zhang et al., 2024). These methods, if integrated with artificial intelligence and machine
learning algorithms, can help automate the analysis and assessment of UIs and thus improve the decision-
making process for assets management and maintenance (Liu et al., 2020b; Spandonidis et al., 2022).

However, despite the growing body of research in the field of UI condition assessment, significant gaps
remain in the literature. Previous studies have primarily focused on individual data acquisition methods,
often in isolation, without considering how these methods can be effectively integrated (Afshani et al.,
2019; Bednarz et al., 2021; Hou et al., 2024; Kumar et al., 2018; Zhang et al., 2024). There is a lack of
comprehensive comparisons between structured and unstructured data acquisition methods within the
context of UI, which limits our understanding of their relative strengths and weaknesses. In addition, the
potential for integrating data analytics with advanced methods to enhance the accuracy, reliability, and
efficiency of condition assessments has not been fully explored.

This article aims to address these gaps by providing a comprehensive synthesis and analysis of existing
literature on both structured and unstructured data acquisition methods for UI condition assessment. This
review offers a unique perspective by comparing these methods side by side, evaluating their effective-
ness and limitations, which contrasts with prior reviews that typically focus on individual methods in
isolation. Furthermore, we critically discuss the role of advanced data management and analytical tools in
processing the large volumes of data generated by some methods and in automating the analysis and
interpretation of these data, which is an aspect that is often overlooked in earlier works, offering new
insights into the future of UI condition assessment. The organization of the article is as follows: Section 2
reviews the acquisition of structured data by various methods, together with a comparison of their
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advantages, disadvantages, data amount, data quality, and level of automation; Section 3 reviews the
acquisition techniques for unstructured data, analyses their pros and cons, and systematically compares
their difference in data size, sampling interval, data management, transmission, and processing; and
Section 4 presents the discussion, conclusion, and recommendations of this article.

2. Structured data acquisition

2.1. Definition of structured data

Data science commonly defines structured data as tabular-form quantitative data that are highly
organized, easily decipherable, and straightforward-to-analyze (Mishra and Misra, 2017). For condition
assessment of UI, structured data encompass organized and standardized information on understanding
the performance of such subsurface assets, identifying areas of concern or potential risk, and facilitating
the evaluation of their structural health, such as strain, stress, and settlement, serving as the backbone of
efficient asset assessment practices and informed maintenance decision-making (Du et al., 2018). Such
structured data of UI, despite its significance in providing essential information, can exhibit uncertainty
(due to measuring errors), discreteness (arising from non-continuous monitoring), and poor quality
(coming from subjective readings), contributing to inaccurate and inefficient condition assessment.
One solution is to use big data analytics (e.g., machine learning) to automatically and accurately analyze
and investigate or even predict underground structures’ behavior, whereas the acquisition of big amounts
of structured data for such purpose remains challenging because currently most data are obtained through
manual site investigations, expensive laboratory tests, time-consuming field monitoring, and so forth
(Cremona and Santos, 2018; Du et al., 2018). Recent advances in information and communication
technologies have enabled the application of some innovative and emerging structured data acquisition
methods such as wireless sensor network (WSN), distributed fiber optic sensing (DFOS), terrestrial laser
scanning (TLS), and so forth, to acquire larger amounts of structured data at a lower cost of labor and time
than previously available (Bennett et al., 2010; De Battista et al., 2015; Jia et al., 2021). The following
subsection focuses on the main methods that are available to acquire structured data in the field of UI
condition assessment.

2.2. Acquisition of structured data

Manual acquisition of structured data inUIwas and is still commonly adopted for its condition assessment
despite being subjective, inaccurate, unreliable, time, and labor-consuming (Loupos et al., 2018a; Zhou
et al., 2020). In recent decades, emerging technologies with automatic data collection capability, WSN as
an example, have seen increasing applications in underground structures to gather big amounts of
structured data such as displacement (Sui et al., 2021; Wang et al., 2020; Xie and Lu, 2017). In this
section, a comprehensive review of the acquisition of structured data through certain manual and
automatic techniques is presented.

2.2.1. Data acquisition by traditional methods
Traditional methods, such as precise leveling, traditional total station, strain gauge, tape extensometer,
and so forth, as in Figure 1, have been utilized to gather large amounts of structured information on UI for
decades with great success (Bennett et al., 2010; Cheung et al., 2010; Di Murro, 2019; Ganguly and
Paddington, 2019; Jiang et al., 2021). Table 1 lists some representative traditional methods, with their
applications in gathering structured data for UI condition assessment.

To understand tunnel performance due to influences such as ground heave and tidal changes, precise
levels were adopted to measure its deformation and movement (Burford, 1988; Nuttens et al., 2014;
Webber, 1972). Other methods to acquire structured deformation data of underground structures, such as
tunnels, include tape extensometers for 2D deformation monitoring (Bernardo-Sánchez and Arlandi-
Rodríguez, 2014; Goh and Mair, 2012; Mohamad et al., 2012), displacement transducer for convergence
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measuring (Shibayama et al., 2010; Xu et al., 2017), and traditional total stations for 3D liner convergence
profiling (Kontogianni and Stiros, 2005; Luo et al., 2017; Xie and Lu, 2017). In addition, strain gauges,
pressure cells, and crackmeters are another three traditional methods widely used in UIs to measure strain
development (Bennett et al., 2010;Nuttens et al., 2014), keep track of crack variation (Bennett et al., 2010;
Bossi et al., 2017), monitor stress/pressure evolvement (Clayton et al., 2002; Tian et al., 2023) in ground
and structures with time. To understand ground behavior, manual methods such as single- or multipoint
borehole rod extensometers, magnetic extensometers, precise levels, sliding micrometers, inclinometers,
piezometers, pressure cells, and so forth, are also commonly adopted to understand water table change,
groundwater pressure evolution, ground displacement, and so forth (Bandini et al., 2015; Bossi et al.,
2017; Chen et al., 2020; Pujades et al., 2015; Tian et al., 2023; Zhang et al., 2022).

The advantages of these traditional methods, such as being reliable and versatile in different condi-
tions, accessible, and cost-effective to different practitioners, havemade them very popular and successful
in acquiring structured data in UI previously. However, increasingly stringent and rigorous project
requirements, for example, less labor involvement, higher accuracy, and real-time and continuous
monitoring, have made traditional data acquisition methods unsuitable. Additionally, the point-based
nature and heavy reliance on human operators of these traditional methods can no longer satisfy modern
data requirements such as higher levels of data quality and accuracy, greater volumes of data, and more
comprehensive data types for obtaining a comprehensive picture of UI performance. With technological
development and advancement, recent decades have witnessed a wider application of more advanced
structured data acquisition systems such as WSN and DFOS in acquiring a larger amount of structured
data from underground structures, which is detailed in the following sections.

Tape extensometer 

Displacement transducer

CrackmeterStrain gaugeTotal station Piezometer

Courtesy of xyHt Yu et al. (2015) Wang et al. (2023) Yu et al. (2015) Courtesy of GEOSENSE

Figure 1. Examples of traditional structured data collection methods.

Table 1. Traditional methods for structured data collection

Method Application References

Precise leveling Tunnel deformation due to tidal influences Nuttens et al. (2014)
Total station Tunnel settlement, dislocation, and convergence Xie and Lu (2017)
Strain gauge Tunnel deformation due to tidal influences Nuttens et al. (2014)
Tape extensometer Existing tunnel response induced by a new tunnel Mohamad et al. (2011)
Tiltmeter Tilt monitoring of a drainage tunnel in a landslide area Chen et al. (2020)
Crack meter Crack evolution of a tunnel intersecting a landslide Bossi et al. (2017)
Piezometer Water level evolution in landsides around tunnels Bandini et al. (2015)
Stress cell Measure soil stress state during tunnel excavation Tian et al. (2023)
Displacement

transducer
Deformation monitoring of tunnel cross-sections Xu et al. (2017)
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2.2.2. Data acquisition by automatic methods
Automatic methods typically refer to the ability of technologies or systems to perform monitoring tasks
and/or data acquisition processes relatively independently of human intervention. Automatic structured
data acquisition systems, based on sensor types, can be broadly categorized into microelectromechanical
system sensing (e.g., WSN) (Bennett et al., 2010; Li et al., 2020a; Wang et al., 2021), fiber optic sensing
(e.g., DFOS) (Cheung et al., 2010; Di Murro, 2019; Li et al., 2018b; Mohamad et al., 2011; Monsberger
et al., 2017), laser sensing (e.g., TLS) (Farahani et al., 2019; Li et al., 2020b; Wang et al., 2014), and
robotics-associated integrated sensing (e.g., robotic total station [RTS]) (Loupos et al., 2018b; Montero
et al., 2017; Xu and Yang, 2020; Zhou et al., 2020), as demonstrated in Figure 2. This section presents a
comprehensive review on those advanced monitoring approaches featuring automatic structured data
acquisition that have seen increasing applications and installations in various UIs for their condition
assessment (Bennett et al., 2010; Ganguly and Paddington, 2019; Kim et al., 2008; Wang et al., 2020).

