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Strict Comparison of Positive Elements in
Multiplier Algebras

Victor Kaftal, Ping Wong Ng, and Shuang Zhang

Abstract. Main result: If a C*-algebra A is simple, o-unital, has finitely many extremal traces, and
has strict comparison of positive elements by traces, then its multiplier algebra V(A ) also has strict
comparison of positive elements by traces. The same results holds if finitely many extremal traces is
replaced by quasicontinuous scale. A key ingredient in the proof is that every positive element in the
multiplier algebra of an arbitrary ¢-unital C*-algebra can be approximated by a bi-diagonal series.
As an application of strict comparison, if A is a simple separable stable C*-algebra with real rank
zero, stable rank one, and strict comparison of positive elements by traces, then whether a positive
element is a positive linear combination of projections is determined by the trace values of its range
projection.

1 Introduction

In this paper we study strict comparison of positive elements in multiplier algebras.
Comparison theory has a long history. It is a basic fact in von Neumann algebra the-
ory that every finite factor has strict comparison of projections: if p, q are projections
in the factor and 7(p) < 7(q), then p < g (Murray-von Neumann subequivalence).
In the theory of C*-algebras it was soon realized that both strict comparison of pro-
jections and strict comparison of positive operators (mostly formulated in terms of
quasitraces) are important properties. Perhaps one can view strict comparison of pos-
itive elements as a regularity property in the study of the Cuntz semigroup e.g, [1],
[2,111], [46, 4.7]. In recent years, there have been spectacular advances in understand-
ing strict comparison for simple nuclear C*-algebras and exploring its connections
with other properties, e.g., Z-stability (see [37,46,50]) or the almost unperforation of
the Cuntz semigroup (see [45,46]).

Comparison theory for multiplier algebras has not been studied systematically, but
was often used implicitly in the investigation of the ideal structure and extension the-
ory, e.g., [10-12,27,31,44,51]

In a previous paper [26, Theorem 3.2] we proved that if A is a unital, separable,
nonelementary simple C*-algebra with real rank zero with finitely many extremal
traces and strict comparison of projections by traces, then M (A ® K) has strict com-
parison of projections by traces provided that the definition is appropriately adapted
to the presence of ideals in M(A ® X). The main goal of this paper is to extend
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the above result. In Theorem 5.3 we prove that if A is a simple ¢-unital C*-algebra
that has finitely many extremal traces and strict comparison of positive elements by
traces, then M(A) has strict comparison of positive elements by traces. This the-
orem has already found an application in the recent proof that the corona algebra
M(Z ® K)/(Z ® K) has real rank zero [30,32,53].

The key tool in the proof of Theorem 5.3, but possibly also of independent interest,
is Theorem 4.2, where we prove that positive elements in the multiplier algebra of an
arbitrary o-unital C*-algebra A can be written as the sum of a bi-diagonal series and
a selfadjoint remainder in A of arbitrarily small norm (see Definition 4.1). The idea of
tri-diagonal decomposition of arbitrary elements in M(.A) first occurred in an article
by Elliot on AF algebras in 1974 [10, proof of Theorem 3.1]. In 1990, Zhang [51, proof of
Theorem 2.2] established a tri-diagonal decomposition of positive elements in M(.A)
when the underlying C*-algebra is of real rank zero. The condition in Theorem 5.3
that the extremal boundary is finite is replaced in Theorem 6.6 by the weaker condi-
tion that the algebra has quasicontinuous scale, a notion introduced by Kucerovsky
and Perera in [28] (see Section 2.7). However, in a future paper, we will show that in
general this condition cannot be further weakened.

Another application of strict comparison of positive elements by traces is the char-
acterization of positive combination of projections in the multiplier algebra of simple
separable C*-algebras with real rank zero, stable rank one, strict comparison of pro-
jections, and finite extremal boundary (Theorem 7.9).

