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Strict Comparison of Positive Elements in
Multiplier Algebras

Victor Ka�al, Ping Wong Ng, and Shuang Zhang

Abstract. Main result: If a C∗-algebraA is simple, σ-unital, has ûnitely many extremal traces, and
has strict comparison of positive elements by traces, then itsmultiplier algebraM(A) also has strict
comparison of positive elements by traces. _e same results holds if ûnitely many extremal traces is
replaced by quasicontinuous scale. A key ingredient in the proof is that every positive element in the
multiplier algebra of an arbitrary σ-unital C∗-algebra can be approximated by a bi-diagonal series.
As an application of strict comparison, ifA is a simple separable stable C∗-algebra with real rank
zero, stable rank one, and strict comparison of positive elements by traces, then whether a positive
element is a positive linear combination of projections is determined by the trace values of its range
projection.

1 Introduction

In this paper we study strict comparison of positive elements in multiplier algebras.
Comparison theory has a long history. It is a basic fact in von Neumann algebra the-
ory that every ûnite factor has strict comparison of projections: if p, q are projections
in the factor and τ(p) < τ(q), then p ⪯ q (Murray–von Neumann subequivalence).
In the theory of C∗-algebras it was soon realized that both strict comparison of pro-
jections and strict comparison of positive operators (mostly formulated in terms of
quasitraces) are important properties. Perhaps one can view strict comparison of pos-
itive elements as a regularity property in the study of the Cuntz semigroup e.g., [1],
[2, III], [46, 4.7]. In recent years, there have been spectacular advances in understand-
ing strict comparison for simple nuclear C∗-algebras and exploring its connections
with other properties, e.g., Z-stability (see [37,46,50]) or the almost unperforation of
the Cuntz semigroup (see [45, 46]).
Comparison theory formultiplier algebras has not been studied systematically, but

was o�en used implicitly in the investigation of the ideal structure and extension the-
ory, e.g., [10–12, 27, 31, 44, 51]

In a previous paper [26, _eorem 3.2] we proved that if A is a unital, separable,
nonelementary simple C∗-algebra with real rank zero with ûnitely many extremal
traces and strict comparison of projections by traces, thenM(A⊗K) has strict com-
parison of projections by traces provided that the deûnition is appropriately adapted
to the presence of ideals in M(A⊗K). _e main goal of this paper is to extend
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the above result. In _eorem 5.3 we prove that if A is a simple σ-unital C∗-algebra
that has ûnitely many extremal traces and strict comparison of positive elements by
traces, then M(A) has strict comparison of positive elements by traces. _is the-
orem has already found an application in the recent proof that the corona algebra
M(Z⊗K)/(Z⊗K) has real rank zero [30, 32, 53].

_e key tool in the proof of_eorem 5.3, but possibly also of independent interest,
is _eorem 4.2, where we prove that positive elements in the multiplier algebra of an
arbitrary σ-unital C∗-algebraA can be written as the sum of a bi-diagonal series and
a selfadjoint remainder inA of arbitrarily small norm (see Deûnition 4.1). _e idea of
tri-diagonal decomposition of arbitrary elements inM(A) ûrst occurred in an article
by Elliot onAF algebras in 1974 [10, proof of_eorem 3.1]. In 1990, Zhang [51, proof of
_eorem 2.2] established a tri-diagonal decomposition of positive elements inM(A)

when the underlying C∗-algebra is of real rank zero. _e condition in _eorem 5.3
that the extremal boundary is ûnite is replaced in _eorem 6.6 by the weaker condi-
tion that the algebra has quasicontinuous scale, a notion introduced by Kucerovsky
and Perera in [28] (see Section 2.7). However, in a future paper, we will show that in
general this condition cannot be further weakened.
Another application of strict comparison of positive elements by traces is the char-

acterization of positive combination of projections in the multiplier algebra of simple
separable C∗-algebras with real rank zero, stable rank one, strict comparison of pro-
jections, and ûnite extremal boundary (_eorem 7.9).

Positive combination of projections (PCP for short) in aC∗-algebra are sums of the
form∑n

1 λ jp j where p j are projections in the algebra, λ j are positive scalars, and n is a
ûnite integer. _is notion has been investigated since 1967 as part of the more general
study of linear combination of projections and of sums of commutators, e.g., [14–16,33,
35, 36, 40]). More recently, interest in that topic was rekindled by its connection with
frame theory, e.g., [9]. In [21] and [19] we investigated the notion of PCP in the setting
of purely inûnite C∗-algebras and W*-algebras, respectively (see also [20, 22–24]).
_en we proved [25, _eorem 6.1] that if A is a simple separable stable σ-unital C∗-
algebra with real rank zero, stable rank one, strict comparison of projections by traces
and has ûnitely many extremal traces, then a ∈ A+ is a PCP if and only if τ(Ra) < ∞
for all τ ∈ T(A), where Ra denotes the range projection, T(A) denotes the tracial
simplex (see Section 2.2), and τ is extended to the enveloping von Neumann algebra.
A key ingredient in the proof was Brown’s interpolation theorem [4]. If we further
assume that M(A⊗K) has real rank zero, a similar result holds for M(A⊗K): a
necessary and suõcient condition for A ∈ (M(A⊗K))+ to be a PCP is that either
τ(RA) < ∞ for all those τ ∈ T(A) for which A belongs to the trace ideal Iτ or A is a
full element [26,_eorem 6.4], where τ is the extension of a trace onA to (A⊗K)∗∗.

To remove the restrictive condition that M(A⊗K) has real rank zero, a com-
pletely diòerent approach is used in _eorem 7.9, based on the strict comparison of
positive elements in the multiplier algebra provided by _eorem 5.3.
A key step in the proof of _eorem 7.9 is the extension and reformulation of the

“2 × 2” Lemma, 7.2, which played a key role in obtaining PCP decompositions in
purely inûnite C∗-algebras and in W∗-algebras (see [19, 21]). _is lemma also pro-
vides bounds on the number of projections needed for a PCP decomposition.
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2 Preliminaries

2.1 The Pedersen Ideal and Approximate Identities

For a simple C∗-algebra A the Pedersen ideal Ped(A) is the minimal dense ideal of
A (see [41], and also [29]). It contains all the positive elements with a local unit, i.e.,
the elements a ∈ A+ for which there exists b ∈ A+ such that ba = a. In fact

(Ped(A))+ = {x ∈ A+ ∣ x ≤
n
∑
1
y j for some n ∈ N, y j ∈ A+ with local unit} .

LetB be a σ-unital hereditary sub-algebra ofA, let h be a strictly positive element
of B with ∥h∥ = 1, and let en ∶= ϕ 1

n
(h) where ϕє is the continuous function deûned

by

(2.1) ϕє(t) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ∈ [0, є
1 + є

] ,

1+є
є2 t − 1

є for t ∈ (
є

1 + є
, є) ,

1 for t ∈ [є, 1].

It is well known, and routine to verify, that {en}∞1 is an approximate identity of B
satisfying

(2.2) en+1en = en ∀ n

and en ∈ Ped(A) for all n.

2.2 Traces and Dimension Functions

For a simple C∗-algebra we denote by T̃(A) the collection of the (norm) lower semi-
continuous densely deûned tracial weights on A+, henceforth, traces for short. Ex-
plicitly, a trace τ
● is an additive and homogeneous map from A+ into [0,∞] (a weight);
● satisûes the trace condition τ(xx∗) = τ(x∗x) for all x ∈ A;
● the cone {x ∈ A+ ∣ τ(x) < ∞} is norm dense in A+ (thus τ is also called densely
ûnite, or semiûnite);

● satisûes the condition τ(x) ≤ lim τ(xn) for x , xn ∈ A+ and ∥xn − x∥ → 0, or equiv-
alently, τ(x) = lim τ(xn) for 0 ≤ xn ↑ x in norm.

Recall that every trace is ûnite on Ped(A), and hence τ(en) < ∞ for every τ ∈ T̃(A)

and every approximate identity {en} ofB satisfying (2.2).
Using the notations in [48], for every 0 /= f ∈ Ped(A)+ set

(2.3) T̃(A) f↦1 ∶= {τ ∈ T̃(A) ∣ τ( f ) = 1}.

_en T̃(A) f↦1 is a cone base for T̃(A) and can be viewed as a normalization (or scale)
of T̃(A). When equipped with the topology of pointwise convergence on Ped(A),
T̃(A) f↦1 is a Choquet simplex [13, 41]; see also [48, Proposition 3.4]. Set

∂e(T̃(A) f↦1) to be the collection of the extreme points of T̃(A) f↦1 .
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We call ∂e(T̃(A) f↦1) the extremal boundary of T̃(A) f↦1 and call its elements extreme
traces. (For more details, see [13, 41, 48]).

Given two nonzero elements f , g ∈ Ped(A)+, the natural one-to-one map

T̃(A)g↦1 ∋ τ ↦ 1
τ( f )

τ ∈ T̃(A) f↦1

is a homeomorphism that maps faces onto faces and hence, extreme points onto ex-
treme points. In particular, the cardinality of ∂e(T̃(A) f↦1) does not depend on the
element f ∈ Ped(A)+ chosen, cf. [25]. To simplify notations, we will henceforth
denote T̃(A) f↦1 simply by T(A), dropping the explicit reference to the element f
chosen for the normalization.

IfA is unital, then Ped(A) = A and T(A)1↦1 coincides with the usual tracial state
simplex. _us the deûnition of T(A) that we use coincides with the standard one
when A is unital, and hence, by Brown’s stabilization theorem [3], also when A is
stable and has a nonzero projection p.
Furthermore, as remarked in [25, 5.3], by [6, Proposition 4.1, Proposition 4.4] and

[39, Proposition 5.2], every τ ∈ T(A) has a unique extension, still denoted by τ, to a
lower semicontinuous, i.e., normal, tracial weight (trace for short) on the enveloping
von Neumann algebra A∗∗. As usual, the dimension function dτ( ⋅ ) is deûned on
M(A)+ as

(2.4) dτ(A) =∶ limn τ(A1/n
) ∀ A ∈M(A)+ , τ ∈ T(A) .

As shown in [39, Remark 5.3],

(2.5) dτ(A) = τ(RA),

where RA is the range projection of A. In particular

dτ((A− δ)+) = τ(R(A−δ)+) = τ(χ(δ ,∥A∥](A)) ∀ δ ≥ 0.

We will also recall that for all 0 /= A ∈M(A)+ both the maps

T(A) ∋ τ ↦ dτ(A) ∈ [0,∞], and

T(A) ∋ τ ↦ τ(A) = Â(τ) ∈ [0,∞],

are aõne, lower semicontinuous, and strictly positive.

2.3 Cuntz Subequivalence

Let A be a C∗-algebra. If p, q are projections in A, p ∼ q (resp. p ⪯ q) denotes
Murray–von Neumann equivalence, (resp. subequivalence), i.e., p = vv∗ , q = v∗v for
some v ∈ A (resp. p ∼ p′ ≤ q for some projection p′ ∈ A). If a, b ∈ A+, a ⪯ b denotes
Cuntz sub-equivalence of positive elements, i.e., ∥a − xnbx∗n∥ → 0 for some sequence
xn ∈ A. For ease of reference we list here the following known facts that we need in
this paper and we cite where they can be found, with no attempt to identify where
they were ûrst established.
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Lemma 2.1 Let A be a C∗-algebra, a, b ∈ A+, δ > 0.
(i) If a ≤ b, then a ⪯ b [45, Lemma 2.3].
(ii) If ∥a − b∥ < δ, then (a − δ)+ ⪯ b [45, Proposition 2.2].
(iii) If a ⪯ b, then there is δ′ > 0 and an element r ∈ A such that

(a − δ)+ = r(b − δ′)+r∗ .

As a consequence, there is an element s ∈ A such that (a− δ)+ = sbs∗ [45, Propo-
sition 2.4].

(iv) If a ⪯ b, a′ ⪯ b′, and a′ ⊥ b′, then a + b ⪯ a′ + b′ [7, Proposition 1.1].
(v) If a ⪯ b, then dτ(a) ≤ dτ(b) for all τ ∈ T(A) [39, 2.3].

Notice that many of the properties in this lemma were proved for the function
fδ(a) where

fδ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 for t ∈ [0, δ],
t−δ
δ for t ∈ (δ, 2δ],

1 for t ∈ (2δ,∞).

However, it is immediate to see that the same properties hold for the function (a−δ)+.
We will need an adaptation of [27, Lemma 1.1].

Lemma 2.2 Let A be a C∗-algebra, a, b ∈ A+, and δ > 0. If a ⪯ (b − δ)+, then for
every є > 0, (a − є)+ = xbx∗ for some x ∈ A with ∥x∥2 ≤

∥a∥
δ . Furthermore, x can be

chosen so that xx∗ ≤ c1(a − є)+ and x∗x ≤ c2(b − δ)+ for some scalars c1 and c2.

Proof By Lemma 2.1 (iii), there is an s ∈ A for which (a − є)+ = s(b − δ)+s∗. _en
∥s(b − δ)1/2

+ ∥ = ∥(a − є)+∥1/2 ≤ ∥a∥1/2. Let

hє(t) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

t
є t ∈ [0, є],
1 t ∈ [є, ∥a∥],

and gδ(t) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1
δ t ∈ [0, δ],
1
t t ∈ [δ, ∥b∥].

.

_en both functions are continuous and

∥hє(a)∥ = 1, (a − є)+ = hє(a)(a − є)+ ,

∥gδ(b)∥ =
1
δ
, (b − δ)+ = gδ(b)b(b − δ)+ .