2.2.2.1. MEMS-based data acquisition. MEMS sensors have been extensively and successfully
deployed in various underground structures to acquire a huge amount of structured data, such as
inclination, strain, pressure, and temperature (Tariq et al., 2022; Wang et al., 2020). MEMS-based
automatic-sensing systems typically involve the integration of MEMS sensors with automated data
collection, processing, and transmission system, enabling real-time acquisition of various structured data
fromUI for condition assessment without the need for human intervention. One representative example of
MEMS-based automatic monitoring method is WSN where a network of multifunctional MEMS sensor
nodes collects various structured data from UIs or their surroundings and the data collected are then
transmitted wirelessly to cloud for processing, as illustrated in Figure 3 for its working principles. Having
gained significant popularity in collecting structured data from bridges, such as vibration and displace-
ment, WSN is being gradually applied in various subsurface assets to assess their conditions, exemplified
by tunnels (Bennett et al., 2010; Wang et al., 2021), mines (Li and Liu, 2007; Muduli et al., 2018b), and
caves (Wang et al., 2022a). Table 2 presents some representative studies on acquiring structured data from
UIs using WSN.

In tunnels, WSNs were deployed mainly to gather extensive data on structural deformation. For
example, WSN sensors were used to acquire the deformation and deterioration data of the Prague metro
tunnel such as convergence, joint opening, crack propagation, inclination, and strain due to concerns over
postflood tunnel safety (Vaníček et al., 2012). In London, structured data on cast-iron tunnels including
inclination, strain, and joint opening were collected by the WSN system to investigate their aging
performance (Bennett et al., 2010) and the response induced by adjacent tunnel excavation (Alhaddad
et al., 2014). Similarly, Shanghai shield tunnel data were collected byWSN systems from aspects of aging
deformation (Xie and Feng, 2012), inclination caused by adjacent construction (Wang et al., 2021), and
tunnel longitudinal settlement/differential settlement (Xie and Feng, 2012; Yin and Huang, 2015).
Figure 4 presents the range of deformation development rates recorded in previous studies on tunnels

WSN in a cave DFOS in a retaining wall TLS scanning a tunnel RTS monitoring a tunnel

Wang et al. (2022) Li et al. (2018) Chen et al. (2018) Wang et al. (2024)

Figure 2. Examples of automatic structured data collection methods.
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usingWSN (Wang et al., 2023a). In addition, coal mines have also seen applications ofWSN sensors to get
information on structural variations caused by underground collapses (Li and Liu, 2009), under environ-
mental conditions (Muduli et al., 2018b), on gas concentration and liner position (Wang et al., 2007), and on
fire and safety hazards (Muduli et al., 2018a). For the assessment of underground caves,WSN sensors have
been used to gather structured datamainly onmicroclimatic conditions, for example, temperature, humidity,
CO2 concentration, air speed, and direction (Ming et al., 2008; Novas et al., 2017) and structure inclination
(Wang et al., 2022a). Other areas of UIs that have seen deployments of WSN systems to acquire structured
data include pipeline pressure measuring (Sadeghioon et al., 2014), pipeline leakage detection (Lin et al.,
2019; Spandonidis et al., 2022), and foundation pit displacement monitoring (Hong et al., 2022).

Compared to traditional structured data acquisition techniques in Section 2.2.1,MEMS-based wireless
sensor networks excel in automatic data collection, wireless data communication, flexible deployment,
cable elimination, self-organization, scalability, and real-time data acquisition, saving labor, time and
monetary resources. However, its drawbacks such as network signal reliance and network vulnerability,
data loss, and point-based measurements somewhat restrict it from obtaining spatially continuous data. In
addition, WSNs typically are battery-powered, and replacing or recharging batteries in underground
environments can be challenging. Studies have reported that the lifespan of WSN batteries depends on
various factors (e.g., type of sensor, frequency of data transmission, and environmental conditions), and
generally WSN sensor node batteries can last from several months to a maximum of 2 years when the
sampling rate is high (e.g., every fewminutes to an hour) and it can last even longer (e.g., up to 5 years) for
low-power sensors that sense the environment or structure infrequently (e.g., on a weekly or monthly
basis) (Rodenas Herráiz et al., 2016). For example, wireless inclinometers in theWSN system reported in
Wang et al. (2023a) can last up to about 3 years in a single hop network with a sampling rate of every
1 hour in relatively good underground environments, while its matching gateway’s battery can last for
around a year. Regarding the communication range ofWSNs, it is also influenced by various factors, such
as signal frequency, antenna type, environmental conditions, and tunnel configurations, depending on the
type of specific wireless technique, the typical communication range of WSNs varies between several
meters and several hundred meters. For instance, a maximum of 200 m communication distance in a
ZigBee-based WSN was reported in Soga et al. (2017) when monitoring an underground tunnel section.
Section 2.3 summarizes the characteristics of WSN in data acquisition.

2.2.2.2. Distributed fiber optic-based data acquisition. The distributed fiber optic-based data acquisi-
tion method features change detection of parameters such as temperature and strain caused by light

Figure 3. Working principle of WSN (Wang et al. (2022a)).
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traveling along a single fiber. The single fiber acts as a sensor with thousands of sensing points, enabling
continuous acquisition of structured data in UIs along the entire length of a fiber that may span over tens of
kilometers (Sui et al., 2021). By realizing spatially and temporally continuous structured data acquisition,
the DFOS method has gained increasing applications in acquiring extensive structured data from various
UIs for their condition assessment, such as tunnels, pipelines, piles, and diaphragm walls (D-wall).
Figure 5 illustrates the DFOS working principle for applications in UI condition assessment.

DFOS systems have been used to acquire several types of primary structured data, including strain,
temperature, vibration, and acoustic events. Each data type leverages different scattering phenomena and
interrogation techniques, which allows DFOS to provide comprehensive structured data acquisition
solutions across various UIs. Table 3 lists some representative studies regarding DFOS-based data

Table 2. Structured data collection using WSN

Infrastructure Application Reference

Tunnel Deformation data collection on the performance of
aging tunnels

Bennett et al. (2010)

Tunnel Convergence data acquisition on shield tunnel with
straight joints

Wang et al. (2021)

Tunnel Vibration data of an existing tunnel due to new
tunnel construction

Lai et al. (2015)

Tunnel Tilt data collection on the behavior of a cross-
passage twin tunnel

Wang et al. (2023b)

Tunnel Data collection including convergence, joint, crack,
tilt, and strain

Vaníček et al. (2012)

Tunnel Horizontal convergence of tunnels induced by
unexpected leakage

Liu et al. (2020a)

Coal mine Structural variation data caused by underground
collapses in mines

Li and Liu (2009)

Coal mine Abnormal gas centration data and miner position
data in coal mines

Wang et al. (2007)

Coal mine Collect temperature, humidity, and gas
concentration data in coal mines

Muduli et al. (2018b)

Heritage cave Tilt, temperature, humidity, and CO2 data collection
in a heritage cave

Wang et al. (2022a)

Heritage cave Temperature, humidity, CO2, air speed, and
direction in a cave

Novas et al. (2017)

Heritage cave Temperature, humidity, and CO2 concentration in
Mogao Grottoes

Ming et al. (2008)

Pipeline Data collection on relative indirect pressure change
in plastic pipes

Sadeghioon et al. (2014)

Pipeline Monitor pipeline joint leakage induced by large
ground movements

Lin et al. (2019)

Pipeline Immediate detection of leaks in metallic oil and gas
piping systems

Spandonidis et al. (2022)

Foundation pit Collect data on the horizontal displacement of
foundation pit support

Hong et al. (2022)
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acquisition in different underground structures, and Figure 6 presents some examples of strain measure-
ments of a CERN tunnel acquired by DFOS (Wang et al., 2024).