Positive combination of projections (PCP for short) in a C*-algebra are sums of the
form Y>{' 1;p; where p; are projections in the algebra, A ; are positive scalars, and n isa
finite integer. This notion has been investigated since 1967 as part of the more general
study of linear combination of projections and of sums of commutators, e.g., [14-16,33,
35,36,40]). More recently, interest in that topic was rekindled by its connection with
frame theory, e.g., [9]. In [21] and [19] we investigated the notion of PCP in the setting
of purely infinite C*-algebras and W*-algebras, respectively (see also [20, 22-24]).
Then we proved [25, Theorem 6.1] that if A is a simple separable stable ¢-unital C*-
algebra with real rank zero, stable rank one, strict comparison of projections by traces
and has finitely many extremal traces, then a € A, is a PCP ifand only if 7(R,) < oo
for all T € T(A), where R, denotes the range projection, T(A) denotes the tracial
simplex (see Section 2.2), and 7 is extended to the enveloping von Neumann algebra.
A key ingredient in the proof was Brown’s interpolation theorem [4]. If we further
assume that M (A ® X) has real rank zero, a similar result holds for M(A ® X): a
necessary and sufficient condition for A € (M (A ® X)), to be a PCP is that either
7(Ry4) < oo for all those 7 € T(A) for which A belongs to the trace ideal I, or A is a
full element [26, Theorem 6.4], where 7 is the extension of a trace on A to (A ® K)**.

To remove the restrictive condition that M(A ® X) has real rank zero, a com-
pletely different approach is used in Theorem 7.9, based on the strict comparison of
positive elements in the multiplier algebra provided by Theorem 5.3.

A key step in the proof of Theorem 7.9 is the extension and reformulation of the
“2x2” Lemma, 7.2, which played a key role in obtaining PCP decompositions in
purely infinite C*-algebras and in W*-algebras (see [19, 21]). This lemma also pro-
vides bounds on the number of projections needed for a PCP decomposition.

https://doi.org/10.4153/CJM-2016-015-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-015-3

Strict Comparison of Positive Elements in Multiplier Algebras 375
2 Preliminaries
2.1 The Pedersen Ideal and Approximate Identities

For a simple C*-algebra A the Pedersen ideal Ped(A) is the minimal dense ideal of
A (see [41], and also [29]). It contains all the positive elements with a local unit, i.e.,
the elements a € A, for which there exists b € A, such that ba = a. In fact

(Ped(A))4 = {x €A, |x<) yjforsomencN, y; € A, withlocal unit}.
1

Let B be a o-unital hereditary sub-algebra of A, let h be a strictly positive element
of B with |A| =1, and let e, := ¢1(h) where ¢, is the continuous function defined

by

0 fort e [0, L] ,

l+e
=11 1 €

(21) ¢€(t)_ gt—g fOrtE(m,e),

1 for t € [¢,1].
It is well known, and routine to verify, that {e, };° is an approximate identity of B
satisfying
(2.2) ens1€n =€, Vn

and e, € Ped(A) for all n.
2.2 Traces and Dimension Functions

For a simple C*-algebra we denote by T(A) the collection of the (norm) lower semi-
continuous densely defined tracial weights on A, henceforth, traces for short. Ex-
plicitly, a trace T
* is an additive and homogeneous map from A, into [0, o] (a weight);
* satisfies the trace condition 7(xx*) = 7(x*x) for all x € A;
o the cone {x € A, | 7(x) < oo} is norm dense in A, (thus 7 is also called densely
finite, or semifinite);
* satisfies the condition 7(x) < lim 7(x,) for x, x, € A, and |x, — x| = 0, or equiv-
alently, 7(x) =lim 7(x, ) for 0 < x,, 1 x in norm.
Recall that every trace is finite on Ped(.A), and hence 7(e,) < oo for every 7 € T(A)
and every approximate identity {e, } of B satisfying (2.2).
Using the notations in [48], for every 0 # f € Ped(A), set

(2.3) F(A) o = {T € T(A) | 7(f) = 1.

Then T(A) o115 a cone base for T(A) and can be viewed as a normalization (or scale)
of T(A). When equipped with the topology of pointwise convergence on Ped(A),
T(A) f.»1 is a Choquet simplex [13,41]; see also [48, Proposition 3.4]. Set

9. (T(A) 1) to be the collection of the extreme points of T(A) fol-
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We call 9, (T(A) f1) the extremal boundary of T(A) f-1and call its elements extreme
traces. (For more details, see [13,41, 48]).
Given two nonzero elements f, g € Ped(A),, the natural one-to-one map

~ 1 ~

T(A)go13TH D T€T(A)f
is a homeomorphism that maps faces onto faces and hence, extreme points onto ex-
treme points. In particular, the cardinality of 9, (T(A) 1) does not depend on the
element f € Ped(A), chosen, ¢f. [25]. To simplify notations, we will henceforth
denote T(A) 1 simply by T(A), dropping the explicit reference to the element f
chosen for the normalization.

If A is unital, then Ped(A) = A and T(A),,_, coincides with the usual tracial state
simplex. Thus the definition of T(A) that we use coincides with the standard one
when A is unital, and hence, by Brown’s stabilization theorem [3], also when A is
stable and has a nonzero projection p.