Set x = hє(a)s(b − δ)1/2
+ g1/2

δ (b). _en

xbx∗ = hє(a)s(b − δ)1/2
+ g1/2

δ (b)bg1/2
δ (b)(b − δ)1/2

+ s∗hє(a)
= hє(a)s(b − δ)+s∗hє(a) = hє(a)(a − є)+hє(a) = (a − є)+ .
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Moreover,

∥x∥ ≤ ∥hє(a)∥∥s(b − δ)1/2
+ ∥ ∥gδ(b)1/2

∥ ≤ ∥a∥1/2 1
δ1/2

,

xx∗ = hє(a)s(b − δ)1/2
+ gδ(b)(b − δ)1/2

+ s∗hє(a)

≤
1
δ
hє(a)s(b − δ)+s∗hє(a) =

1
δ
hє(a)(a − є)+hє(a)

=
1
δ
(a − є)+ ,

and

x∗x = gδ(b)1/2
(b − δ)1/2

+ s∗hє(a)2s(b − δ)1/2
+ g1/2

δ (b)

≤ ∥s∥2gδ(b)1/2
(b − δ)+g1/2

δ (b) ≤ ∥s∥2

δ
(b − δ)+ .

Notice that if a, b ∈ A are selfadjoint and a ≤ b, in general it does not follow that
a+ ≤ b+. However, we o�en need less.

Lemma 2.3 LetA be a C∗-algebra and a, b ∈ A be selfadjoint. If a ≤ b, then a+ ⪯ b+.
In particular, dτ((a − δ)+) ≤ dτ((b − δ)+) for all δ ≥ 0 and τ ∈ T(A).

Proof Since a ≤ b ≤ b+ and since δ(t − δ)+ ≤ t(t − δ)+ for all t and δ > 0, then

(a − δ)+ ≤
(a − δ)1/2

+
√
δ

a (a − δ)
1/2
+

√
δ

≤
(a − δ)1/2

+
√
δ

b+
(a − δ)1/2

+
√
δ

⪯ b+ .

As a consequence, (a − δ)+ ⪯ b+ for all δ and hence a+ ⪯ b+.

Lemma 2.4 Let A be a C∗-algebra, a, b ∈ A+, δ i ≥ 0 with δ1 ≥ δ2 + δ3.
(i) (a + b − δ1)+ ⪯ (a − δ2)+ + (b − δ3)+ .
(ii) dτ(a + b) ≤ dτ(a) + dτ(b) for all τ ∈ T(A). Equality holds if a ⊥ b.
(iii) dτ((a + b − δ1)+) ≤ dτ((a − δ2)+) + dτ((b − δ3)+) for all τ ∈ T(A).

Proof (i) Without loss of generality, δ1 = δ2 + δ3. _en
a + b − δ1 = (a − δ2) + (b − δ3) ≤ (a − δ2)+ + (b − δ3)+ ,

hence the conclusion follows from Lemma 2.3. (ii) is well known, but can also be
obtained directly from (2.5) and the fact that τ(p ∨ q) ≤ τ(p) + τ(q) for any pair of
projections p, q in a von Neumann algebra and any trace τ, hence

dτ(a + b) = τ(Ra+b) = τ(Ra ∨ Rb) ≤ τ(Ra) + τ(Rb) = dτ(a) + dτ(b).
If a ⊥ b, then Ra+b = Ra + Rb , hence equality holds. (iii) follows from (i), the mono-
tonicity of dτ with respect to ⪯, and (ii).

_e following simple fact will be used in Section §7.

Lemma 2.5 Let A be a C∗-algebra, a ∈ A+, q ∈ A be a projection, and δ > 0 a real
number. If q ⪯ (a − δ)+, then there is a projection p ∼ q such that a ≥ δp. If a ≥ δp for
some projection p, then p ⪯ (a − δ′)+ for all 0 ≤ δ′ < δ.
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Proof Assume that q ⪯ (a − δ)+. Since by Lemma 2.1 (iii),
1
2
q = (q − 1

2
)+ = x(a − δ)+x∗ for some x ∈ A,

it follows that q = (
√

2x)(a − δ)+(
√

2x)∗. _us

q ∼ p ∶= (a − δ)
1
2
+2x∗x(a − δ)

1
2
+ ≤ 2∥x∥2

(a − δ)+ .

_en p ≤ R(a−δ)+ = χ(δ ,∥a∥](a) ≤
1
δ a. Assume now that a ≥ δp and 0 ≤ δ′ < δ; then

a − δ′ ≥ (δ − δ′)p − δ′p⊥. Hence, by Lemma 2.3,

(δ − δ′)p = ((δ − δ′)p − δ′p⊥)+ ⪯ (a − δ′)+

and thus p ⪯ (a − δ′)+ .

2.4 Strict Comparison

Deûnition 2.6 Let A be a simple unital C∗-algebra with nonempty tracial simplex
T(A). We say thatA has strict comparison of positive elements by traces if a, b ∈ A+
and dτ(a) < dτ(b) for all τ ∈ T(A) implies that a ⪯ b.

WhenA is not unital, dimension functions are not necessarily ûnite valued, so we
will use the same deûnition with the convention that “∞ < ∞”, or, equivalently, ask
that dτ(a) < dτ(b) for all τ ∈ T(A) for which dτ(b) < ∞.

Notice that strict comparison of positive elements by traces o�en denotes the
stronger property requiring that the above conditions hold for all a, b ∈ M∞(A)+,
or the still stronger property requiring that they hold for all a, b ∈ (A⊗K)+. Also,
replacing traces by lower semicontinuous densely deûned 2-quasitraces gives the deû-
nition of strict comparison of positive elements by quasitraces. Note in passing that if
the strongest of the three-mentioned forms of strict comparison of positive elements
by traces holds, namely if a, b ∈ (A⊗K)+ and dτ(a) < dτ(b) for all τ ∈ T(A) im-
plies that a ⪯ b, then by [38, _eorem 3.6] all lower semicontinuous densely deûned
2-quasitraces are traces (see also [25, _eorem 2.9]).
Formultiplier algebras wewill use the following deûnition, wherewe consider only

traces onM(A) that are extensions of (lower semicontinuous densely deûned) traces
on A and we take into account that M(A) is not simple.

Deûnition 2.7 LetA be a simple C∗-algebra with nonempty tracial simplex T(A).
We say that M(A) has strict comparison of positive elements by traces if A ⪯ B for
all A, B ∈M(A)+ such that
(i) dτ(A) < dτ(B) for all those τ ∈ T(A) for which dτ(B) < ∞,
(ii) A ∈ I(B).

Condition (ii) (cf. [46, Corollary 4.7]) is clearly necessary for having A ⪯ B and
in general it is not implied by condition (i). Indeed if there is any element b ∈ A+
such that dτ(b) = ∞ for all τ (which is always the case when A is stable), then every
element A ∈ M(A)+ ∈ A would satisfy condition (i), but not (ii). However, under
additional hypotheses, condition (i) implies condition (ii) (Corollary 2.9).
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Some versions of strict comparison of positive elements are related to the almost
unperforation ofW(A), e.g., [46]. Our version of strict comparison for positive ele-
ments forM(A) implies almost unperforation ofW(M(A)), but the converse is not
true. A counterexample will be presented in a future paper.

2.5 Ideals in M(A)

For every τ ∈ T(A), Kτ ∶= {B ∈ M(A)+ ∣ τ(B) < ∞} is a hereditary cone ofM(A)+
which, by the trace property, satisûes the condition that if X∗X ∈ Kτ , then XX∗ ∈ Kτ .
Let L(Kτ) ∶= {X ∈ M(A) ∣ X∗X ∈ Kτ} be the associated two-sided ideal ofM(A)

and let Iτ ∶= L(Kτ). By [47, Proposition 3.21] (see also [42, _eorem 1.5.2]), it is easy
to see that

Iτ ∶= {X ∈M(A) ∣ τ(X∗X) < ∞} = span{Kτ},
where the closures are in norm.

_e following is also well known (for a proof, see [26, Lemma 2.6])

(2.6) B ∈ (Iτ)+ if and only if dτ((B − δ)+) < ∞ for every δ > 0, τ ∈ T(A) .

In particular

(2.7) dτ((a − δ)+) < ∞ ∀ a ∈ A, δ > 0, τ ∈ T(A)

and if P ∈M(A)+ is a projection and τ ∈ T(A), then

(2.8) P ∈ Iτ ⇐⇒ τ(P) < ∞.

While the structure of two-sided norm closed ideals ofM(A) is diõcult to analyze
in general, a case where this structure is well understood is the following.

_eorem 2.8 ([44, _eorem 4.4]) Let A be a simple unital inûnite dimensional
C*-algebra with strict comparison of positive elements of A⊗K by traces and ûnite
extremal boundary ∂e(T(A)) and let n = ∣ ∂e(T(A)) ∣.
(i) A proper ideal J of M(A⊗K) is maximal if and only if J = Iτ for some τ in

∂e(T(A)).
(ii) If J is a proper ideal ofM(A⊗K), then either J = A⊗K or J = Iτ for some τ in

T(A).
(iii) _ere are exactly 2n − 1 proper ideals ofM(A⊗K) properly containing A⊗K.

2.6 Faces of T(A)

We start by recalling that if τ = tτ1 + (1 − t)τ2 for some 0 < t < 1 and τ i ∈ T(A), then
Iτ = Iτ1 ∩ Iτ2 . From this and from (2.6) it is easy to see that for every B ∈ M(A)+
the set {τ ∈ T(A) ∣ B ∈ Iτ} is a face of T(A) and {τ ∈ T(A) ∣ B /∈ Iτ} is convex,
but in general is not a face. We will use extensively the following notation: for every
B ∈M(A)+, let

(2.9) F(B) ∶= co{τ ∈ ∂e(T(A)) ∣ B /∈ Iτ}

denote the convex combination of the extremal traces for which B /∈ Iτ . _en F(B) is
a face by [18, Proposition 10.10] and clearly, F(B) ⊂ {τ ∈ T(A) ∣ B /∈ Iτ}.
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Let F(B)′ be the complementary face of F(B), i.e., the largest face disjoint from
F(B) (this is the union of all the faces disjoint from F(B)). Either F(B) or F(B)′
can be empty. For this and for other basic results on convexity theory and Choquet
simplexes, we refer the reader to [18]. Since the face {τ ∈ T(A) ∣ B ∈ Iτ} is disjoint
from F(B) we have

(2.10) co{τ ∈ ∂e(T(A)) ∣ B ∈ Iτ} ⊂ {τ ∈ T(A) ∣ B ∈ Iτ} ⊂ F(B)′

and hence

F(B) ∩ ∂e(T(A)) = {τ ∈ ∂e(T(A)) ∣ B /∈ Iτ},(2.11)
F(B)′ ∩ ∂e(T(A)) = {τ ∈ ∂e(T(A)) ∣ B ∈ Iτ}.(2.12)

_e inclusions in (2.10) are, in general, proper. Clearly, they are equalities in the case
when ∣ ∂e(T(A)) ∣ < ∞. Moreover, we will see in Section 6 that the second inclusion
in (2.10) is also an equality in the case of special interest whenA has quasi-continuous
scale.

Recall that when F(B) is closed, then by [18, _eorem 11.28],

T(A) = F(B)+̇F(B)′ ,

is the direct convex sum of F(B) and F(B)′, that is, F(B) ∩ F(B)′ = ∅ and every
τ ∈ T(A)∖F(B) ∪ F(B)′ has a unique decomposition τ = tµ + (1 − t)µ′ for some
0 < t < 1, µ ∈ F(B), and µ′ ∈ F(B)′.
As a consequence under the hypotheses of _eorem 2.8, which include the condi-

tion that ∣ ∂e(T(A)) ∣ < ∞ when B ∈M(A⊗K)+ ∖A⊗K, then

(2.13) I(B) = ⋂{Iτ ∣ τ ∈ F(B)′} = ⋂{Iτ ∣ τ ∈ F(B)′ ∩ ∂e(T(A))}.

Corollary 2.9 If A satisûes the conditions of _eorem 2.8, A ∈ (M(A⊗K))+,
P ∈ M(A⊗K)∖A⊗K a projection, and dτ(A) ≤ dτ(P) for all τ ∈ T(A) for which
dτ(P) < ∞, i.e., for all τ ∈ F(P)′, it follows that A ∈ I(P).

In a future paper, we will show that this result fails to hold when ∣ ∂e(T(A)) ∣ = ∞.

2.7 Quasicontinuous Scale

Kucerovsky and Perera [28] introduced the notion of quasicontinuous scale for simple
C∗-algebras of real rank zero in terms of quasitraces. In this paper we will study the
same notion for a larger class of algebras, but in terms of traces.