It can be seen that DFOS has been widely used for monitoring UI’s strain and temperature. In tunnels,
DFOS structured data acquisition mainly concentrates on gathering information on the tunnels during the
construction and operation stages. For instance, during construction, structured strains are monitored
(1) to analyze the deformation and stress of tunnels during excavation to ensure structural stability, (2) to

Figure 5. Working principle of DFOS (modified from Monsberger and Lienhart (2021)).

Figure 4. Rate of recorded tunnel deformation acquired by WSN (Wang et al., 2023a).
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assess the impact of nearby construction on the tunnel structure, (3) to detect early signs of structural
issues like cracking, and (4) to analyze the load distribution in the linings and prevent failures. In some
cases, DFOS temperature data are collected to track temperature profiles during concrete curing to ensure
their proper setting and prevent thermal cracking. In comparison, during the operation stage, the
acquisition of structured strain data dominates due to the concerns over tunnel deterioration, tunnel

Table 3. DFOS-based data acquisition in different underground structures

Asset type Data type Scattering Application References

Tunnel Strain Brillouin Study the behavior of a London
Crossrail tunnel induced by
adjacent excavation

De Battista et al. (2015)

Tunnel Temperature Raman Obtain information about concrete
curing and construction during
tunnel excavation

Buchmayer et al. (2021)

Tunnel Strain Brillouin Analyze tunnel performance caused
by cracking and crushing-induced
deterioration

Sui et al. (2021)

Tunnel Strain Brillouin Assess the performance of an
inclined CERN tunnel due to
observed deteriorations

Di Murro (2019)

Tunnel Strain Brillouin Evaluate the working face safety of
an Austrian tunnel shotcrete lining

Monsberger et al. (2017)

Tunnel Strain Brillouin Assess the health condition of a
CERN tunnel due to cracks,
leakage, etc.

Wang et al. (2024)

Pipeline Temperature Raman Locate the leakage area of an LNG
pipeline and an ethylene pipeline
in the UK

Tanimola and Hill (2009)

Pipeline Strain Brillouin Calculate the cross-sectional
deformation/displacement of a
composite tubular pipe

Bednarz et al. (2021)

Pipeline Acoustic Rayleigh Prevent third-party damage to buried
high-pressure gas pipelines

Tanimola and Hill (2009)

Mine Temperature Raman Examine the applicability of DFOS
temperature monitoring in an
underground mine

Aminossadati et al. (2010)

Pile Temperature Raman Derive temperature profiles along a
pile during concrete curing to infer
pile integrity

Rui et al. (2017)

Pile Strain Brillouin Understand the cast-in-situ test pile
performance and integrity under
axial loading

Kechavarzi et al. (2019)

D-wall Strain Brillouin Investigate the behavior of
diaphragm walls due to deep
excavation in London Clay

Li et al. (2018b)

D-wall Temperature Raman Monitor the leakage of D-walls
under different testing conditions
using the model test

Liu et al. (2019)

Data-Centric Engineering e49-9

https://doi.org/10.1017/dce.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.58


structural health, maintenance, and repair. Strains are monitored to detect and assess deterioration over
time, to identify the development of cracks and other defects that could compromise tunnel safety, and to
plan maintenance activities before significant damage occurs. For pipelines, depending on the specific
types and purposes, the application scenarios of DFOS in acquiring structured data vary from leak
detection and prevention to structural health and ground movement, temperature profiling, third-party
interference detection, and corrosion monitoring. Strains are gathered to assess the deformation of
pipelines during installation to ensure that they are not overstressed and to detect any changes caused
by ground movements like earthquakes that might threaten pipeline integrity. Temperature data are
collected to enable leakage detection and localization in pipelines such as LNG and ethylene ones.
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Figure 6. DFOS strain measurements in a CERN tunnel (Wang et al., 2024).
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Acoustic measurements are mainly acquired to facilitate the detection of leaks, third-party interference,
and flow monitoring. For foundations and their supporting structures, such as piles and diaphragm walls,
both strain and temperature datasets are important parameters for understanding their structural perform-
ance and integrity. Temperature profiling ensures the proper setting of pile concrete to avoid integrity
problems, while strain data enables the assessment of pile’s long-term structural health. Similarly, D-wall
strain data help understand its structural behavior in both the short and long term, while temperature
measurements facilitate the detection of leakage of water through the wall.

Like WSN, DFOS enables real-time and automatic structured data acquisition without direct
access to underground structures. However, DFOS stands out by not relying on discrete sensors at
specific points. Instead, it uses the optic fiber cable itself to measure parameters such as strain,
temperature, and acoustic events along extensive sections of UIs like tunnels. Typically, the DFOS
system can have a cable length that can be effectively read by an interrogator from several to tens of
kilometers, depending on various factors, such as scattering type, fiber signal attenuation, spatial
resolution, tunnel curvatures, interrogator power, and sensitivity. For example, the distance range of
distributed Brillouin sensing can reach 150 km with 2-m spatial resolution and 1 °C temperature
resolution under optimal conditions (Bao and Chen, 2012). Regarding DFOS accuracy, based on the
parameter being measured and the scattering type employed, DFOS systems may have different
accuracies. For instance, the Brillouin-based DFOS system, commonly used for temperature and
strain monitoring, can achieve an accuracy of ±20 με for strain measurement and ±1 °C for
temperature. Raman-based systems, primarily used for temperature sensing, typically offer an
accuracy of ±0.1 °C. This DFOS approach allows for continuous spatial and temporal structured
data collection, providing a higher volume of information for a more comprehensive assessment and
evaluation of UI (Buchmayer et al., 2021).

2.2.2.3. Laser sensor-based data acquisition. LiDAR-based TLS is one representative laser sensor-
based structured data acquisition technique. The advantages of acquiring high-accuracy and high-
precision 3D point density, spatial resolution from a single setup in a short time, remote and noncontact
operation, adaptability to various underground environments such as tunnels and mines, have gained
increasing attention in structured data acquisition from UIs (Mukupa et al., 2017; Wang et al., 2014),
exemplified by the increasing applications of TLS in geometry detection, deformation monitoring, and
feature extraction of UIs (Wang et al., 2014). The following Figure 7 illustrates the general working
procedures of data acquisition using TLS in UIs.

To gather information on UI geometrical dimensions, previous studies mainly focused on utilizing
TLS to obtain tunnels’ geometry profile data to ensure tunnel construction quality control (Wang et al.,
2014), to assess tunnel conditions (Farahani et al., 2019), and to monitor the progress of works and
supervise tunnel deformations during construction (Argüelles-Fraga et al., 2013). In addition, TLS has
also been used to gather UI’s deformation data, such as tunnel excavation face displacement (Lemy et al.,
2006), aging deformation of operation tunnels (Farahani et al., 2019; Jia et al., 2021; Xie and Lu, 2017),
underground pipeline deformation (Vezočnik et al., 2009), and so forth Figure 8 shows an example of
tunnel convergence deformation at different construction stages of a Shanghai metro tunnel acquired by
TLS. In terms of feature extraction, TLS has mainly been used to collect measurements of tunnel invasion
detection (Yang et al., 2021), underground mine rock mass discontinuities (Chen et al., 2018), and rock
bolt position (Gallwey et al., 2021).