Furthermore, as remarked in [25, 5.3], by [6, Proposition 4.1, Proposition 4.4] and
[39, Proposition 5.2], every 7 € T(A) has a unique extension, still denoted by 7, to a
lower semicontinuous, i.e., normal, tracial weight (trace for short) on the enveloping

von Neumann algebra A**. As usual, the dimension function d.(-) is defined on
M(A), as

(2.4) d.(A) = lim7(AY") VAeM(A),, e T(A).
As shown in [39, Remark 5.3],
(2.5) d.(A) = 1(Ra),

where Ry is the range projection of A. In particular

d:((A-0)+) = 1(Rea-s),) = T(x(5,1a1(A)) V2>0.
We will also recall that for all 0 # A € M(A), both the maps
T(A)> 1+ d(A) €[0,00], and
T(A) > 7> 7(A) = A(7) € [0, o0],

are affine, lower semicontinuous, and strictly positive.
Cuntz Subequivalence

Let A be a C*-algebra. If p,q are projections in A, p ~ q (resp. p =< q) denotes
Murray-von Neumann equivalence, (resp. subequivalence), i.e., p = vv*, g = v*v for
some v € A (resp. p ~ p’ < g for some projection p’ € A). If a,b € A,, a < b denotes
Cuntz sub-equivalence of positive elements, i.e., |a — x,,bx; | — 0 for some sequence
xn € A. For ease of reference we list here the following known facts that we need in
this paper and we cite where they can be found, with no attempt to identify where
they were first established.
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Lemma 2.1 Let A bea C*-algebra, a,be A,, §>0.

(i) Ifa<b,thena < b [45 Lemma 2.3].

(ii) If|la-b| < 6, then (a — 8), < b [45, Proposition 2.2].
(iii) Ifa < b, then thereis &' > 0 and an element r € A such that

(a=8),=r(b-08"),r".

As a consequence, there is an element s € A such that (a—0), = sbs* [45, Propo-
sition 2.4].

(iv) Ifa<b,a’"<b,anda’ LV, thena+b<a'+b'[7, Proposition 1.1].

(v) Ifaxb,thend,(a)<d.(b) forallTeT(A)[39,2.3].

Notice that many of the properties in this lemma were proved for the function
fs(a) where

0 fortef0,6],
fs(t) = % for t € (8,261,
1 for t € (28, 00).

However, it is immediate to see that the same properties hold for the function (a-94),.
We will need an adaptation of [27, Lemma 1.1].

Lemma 2.2 Let A be a C*-algebra, a,b € A,, and § > 0. If a < (b - 9),, then for
everye >0, (a—¢€), = xbx* for some x € A with || x|* < @. Furthermore, x can be

chosen so that xx* < ¢;(a —€)4 and x*x < c,(b - 8) ., for some scalars ¢; and c,.

Proof By Lemma 2.1 (iii), there is an s € A for which (a —€), = s(b - §),s*. Then
Is(b=0)72] = (a-e). ] < la] /2. Let

he(t)::{f: tellel d ga(t)::{

1 tefeal]

te[0,8],
te[d,|b]]

= o=

Then both functions are continuous and

(@l =L (a-e). = he(a)(a-e)s,
lgs(0)] = 5. (b-8). = gs(b)b(b - 0)..

Set x = he(a)s(b - 6)1+/2g(13/2(b). Then

xbx” = he(a)s(b - 8)7 g (b)bgy/* (b) (b - 8) s he(a)
=he(a)s(b—-08)1s"he(a) =he(a)(a—¢€)rhe(a) =(a—€)y.
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Moreover,
[ < [reCa)s(b - 8)Y2] I ga(B) "] < |la] 8%
xx* = he(a)s(b - 8)? g5 (b) (b - 8)s"he(a)
< She(@)s(b - 8),5"he(a) = she(a)(a-€)-he(a)
-SGa-o.,
and

x*x = ga(0)'2 (b~ 0) 5" he(a)s(b — ) g} (b)
Isl*
0

Notice that if a, b € A are selfadjoint and a < b, in general it does not follow that
a, < b,. However, we often need less.

< |s|Pgs(B) (b - &)+ g (b) < o (b - 6),. n

Lemma 2.3 Let AbeaC*-algebraand a, b € A be selfadjoint. Ifa < b, thena, < b,.
In particular, d.((a—8)) <d.((b—98),) forall § >0 and T € T(A).