Deûnition 2.10 Let A be a C∗-algebra with nonempty tracial simplex T(A). _e
function S ∶= 1̂M(A) is called the scale of A. _e scale S is said to be quasicontinuous
if the following hold:
(i) the set F∞ ∶= {τ ∈ ∂e(T(A)) ∣ S(τ) = ∞} is ûnite (possibly empty) and hence

co(F∞) is closed;
(ii) the complementary face F′∞ of co(F∞) is closed (possibly empty);
(iii) the restriction S ∣F′

∞
∶ F′∞ → (0,∞] of the scale S to F′∞ is continuous and hence

ûnite-valued.
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Notice ûrst that while the scale function S depends on the normalization chosen
for T(A), the quasicontinuity of S does not. Indeed, let g , f be two positive nonzero
elements in Ped(A) and Sg and S f be the scales relative to T̃(A)g↦1 and T̃(A) f↦1,
respectively, (see (2.3)). Let ψ be the homeomorphism ψ∶ T̃(A)g→1 ↦ T̃(A) f↦1given
by ψ(τ) ∶= 1

τ( f ) τ. _en S f (ψ(τ)) =
Sg(τ)
f̂ (τ) ∀ τ ∈ T̃(A)g↦1. Since f ∈ Ped(A), by

the deûnition of the topology on T̃(A)g→1, f̂ is a continuous function on T̃(A)g→1

which by the simplicity ofA never vanishes, thus 1
f̂ (τ) is continuous. Furthermore, as

stated in §2.2, ψ maps faces onto faces, thus if Sg satisûes conditions (i)–(iii), so does
S f . Because of this, we can drop the reference to the speciûc normalization used and
just refer to the scale S.

Notice also that when ∣ ∂e(T(A)) ∣ < ∞, the scale is necessarily quasicontinuous.
Indeed then all faces are convex hulls of subsets of ∂e(T(A)) and hence are closed,
and all functions on a face are continuous.

In the notations introduced in §2.5,

F∞ = F(1M(A)) ∩ ∂e(T(A)) and F′∞ = F(1M(A))
′ .

_en by (2.12) and (2.8) F′∞ ∩ ∂e(T(A)) = {τ ∈ ∂e(T(A)) ∣ S(τ) < ∞}. By (ii) we
have from (2.10) and the Krein–Millman theorem that

{τ ∈ T(A) ∣ S(τ) < ∞} ⊂ co{τ ∈ ∂e(T(A)) ∣ S(τ) < ∞} = F′∞ .

On the other hand, by (iii) we have that S is ûnite on F′∞ and hence

F′∞ = {τ ∈ T(A) ∣ S(τ) < ∞}.

In Section 6 we will use the following lemma.

Lemma 2.11 Let A be a C∗-algebra with quasicontinuous scale S. Let B ∈ M(A)+.
_en F(B) = co{τ ∈ F∞ ∣ B /∈ Iτ} and F(B)′ = co{τ ∈ F∞ ∣ B ∈ Iτ}+̇F′∞. Hence both
F(B) and F(B)′ are closed.

Proof If B /∈ Iτ for some τ ∈ ∂e(T(A)), then necessarily τ ∈ F∞. _us by (2.9),
F(B) = co{τ ∈ F∞ ∣ B /∈ Iτ}. Since ∣F∞∣ < ∞,

co(F∞) = F(B)+̇ co{τ ∈ F∞ ∣ B ∈ Iτ}

and both F(B) and co{τ ∈ F∞ ∣ B ∈ Iτ} are closed faces. But then

(2.14) T(A) = co(F∞)+̇F′∞ = F(B)+̇(co{τ ∈ F∞ ∣ B ∈ Iτ}+̇F′∞).

Since co{τ ∈ F∞ ∣ B ∈ Iτ}+̇F′∞ is the direct convex hull of two closed faces, it is a
closed face [18, Proposition 5.2]. It is immediate to verify that the direct complement
of a face is unique, i.e., if F+̇G = F+̇H where F ,G ,H are faces, thenG = H. _us from
(2.14) we conclude that F(B)′ = co{τ ∈ F∞ ∣ B ∈ Iτ}+̇F′∞ and again byDeûnition 2.10,
that F(B)′ is closed.
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3 Dimension Functions of Cut-offs of Monotone Sequences

Lemma 3.1 LetA be a C∗-algebra, Tn , T be normal elements of M(A), and K ⊆ C be
a compact set for which the spectrum σ(Tn) is contained in K for all n and σ(T) ⊆ K,
and assume that Tn → T strictly. _en f (Tn) → f (T) strictly for every continuous
function f ∶K → C.

Proof _is is immediate when f is a polynomial in one complex variable. _en
apply the Stone–Weierstrass theorem.

Lemma 3.2 LetA be a σ-unital C∗-algebra, τ ∈ T(A), Tn , T ∈M(A)+, and assume
that Tn → T in the strict topology.
(i) If Tn ≤ Tn+1 for all n, then dτ((Tn − δ)+) ↑ dτ((T − δ)+) for all δ ≥ 0.
(ii) If T = 0, Tn ≥ Tn+1 for all n, and T1 ∈ Iτ , then dτ((Tn − δ)+) ↓ 0 for all δ > 0.
(iii) If Tn ≥ Tn+1 for all n and T1 ∈ Iτ , then for all 0 < є < δ

dτ((T − δ)+) ≤ lim
n
dτ((Tn − δ)+) ≤ dτ((T − δ + є)+).

Proof Assume without loss of generality that ∥T∥ ≤ 1. Since strict convergence im-
plies strong convergence in the envelopingW∗-algebra, it is easy to verify that in case
(i) Tn ≤ T , and in case (ii) Tn ≥ T .

(i) Since Tn−δ ≤ Tn+1−δ ≤ T−δ for every n and hence, by Lemma 2.3, (Tn−δ)+ ⪯
(Tn+1 − δ)+ ⪯ (T − δ)+, it follows by Lemma 2.1 (v) that

dτ((Tn − δ)+) ≤ dτ((Tn+1 − δ)+) ≤ dτ((T − δ)+)

and hence

(3.1) lim
n
dτ((Tn − δ)+) ≤ dτ((T − δ)+).

Now we prove the opposite inequality.
Since A is σ-unital, there is an approximate identity of A consisting of an in-

creasing sequence en such that en+1en = en for all n. As Tn → T strictly and since
σ(T), σ(Tn) ⊂ [0, 1] for all n, by Lemma 3.1, it follows that for every N ∈ N,

(Tn − δ)1/N
+ → (T − δ)1/N

+ strictly, and

lim
n
e1/2k (Tn − δ)1/N

+ e1/2k = e1/2k (T − δ)1/N
+ e1/2k in norm.

Now τ is norm continuous on e1/2k M(A)e1/2k = e1/2k Ae1/2k because ek ∈ Ped(A), which
implies that τ(ek) < ∞. As a consequence,

(3.2) lim
n

τ( e1/2k (Tn − δ)1/N
+ e1/2k ) = τ( e1/2k (T − δ)1/N

+ e1/2k )
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and thus for all N ∈ N,
τ(((T−δ)+)1/N) = lim

k
τ((T − δ)+)1/2N ek((T − δ)+)1/2N) (normality of τ)

= lim
k

τ( e1/2k ((T − δ)+)1/N e1/2k ) (trace property)

= lim
k

lim
n

τ( e1/2k ((Tn − δ)+)1/N e1/2k ) (by (3.2))

= lim
k

lim
n

τ(((Tn − δ)+)1/2N ek((Tn − δ)+)1/2N) (trace property)

≤ lim
n

τ(((Tn − δ)+)1/N) (monotonicity of τ)

≤ lim
n
dτ((Tn − δ)+) (as ∥(Tn − δ)+∥ ≤ 1)

= lim
n
dτ((Tn − δ)+) (as dτ((Tn − δ)+) ↑).

Hence limn dτ((Tn − δ)+) ≥ limN τ(((T − δ)+)1/N) = dτ((T − δ)+), where the
last equality is a consequence of the deûnition (2.4) of dτ . _is, together with (3.1)
completes the proof of part (i).

(ii) Let є > 0 and let Qn ∶= χ(δ ,∞)(Tn), Pє ∶= χ(є ,∞)(T
1/2
1 ). _ese spectral pro-

jections belong to the von Neumann algebra A∗∗ and commute with Tn and T1, re-
spectively. Recall that we identify every τ ∈ T(A) with its extension to A∗∗ (see
[39, Proposition 5.2] and also §2.2) and that the trace of the range projection of a
positive operator is just the dimension function of that operator. In particular,
(3.3) τ(Qn) = dτ((Tn − δ)+) ≤ dτ((T1 − δ)+) = τ(Q1) < ∞.
Since Qn ≤

1
δ TnQn , it follows that

(3.4) dτ((Tn − δ)+) ≤
1
δ
τ(TnQn) =

1
δ
( τ(Pє(TnQn)Pє) + τ(P⊥є (TnQn)P⊥є )) .

Also, τ(Pє) = dτ((T1 − є2)+) < ∞ by (2.6) and the hypothesis that T1 ∈ Iτ , and hence
τ is σ-weakly continuous on PєA∗∗Pє . _erefore
(3.5) τ(Pє(TnQn)Pє) ≤ τ(PєTnPє) → 0.

Since Tn ≤ T1, there are elements Gn ∈ A∗∗ such that T 1/2
n = GnT 1/2

1 = T 1/2
1 G∗

n and
∥Gn∥ ≤ 1 [8, Lemme I.1.2]. _en ∥P⊥є T 1/2

n ∥ = ∥χ[0,є)(T
1/2
1 )T 1/2

1 G∗
n∥ ≤ є. From here

and (3.3) we have
τ(P⊥є TnQnP⊥є ) = τ(QnT 1/2

n P⊥є T 1/2
n Qn) ≤ є2τ(Qn) ≤ є2τ(Q1).

_us by (3.5) and (3.4), it follows that dτ((Tn − δ)+) → 0. (iii) By the same argument
as in part (i), dτ((Tn − δ)+) ↓ and hence limn dτ((Tn − δ)+) ≥ dτ((T − δ)+). By
Lemma 2.4 (iii), for every 0 < є < δ

dτ((Tn − δ)+) ≤ dτ((T − δ + є)+) + dτ((Tn − T − є)+).
By part (ii), limn dτ((Tn − T − є)+) = 0, which concludes the proof.

Remark 3.3 Unlike in (i), for part (ii) we need to assume that δ > 0. Indeed, let P be
a projection with 0 < τ(P) < ∞. _en Tn ∶=

1
n P ↓ 0 in norm, yet dτ(Tn) ≡ τ(P) /→ 0.

Similarly, in (iii) we need to assume that є > 0. Indeed, as above, let P be a projection
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with 0 < τ(P) < ∞. _en Tn ∶= (δ+ 1
n )P ↓ δP = T in norm, yet dτ((Tn−δ)+) ≡ τ(P)

while dτ((T − δ)+) = 0.

For ease of use in the following section, let us single out the following special case.

Corollary 3.4 Let A be σ-unital C∗-algebra, D ∶= ∑
∞
1 dk ∈ M(A) be the sum of a

series of elements dk ∈ A+ converging in the strict topology, and let τ ∈ T(A). _en
(i) limn dτ((∑

n
i=m d i − δ)+) = dτ((∑

∞
i=m a i − δ)+) for every δ ≥ 0 and m ∈ N.

(ii) If D ∈ Iτ , then limn dτ((∑
∞
i=n d i − δ)+) = 0 for every δ > 0.

4 Bi-diagonal Decomposition

Inspired by _eorem 2.2 of [51], in the following theorem we decompose positive
elements in a general σ-unital C∗-algebra into the sum of a bi-diagonal series and
small remainder inA. Notice that the proof in [51, _eorem 2.2] uses the existence of
an approximate identity of projections, while we need only approximate identities of
positive elements. Also, here we obtain a bi-diagonal decomposition, rather than the
tri-diagonal in [51]. By bi-diagonal we mean the following.

Deûnition 4.1 Let A be a C∗-algebra. A series ∑∞
1 dk that converges in the strict

topology ofM(A) is said to be bi-diagonal if dndm = 0 for ∣n −m∣ ≥ 2.

Notice that every bi-diagonal series ∑∞
1 dk can be decomposed into the sum of

two diagonal series (∑∞
1 d2k , and ∑∞

1 d2k+1), but the sum of two diagonal series is
not necessarily bi-diagonal.

_eorem 4.2 Let A be a σ-unital C∗-algebra and let T ∈ M(A)+. _en for every
є > 0 there exist a bi-diagonal series∑∞

1 dk with each dk ∈ A+ and a selfadjoint element
tє ∈ Awith ∥tє∥ < є such that T = ∑

∞
1 dk+tє ._eelements dk can be chosen inPed(A).

For every approximate identity {en} of A with en+1en = en , we can choose dk and
tє that satisfy the above conditions and such that for every n ∈ N there is an N ∈ N for
which en∑∞

N dk = 0.

Proof Let {en} be an increasing approximate identity ofA and as usual we assume
that en+1en = en and set e0 ∶= 0 (see (2.2)). As a consequence

(en − en−1)(em − em−1) = 0 ∀ ∣n −m∣ ≥ 2.

Assumewithout loss of generality that ∥T∥ = 1 and let ak ∶= T 1/2(ek−ek−1)T 1/2. _en
ak ∈ A+ for all k and T = ∑

∞
1 ak where the series converges strictly. Wewill construct

inductively two strictly increasing sequences of positive integers {mk}
∞
0 and {nk}

∞
0

as follows. Start by setting m0 ∶= 0, n0 ∶= 0, m1 ∶= 1, and b1 ∶= a1. _en choose n1 ≥ 1
such that ∥a1 − en1a1en1∥ <

є
2 since en → 1 strictly and a1 ∈ A. Now choose m2 > m1
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and n2 > n1 such that

∥en1

∞
∑

j=m2+1
a j∥ < (

є
25

)
2

(since
∞
∑
j=m

a j → 0 strictly and en1 ∈ A)

∥(1 − en2)
m2

∑
j=m1+1

a j∥ <
є
24 (since en → 1 strictly and

m2

∑
j=m1+1

a j ∈ A).