LiDAR-based TLS complements discrete point-based monitoring techniques (e.g., traditional
methods and WSN) by obtaining structured data from numerous points on various UIs, and spatially
continuousmethods (e.g., DFOS) by gathering bigger amounts of structured data in continuous 3D spaces
of certain length via a single reading. Additionally, TLS provides highly accurate and precise 3D
measurements of comprehensive UI areas promptly. However, it cannot replace these approaches as all
techniques do not compete but support each other (Mukupa et al., 2017). For example, TLS may not
achieve real-timemeasurements asWSNdoes, while DFOSmay not gather asmuch data as TLS can do in
one scan.
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2.2.2.4. Robotics-involved integrated data acquisition. The automatic structured data acquisition
methods presented in previous subsections still have a certain level of reliance on human intervention,
prompting the pursuit of even higher levels of automation in the data acquisition process and postmo-
nitoring data processing. One potentially emerging solution is the integration of robotics, computer/
machine vision, and artificial intelligence into those widely applied structured data acquisition tech-
niques. Recent years have witnessed some examples/proposals of such robotics-involved integrated
methods (Loupos et al., 2018a; Xu and Yang, 2020; Zhou et al., 2020), but they are still in their infancy
with no practical and realistic applications in the wider UI industry. This subsection reviews some of these
autonomous methods for potential applications in future big data acquisition in UIs. Figure 9 presents the
robotics-involved integrated systems for structured data acquisition from previous studies.

Zhou et al. (2020) reported the use of an RTS with capabilities such as automatic target recognition,
power search, and automatic and remote wireless data collection in a metro tunnel to gather tunnel lining
deformation. However, a large number of RTSsmay be needed to establish a complete deformation profile
of a tunnel due to its short range. Xu and Yang (2020) proposed the use of artificial intelligence (AI)-
assisted TLS to gather geometric information about tunnel structures to obtain tunnel deformation.
Another robotics-involved integrated system to gather structured data is the autonomous robotic tunnel
monitoring systemROBO-SPECT (Montero et al., 2017). It hasmultiple capabilities such as autonomous
navigation of the equipment, automatic identification of tunnel defects, autonomous crack measurement
taking and transverse deformation monitoring, autonomous data processing, and decision-making
(Loupos et al., 2018b; Menendez et al., 2018; Montero et al., 2017). The ROBO-SPECT system enables
automation in not only data acquisition but also the work before, during, and after the acquisition of
structured data. Similarly, another two studies on inspection of CERN tunnel structures demonstrated the
autonomous capabilities in conducting monitoring, acquiring both structured data and unstructured data,
transmitting data and postprocessing data: (1) a remote and automated tunnel crack monitoring system,
characterized by remote and automatic data acquisition, storage, and transmission by CERNbot and deep-
learning-based automatic crack segmentation and density and distribution prediction, was used to identify
tunnel areas with severe crack damage (Ouyang et al., 2023); (2) a train inspection monorail (TIM) was
installed in the large hadron collider (LHC) tunnel at CERN, together with an automatic computer vision

Working procedures

TLS placement & setup

Laser emission & scanning

Time-of-Flight measurement

Point cloud data collection

Data processing & filtering

Baseline model creation

Continuous monitoring

Position and calibrate TLS within UI strategically to cover the area to be monitored 

Emit a series of laser beams scanning UI surfaces to capture detailed spatial data

Measure travel time and calculate the precise location of each point in 3D space

A 3D point cloud is generated from reflected laser beams to represent UI surfaces

Remove noise and outliers to ensure high-quality data and filter data for accuracy

Create an initial 3D model of the UI from processed point cloud data as a baseline

Perform periodic UI scans over time and compare the new point cloud with baseline 

Tasks and jobs to be performed during TLS structured data acquisition

UI deformation analysis Compare the point clouds from different time periods and identify changes in UI 

Visualisation & reporting Create and document colour-coded figures and 3D models showing areas of change

Figure 7. TLS working procedures for UI structured data acquisition.
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system (TInspect), to acquire various structured and unstructured data with mounted sensors and cameras
without manual intervention, aiming to monitor changes on tunnel linings such as cracks, leakage, and so
forth (Attard et al., 2018b).

Such robotic data acquisition systems provide an even higher level of automation compared to
previous techniques, although their development incurs additional costs in terms of labor, time, and
monetary resources. Additionally, many robotics-involved integrated data acquisition systems laid more
focus on image data acquisition for UI surface inspection, followed by AI-enabled image processing for
further data analyses/UI condition assessment. These systems offer a feasible and promising direction for
future research and development in the field of data acquisition in UI.

2.3. Comparison of structured data acquisition

In Section 2.2, a comprehensive review on the widely used techniques for acquiring structured data in UI
is presented. It is necessary to understand their similarities and differences in data acquisition for the
reference of engineers, researchers, and so forth, in terms of infrastructure condition assessment. Table 4
gives a detailed comparison among the listed data acquisition methods from three aspects of structured
data: data acquisition, data amount, and data quality. It is noted that traditional structured data acquisition

Figure 8. TLS convergence at different construction stages of a tunnel (Xie and Lu, 2017).
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methods can only obtain relatively low volumes of data due to low sampling frequency, manual collection
and transmission, whereas more advanced and automatic methods can gather relatively larger
volumes of data due to automatic data collection and high and/or continuous sampling frequency
or comprehensive monitoring. For example, traditional total stations, typically with a sampling
frequency in the range of 0.01 to 0.1 Hz (once every 10s–100 s) depending on the manual operation
and the specific type of instrument used, can produce a data volume from a few megabytes to tens of
megabytes per day, depending on the number of sensors and measurement frequency. Upon com-
parison, more advancedmethods such as DFOS (e.g., with a sampling interval as frequent as 1 second)
is able to generate gigabytes of data per day and TLS can produce tens of hundreds of millions of
points per scan, resulting in data volumes that can exceed gigabytes per session. The quality of
structured data obtained by traditional methods remains largely low to medium due to factors such as
subjectivity in data reading, environmental effects such as temperature, signal interference, human
error, instrument sensitivity, and so forth, compared to the relatively higher data quality by advanced
methods. Regarding the level of automation, it is commonly accepted that traditional methods are
characterized by heavy reliance on human involvement, including manual installation and calibra-
tion, manual operation and data collection, while the more advanced techniques for structured data
acquisition in UIs minimize human intervention, thus enabling a medium-high level of automation
and the subsequent improvement in data acquisition efficiency, accuracy, quality, and comprehen-
siveness.

Table 5 compares the advantages and disadvantages of traditional and automatic methods in general in
various aspects, from installation and calibration to environmental scalability and system applicability. It
can be seen that traditional methods such as total stations, strain gauges, crackmeters, and so forth require
manual installation, calibration, and data collection, making them labor-intensive, time-consuming, and
prone to human error. These methods also involve higher risks for workers and frequent maintenance.
While they are often lower in initial cost and well-suited for straightforward monitoring tasks, they often
lack real-time capabilities and scalability. On the other hand, advanced methods such as WSN-, DFOS-,
and LiDAR-based scanning offer automated data collection, real-time monitoring, and higher accuracy
with reduced human intervention. These systems are more efficient, scalable, and safer, although they
require a higher initial investment and specialized technical expertise. Those advanced methods are ideal
for comprehensive, large-scale monitoring and facilitate predictivemaintenance, but their complexity and
maintenance needs may be a disadvantage in some scenarios.