Proof Sincea <b < b, andsince §(t—8), < t(t—8), forall tand § > 0, then
(@=80) (a-0V (a-8) (a-0))

a < b, * <b,.
V' V6 Ve V6

As a consequence, (a — 8), < by for all § and hence a, < b,. [ |

(a-08)+ <

Lemma 2.4 Let A bea C*-algebra, a,b e A,, §; >0 with § > 6 + 3.
(i) (a+b-81)+=x(a=082)r+(b-083),.

(i) d.(a+Db)<d.(a)+d.(b)forall e T(A). Equality holds ifa 1 b.
(iii) d((a+b=081)4)<d((a=082)4)+d((b—083):) forallte T(A).

Proof (i) Without loss of generality, §; = 6, + §3. Then
a+b—51: (0—62)+(b—63) S(a—62)++(b—63)+,

hence the conclusion follows from Lemma 2.3. (ii) is well known, but can also be
obtained directly from (2.5) and the fact that 7(p v q) < 7(p) + 7(g) for any pair of
projections p, g in a von Neumann algebra and any trace 7, hence

de(a+b) = 1(Rary) = T(Ra v Ry) < 7(Ry) + T(Ry) = d(a) + di (b).
If a L b,then R,1p = R, + Ry, hence equality holds. (iii) follows from (i), the mono-
tonicity of d, with respect to <, and (ii). [ |
The following simple fact will be used in Section §7.
Lemma 2.5 Let A bea C*-algebra, a € A, q € A be a projection, and § > 0 a real

number. If g < (a - 8),, then there is a projection p ~ q such that a > 8p. If a > 8p for
some projection p, then p < (a — 8"), forall 0 < &' < 6.
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Proof Assume that g < (a — 8),. Since by Lemma 2.1 (iii),

1 1

5= (q- E)+ =x(a—-08),x" forsomexeA,
it follows that g = (v/2x)(a — &), (v/2x)*. Thus

g~pi=(a—8)i2x"x(a—8)i <2|x|*(a-0)..

Then p < Ras), = X(s,Ja(@) < %a. Assume now that a > §p and 0 < 8’ < §; then
a-08">(8-68")p-6'p. Hence, by Lemma 2.3,

(6-0)p=((6-8p-8'p*), <(a-08),
and thus p < (a—98"),. [ |

2.4 Strict Comparison

Definition 2.6 Let A be a simple unital C*-algebra with nonempty tracial simplex
T(A). We say that A has strict comparison of positive elements by traces if a, b € A,
and d.(a) < d(b) forall T € T(A) implies that a < b.

When A is not unital, dimension functions are not necessarily finite valued, so we
will use the same definition with the convention that “co < o0”, or, equivalently, ask
that d.(a) < d(b) forall T € T(A) for which d,(b) < .

Notice that strict comparison of positive elements by traces often denotes the
stronger property requiring that the above conditions hold for all a,b € M, (A),,
or the still stronger property requiring that they hold for all a,b € (A ® X),. Also,
replacing traces by lower semicontinuous densely defined 2-quasitraces gives the defi-
nition of strict comparison of positive elements by quasitraces. Note in passing that if
the strongest of the three-mentioned forms of strict comparison of positive elements
by traces holds, namely if a,b € (A ® X), and d,(a) < d,(b) for all T € T(A) im-
plies that a < b, then by [38, Theorem 3.6] all lower semicontinuous densely defined
2-quasitraces are traces (see also [25, Theorem 2.9]).

For multiplier algebras we will use the following definition, where we consider only
traces on M (A) that are extensions of (lower semicontinuous densely defined) traces
on A and we take into account that M(.A) is not simple.

Definition 2.7 Let A be a simple C*-algebra with nonempty tracial simplex T(A).
We say that M(A) has strict comparison of positive elements by traces if A < B for
all A, B € M(A), such that

(i) d.(A) <d;(B) for all those 7 € T(A) for which d,(B) < oo,
(i) AeI(B).

Condition (ii) (¢f. [46, Corollary 4.7]) is clearly necessary for having A < B and
in general it is not implied by condition (i). Indeed if there is any element b € A,
such that d(b) = oo for all T (which is always the case when A is stable), then every
element A € M(A), € A would satisfy condition (i), but not (ii). However, under
additional hypotheses, condition (i) implies condition (ii) (Corollary 2.9).
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Some versions of strict comparison of positive elements are related to the almost
unperforation of W(A), e.g., [46]. Our version of strict comparison for positive ele-
ments for M(.A) implies almost unperforation of W(M(.A)), but the converse is not
true. A counterexample will be presented in a future paper.