Set b2 ∶= ∑
m2
j=m1+1 a j and iterate the construction.

Choose mk so that ∥enk−1

∞
∑

j=mk+1
a j∥ < (

є
2k+3 )

2
.(4.1)

Set bk ∶=
mk

∑
j=mk−1+1

a j ,

so ∥bk∥ ≤ ∥T∥ = 1.

Choose nk so that ∥(1 − enk)bk∥ <
є

2k+2 .(4.2)

Set for all k ≥ 1

c1 ∶= en1b1en1

ck ∶= (enk − enk−2)bk(enk − enk−2) ∀ k ≥ 2.(4.3)

From (4.1) (applied to k − 1) we see that

∥enk−2bk∥ ≤ ∥enk−2b
1/2
k ∥ = ∥enk−2bk enk−2∥

1/2

≤ ∥enk−2

∞
∑

j=mk−1+1
a jenk−2∥

1/2

≤ ∥enk−2

∞
∑

j=mk−1+1
a j∥

1/2
<

є
2k+2 .

From the decomposition

bk − ck = (1 − enk)bk + enkbk(1 − enk) + enkbk enk−2 + enk−2bk(enk − enk−2)

and from the above inequality and (4.2), we thus obtain that ∥bk − ck∥ < є
2k ∀ k. As a

consequence, the series tє ∶= ∑∞
k=1(bk − ck) converges in norm and hence tє = t∗є ∈ A.

Since T = ∑
∞
k=1 ak = ∑

∞
k=1 bk , the series ∑∞

k=1 bk converges strictly. _en the series
∑
∞
k=1 ck , being the sum of the strictly converging series and of a norm converging one,

is also strictly converging and D ∶= ∑
∞
k=1 ck = T − tє . Now set

(4.4) dk ∶= c2k−1 + c2k ∀ k ≥ 1.

_en D = ∑
∞
k=1 dk and

d1 = c1 + c2 = en1b1en1 + en2b2en2 ∈ en2Aen2 ,
dk = (en2k−1 − en2k−3)b2k−1(en2k−1 − en2k−3) + (en2k − en2k−2)b2k(en2k − en2k−2).

As a consequence, dndm = 0 for all ∣n −m∣ ≥ 2.

https://doi.org/10.4153/CJM-2016-015-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-015-3


Strict Comparison of Positive Elements in Multiplier Algebras 387

By construction, all the elements dk have a local unit and hence belong to Ped(A).
Finally, it is immediate to verify that enk ∑

∞
N d j = 0 for every N ≥

nk+4
2 . Given n ∈ N,

choose k and N so that nk ≥ n and N ≥
nk+4

2 . _en en∑∞
N d j = 0.

_e method of the proof of _eorem 4.2 can be applied to give a joint bi-diagonal
form to multiple elements in M(A)+. Indeed if T1 , T2 , . . . , TN ∈ M(A)+, and we
decompose as above each Ti = ∑

∞
k=1 a i ,k , then the sequences {mk}

∞
0 and {nk}

∞
0 can

be chosen so to satisfy (4.1)–(4.2) simultaneously for all 1 ≤ i ≤ N :

∥enk−1

∞
∑

j=mk+1
a i , j∥ < (

є
2k+3 )

2 ,

b i ,k ∶=
mk

∑
j=mk−1+1

a i , j ,

∥(1 − enk)b i ,k∥ <
є

2k+2 .

_en deûning c i ,k and d i ,k for each 1 ≤ i ≤ N as in (4.3) and (4.4), we see that
d i ,nd j,m = 0 for ∣n − m∣ ≥ 2 and all 1 ≤ i , j ≤ N . _us we obtain the following
extension of _eorem 4.2.

Corollary 4.3 LetA be a σ-unital C∗-algebra and let T1 , T2 , . . . , TN ∈M(A)+. _en
for every є > 0 there exist N bi-diagonal series∑∞

k=1 d i ,k with d i ,k ∈ A+ and self-adjoint
elements t i ,є ∈ A, with ∥t i ,є∥ < є such that Ti = ∑

∞
1 d i ,k + t i ,є and d i ,nd j,m = 0 for

∣n −m∣ ≥ 2 and all 1 ≤ i , j ≤ N. In particular, if T ∈M(A), there is a bi-diagonal series
∑
∞
k=1 dk with dk ∈ A and an element tє ∈ A, with ∥tє∥ < є such that T = ∑

∞
1 dk + tє .

If T = T∗, the elements dk and tє can be chosen selfadjoint.

_us, up to a small remainder, every element in M(A)+ is bi-diagonal and hence
the sum of two diagonal series. Diagonal series are used extensively in multiplier
algebras. We will need the following result relating Cuntz subequivalence of (cut-oòs
of) summands in two diagonal series to Cuntz subequivalence of (cut-oòs of) their
sums. Notice that we do not need to require that the summands belong to A.

Proposition 4.4 Let A be a C∗-algebra, A = ∑
∞
1 An , B = ∑

∞
1 Bn where An , Bn ∈

M(A)+, AnAm = 0, BnBm = 0 for n /= m, and the two series converge in the strict
topology. If An ⪯ (Bn − δ)+ for some δ > 0 and for all n, then A ⪯ (B − δ′)+ for all
0 < δ′ < δ.

Proof Let є > 0. By Lemma 2.2 applied to An ⪯ (Bn−δ)+ = ((Bn−δ′)+−(δ−δ′))+,
for every n there is an Xn ∈ A such that

(An − є)+ = Xn(Bn − δ′)+X∗
n ,

∥Xn∥
2
≤

∥An∥

δ − δ′
≤

supn ∥An∥

δ − δ′
,

XnX∗
n ≤ c1,n(An − є)+ ,

X∗
nXn ≤ c2,n(Bn − δ)+ ,
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for some scalars c1,n and c2,n . _en

XnX∗
n ≤ ∥Xn∥

2RXnX∗n ≤ sup ∥Xn∥
2R(An−є)+ ≤

sup ∥Xn∥
2

є
An .

Similarly, X∗
nXn ≤

sup ∥Xn∥2
δ Bn . Since the elements An are mutually orthogonal, so are

the elements (An − є)+ and hence also the elements XnX∗
n . Similarly, the elements

X∗
nXn are mutually orthogonal and hence XnX∗

m = X∗
nXm = 0 for all n /= m. _us for

every m < n ∈ N and a ∈ A,

∥ a
n
∑
k=m

Xk∥
2
= ∥ a

n
∑

k ,k′=m
XkX∗

k′a
∗∥ = ∥ a

n
∑
k=m

XkX∗
k a

∗∥

≤
supn ∥Xn∥

2

є
∥ a

n
∑
k=m

Aka∗∥ ≤ ∥a∥
supn ∥Xn∥

2

є
∥ a

n
∑
k=m

Ak∥ .

Similarly

∥
n
∑
k=m

Xka∥
2
≤ ∥a∥

supn ∥Xn∥
2

δ
∥

n
∑
k=m

Bka∥ .

Since the series∑∞
1 An and∑∞

1 Bn converge strictly, it follows that∑∞
1 Xn converges

strictly. Let X ∶= ∑
∞
1 Xn . _en X ∈M(A) and since Xn = XnRBn andRBn(Bn−δ′)+ =

(Bn − δ′)+ for every n,

(A− є)+ =
∞
∑
1
(An − є)+ =

∞
∑
1
Xn(Bn − δ′)+X∗

n

= (
∞
∑
1
Xn)

∞
∑
1
(Bn − δ′)+(

∞
∑
1
X∗

n) = X(B − δ′)+X∗ .

Since є is arbitrary, it follows that A ⪯ (B − δ′)+.

Remark 4.5 From the above proof we see that if the series ∑∞
1 An converges in

norm, then the series∑∞
1 Xn also converges in norm.

5 Strict Comparison: The Finite Boundary Case

For which simple C∗-algebrasA does strict comparison of positive elements by traces
hold forM(A)when it holds forA? In this sectionwe prove that a suõcient condition
is that ∂e(T(A)) is ûnite. In the next section we extend this result to the case when
the scale is quasicontinuous (see §2.7).

Our main tool is the following technical lemma, which deals with the case of bi-
diagonal series. It is convenient for its further use in Section 6 to formulate this lemma
without assuming that the extremal boundary is ûnite.

Lemma 5.1 Let A be a σ-unital nonunital simple C∗-algebra with strict comparison
of positive elements by traces. Let a i , b i ∈ A+ be such that∑∞

i=1 a i and∑∞
i=1 b i are two

bi-diagonal series in M(A)+. Let F be a closed face of T(A), F′ be its complementary
face (either F or F′ can be empty), and assume that ∣F ∩ ∂e(T(A)) ∣ < ∞. Assume also
that for some є, δ, α > 0 we have the following:
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(i) (∑
∞
i=1 b i − δ)+ /∈ A;

(ii) dτ((∑
∞
i=m b i − δ)+) = ∞ ∀ τ ∈ F ,m ∈ N;

(iii) dτ((∑
∞
i=1 a i − є)+) + α ≤ dτ((∑

∞
i=1 b i − δ)+) < ∞ ∀ τ ∈ F′;

(iv) dτ((∑
n
i=m b i − δ)+) → dτ((∑

∞
i=m b i − δ)+) uniformly on F′, ∀m ∈ N;

(v) dτ((∑
∞
i=n a i − є)+) → 0 uniformly on F′.

_en (∑
∞
i=1 a i − 2є)+ ⪯ (∑

∞
i=1 b i − δ′)+ for all δ′ with 0 < δ′ < δ.

Proof _e main step in the proof is to construct two series ∑∞
k=1 ck and ∑

∞
k=1 dk ,

converging strictly and with entries in A+ such that
∞
∑
k=1
dk ≤

∞
∑
k=1
bk and the series

∞
∑
k=1
dk is diagonal,(5.1)

∞
∑
k=1
ck =

∞
∑
k=1
ak and the series

∞
∑
k=1
ck is bi-diagonal,(5.2)

dτ((ck − є)+) < dτ((dk − δ)+) ∀ τ ∈ T(A), k ∈ N.(5.3)

We ûrst assume that F /= ∅ and F′ /= ∅. Notice that since the extremal boundary
F ∩ ∂e(T(A)) of F is ûnite, its convex hull is closed. _us by the Krein–Millman
theorem,

(5.4) F = co(F ∩ ∂e(T(A))).

Next we construct iteratively three strictly increasing sequences of integers mk , nk ,
and n′k such that

m0 ∶= 0, n0 ∶= −1, n′0 ∶= n1

nk + 2 ≤ n′k ≤ nk+1 − 2 ∀k ≥ 1.(5.5)

If we set

ck ∶=
mk

∑
i=mk−1+1

a i , gk ∶=
n′k−1

∑
i=nk−1+2

b i , hk ∶=
nk+1

∑
i=n′k+2

b i ,

then for all k ≥ 1

dτ((
∞
∑

i=mk−1+1
a i − є)+) < dτ((gk − δ)+) ∀τ ∈ F′ ,(5.6)

dτ((ck − є)+) < dτ((hk − δ)+) ∀τ ∈ F .(5.7)

In the ûrst step of the construction, which is diòerent from the subsequent steps, we
choose the integers n1, n′1, m1, and n2 as follows. By (iii) and (iv), we choose n1 ≥ 1 so
that

dτ((
n1

∑
i=1
b i − δ)+) > dτ((

∞
∑
i=1
b i − δ)+) − α ∀ τ ∈ F′ .

Notice that∑n1
i=1 b i = g1, so by (iii), condition (5.6) is satisûed for k = 1.

Next, by (ii) we have (∑
∞
i=n1+2 b i − δ)+ /= 0. Hence by (iv) (or directly by Lem-

ma 3.1), we can choose n′1 ≥ n1 + 2, so that (g2 − δ)+ /= 0. Since the map T(A) ∋ τ →
dτ((g2 − δ)+) is lower semicontinuous and strictly positive, we have that

inf
τ∈T(A)

dτ((g2 − δ)+) > 0.
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_en by (v) we choose m1 > m0 = 0 so that

dτ((
∞
∑

i=m1+1
a i − є)+) < inf

τ∈T(A)
dτ((g2 − δ)+) ≤ dτ((g2 − δ)+) ∀ τ ∈ F′ ,

that is, condition (5.6) is satisûed for k = 2.
Lastly, by (ii) and Corollary 3.4 (i), dτ((∑

n
i=n′1+2 b i − δ)+) ↑ ∞ for all τ ∈ F and

this convergence is uniform on F because F is the convex hull of a ûnite set by (5.4).
Moreover, dτ((∑

m1
i=1 a i−є)+) < ∞ for all τ ∈ T(A) by (2.7). _erefore, we can choose

n2 ≥ n′1 + 2 so that

dτ((
m1

∑
i=1
a i − є)+) < dτ((

n2

∑
i=n′1+2

b i − δ)+) ∀ τ ∈ F ,

i.e., condition (5.7) is satisûed for k = 1.
In the second step of the construction, we choose the integers n′2, m2, and n3 as

follows. Reasoning as in step 1, we choose n′2 ≥ n2 + 2 so that (g3 − δ)+ /= 0 and hence
inf τ∈T(A) dτ((g3 − δ)+) > 0. _en by (v), we choose m2 > m1 so that

dτ((
∞
∑

i=m2+1
a i − є)+) < inf

τ∈T(A)
dτ((g3 − δ)+) ∀ τ ∈ F′ ,

and hence condition (5.6) is satisûed for k = 3. Again by (ii), Corollary 3.4 (i), and
(5.4), we have dτ((∑

n
i=n′2+2 b i − δ)+) ↑ ∞ uniformly on F and dτ((c2 − є)+) < ∞

for all τ ∈ T(A) by (2.7). _us we can choose n3 ≥ n′2 + 2 so that condition (5.7) is
satisûed for k = 2.