Figure 9. Robotics-involved integrated systems for structured data acquisition.

e49-14 Chao Wang et al.

https://doi.org/10.1017/dce.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.58


Table 4. Comparison of structured data acquisition

Acquisition
methods

Data acquisition Data amount Data quality

Level of
automation

Data
collection Data transmission Frequency Data volume Data loss

Data
accuracy

Data
reliability

Traditional Total
station

Manual Manually download
from total station

Low (every several
minutes to hours)

Low (within tens
of megabytes)

Medium Medium-
high

Medium-
high

Low

Strain
gauge

Manual Manually download
from the data
logger

Low-medium (can be
continuous or
every several
minutes to hours)

Low (within tens
of megabytes)

Medium-
high

Medium Medium Low

Various
meters

Manual Manually download
from readout unit

Low (every several
minutes to hours)

Low (within tens
of megabytes)

Medium Medium Medium Low

Advanced WSN Automatic Wireless and real-
time transmission

High (can be up to
every 1 second)

High (in the range
of gigabytes)

Low High High High

DFOS Automatic Wired transmission
but remote
download

High (can be
continuous or be
up to every
1 second)

High (in the range
of gigabytes)

Low High High High

TLS Automatic Manually download
from the laser
scanner

Low (each scan takes
time due to
millions of points)

High (in the range
of tens of
gigabytes)

Low High High Medium

RIS Automatic Depends on the
integrated sensor
system

High (integration
with techniques
like WSN)

High (in the range
of tens of
gigabytes)

Low High High High

Note:1.Only three representative methods (e.g., total station, strain gauge, and various meters) in the traditional category are listed for comparison.
2.WSN—Wireless Sensor Network; DFOS—Distributed Fiber Optic Sensing; TLS—Terrestrial Laser Scanning; RIS—Robotic Integrated System.
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3. Unstructured data acquisition

3.1. Definition of unstructured data

Unstructured data usually refers to information that does not possess a predefined format or organization,
commonly originating from diverse sources. This type of data is particularly challenging to process and
analyze due to its lack of structure, and unlike easy-to-use structured data, it can manifest in forms such as
text files (e.g., documents, emails, and webpages), multimedia files (e.g., images, videos, and audios),
sensor data (e.g., logs, signals, and data streams), and social media data (e.g., tweets and comments)

Table 5. Advantages and disadvantages of traditional and automatic methods

Comparison Feature subcategory Traditional Automatic

Installation Manual installation × ×
Time and labor-intensive ×
Physical access to UI ×

Calibration Manual calibration ×
Automated calibration ×
Frequent calibration ×

Data collection Manual data collection ×
Automated data collection ×
Prone to human error ×
Periodic data collection ×

Accuracy High accuracy if properly installed × ×
Reduced human error ×

Efficiency Labor-intensive data collection ×
High-speed data collection ×

Maintenance Frequent manual maintenance required ×
Prone to wear and tear under harsh conditions ×

Data integration High integration with digital platforms ×
Advanced data management and processing ×

Cost Low initial device and system setup cost ×
Higher long-term labor and maintenance cost ×

Safety Remote operation reduces exposure to hazards ×
High risks for workers in hazardous environments ×

Scalability Easily scalable for wider coverage of UIs ×
Additional labor and equipment if scaling up ×

Data quality High and consistent ×
Affected by human error and external conditions ×

Real-time monitoring Real-time monitoring and alerts ×
Immediate data availability ×

Data processing Manual data processing ×
Automated data processing ×

Comprehensiveness Limited to specific types of data (e.g., strain) ×
Multimodal and comprehensive data collection ×

Remote accessibility Remote access ×
Off-site monitoring and management ×

Environmental resilience Less affected by harsh conditions ×
Regular maintenance to ensure functionality ×

Applicability Well-established principle for UI monitoring ×
Suitable for complex, large-scale monitoring ×
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(Gandomi and Haider, 2015).Within the context of UI, this typically involves the acquisition of data from
sources such as geospatial surveying, maintenance logs and reports, historical records, images, and
videos. For the condition assessment of UIs, multimedia data such as images and videos taken during
inspection or construction are particularly important to enhance a comprehensive understanding of UI’s
structural health and behavior, as they may contain richer information than that of structured data and
capture details that structured data may miss. However, the large volumes of unstructured data
acquired from UIs pose challenges for data management, analysis, and interpretation, meaning that
robust data management solutions, advanced tools, and/or techniques such as high-quality cameras,
image recognition, and machine learning algorithms are needed for efficient, effective, and accurate
UI condition assessment. The acquisition of unstructured data in the context of UI condition
assessment (i.e., with a focus on images and videos in this article) involves the use of approaches
such as ground-penetrating radar (GPR), closed-circuit television (CCTV), unmanned aerial vehicle
(UAV), and infrared thermography (IRT). The integration of these methods with artificial intelligence
and autonomous platforms has gained increased attention in recent years, positioning unstructured
data acquisition and analysis as a prominent area of UI condition assessment research (Hsieh and Tsai,
2020; Koch et al., 2015; Menendez et al., 2018). However, the reliance of these technologies on
environmental conditions (e.g., light, moisture), UI accessibility, and mobility (e.g., confined space)
also poses some challenges to the acquisition and analyses of unstructured data. The following
subsections review the main methods that are available to acquire big amounts of unstructured data in
the field of UI condition assessment and then compare their advantages and disadvantages in
acquiring unstructured image and video data.

3.2. Acquisition of unstructured data

Acquiring unstructured data relies on monitoring methods/techniques that extract feature information
pertinent to structural health by analyzing images and/or videos to identify and evaluate changes. These
methods predominantly utilize computer vision technology and image or video processing algorithms,
offering the benefits of noninvasive and remote monitoring capabilities. The following subsections
review some representative technologies that have been utilized to acquire unstructured data.

3.2.1. Ground-penetrating radar
GPR is a nondestructive testing method that employs radar signals to visualize subsurface structures. It is
effective for detecting UI, assessing its condition, and identifying potential issues like voids or structural
damages. Due to the varying dielectric properties of different materials, the captured signals of reflected
waves are processed to construct an image or profile of the subsurface, which enables the identification of
the location, depth, and size of any anomalies or structures beneath the surface, such as tunnel, voids, or
other structural features. Figure 10 illustrates the working principle of GPR in detecting utility pipes as an
example.

GPR has been successfully and extensively employed in various UI scenarios with different purposes,
including estimating the thickness of concrete liners and grouting layers (Guo et al., 2020; Li et al., 2011;
Liu et al., 2023; Prego et al., 2016; Zeng et al., 2023; Zhang et al., 2010), identifying defects in tunnel
lining such as voids and cracks (Hou et al., 2024; Kravitz et al., 2019; Qin et al., 2020;Wu et al., 2022). In
addition, GPR has also been applied to detect and identify geological features such as water seepage
(Li et al., 2010), to check rebar cover and location (Wang et al., 2020; Xiang et al., 2019a; Xiang et al.,
2019b), to detect leakage, voids, thickness of pipelines, and to analyze their integrity (Ékes et al., 2014; Li
et al., 2022;Wang et al., 2022b). Table 6 presents some representative studies on the acquisition of image
data for UI condition assessment.

Acquiring GPR images serves as the first significant step toward successful UI condition assessment
and analyses. Following that, the interpretation of GPR image information is a crucial step in utilizing the
data effectively, and it can be difficult owing to the complex reflection patterns (ringing noise and
diffractions) and the interactions with different subsurface materials. Traditional GPR interpretation
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primarily depends on experienced professional technicians, which is time-intensive and subjective (Liu
et al., 2023;Yue et al., 2024). In recent years,machine learning and deep learning, with their powerful self-
learning and data mining capabilities, have gradually been applied to the intelligent recognition of GPR
profiles of various UIs like tunnel lining. For example, Liu et al. (2023) proposed a new method for
simultaneously identifying tunnel defects as well as lining thicknesses from GPR images based on a
multitask deep neural network and curve-fitting postprocessing operation. Liu et al. (2020b) proposed an
automatic detection and localization method using deep learning and migration for lining defects. The
machine learning-based methodologies have demonstrated effectiveness in automatically classifying and
identifying lining defects from GPR images.