_e construction now continues as for the case of k = 2, that is, assuming we have
{n j}

k
0 , {n′j}k−1

0 , {m j}
k−1
0 that satisfy (5.5), (5.6), and (5.7), we choose n′k ≥ nk + 2 to

have inf
τ∈TA

dτ((gk+1 − δ)+) > 0,mk > mk−1 to satisfy condition (5.6) for k + 1, and nk+1

to satisfy condition (5.7) for k.
Now we draw two conclusions from this construction. First, since nonconsecutive

terms in a bi-diagonal series are orthogonal, it is immediate to see that

(5.8)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g i g j = 0 ∀ i /= j,
g ih j = 0 ∀ i , j,
h ih j = 0 ∀ i /= j,
c i c j = 0 ∀ ∣i − j∣ ≥ 2.

Set dk ∶= gk + hk . _en conditions (5.1) and (5.2) are satisûed. Next, we see from
Lemma 2.3 and (5.6) that for all k ≥ 1

(5.9) dτ((ck − є)+) < dτ((gk − δ)+) ∀τ ∈ F′ .

But then if τ ∈ F ∪ F′, we have by (5.9) and (5.7) that

dτ((ck − є)+) < dτ((gk − δ)+) + dτ((hk − δ)+).

Now

(5.10) (gk − δ)+ ⊥ (hk − δ)+
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as gk ⊥ hk by (5.8), and thus by Lemma 2.4 (ii),

dτ((gk − δ)+) + dτ((hk − δ)+) = dτ((gk − δ)+ + (hk − δ)+)
= dτ((gk + hk − δ)+)
= dτ((dk − δ)+).

_e second equality follows also from (5.10). _us we have

dτ((ck − є)+) < dτ((dk − δ)+) ∀ τ ∈ F ∪ F′ .

_is inequality extends immediately to all τ ∈ T(A) because, since F is closed, every
τ ∈ T(A) is a convex combination of elements in F and F′. _us (5.3) also holds.
_is concludes the construction of the two series∑∞

k=1 ck and∑
∞
k=1 dk satisfying (5.1),

(5.2), and (5.3) for the case that F and F′ are both nonempty.
_e cases when F or F′ are empty are considerably simpler. Assume that F′ = ∅

and hence F = T(A). _en dτ((ak − є)+) < ∞ for all τ by (2.7) and for every m,
dτ((∑

n
j=m b j − δ)+) ↑ ∞ uniformly because ∣ ∂e(T(A)) ∣ < ∞. _us we can choose

a strictly increasing sequence of integers nk starting with n0 = 0, such that if we set
ck ∶= ak and dk ∶= ∑

nk
j=nk−1+2 b j , then

dτ((ck − є)+) < dτ((dk − δ)+) ∀ τ ∈ T(A), k ∈ N.

_en the series∑∞
k=1 ck and∑

∞
k=1 dk satisfy conditions (5.1), (5.2), and (5.3).

Assumenext that F = ∅, i.e., F′ = T(A), and by (iii) and (iv) choose n1 as in the ûrst
part of the proof, so that dτ((∑

∞
j=1 a j − є)+) < dτ((∑

n1
j=1 b j − δ)+). By Lemma 2.4 (i),

we have for every m ∈ N, (∑∞
i=1 b i − δ)+ ⪯ ∑m−1

i=1 b i +(∑
∞
i=m b i − δ)+. Since∑m−1

i=1 b i ∈
A, it follows by (i) that (∑∞

i=m b i − δ)+ /= 0. Since by Lemma 3.1,

(
n
∑
i=m

b i − δ)+ → (
∞
∑
i=m

b i − δ)+

in the strict topology, we can ûnd a strictly increasing sequence nk such that if we set
dk ∶= ∑

nk
j=nk−1+2 b j , then (dk − δ)+ /= 0. Notice that d id j = 0 for all i /= j. By (v) we can

choose a strictly increasing sequence mk starting with m0 = 0 such that

dτ((
∞
∑

i=mk−1+1
a j − є)+) < dτ((dk − δ)+) ∀τ ∈ T(A) .

_en set ck ∶= ∑mk
j=mk−1+1 a j for all k and a fortiori, we have

dτ((ck − є)+) < dτ((dk − δ)+) ∀ τ ∈ T(A) .

In this case, too, the series∑∞
k=1 ck and∑

∞
k=1 dk satisfy conditions (5.1), (5.2), and (5.3).

Now if we have two series∑∞
k=1 ck and∑

∞
k=1 dk satisfying conditions (5.1), (5.2), and

(5.3), by the hypothesis that A has strict comparison of positive elements, we obtain
that (ck −є)+ ⪯ (dk −δ)+ ∀ k. Since∑∞

k=1 ck is bi-diagonal, both the series∑k c2k and
∑k c2k+1 are diagonal and hence, so are the series∑k(c2k −є)+,∑k(c2k+1 −є)+. Since
∑
∞
k=1 dk is diagonal, so are also the series∑k d2k , and∑k d2k+1. _en by Proposition
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4.4, for every 0 < δ′ < δ we have

(∑
k
c2k − є)+ = ∑

k
(c2k − є)+ ⪯ (∑

k
d2k − δ′)+ ,(5.11)

( ∑
k
c2k+1 − є)+ = ∑

k
(c2k+1 − є)+ ⪯ (∑

k
d2k+1 − δ′)+ .

As a consequence,

(
∞
∑
1
ak − 2є)+ ⪯ (∑

k
c2k − є)+ + (∑

k
c2k+1 − є)+ (by Lemma 2.4 (i))

⪯ (∑
k
d2k − δ′)+ ⊕ (∑

k
d2k+1 − δ′)+(by (5.11), Lemma 2.1 (iv))

= (∑
k
dk − δ′)+ (since∑

k
d2k ⊥∑

k
d2k+1)

⪯ (∑
k
bk − δ′)+ (since∑

k
dk ≤ ∑

k
bk),

which concludes the proof.

For the rest of this section we focus on the case when the extremal boundary
∂e(T(A)) is ûnite. Recall from (2.9) that F(B) ∶= co{τ ∈ ∂e(T(A)) ∣ B /∈ Iτ} and that
by the ûniteness of ∂e(T(A)),

(5.12) F(B)′ = co{τ ∈ ∂e(T(A)) ∣ B ∈ Iτ} = {τ ∈ T(A) ∣ B ∈ Iτ}.

Lemma 5.2 Let A be a σ-unital simple C∗-algebra with ∣ ∂e(T(A)) ∣ < ∞. Let
A, B ∈M(A)+ such that A ∈ I(B) and dτ(A) < dτ(B) for all those τ ∈ T(A) for which
dτ(B) < ∞. _en for every є > 0, there are δ > 0 and α > 0 such that
(i) dτ((A− є)+) + α ≤ dτ((B − δ)+) < ∞ if τ ∈ F(B)′;
(ii) dτ((B − δ)+) = ∞ if τ ∈ F(B).

Proof For every τ ∈ T(A) for which B /∈ Iτ , by (2.6) there is a δ′τ > 0 such that
dτ((B − δ′τ)+) = ∞. Let

δ′ ∶=
⎧⎪⎪
⎨
⎪⎪⎩

min{δ′τ ∣ τ ∈ ∂e(T(A)), B /∈ Iτ} if {τ ∈ ∂e(T(A)), B /∈ Iτ} /= ∅,
1 if {τ ∈ ∂e(T(A)), B /∈ Iτ} = ∅.

Since ∂e(T(A)) is ûnite, it follows that δ′ > 0. A fortiori, dτ((B−δ′)+) = ∞ for every
τ ∈ {τ ∈ ∂e(T(A)) ∣ B /∈ Iτ} and hence, by the deûnition of F(B), for every τ ∈ F(B),
i.e., (ii) holds for δ′.

Now assume that B ∈ Iτ for some τ ∈ ∂e(T(A)); henceA ∈ Iτ . By (2.6) we have that
dτ((A− є)+) < ∞ and dτ((B − δ)+) < ∞ for every δ. In the case when dτ(B) = ∞,
we can ûnd δ′′τ > 0:

(5.13) dτ((A− є)+) < dτ((B − δ′′τ )+).

By Lemma 3.2 dτ((B − δ)+) → dτ(B). In the case when dτ(B) < ∞, we can use the
same fact and the inequalities dτ((A − є)+) ≤ dτ(A) < dτ(B) to ûnd a δ′′τ > 0 for
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which (5.13) also holds. Let

δ′′ ∶=
⎧⎪⎪
⎨
⎪⎪⎩

min{δ′′τ ∣ τ ∈ ∂e(T(A)), B ∈ Iτ} if {τ ∈ ∂e(T(A)) ∣ B ∈ Iτ} /= ∅,
1 if {τ ∈ ∂e(T(A)) ∣ B ∈ Iτ} = ∅.

Again δ′′ > 0, and a fortiori, (5.13) holds if we replace δτ by δ′′.
In case F(B)′ /= ∅, let

α ∶= min{dτ((B − δ′′)+) − dτ((A− є)+) ∣ τ ∈ ∂e(T(A)), B ∈ Iτ}.
_en α > 0 and by (5.12) it is immediate to see that

dτ((A− є)+) + α ≤ dτ((B − δ′′)+) ∀ τ ∈ F(B)′ .
Now set δ ∶= min{δ′ , δ′′}. A fortiori, (ii) and the ûrst inequality in (i) hold for δ.

_e second inequality in (i) holds by (2.6).

We are now in position to state and prove our main theorem.

_eorem 5.3 Let A be a σ-unital simple C∗-algebra with strict comparison of posi-
tive elements by traces and with ∣ ∂e(T(A)) ∣ < ∞. _en strict comparison of positive
element by traces holds in M(A).

Proof Let A, B ∈ M(A)+ such that A ∈ I(B) and dτ(A) < dτ(B) for all those τ ∈

T(A) for which dτ(B) < ∞. Since strict comparison holds on A, we can assume
without loss of generality that B /∈ A. Since (B − δ)+ → B in norm as δ → 0, there is
some δ′ > 0 such that (B − δ′)+ /∈ A. Let є > 0. By Lemma 5.2 we can choose δ′′ > 0
and α > 0 such that

(5.14)
⎧⎪⎪
⎨
⎪⎪⎩

dτ((A− є)+) + α ≤ dτ((B − δ′′)+) < ∞ if τ ∈ F(B)′ ,
dτ((B − δ′′)+) = ∞ if τ ∈ F(B).

For every τ ∈ F(B)′, B ∈ Iτ by (2.10) and hence dτ((B − ν)+) < ∞ for all ν > 0 by
(2.6). _us (5.14) holds also if we replace δ′′ with min{δ′ , δ′′}. Notice also that then
(5.15) (B − δ)+ /∈ A.
By _eorem 4.2 we can ûnd bi-diagonal decompositions A = ∑

∞
i=1 a i + a0 and B =

∑
∞
i=1 b i+b0, where the series converge strictly, a i , b i ∈ A+ (in fact they are in Ped(A)),

a ia j = 0, b ib j = 0 for ∣i − j∣ ≥ 2, a0 , b0 ∈ Asa , ∥a0∥ < є, and ∥b0∥ < δ
4 . Our next step is

to verify that the hypotheses of Lemma 5.1 are satisûed for the two bi-diagonal series
∑
∞
i=1 a i , ∑∞

i=1 b i , the face F = F(B), and the scalars 2є, δ2 , and α. First of all, notice
that ∣F ∩ ∂e(T(A)) ∣ ≤ ∣ ∂e(T(A)) ∣ < ∞ and that the face F is closed as are all the
faces of T(A). Furthermore, pointwise convergence of aõne ûnite-valued functions
on F′ is necessarily uniform.
By Lemma 2.1 (ii) and (i),

(B − δ)+ ⪯ (
∞
∑
i=1
b i −

3δ
4

)+ ⪯ (
∞
∑
i=1
b i −

δ
2
)+ ,(5.16)

(
∞
∑
i=1
a i − 2є)+ ⪯ (A− є)+ .(5.17)
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From (5.16) we see that (∑∞
i=1 b i −

δ
2 )+ /∈ A, thus satisfying Lemma 5.1 (i).

By Lemma 2.4 (iii) and (5.14), for every m ∈ N and τ ∈ F,

∞ = dτ((
∞
∑
i=1
b i −

3δ
4

)+) ≤ dτ((
m−1

∑
i=1
b i −

δ
4
)+) + dτ((

∞
∑
i=m

b i −
δ
2
)+) .

Since dτ((∑
m−1
i=1 b i −

δ
4 )+) < ∞ for all τ ∈ T(A) by (2.7), it follows that

(5.18) dτ((
∞
∑
i=m

b i −
δ
2
)+) = ∞ ∀ τ ∈ F , m ∈ N,

which satisûes Lemma 5.1 (ii).
From (5.14), (5.16), and (5.17) we have

(5.19) dτ((
∞
∑
i=1
a i − 2є)+) + α ≤ dτ((

∞
∑
i=1
b i −

δ
2
)+) ∀ τ ∈ F′ .

Moreover, B − ∑∞
i=1 b i ∈ A, thus for every τ ∈ F′, ∑∞

i=1 b i ∈ Iτ and hence by (2.6),
dτ((∑

∞
i=1 b i −

δ
2 )+) < ∞. _us Lemma 5.1 (iii) is satisûed.

By Corollary 3.4 (i), for all m ∈ N

dτ((
n
∑
i=m

b i −
δ
2
)+) → dτ((

∞
∑
i=m

b i −
δ
2
)+) ∀ τ ∈ T(A) .

As stated above, the convergence is uniform on F′. _us Lemma 5.1 (iv) is satisûed.
For all τ ∈ F′ we have B ∈ Iτ , hence A ∈ Iτ . Since a0 ∈ A ⊂ Iτ , it follows that

∑
∞
1 a i = A− a0 ∈ Iτ . By Corollary 3.4 (ii), dτ((∑

∞
j=n a j − 2є)+) → 0 for every τ ∈ F′

and again the convergence is uniform on F′. _us Lemma 5.1 (v) is satisûed.
_us all the conditions of Lemma 5.1 being satisûed, it follows that

(
∞
∑
i=1
a i − 4є)+ ⪯ (

∞
∑
i=1
b i −

δ
4
)+ .

By Lemma 2.1 (ii) we have

(A− 5є)+ ⪯ (
∞
∑
i=1
a i − 4є)+ and (

∞
∑
i=1
b i −

δ
4
)+ ⪯ B.

_us (A− 5є)+ ⪯ B for every є > 0, and hence A ⪯ B.

6 Strict Comparison: The Quasicontinuous Scale Case

In the previous section we have shown that if a σ-unital simple C∗-algebra with strict
comparison of positive elements by traces has ûnite extremal boundary, then strict
comparison of positive elements by traces holds inM(A) (_eorem 5.3). In this sec-
tion we prove that the same result holds in the more general case when the algebra
has a quasicontinuous scale (see Deûnition 2.10).

Now we start with the following lemmas.

Lemma 6.1 Let A be a simple C∗-algebra, K ⊂ T(A) a closed set, and A ≤ B ∈

M(A)+. If B̂ ∣K is continuous, then Â ∣K also is continuous.
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Proof As B̂ ∣K= Â ∣K +B̂ − A ∣K and since the ûrst function is continuous and the
second two functions are lower semicontinuous, it is immediate to see that both must
be continuous.

Lemma 6.2 Let A be a σ-unital simple C∗-algebra, K ⊂ T(A) a closed set, A, B ∈

M(A)+ with Â ∣K continuous, and assume that dτ(A) < dτ(B) for all τ ∈ K for which
dτ(B) < ∞. _en for every є > 0, there exist δ > 0 and α > 0 such that

dτ((A− є)+) + α ≤ dτ((B − δ)+) ∀ τ ∈ K .
Furthermore, if B̂ ∣K is continuous, then dτ((B − δ)+) < ∞ for all τ ∈ K .

Proof Assume without loss of generality that ∥A∥ = 1 and let ϕє be the function
deûned in (2.1). _en χ(є ,1](t) ≤ ϕє(t) ≤ min{ χ(0,1](t), t

є} , and hence
R(A−є)+ ≤ ϕє(A),(6.1)

ϕє(A) ≤
1
є
A,(6.2)

ϕє(A) ≤ RA.(6.3)
From (6.1) we have

(6.4) ϕ̂є(A)(τ) ≥ dτ((A− є)+) ∀τ ∈ T(A) .

From (6.2) and Lemma 6.1 it follows that ϕ̂є(A) ∣K is continuous. From (6.3) it follows
that ϕ̂є(A)(τ) ≤ τ(RA) = dτ(A) ≤ dτ(B), with the last inequality being strict when
dτ(B) < ∞. As a consequence, the function (dτ(B)− ϕ̂є(A)(τ)) ∣K is strictly positive
lower semicontinuous, and hence

α ∶= 1
2
min{dτ(B) − ϕ̂є(A)(τ)) ∣K} > 0.

Let Bn = (B − 1
n )+. _en 0 ≤ Bn ↑ B (in norm) and hence dτ(Bn) ↑ dτ(B) for

every τ ∈ T(A). Since all the functions dτ(Bn) are lower semicontinuous, by the
compactness of K there is an n such that dτ(Bn) ≥ ϕ̂є(A)(τ) + α∀τ ∈ K. _us for
δ ∶= 1

n we have

dτ((B − δ)+) ≥ ϕ̂є(A)(τ) + α ≥ dτ((A− є)+) + α ∀τ ∈ K ,
where the last inequality follows from (6.4).

If in addition B̂ is continuous on K, then by the same reasoning as for A, for every
δ > 0 we have dτ((B − δ)+) ≤ ϕ̂δ(B)(τ) ≤ 1

δ B̂(τ). _us dτ((B − δ)+) < ∞ for every
τ ∈ K.

_e previous two lemmas permit us to extend Lemma 5.2 to the case when A has
quasicontinuous scale.

Lemma 6.3 Let A be a σ-unital simple C∗-algebra with quasicontinuous scale. Let
A, B ∈M(A)+ such that A ∈ I(B) and dτ(A) < dτ(B) for all those τ ∈ T(A) for which
dτ(B) < ∞. _en for every є > 0 there are δ > 0 and α > 0 such that
(i) dτ((A− є)+) + α ≤ dτ((B − δ)+) < ∞ if τ ∈ F(B)′,
(ii) dτ((B − δ)+) = ∞ if τ ∈ F(B).
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Proof Assume without loss of generality that ∥A∥ ≤ 1, ∥B∥ ≤ 1. For every τ ∈ T(A)

for which B /∈ Iτ , by (2.6) there is a δ′τ > 0 such that dτ((B − δ′τ)+) = ∞. Let

δ′ ∶=
⎧⎪⎪
⎨
⎪⎪⎩

min{δ′τ ∣ τ ∈ F∞ , B /∈ Iτ} if {τ ∈ F∞ , B /∈ Iτ} /= ∅,
1 if {τ ∈ F∞ , B /∈ Iτ} = ∅.

Since F∞ is ûnite, δ′ > 0 is ûnite, and a fortiori, for every τ ∈ {τ ∈ F∞ ∣ B /∈ Iτ} and
hence for every τ ∈ co{τ ∈ F∞ ∣ B /∈ Iτ}, it follows that dτ((B − δ′)+) = ∞. Since by
Lemma 2.11 the latter set coincides with F(B), we conclude that (ii) holds for δ′ and
hence for any 0 < δ ≤ δ′.

Now assume that B ∈ Iτ for some τ ∈ F∞. Hence A ∈ Iτ . By (2.6) we have that
dτ((A− є)+) < ∞ and dτ((B − δ)+) < ∞ for every δ. Since dτ((B − δ)+) → dτ(B)
we can ûnd δ′′τ > 0 such that
(6.5) dτ((A− є)+) < dτ((B − δ′′τ )+).
In the case when dτ(B) = ∞, this is obvious, and in the case when dτ(B) < ∞, this
follows from the inequality dτ((A− є)+) ≤ dτ(A) < dτ(B). Let

δ′′ ∶=
⎧⎪⎪
⎨
⎪⎪⎩

min{δ′′τ ∣ τ ∈ F∞ , B ∈ Iτ} if {τ ∈ F∞ ∣ B ∈ Iτ} /= ∅,
1 if {τ ∈ F∞ ∣ B ∈ Iτ} = ∅.

Again δ′′ > 0, and a fortiori, (6.5) holds if we replace δ′′τ by δ′′.
If {τ ∈ F∞ ∣ B ∈ Iτ} /= ∅, let

α′′ ∶= min{dτ((B − δ′′)+) − dτ((A− є)+) ∣ τ ∈ F∞ , B ∈ Iτ}.
_en α′′ > 0 and
(6.6) dτ((A− є)+) + α′′ ≤ dτ((B − δ′′)+) ∀ τ ∈ co{τ ∈ F∞ ∣ B ∈ Iτ}.

Since A, B ≤ 1M(A) and since S∣F′
∞

is continuous by hypothesis, the functions Â∣F′
∞

and B̂∣F′
∞
are also continuous by Lemma 6.1. _us by Lemma 6.2 there are δ′′′ > 0

and α′′′ > 0 such that
(6.7) dτ((A− є)+) + α′′′ ≤ dτ((B − δ′′′)+) < ∞ ∀τ ∈ F′∞ .

Now set δ ∶= min{δ′ , δ′′ , δ′′} and α ∶= min{α′′ , α′′′}. It is obvious that (6.6)
holds if we replace α′′ and δ′′ by α and δ, respectively. Also, by (2.6) we have that
dτ((B− δ′′)+) < ∞ for all τ ∈ co{τ ∈ F∞ ∣ B ∈ Iτ}. Similarly, (6.7) holds if we replace
α′′′ and δ′′′ by α and δ, respectively. _us
(6.8) dτ((A− є)+) + α ≤ dτ((B − δ)+) < ∞ ∀τ ∈ co{τ ∈ F∞ ∣ B ∈ Iτ} ∪ F′∞ .
Since by Lemma 2.11 F(B)′ = co{τ ∈ F∞ ∣ B ∈ Iτ}+̇F′∞, it is immediate to see that
(6.8) holds for all τ ∈ F(B)′, that is, (i) holds.

Lemma 6.4 Let A be a σ-unital nonunital simple C∗-algebra, P ∈ M(A) a projec-
tion, K ⊂ T(A) a closed set such that P̂ ∣K is continuous, and let∑∞

j=1 A j be the strictly
converging sum of elements A j ∈ (PM(A)P)+. Assume furthermore that there exists
an increasing approximate identity {en}∞n=1 for (PAP)+ with en+1en = en for all n ∈ N
such that for all m ≥ 1, there exists N ∈ N with em∑∞

j=N A j = 0. _en for every δ ≥ 0,
(i) dτ((∑

∞
j=n A j − δ)+) → 0 uniformly on K,
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(ii) dτ((∑
n
j=1 A j − δ)+) → dτ((∑

∞
j=1 A j − δ)+) uniformly on K.

Proof Assume without loss of generality that ∥∑∞
j=1 A j∥ ≤ 1 and let є > 0 be given.

(i) Since dτ((∑
∞
j=n A j − δ)+) ≤ dτ(∑

∞
j=n A j) for every n by Lemma 2.3, it is enough

to prove the statement for δ = 0.
Since en has a local unit, it belongs to the Pedersen ideal and hence by the deûnition

of the topology onT(A), ên is continuous. As ên ↑ P̂, and P̂ ∣K is continuous, byDini’s
theorem the convergence is uniform on K. _us choose m such that 0 ≤ P̂ − êm−1 < є
on K. Now choose N such that em∑∞

j=N A j = 0. _en for every n ≥ N
∞
∑
j=n
A j = (P − em)(

∞
∑
n
A j)(P − em) ≤ (P − em)

2
≤ P − em .

Since R∑∞j=n A j ≤ RP−em ≤ P − em−1, because (P − em−1)(P − em) = (P − em), we thus
have for every τ ∈ K that dτ(∑

∞
j=n A j) ≤ τ(P − em−1) < є, which proves (i).

(ii) By Lemma 2.3 and Lemma 2.4 (iii) we have, for all n ≥ 1 and τ ∈ K, that

dτ((
n
∑
j=1
A j − δ)+) ≤ dτ((

∞
∑
j=1
A j − δ)+)

≤ dτ((
n
∑
j=1
A j − δ)+) + dτ(

∞
∑

j=n+1
A j) .

_us (ii) follows from (i).

Remark 6.5 _e condition that for every n there exists an N ∈ N such that

en
∞
∑
j=N
A j = 0

cannot be removed for δ = 0. Consider for instance an element b ∈ A+ such that
∥b∥ = 1 and Rb = P and let An ∶= 1

2n ϕ1/n(b) (see (2.1). _en ∑∞
1 An converges in

norm, hence strictly, but since R∑∞n An = Rb for all n, it follows that dτ(∑
∞
n An) /→ 0.

Set A ∶= ∑
∞
j=1A j . _en by Lemma 6.1, Â is continuous on K. Notice that if we

substitute the continuity of P̂ ∣K with the weaker condition of the continuity of Â ∣K ,
we still obtain uniform convergence on K for every δ > 0. Indeed, by Dini’s theorem,
τ(∑∞

n A j) → 0 uniformly on K and hence for every δ > 0 so does

dτ((
∞
∑
n
A j − δ)+) ≤

1
δ
τ(

∞
∑
n
A j) .

However, this convergence does not hold for δ = 0 as we see by considering the
case ofA ∶= B⊗KwithB unital and simple,K = T(A), P = 1M(A), Ak ∶=

1
2k 1B⊗ ek ,k ,

and A ∶= ∑
∞
1 Ak . _en Â(τ) = 1 for all τ ∈ T(A), hence it is continuous, and for all

m we have 1B ⊗ em ,m∑∞
m+1 Ak = 0, but dτ(∑

∞
n Ak) = ∞ for all τ ∈ T(A) and n ∈ N.

_eorem 6.6 LetA be a σ-unital simple C∗-algebra with strict comparison of positive
elements by traces and with quasicontinuous scale. _en strict comparison of positive
element by traces holds in M(A).
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Proof Let A, B ∈ M(A)+ such that A ∈ I(B) and dτ(A) < dτ(B) for all those τ ∈

T(A) for which dτ(B) < ∞. Let є > 0. Assumewithout loss of generality that ∥A∥ ≤ 1,
∥B∥ ≤ 1, and that B /∈ A. _en
(6.9) (B − δ′)+ /∈ A

for some δ′ > 0. By Lemma 6.3, there is an α > 0 and δ′′ > 0 such that
dτ((A− є)+) + α ≤ dτ((B − δ′′)+) < ∞ ∀τ ∈ F(B)′(6.10)
dτ((B − δ′′)+) = ∞ ∀τ ∈ F(B).