GPR is a highly valuable technology that provides essential unstructured information across different
fields. The nondestructive nature of GPR and its capability to deliver real-time, high-resolution data

Table 6. GPR-based image data acquisition for different UI condition assessments

UI Application References

Mineshaft Determine the distribution range of anomalies behind a mine shaft Guo et al. (2020)
Tunnel Automatically recognize lining layer and estimate lining thickness Li et al. (2011)
Tunnel Identify the shape, type, and depth of lining defects and thickness Liu et al. (2023)
Tunnel Acquire data on granite layer thickness, liner voids, and delamination Prego et al. (2016)
Tunnel Automatic detection of backfill grout thickness behind shield tunnel Zeng et al. (2023)
Tunnel Estimate the width and buried depth of hidden cracks in the

tunnel lining
Hou et al. (2024)

Tunnel Detect voids in annular grout behind a precast segmental tunnel Kravitz et al. (2019)
Tunnel Detection of voids inside and behind a physical tunnel lining model Qin et al. (2020)
Tunnel Detection of air-filled and water-filled voids in concrete tunnel liner Wu et al. (2022)
Tunnel Prediction of geological hazards such as groundwater and faults Li et al. (2010)
Tunnel Semi-automatic detection of buried rebar in underground tunnels Wang et al. (2020)
Tunnel Locate rebar, estimate liner thickness, and determine lining defects Xiang et al. (2019b)
Tunnel Automatically recognize rebar in underground concrete structures Xiang et al. (2019a)
Pipeline High-efficiency and high-quality detection of leakage in oil pipeline Li et al. (2022)
Pipeline Detection and characterization of erosion voids near buried pipelines Wang et al. (2022b)
Pipeline Detect voids outside pipes, pipe thickness, and analyze pipe integrity Ékes et al. (2014)

Survey 

Direction

GPR

Buried Pipelines

Transmitted Pulse

Reflected Pulse

Example Results 

of GPR Scans

GPR emits 

pulses into 

subsurface

Echoes from 

subsurface 

recorded

Image or profile data 

are used to identify 

and characterize the 

subsurface features
Image source: www.hexagon.com Example profile

Figure 10. Working principle of GPR in underground utility pipes.
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renders it indispensable for numerous applications. Despite GPR’s widespread success in acquiring
unstructured data for UI condition assessment, some challenges and limitations still exist, including
(1) limited penetration depth (which is typically within several centimeters to tens of meters) caused by
electromagnetic wave signal attenuation with increasing detection depth, (2) high sensitivity to ground
conditions where high moisture content attenuates radar signal and rough surfaces scatter radar waves,
(3) difficulty in data interpretation as GPR data can be prone to noise in complex environments and thus is
highly dependent on the operator’s proficiency, and (4) resolution and depth tradeoff where higher
resolution is typically achieved with higher frequencies and limited depths, and vice versa. Additionally,
other challenges like cost considerations, equipment operation, electromagnetic interference, and so on
require meticulous management when using GPR to acquire unstructured data for UI assessment.

3.2.2. Closed-circuit television
Unstructured data acquisition by CCTV in UI refers to the process of utilizing CCTV cameras,
sometimes mounted on robotic crawlers or remotely operated vehicles, to collect visual data in the
form of video recordings or images to visualize the interior of underground conduits, tunnels, and so
forth, aiding in the identification of defects such as blockages, corrosion, leakage, dislocation, and
so on. The CCTV technique was first applied to pipeline corrosion detection in the mid-1960s and
has been widely used for pipeline inspection globally since the 1980s (Wang et al., 2022b). It has
become an economical and appropriate tool for acquiring unstructured data from pipelines, espe-
cially from those that are too confined or dangerous for human entry. With its application scenarios
becoming increasingly diverse, this method is gradually becoming a crucial tool for monitoring,
inspecting, and assessing the condition of not only pipes but also tunnels, and other subsurface
structures. Figure 11 illustrates the general process of unstructured data acquisition by CCTV for UI
condition assessment.

For unstructured data acquisition on pipelines, CCTV has been used mainly to achieve the following
purposes: identify structural defects such as cracks and joint offset, deformation in pipeline cross-section,
and corrosion (Kumar et al., 2018; Yin et al., 2020), locate blockages and obstructions within pipelines to
plan cleaning and maintenance operations (Hawari et al., 2018; Myrans et al., 2018; Romanova et al.,
2013), and also identify leaks and points of water infiltration in water supply and sewage systems (Jo and
Boon, 2012). In addition to pipes, tunnels, and conduits are also commonUIs where CCTV has seen some
applications in their structural assessment (including the identification of cracks, spalling, and other
structural issues) (Khan et al., 2020). However, CCTVs in suchUIs mainly perform vital functions related

Figure 11. General process of CCTV-based unstructured data acquisition for UI condition assessment.
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to security surveillance, traffic management, and incident documentation, instead of structural health
monitoring and condition assessment.

After acquiring unstructured images or videos fromCCTVs, the nextmain steps include the processing
and analysis of these data to gain a good understanding of the UI conditions. Traditionally, the
postassessment of structural conditions from CCTV inspection needs to be performed manually by
trained operators, which is time-consuming and highly relies on the operators’ experience and skills (Yin
et al., 2020; Zhou et al., 2021). The large volumes of unstructured data collected indicate that
(1) significant storage capacity and efficient data management solutions are required and (2) reviewing
and processing of the data can be complex, time-consuming, and labor-intensive. Recently, automated
defect detection and classification methods based on machine learning algorithms have emerging and
rapidly developing (Hawari et al., 2018; Kumar et al., 2018; Zhou et al., 2021), facilitating a significant
improvement in accuracy, efficiency, and cost-effectiveness in UI condition assessment based on
unstructured image data.

3.2.3. Unmanned aerial vehicles
Unstructured data acquisition by UAVs in UI involves using drones equipped with various cameras or
sensors to collect high-resolution images, videos, and other data (Colomina andMolina, 2014). Similar to
CCTV data acquisition, UAV data acquisition could provide information on critical UIs’ conditions, like
tunnel defects including leakage, cracks, spalling, and void, from images and/or videos, which could
further reveal tunnel deformation and other health issues based on image processing. Figure 12 briefly
illustrates the UAV inspection on tunnel surface for image data acquisition, Table 7 lists some represen-
tative studies on UAV applications for UI unstructured data acquisition, and Figure 13 presents an
example of tunnel geometrical reconstruction based on UAV-acquired image data.

It is noted the applications of UAV in acquiring image data from UIs like tunnels have been relatively
limited (Feng et al., 2021; Mansouri et al., 2020; Özaslan et al., 2017; Pahwa et al., 2019; Tan et al., 2018;
Zhang et al., 2024). This is primarily due to several significant challenges inherent to the underground
environment, including (1) environmental interference to the sensors exemplified by the presence of
airborne dusts and particles obscuring sensors, (2) insufficient visible light such as uneven lighting that
affects visual sensors/cameras, contributing to poor image quality (for example, a minimum of 4 lux of
luminance in a tunnel reported in (Zhang et al., 2024) is not enough for UAV inspection which requires a
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Figure 12. Illustration of UAV image data acquisition on tunnel surface (Zhang et al., 2024).
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light intensity of at least 15 lux), (3) lack of global positioning system (GPS) signal that may lead to
inaccurate UAV positioning, challenging autonomous flight and increasing collision risks, (4) complex
navigation environment in confined space like narrow passages and tunnels with cables, pipes and other
obstructions that may interfere with UAV’s flight path, (5) limited battery life (within a space of tens of
minutes, e.g., 20–40 mins on a single battery) owing to constant maneuvering, and frequent battery
change in long tunnels leading to data acquisition interruption, (6) coverage range that is influenced by
multiple factors, including battery life, tunnel geometry, inspection requirements, tunnel conditions, and
so on, leading to a disperse range of coverage from tens of meters to several kilometers in a single UAV
flight, and (7) dependence of accuracy on onboard sensors and environmental conditionswhere positional
accuracy can vary from several to tens of centimeters when GPS is available and measuring accuracy
relies on lighting, dust, smoke, and so on. Despite these challenges and limitations, compared with other
image/video acquisition techniques, such as camera-mounted vehicle inspection, the use of UAVs offers
several advantages, including increased safety, lower costs, more efficient deployment and inspection
processes, and greater accessibility and flexibility. UAVs can provide consistent photography and operate
at various heights and angles, making them ideal for capturing images/videos in irregular and inaccessible
environments (Toriumi et al., 2022; Zhang et al., 2023).

As recent technology innovations on UAVs are continuously being introduced to the field (Attard et al.,
2018a), some problems such as navigation and localization, and autonomous path planning, have made great
progress and improvement. Investigations have demonstrated the possibility of usingLiDARand laser sensors
for autonomous path planning, collision avoidance, and navigation in both indoor and underground environ-
ments (Bi et al., 2017; Li et al., 2018a;Mansouri et al., 2020; Suzuki, 2018; Tripicchio et al., 2018; Vong et al.,
2017). Nowadays, active research on crack detection for tunnel inspections based on UAVs has gained

Figure 13. Reconstructed inspection area of Dublin Port Tunnel (Zhang et al., 2024).