Clearly, (6.9) and (6.10) hold if we replace δ′ and δ′′ with δ ∶= min{δ′ , δ′′}.
Since we have obtained the same conditions as in (5.14) and (5.15), now we can

proceed as in the remainder of the proof of _eorem 5.3. _us we decompose A and
B into bidiagonal series:

A =
∞
∑
i=1
a i + a0 and B =

∞
∑
i=1
b i + b0 , ∥a0∥ < є, ∥b0∥ <

δ
4
.

Herewewill also use the fact that both bidiagonal series can be chosen so that for every
n ∈ N there is an N ∈ N for which en∑∞

N ak = en∑∞
N bk = 0 for some approximate

identity {en} satisfying the condition en+1en = en for all n (see _eorem 4.2). _en
we proceed to verify that the hypotheses of Lemma 5.1 are satisûed for the two bi-
diagonal series∑∞

i=1 a i ,∑∞
i=1 b i , the face F = F(B), and the scalars 2є, δ2 , and α.

By (2.11), F(B) ∩ ∂e(T(A)) ⊂ F∞ and hence it is ûnite. By Lemma 2.11, F(B)′
is closed. By the same reasoning as in the proof of _eorem 5.3, we obtain (5.16),
(5.17), (5.18), and (5.19), which show that conditions (i), (ii), and (iii) of Lemma 5.1
are satisûed.
Finally, conditions (iv) and (v) are also satisûed, because by Lemma 6.4 applied to

P = 1M(A) and K = F′∞, the convergence of both limits is uniform on F′∞. Further-
more, by Corollary 3.4, the convergence is pointwise on {τ ∈ F∞ ∣ B ∈ Iτ} and by
the ûniteness of F∞, it is uniform on co{τ ∈ F∞ ∣ B ∈ Iτ}. _us all the conditions
of Lemma 5.1 are satisûed and the rest of the proof of _eorem 5.3 applies without
change.

In a future paper, wewill study the casewhen the extremal boundary is inûnite, and
we show that for a large class of C∗-algebrasA, strict comparison of positive elements
by traces holds inM(A⊗K) if and only if ∣ ∂e(T(A)) ∣ < ∞, which for stable algebras
is equivalent to the quasicontinuity of the scale. _at class includes simple separable
C∗-algebras of real rank zero and stable rank one with strict comparison of positive
elements by traces and simple separable ûnite Z-stable C∗-algebras.

7 Positive Linear Combinations of Projections

It is well known that every element of B(H) is a linear combination of projections.
_e same property holds for all von Neumann algebras without a ûnite type I direct
summand with inûnite dimensional center [17]. However this property may fail even
for C∗-algebras of real rank zero [25, Proposition 5.1].

In the process of investigating linear combination of projections in C∗-algebras,
we found it convenient to consider the following stronger condition.
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Deûnition 7.1 A C∗-algebra A has a LCP constant V if every selfadjoint element
a in A is a linear combination of N projections p j ∈ A with a = ∑

N
1 λ jp j for some

N ∈ N, and λ j ∈ R, satisfying the condition∑N
1 ∣λ j ∣ ≤ V∥a∥. Furthermore if N can be

chosen independently of the element a, we say thatA has an LCP pair of constants V
and N .

_e LCP constant V was ûrst introduced in B(H) by Fong [16].
C∗-algebras that have LCP pairs (V ,N) of constants include the following.

● von Neumann algebras without a ûnite type I summand with inûnite dimensional
center. More precisely, the following estimates for (V ,N) are implicit in [17].
– IfA is a properly inûnite von Neumann algebra, then (8, 6) is an LCP pair.
– IfA is a type II1 von Neumann algebra, then (14, 12) is an LCP pair.
– IfA is the direct sum of m matrix algebras, then (m + 4,m + 4) is an LCP pair.

● unital properly inûnite C∗-algebras [21, Propositions 2.6, 2.7];
● unital simple separable C∗-algebras with real rank zero, stable rank one, strict com-

parison of projections, and ûnite extremal tracial boundary [25, _eorem 4.4];
● corners PM(A⊗K) P with P a projection in M(A⊗K) for a unital simple sep-
arable C∗-algebraA with real rank zero, stable rank one, strict comparison of pro-
jections, and ûnite extremal tracial boundary [26, _eorem 4.4].

Estimates of LCP pairs (V , N) for C∗-algebras are mostly missing or very far from
sharp (“horrendous” according to Marcoux [35]). Suõce it to quote the case when
A is a unital simple C∗-algebra of real rank zero with a unique tracial state and with
strict comparison of projections by traces. _en by [34, Remark 5.3], every element
of a ∈ A can be written as a linear combination of 113 projections and the coeõcients
are bounded by 9, 537, 600∥a∥. _us (9, 537, 600, 113) is an LCP pair!
A linear combination A = ∑

n
1 α jp j with projections p j ∈ A and scalars α j > 0 will

be called a positive linear combination of projections or PCP for short. _is notion was
studied in [21,23,25,26], and, in particular, we proved that if a C∗-algebraA has such
LCP constants and if furthermoreA+ is the closure of PCPs inA, then every positive
invertible element ofA is a PCP [21, Proposition 2.7].

_us if both conditions hold for all corners pAp of A, then all positive locally
invertible elements are PCP. A key tool for the further investigation of PCP elements
is the fact that a direct sum of projection and of a “small” positive perturbation is also
PCP [21, Lemma 2.2].

We can obtain the following result under less restrictive conditions.

Lemma 7.2 LetA be a C∗-algebra, p ∈ A be a projection such that the corner algebra
pAp has LCP constant V.
(i) p + b is a PCP for every b = b∗ ∈ pAp with ∥b∥ ≤ 1

V . If the corner algebra pAp
has an LCP pair of constants V and N, the number of projections needed in the
PCP is N + 1.

(ii) p + b is a PCP for every b ∈ A+ with b = qb = bq for some projection q ∈ A such
that q ⊥ p with q ≺ p and ∥b∥ ≤ 1

1+V . Furthermore, if pAp has an LCP pair of
constants V and N, p + b can be decomposed as a PCP of N + 4 projections.
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(iii) p + b is a PCP for every b ∈ A+ with b = qb = bq for some projection q ∈ A such
that q ⊥ p with m[q] ≤ [p] for some m ∈ N with m ≥ ∥b∥(1 + V).

Proof (i) By hypothesis we can ûnd N real numbers λ j and projections q j ∈ A with
q j ≤ p such that b = ∑N

j=1 λ jq j and∑N
j=1 ∣λ j ∣ ≤ V∥b∥ ≤ 1. _us

p + b = ∑
λ j≥0

λ jq j + ∑
λ j<0

(−λ j)(p − q j) + ( 1 + ∑
λ j<0

λ j) p

is a PCP of N + 1 projections.
(ii) Assume without loss of generality that b /= 0. Notice that V∥b∥ < 1 and let

β ∶= 1
1−V∥b∥ . _en 1 < β ≤ 1

∥b∥ . Following the proof of [21, Lemma 2.9], let v ∈ A be a
partial isometry such that v∗v = q and vv∗ = p′ ≤ p. Deûne

r1 ∶= βb + v
√
βb − (βb)2 +

√
βb − (βb)2v∗ + p′ − βvbv∗ ,

r2 ∶= βb − v
√
βb − (βb)2 −

√
βb − (βb)2v∗ + p′ − βvbv∗ .

_en r1 and r2 are projections in A and βb = 1
2 (r1 + r2) − p′ + βvbv∗. Hence

p + b = 1
2β

(r1 + r2) +
1
β
(p − p′) + ( 1 − 1

β
)( p + vbv∗

1 − 1
β
) .

Now 0 ≤ vbv∗
1−1/β ∈ p′Ap′ ⊂ pAp and ∥ vbv∗

1−1/β ∥ =
∥b∥

1−1/β =
1
V . _en by part (i) p+ vbv∗

1−1/β is a
PCP, and hence so is p + b. Furthermore, if pAp has an LCP pair of constants V and
N , by part (i) p + vbv∗

1−1/β can be decomposed as a PCP of N + 1 projections and hence
p + b can be decomposed as a PCP of N + 4 projections.

(iii) Decompose p = ⊕m
i=1 p i into projections p i ∈ A with q ≺ p i for each i. _en

p+ b = ∑m
i=1( p i +

1
m b) . For each i it follows from part (ii) that p i +

1
m b is a PCP and

hence so is p + b.

Our next lemma permits us to embed isomorphically certain σ-unital hereditary
sub-algebras ofM(A⊗K) into unital corners ofM(A⊗K)with control on the “size”
of the corner. When B ∈M(A⊗K)+ we use the following notations.
● her(B) ∶= B(A⊗K)B hereditary subalgebra ofA⊗K,
● Her(B) = BM(A⊗K)B hereditary subalgebra ofM(A⊗K).

Lemma 7.3 Let A be a C∗-algebra and B ∈ M(A⊗K)+ be such that the heredi-
tary algebra her(B) ofA⊗K, has an approximate unit { f j} consisting of an increasing
sequence of projections. _en there is a partial isometry W ∈ (A⊗K)∗∗ such that
(i) W∗W = RB ,
(ii) WW∗ ∈M(A⊗K),
(iii) WB ∈M(A⊗K),
(iv) W Her(B)W∗ ⊆ RM(A⊗K)R where R ∶=WW∗.
(v) _eontomapHer(B) ∋ X → Φ(X) ∶=WXW∗ ∈ Her(Φ(B)) is a∗-isomorphism

of hereditary algebras.

Proof Let e j ∶= f j − f j−1 (with f0 ∶= 0) and let IM(A⊗K) = ∑
∞
1 E j be a decomposi-

tion of the identity into a strictly converging series ofmutually orthogonal projections
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E j ∼ IM(A⊗K). As e j ⪯ E j , there are partial isometries v j ∈ A⊗K such that v∗j v j = e j
and v jv∗j ≤ E j . Let W ∶= ∑

∞
1 v j . _e series converges in the strong topology of

(A⊗K)∗∗ because both the range projections of the partial isometries v j are mu-
tually orthogonal and so are the range projections of the partial isometries v∗j . _en
W∗W = ∑

∞
1 e j = lim j f j = RB and the convergence is again in the strong topology

of (A⊗K)∗∗. On the other hand, WW∗ = ∑
∞
1 v jv∗j in the strict topology because

v jv∗j ≤ E j and ∑∞
1 E j converges strictly. _us the projection R ∶= WW∗ belongs to

M(A⊗K).
Next we show that WB ∈ M(A⊗K). Let a ∈ A⊗K. _en Baa∗B ∈ her(B).

Hence fkBa → Ba in norm, or equivalently ∑n
1 e jBa converges in norm to Ba.

Since We j = v j for all j, we have W∑
n
1 e jBa = ∑

n
1 v jBa → WBa ∈ A⊗K since

the convergence is in norm. On the other hand, since ∑∞
1 v jv∗j converges strictly,

∥a∑∞
n v jv∗j ∥ → 0 for n → ∞, and hence ∥a∑∞

n v jv∗j W∥ = ∥a∑∞
n v j∥ → 0. _us

aW ∈ A⊗K, and hence aWB ∈ A⊗K. _is concludes the proof of (i)–(iii).
Next BW∗ ∈ M(A⊗K). Hence WBM(A⊗K)BW∗ ⊂ M(A⊗K) and hence

W Her(B)W∗ ⊆ RM(A⊗K)R, i.e., (iv) holds. Finally, proving (v) is routine.

Remark 7.4 _e above result can be seen as the construction of a projection P ∈

M(A⊗K) that is equivalent to the open projection RB in the sense of Peligrad and
Zsido [43] (see also [39]).

A has real rank zero if and only if every hereditary subalgebra ofA has an approx-
imate identity of projections [5].

Proposition 7.5 Let A be a simple separable C∗-algebra with real rank zero, sta-
ble rank one, strict comparison of projections, and ûnite extremal boundary. Let P ∈

M(A⊗K)∖A⊗K be a projection. _en for every B ∈ (P⊥M(A⊗K) P⊥)+ such
that τ(RB) < ∞ for all those τ ∈ T(A) for which τ(P) < ∞, it follows that P + B is a
PCP.

Proof Let ∂e(T(A)) = {τ j}
n
1 and notice that F(B)′ = {τ ∈ T(A) ∣ τ(P) < ∞}.

Since A has real rank zero and RB is an open projection, RB has a decomposition
RB = ⊕∞

1 r j into the sum of mutually orthogonal projections r j ∈ A⊗K converging
strongly in (A⊗K)∗∗. By [26,_eorem 5.1], PM(A⊗K) P has an LCP constant V .
Let m > ∥B∥(1+V) be an integer. Since τ(⊕∞

1 r j) < ∞ for all those τ ∈ ∂e(T(A)) for
which τ(P) < ∞ and since there are only ûnitely many extremal traces, there exists a
k such that τ(⊕∞

k r j) <
1
m τ(P) for all τ ∈ F(B)′. Let

B′ ∶= B1/2
(
k−1
⊕
1

r j)B1/2 and B′′ ∶= B − B′ = B1/2
(
∞
⊕
k
r j)B1/2 .