Table 7. UAV-based image data acquisition for different UI condition assessments

UI Application References

Tunnel Identify defects and potential problems related to tunnel safety Pahwa et al. (2019)
Tunnel Capture high-resolution images for defect detection and

classification
Tan et al. (2018)

Tunnel Automatic image data acquisition for tunnel defect identification Zhang et al. (2024)
Penstock Inspect the structure to detect features that might indicate failures Özaslan et al. (2017)
Mine Present a framework to enable the deployment of micro

UAVs in mines
Mansouri et al. (2020)

Spillway Efficiently detect spillway tunnel defects based on UAV images Feng et al. (2021)
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increasing attention, and more and more custom-built UAVs for tunnel inspection are proposed. The limited
previous efforts on UAV image data acquisition in UI, like tunnels, demonstrated the positive potential for
automatic UAV inspections but it should be highlighted their focus was mainly on the development of the
acquisition methodology instead of on UI condition assessment. With the maturing of UAV inspections in
unfavorable underground conditions, attention should be laid on automatic processing and analysis of the
collected unstructured data for an enhanced and improved understanding of UIs, in the context of emerging
digital image processing techniques based on machine learning and deep learning.

3.2.4. Infrared thermography
Acquisition of unstructured data from UIs by IRT features the use of thermal imaging cameras to capture
thermal images to detect temperature changes that indicate potential issues. It can be applied to identify leaks
(indicating the presence of water, gas, or other fluid leaks in pipelines), thermal anomalies (that indicate
structural weaknesses such as cracks and voids), or areas of excessive heat in underground facilities, which are
indicative of potential insulation issues, corrosion, or equipmentmalfunctions (Maldague, 2001). IRT includes
both passive and active techniques. Figure 14 briefly illustrates its working principle. The former refers to the
detection of natural temperature differences, while the latter refers to the detection of temperature differences
after active heating, mainly for detecting deep subsurface defects (Jiang et al., 2023). In UI condition
assessment, passive IRT is more commonly utilized for identifying water leakage, cracks, voids, moisture
infiltration, and corrosion in transport tunnels (Afshani et al., 2019; Huh, 2024; Jiang et al., 2023; Lu et al.,
2019; Yu et al., 2018), diagnosing pipe crown conditions (invisible liner defect) of utility tunnels (Sham et al.,
2019), detecting leaks in buried water pipelines (Bach and Kodikara, 2017; Yahia et al., 2021), and so forth
Table 8 summarizes these representative IRTstudies on acquiring thermal images forUI condition assessment.

Acquiring unstructured thermal image data from various UIs by using IRT brings advantages like
noninvasive inspection of critical UIs, early detection of structural problems like water leakage, cracks,
and voids, real-time collection of thermal images, etc., as well as challenges, including influential factors
like high humidity, dust and poor light that may affect the accuracy of thermal imaging, heavy reliance on
specialized expertise on data interpretation, dependence of high-quality data on high-quality camera, and
so forth. Figure 15 gives a summary of these pros and cons.

The challenges faced by the IRT technique in thermal image acquisition necessitate the further development
of more accurate and reliable algorithms for UI condition assessment. This points out some promising future
directions for IRT, including integration with other technologies exemplified by GPR to provide a more
comprehensive assessment of various UIs, the development of advanced algorithms and machine learning
techniques to improve automated analysis and interpretation of thermal images, and the use of robotic systems
such as UAVs mounted with infrared cameras for remote and autonomous inspections.

3.3. Discussion and comparison of unstructured data acquisition

In Section 3.2, a comprehensive review of the commonly used techniques for acquiring unstructured
image and/or video data in UI is presented. It is necessary to understand their similarities and differences

Crack

Blistering

Cracked region

Healthy regionEmit IR 

energy

F
O

V

Lens
Collects 

energy

Filter
Passes selected

spectral band

Detector
Convert IR energy

to an electric signal

Amplifier & 
Signal Processing

Convert electric 

signal to thermography

Crack

Blistering

Cracked region

Healthy regionEmit IR 

energy

F
O

V

Lens
Collects 

energy

Filter
Passes selected

spectral band

Detector
Convert IR energy

to an electric signal

Amplifier & 
Signal Processing

Convert electric 

signal to thermography

Heating source

Passive Infrared Thermography Active Infrared Thermography

Figure 14. Working principle of passive and active IRT.

e49-22 Chao Wang et al.

https://doi.org/10.1017/dce.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.58


in unstructured data acquisition for the reference of engineers, researchers, etc., in terms of infrastructure
condition assessment. Table 9 gives a detailed comparison among the listed data acquisitionmethods from
various aspects of unstructured data, including data type, data size, sampling interval, data management,
and transmission and processing. It is clear that CCTV and UAV methods produce the largest data
volumes due to their continuous video recording and high-resolution imaging, posing greater challenges
to data storage, transmission, and processing, while GPR and IRT produce smaller volumes of image data
that are more manageable. Despite the differences in the above aspects of unstructured data acquisition,
these methods follow a similar general workflow, including image acquisition, image enhancement,
image processing, and defect analysis, as shown in Figure 16. The common steps for the above-mentioned
techniques are image processing and defects analysis, while the differences lie in image acquisition which
is based on various physical mechanisms and principles. Different inspection methods have their
advantages, disadvantages, and scope of applications, which means relying solely on one technique
typically leads to limited performance in UI condition assessment.

4. Discussion, conclusion, and recommendation

4.1. Discussion

The acquisition of both structured and unstructured data is essential for the comprehensive condition
assessment of UIs. This study highlights the evolution of data acquisition methods from traditional
techniques to more advanced automatic systems, focusing on both structured data (e.g., stress, strain,
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Figure 15. Advantages and challenges of IRT in acquiring thermal image of UIs.

Table 8. IRT-based thermal image data acquisition for different UI condition assessments

UI Application References

Tunnel Identify defects in an aging reinforced concrete tunnel lining Afshani et al. (2019)
Tunnel Detect delamination and moisture penetration in rock tunnels Huh (2024)
Tunnel Detection of tunnel leakage based on IRT thermal images Jiang et al. (2023)
Tunnel Automatic detection of water seepage into cable tunnels Lu et al. (2019)
Tunnel Diagnose geometry and attribute of water leakage in

metro tunnels
Yu et al. (2018)

Utility tunnel Imaging and diagnosis of underground sewer pipe
crown conditions

Sham et al. (2019)

Water pipeline Identify onsite water leaks using IRT-based passive
leak detection

Bach et al. (2017)

Water pipeline Water leakage detection and localization in water
distribution pipes

Yahia et al. (2021)
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Table 9. Comparison of unstructured data acquisition

Method Data type Typical data size Sampling interval Data management
Transmission and
processing

GPR Radar images/profiles Tens of MB to several
hundred MB per
scan

Can be as frequent as
every several
minutes depending
on the requirements

High due to large raw
data in frequent
sampling

GPR data are often
stored locally and its
processing requires
specialized software

CCTV Video footage/images Several hundred MB
to several GB per
hour

Can be continuous or
every several hours
depending on the
requirements

High for intermittent
recording and very
high for continuous
recording

High bandwidth
required for real-
time data
transmission and
data postprocessing
is time-consuming

UAV High-resolution
images/videos

Several GB to tens of
GB per flight

Continuous during
each flight and
intermittent during
different flights

Extremely high
especially for long
flights

UAV data are typically
stored onboard and
significant
postprocessing is
needed

IRT Thermal images Several MB to Several
GB per session

Can be as frequent as
every several
minutes depending
on the requirements

Moderate to high,
dependent on
resolution and
frequency

Data transmission and
processing may
require real-time
capabilities
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displacement) and unstructured data (e.g., images and videos). Traditional structured data acquisition
methods, such as total stations and strain gauges, have been reliable but are labor-intensive and prone to
human error. The advent of technologies such as WSN, DFOS, and TLS has revolutionized data
acquisition, offering higher accuracy, real-time monitoring, and reduced human intervention. These
advanced methods facilitate large-scale, continuous data collection, essential for modern UIs’ mainten-
ance and management. Unstructured data acquisition in UIs, mainly involving images and videos,
leverages techniques such as GPR, closed-circuit television, and unmanned aerial vehicles. These
methods provide detailed visual information, capturing aspects that structured data may miss. The
integration of data analytics, like machine learning algorithms, with these methods enhances the analysis
and interpretation of vast volumes of datasets, improving defect detection and condition assessment. For
example, Lin et al. (2024) employed machine learning algorithms such as random forest and support
vector machine to classify strain profiles acquired fromDFOS in identifying structural cracks and cavities
in underground structures. Hou et al. (2021) adopted neural network to enhance the accuracy and
efficiency of tunnel deformation monitoring by DFOS, aiming to automatically map strain measurements
from DFOS to the actual deformation shape of tunnel cross-sections. To address the challenges related to
manually interpreting the vast amount of DFOS data during monitoring of structural cracks, Liu and Bao
(2023) integrated the data with deep learning algorithms to automate the detection and localization of
cracks in real time. These case studies showcase such an integration can help enhance the accuracy,
efficiency, and reliability of UI condition assessment. This combination enables more precise defect
detection, predictive maintenance, and so on, while reducing human subjectivity and error in data
analysis, ultimately leading to safer and more reliable infrastructure management. Despite the significant
advancements, there are some challenges, including high initial cost, need for specialized technical
expertise, and dependence on environmental conditions, and they affect the widespread deployment of
these advanced data acquisition systems. Moreover, managing and analyzing large volumes of data
necessitate robust data management solutions and sophisticated analytical tools. To quantitatively
compare traditional methods and advanced methods in acquisition of both structured and unstructured
data, Table 10 lists some quantitative measures of their costs, accuracy, and reliability. It is easy to notice
(1) in structured data acquisition, traditional methods such as total stations and strain gauges are relatively
low-cost, while advanced methods such as DFOS and TLS can be quite expensive, (2) generally,
structured data acquisition methods such as DFOS, TLS, and WSN offer high accuracy, while unstruc-
tured data acquisition methods such as GPR and UAV tend to have medium-high accuracy due to the
influence of environmental conditions, equipment quality, and manual operation, and (3) structured data
acquisition methods typically offer high reliability, due to the well-established techniques such as strain
gauges and continuous and precise monitoring techniques such as DFOS. In contrast, the reliability of
unstructured data acquisition methods such as GPR and CCTVis considered to be medium owing to their
sensitivity to ground and environmental conditions. The comprehensive comparison allows for a better
understanding of the tradeoffs between various data acquisition methods, helping to choose the most
suitable and efficient approach based on the specific needs of UI projects.
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Figure 16. Flowchart of acquiring unstructured image/video data.
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Table 10. Quantitative comparison of cost, accuracy, and reliability of data acquisition methods

Category Method Data type Cost Accuracy Reliability

Structured TS Deformation
settlement

Low to moderate depending on
precision and supplier (e.g., €3 k-
€10 k per total station)

Medium (e.g., ±1–5 mm) High (well-established method
but depends on manual
operation)

SG Strain
measurement

Low to moderate depending on the
number of SGs and supplier (e.g.,
€50–€200 per gauge)

High (e.g., ±1–5 με) High (well-established principle
but sensitive to installation
quality)

WSN Inclination
displacement

Moderate to high depending on the
network scale and supplier (e.g.,
€1 k-€5 k per WSN tiltmeter)

High (e.g., ±0.1–1 mm) High (real-time, continuous, and
wireless monitoring)

DFOS Strain
temperature

High (e.g., ≥€50 k per Brillouin
interrogator and €5–€50 per meter for
DFOS strain cables)

High (e.g., ±20–50 με) High (continuous, long-range
sensing, immune to
electromagnetic influence)

TLS Point cloud
coordinates

High (e.g., €20 k-€150 k each
depending on the scanner’s range,
accuracy, speed, etc)

High (e.g., ±1–2 mm) High (precise and comprehensive
data, sensitive to the
environment)

RIS Relies on the
integrated
system

High due to the integration of e.g. TS
with robotics (e.g., €3 k–€10 k per
total station, plus robotics cost)

High (depending on the
type of integrated
system)

High (autonomous and
continuous monitoring and
repeatable inspections)

Unstructured GPR GPR profiles Low to moderate depending on antenna
frequency, penetration depth, etc.
(e.g., €5 k–10 k for a basic one)

Medium to high depending
on material and depth

Medium (sensitive to ground
conditions, limited penetration
depth)

CCTV Video footage
images

Low to moderate depending on camera
quality (e.g., €2 k–€10 k for a
complete system with 10 cameras)

Medium to high depending
on image quality

Medium (subject to lighting and
environmental conditions)

UAV Video footage
images

Moderate to high depending on the type
and quality of UAV (e.g., €5 k–€50 k
from basic to high-end one)

Medium to high depending
on sensor quality

Medium to high (subject to flight
stability, environment, etc.)

IRT Thermal images Low to moderate depending on
resolution, sensitivity, etc (e.g., 1 k to
30 k from entry level to high end)

Medium depending on
cameras (e.g., ±1–3 °C)

Medium (affected by
environmental factors such as
humidity)
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4.2. Conclusion

This article reviewed various representative methods for acquiring structured and unstructured data for UI
condition assessment, highlighting their advantages, limitations, and potential integration. The shift
toward advanced and automated, real-time, and continuous data acquisitionmethods from traditional ones
represents an improvement in monitoring the health and performance of UIs. The main research findings
are summarized as follows:

With regard to structured data acquisition for UI condition assessment, (1) traditional structured data
acquisitionmethods usually obtain a relatively low volume of data due to low sampling frequency,manual
data collection and transmission, whereas more advanced and automatic methods can gather a relatively
larger volume of data due to automatic data collection, high, continuous sampling frequency and
comprehensive monitoring; (2) the quality of structured data gathered by conventional methods remains
largely low tomedium due to factors such as subjectivity in data reading, environmental conditions, signal
interference, human error, instrument sensitivity, and so forth, compared to relatively higher data quality
by advancedmethods; (3) traditional methods are characterized by heavy reliance on human involvement,
including manual installation and calibration, manual operation and data collection, while the more
advanced techniques minimize human intervention, thus enabling a medium to a high level of automation
and subsequent improvement in data acquisition efficiency, data accuracy, data quality, and data
comprehensiveness. In terms of unstructured data acquisition, (1) the techniques reviewed typically
require low-moderate initial cost in comparison to the relatively high initial investment in advanced
structured data acquisition methods; (2) methods such as CCTVand UAVoften produce large volumes of
image/video data that have medium-high accuracy due to the influence of environmental conditions,
equipment and sensor quality, compared to the high accuracy offered by WSN, DFOS, and TLS; (3) the
reliability of unstructured data acquisition methods such as GPR and IRT is considered to be medium
owing to their sensitivity to ground and environmental conditions, when compared with structured data
acquisition techniques like DFOS that typically offer high reliability due to its continuous and precise
monitoring capabilities; (4) the methods reviewed are only responsible for collecting raw unstructured
images or videos, and they do not inherently possess the capability for automated postprocessing and
analysis, necessitating the integration of data analytics to enable automated unstructured data processing
and analysis and therefore more efficient, effective, and accurate UI condition assessment.

4.3. Recommendation

To assess the condition ofUIs, acquiring large volumes of both structured and unstructured data is the first step.
To enable efficient, accurate, and reliableUI condition assessment, it is recommended (1) to integrate advanced
artificial intelligence and machine learning algorithms to automate the analysis and interpretation of the
collected big data, which can help enhance the accuracy and reliability of UI condition assessment, enable
effective decision-making, and predict potential failures and maintenance needs, facilitating proactive rather
than reactivemaintenance strategies; (2) to develop robust big datamanagement platforms capable of handling
large volumes of data and supporting cloud integration for scalable storage, processing, and real-time analysis;
(3) to couple different data acquisition technologies to leverage the strengths of eachmethod, aiming to provide
a more comprehensive understanding of UI conditions; (4) to continuously improve data acquisition
techniques by investing in sensor development and algorithm enhancement to ensure efficient data acquisition
in harsh underground conditions, such as GPS-denied deep tunnels.
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