_en B′ ∈ A⊗K+ and B′′ ∈M(A⊗K)+. Moreover,

RB′ ⪯
k−1
⊕
1

r j and RB′′ ⪯
∞
⊕
k
r j

where the Murray–von Neumann subequivalences ⪯ are in (A⊗K)∗∗. _us

τ(RB′) < ∞ ∀τ ∈ ∂e(T(A)) and τ(RB′′) <
1
m

τ(P) ∀τ ∈ F(B)′ .
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By [25, _eorem 6.1], B′ is a PCP. _us it remains to prove that P + B′′ is also a PCP.
By Lemma 7.3 there is a partial isometry W ∈ (A⊗K)∗∗ with W∗W = RB′′ ,

R ∶=WW∗ ∈M(A⊗K) and that induces an isomorphism

Her(B′′) ∋ X → Φ(X) ∶=WXW∗
∈ Her(Φ(B′′)) ⊂ RM(A⊗K)R.

Notice that R ∼ RB′′ in (A⊗K)∗∗ and hence

τ(R) = τ(RB′′) ≤ τ(RB) = τ(
∞
⊕
1
r j) ≤ τ(P⊥) ∀ τ ∈ T(A) .

_us if τ(P⊥) < ∞, then τ(⊕∞
1 r j) < ∞, and hence τ(RB′′) ≤ τ(⊕∞

k r j) < τ(P⊥).
By strict comparison of projections in M(A⊗K) (see [26, _eorem 3.2]), or as a
consequence of Corollary 2.9 and _eorem 5.3, it follows that R ⪯ P⊥. Without loss
of generality we can assume that R ≤ P⊥. Now let W ′ ∶= P ⊕W . _en the map

Her(P ⊕ B′′) ∋ X → Φ′
(X) =W ′XW ′∗

∈ Her(Φ′
(P ⊕ B′′))

is a ∗-isomorphism. Now Φ′(P ⊕ B′′) = P ⊕Φ(B′′) = P ⊕ RΦ(B′′)R. Furthermore,
τ(R) < 1

m τ(P) for all τ ∈ F(B)′ and since P /∈ A⊗K, by the strict comparison of
projections inM(A⊗K),m[R] ≤ [P]. _en Φ′(P⊕B′′) is a PCP by Lemma 7.2 (iii).
Since Φ′ is an isomorphism of hereditary algebras, P + B′′ is also a PCP and hence so
is P + B.

Next we need some results on principal ideals.

Lemma 7.6 Let A be a real rank zero C∗-algebra such that M(A⊗K) has only
ûnitely many ideals. _en every ideal ofM(A⊗K) is generated by a projection.

Proof Let {Jk}n
1 be the collection of all the ideals ofM(A⊗K), including the zero

ideal. Let J be a nonzero ideal, and let S ∶= {k ∣ J /⊂ Jk}. Notice that S is nonempty.
Since by [51, _eorem 2.2] every ideal in the multiplier algebra of a real rank zero
algebra is the closed linear span of its projections, for every k ∈ S there must be a
projection Pk ∈ J ∖ Jk . Let P ∶= ⊕k∈S Pk . _en P ∈ J and hence I(P) ⊂ J. Assume by
contradiction that I(P) /= J, hence J /⊂ I(P), and hence I(P) = Jk for some k ∈ S, a
contradiction, since P /∈ Jk because Pk /∈ Jk .

By [44,_eorem 4.4] (see_eorem 2.8) the conditions of the above lemma are sat-
isûed ifA is simple, unital, with real rank zero, strict comparison of positive elements
by traces, and ûnite extremal boundary. But in that case we can say more.

Proposition 7.7 Let A be a simple unital C∗-algebra with real rank zero, strict com-
parison of positive elements by traces, and with ûnite extremal boundary, and let T ∈

M(A⊗K)+ ∖A⊗K. _en there is a δ > 0 such that
(i) I(T) = I((T − δ)+),
(ii) there is a projection P such that I(P) = I(T) and T ≥ δP.

Proof _e case when A⊗K = K, and hence M(A⊗K) = B(H), follows from
standard operator theory, so assume without loss of generality that A is nonelemen-
tary.
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(i) By deûnition, for every τ ∈ F(T) ∩ ∂e(T(A)), T /∈ Iτ ; hence by (2.6), there
is a δτ > 0 such that (T − δτ)+ /∈ Iτ . Let δ ∶= inf{δτ ∣ τ ∈ F(T) ∩ ∂e(T(A))}.
By the assumption that ∂e(T(A)) is ûnite, δ > 0. _us (T − δ)+ /∈ Iτ for all τ ∈

F(T)∩ ∂e(T(A)). It follows that we have the inclusion F(T) ⊂ F((T − δ)+). On the
other hand, (T − δ)+ ≤ T . Hence if τ ∈ F((T − δ)+) ∩ ∂e(T(A)), i.e., (T − δ)+ /∈ Iτ ,
then T /∈ Iτ , i.e., τ ∈ F(T). _us F((T − δ)+) ⊂ F(T), whence F((T − δ)+) = F(T),
and hence F((T − δ)+)′ = F(T)′. By (2.13), I((T − δ)+) = I(T).

(ii) By (i), I((T − δ)+) = I(T), and hence

dτ((T − δ)+) < ∞ for τ ∈ F(T)
′ ,

dτ((T − δ)+) = ∞ for τ ∈ F(T).

By Lemma 7.6, there is a projection Q ∈ M(A⊗K) such that I(Q) = I(T). By
[54, _eorem 1.1], for every n ∈ N we can ûnd a projection Q′ such that ⊕2n

1 Q′ =
Q. Notice that I(Q′) = I(Q). By choosing n large enough, and using the fact that
∣ ∂e(T(A)) ∣ < ∞, we obtain τ(Q′) < dτ((T − δ)+) for all τ ∈ F((T − δ)+). _en
by strict comparison of positive elements inM(A⊗K) (_eorem 5.3) it follows that
Q′ ⪯ (T − δ)+. _us by Lemma 2.5, there is a projection P ∈ M(A⊗K) such that
T ≥ δP and P ∼ Q, and hence I(P) = I(Q) = I(T).

We list here a property we will need in the proof of our the next theorem

Lemma 7.8 Let B be a C∗-algebra. For every g ∈ C([0, 1]) the function B ∋ b ↦
g(b) is uniformly continuous on the positive part of the unit ball of B.

Proof Let a, b be in the unit ball of B and let є > 0. Find a polynomial pn such
that ∥g − pn∥∞ < є

3 . _en ∥g(a) − pn(a)∥ < є
3 and ∥g(b) − pn(b)∥ < є

3 . Moreover,
∥pn(a) − pn(b)∥ ≤ c∥a − b∥ where pn(t) = ∑n

0 α j t j and c = ∑n
1 j∣α j ∣. Indeed, since

∥an
− bn

∥ ≤ ∥an−1
∥∥a − b∥ + ∥an−2

∥∥b∥∥a − b∥ + ⋅ ⋅ ⋅ + ∥bn−1
∥∥a − b∥ ≤ n∥a − b∥

and hence

∥pn(a) − pn(b)∥ = ∥
n
∑
1
α j(a j

− b j
)∥ ≤

n
∑
1
∣α j ∣ ∥a j

− b j
∥ ≤

n
∑
1

j∣α j ∣ ∥a − b∥.

Set δ = є
3c . For every ∥a − b∥ < δ it follows that ∥pn(a) − pn(b)∥ < є

3 . _us

∥g(a) − g(b)∥ < є.

_eorem 7.9 Let A be a simple separable C∗-algebra with real rank zero, stable
rank one, strict comparison of projections, and ûnite extremal boundary, and let T ∈

M(A⊗K)+. _en T is a PCP if and only if τ(RT) < ∞ for all τ ∈ F(T)′, that is, for
all τ for which T ∈ Iτ .

Proof We ûrst prove the necessity. Assume that T = ∑
n
j=1 λ jPj for some λ j > 0

and projections Pj ∈ M(A⊗K) and assume that T ∈ Iτ for some τ ∈ T(A). Let
R = ⋁

n
1 Pj ∈ (A⊗K)∗∗. Since Pj ≤

1
λ j
T , it follows that Pj ∈ Iτ and thus τ(Pj) < ∞.

Also, Pj ≤ RT for all j, hence R ≤ RT . On the other hand RT = T , and hence RT = R.
_en τ(RT) = τ(R) ≤ ∑n

1 τ(Pj) < ∞.
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Now we prove the suõciency. If T ∈ A⊗K, the result was proved in [25, _e-
orem 6.1]. _us assume that T /∈ A⊗K and further that ∥T∥ ≤ 1. By Proposition
7.7, there is a 0 < δ < 1 and a projection P ∈ M(A⊗K) for which I(P) = I(T) and
T ≥ δP. Assume further that δ < 6

7 . Since P /∈ A⊗K, by [54, _eorem 1.1 (ii)] P can
be decomposed into the sum P = P1 + P2 of two projections P1 ∼ P2. _en for i = 1, 2

τ(Pi) < ∞ for τ ∈ F(T)
′ ,

τ(Pi) = ∞ for τ ∈ F(T),

and hence I(P1) = I(P2) = I(T). Now set T ′ = T − δ
2 P1 = T − δP + δ

2 P1 + δP2. Since
T = T ′ + δ

2 P1, it is enough to prove that T ′ is a PCP. Notice that RT′ ≤ RT . Let f1 and
f2 be the continuous functions deûned by

f1(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

t t ∈ [0, 2
3 δ],

0 t ∈ [
5
6
δ, 1],

linear t ∈ [ 2
3 δ,

5
6 δ],

and f2(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 t ∈ [0, 2
3 δ],

t t ∈ [ 56 δ, 1],
linear t ∈ [ 2

3 δ,
5
6 δ].

Now consider the continuous functions g1 and g2 deûned by

g1(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 t ∈ [0, δ3 ] ∪ [ 2δ
3 , 1],

δ
2

t = δ
2 ,

linear elsewhere,

and g2(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 t ∈ [0, 5δ6 ] ∪ [ 7δ
6 , 1],

δ t = δ,
linear elsewhere.

_en for all t ∈ [0, 1],

f1(t) + f2(t) = t,(7.1)
g1(t) ≤ f1(t) and g2(t) ≤ f2(t),(7.2)

g1(t) f2(t) = 0 and g2(t) f1(t) = 0,(7.3)

f1(t) ≥
δ
3

where g1(t) /= 0,(7.4)

f2(t) ≥
5δ
6

where g2(t) /= 0.(7.5)

Since the functions g1 and g2 are both continuous on [0, 1], by Lemma 7.8 they are
uniformly continuous on the set of positive contractions. _us there is an integer n
such that ∥g i(A) − g i(B)∥ ≤ δ

4 whenever 0 ≤ A ≤ 1, 0 ≤ B ≤ 1, and ∥A− B∥ ≤ 1
n .

Reasoning as in the ûrst part of the proof, we can subdivide the projections P1 and
P2 into an orthogonal sum of n projections P1 = ∑

n
1 P1, j and P2 = ∑

n
1 P2, j such that

I(Pi , j) = I(T) for all i = 1, 2 and 1 ≤ j ≤ n. _en

T ′
=

n
∑
j=1

(
1
n
(T − δP) + δ

2
P1, j + δP2, j) .

_us it is enough to prove that for every pair of projections Q1 ⊥ Q2, with Q i ≤ RT ,
and I(Q i) = I(T) for i = 1, 2, we have that the positive element

T ′′
∶=

1
n
(T − δP) + δ

2
Q1 + δQ2
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is a PCP. Notice that RT′′ ≤ RT . Now

g1(
δ
2
Q1 + δQ2) =

δ
2
Q1 and g2(

δ
2
Q1 + δQ2) = δQ2 .

Since ∥ 1
n (T − δP)∥ ≤ 1

n , it follows that

∥ g1(T ′′
) −

δ
2
Q1∥ = ∥ g1(T ′′

) − g1(
δ
2
Q1 + δQ2)∥ ≤

δ
4
.

_en ∥ 2
δ g1(T ′′)−Q1∥ ≤

1
2 and by Lemma 2.1 (ii), 1

2Q1 = (Q1−
1
2 )+ ⪯

2
δ g1(T ′′). Hence

Q1 ⪯ g1(T ′′). As a consequence and by (7.4), there is a projection Q′
1 ≤ Rg1(T′′) ≤

1
δ/3 f1(T

′′) with Q′
1 ∼ Q1 and hence I(Q′

1) = I(T). Similarly, there is a projection
Q′

2 ≤ Rg2(T′′) ≤
1

5δ/6 f2(T
′′) with Q′

2 ∼ Q2 and hence I(Q′
2) = I(T).

Notice that T ′′ = f1(T ′′) + f2(T ′′) by (7.1). _en

T ′′
= (( f1(T ′′

) −
δ
3
Q′

1) +
5δ
6

Q′
2) + (( f2(T ′′

) −
5δ
6

Q′
2) +

δ
3
Q′

1)

is a decomposition of T ′′ into the sum of two positive elements. From (7.3), it follows
that g1(T ′′) f2(T ′′) = 0 and hence Q′

2 ⊥ R f1(T′′). Moreover, τ(R f1(T′′)) ≤ τ(RT) < ∞
for all τ ∈ F(T)′ and hence for all τ for which τ(Q′

2) < ∞. SimilarlyQ′
1 ⊥ R f2(T′′) and

τ(R f2(T′′)) < ∞ for all τ for which τ(Q′
1) < ∞. _us both summands of T ′′ satisfy

the conditions of Proposition 7.5 and hence are a PCP, which concludes the proof.
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