2.5 Ideals in M(A)

For every 7 € T(A), K; := {B e M(A), | 7(B) < oo} is a hereditary cone of M(A).
which, by the trace property, satisfies the condition that if X* X € K, then XX~ € K.
Let L(K;) = {X € M(A) | X*X € K.} be the associated two-sided ideal of M(A)
and let I := L(K,). By [47, Proposition 3.21] (see also [42, Theorem 1.5.2]), it is easy
to see that

I == {X e M(A) | 7(X*X) < 0o} = span{K,},

where the closures are in norm.
The following is also well known (for a proof, see [26, Lemma 2.6])

(2.6) Be(I;), ifand only if d;( (B - &), ) < oo forevery § >0, T T(A).

In particular

(27) d((a-08);) <oo VaeA, §>0,7eT(A)
and if P € M(A), is a projection and 7 € T(A), then
(2.8) Pel, < 1(P) < oo.

While the structure of two-sided norm closed ideals of M(.A) is difficult to analyze
in general, a case where this structure is well understood is the following.

Theorem 2.8 ([44, Theorem 4.4]) Let A be a simple unital infinite dimensional

C*-algebra with strict comparison of positive elements of A ® K by traces and finite

extremal boundary 0.(T(A)) and let n = | 9(T(A))|.

(i) A proper ideal § of M(A ® X) is maximal if and only if § = I, for some 7 in
0e(T(A)).

(i) Ifdis a proper ideal of M(A ® K), then either J = A ® X or J = I, for some T in
T(A).

(iii) There are exactly 2" — 1 proper ideals of M(A ® K) properly containing A ® XK.

2.6 Faces of T(A)

We start by recalling that if 7 = t7; + (1 - ¢) 7, for some 0 < t < 1and 7; € T(A), then
I. = I, nI,,. From this and from (2.6) it is easy to see that for every B € M(A),
the set {7 € T(A) | B € I} is a face of T(A) and {7 € T(A) | B ¢ I} is convex,
but in general is not a face. We will use extensively the following notation: for every
BeM(A), let

(2.9) F(B) = co{T € 3.(T(A)) | B¢ L}

denote the convex combination of the extremal traces for which B ¢ I,.. Then F(B) is
a face by [18, Proposition 10.10] and clearly, F(B) c {t € T(A) | B¢ I, }.
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Let F(B)’ be the complementary face of F(B), i.e., the largest face disjoint from
F(B) (this is the union of all the faces disjoint from F(B)). Either F(B) or F(B)’
can be empty. For this and for other basic results on convexity theory and Choquet
simplexes, we refer the reader to [18]. Since the face {7 € T(A) | B € I,} is disjoint
from F(B) we have

(2.10) co{1€0.(T(A))|Bel,} c{reT(A)|Bel,} c F(B)
and hence

(2.11) F(B) N 3e(T(A)) = {r € 0.(T(A)) | B¢ I},
(2.12) F(B) n0e(T(A)) ={1€d.(T(A))|Bel,}.

The inclusions in (2.10) are, in general, proper. Clearly, they are equalities in the case
when | 0.(T(A)) | < oo. Moreover, we will see in Section 6 that the second inclusion
in (2.10) is also an equality in the case of special interest when A has quasi-continuous
scale.

Recall that when F(B) is closed, then by [18, Theorem 11.28],

T(A) = F(B)+F(B),

is the direct convex sum of F(B) and F(B)’, that is, F(B) n F(B)’ = @ and every
7 € J(A) ~F(B) U F(B)' has a unique decomposition 7 = ty + (1 — t)u’ for some
0<t<1l,uecF(B),and u’ € F(B)'.

As a consequence under the hypotheses of Theorem 2.8, which include the condi-
tion that | de (T(A)) | < oo when B e M(A ® K), \ A ® X, then

(213) I(B) =M{I: | 1€ F(B)'} = N{I: | T € F(B)" N 9(T(A))}.

Corollary 2.9 If A satisfies the conditions of Theorem 2.8, A ¢ (M(A® X)),
P e M(A®X)NA®X a projection, and d.(A) < d.(P) for all T € T(A) for which
d.(P) < oo, i.e., for all T € F(P)’, it follows that A € I(P).

In a future paper, we will show that this result fails to hold when | 0¢(T(A)) | = oo.

2.7 Quasicontinuous Scale

Kucerovsky and Perera [28] introduced the notion of quasicontinuous scale for simple
C*-algebras of real rank zero in terms of quasitraces. In this paper we will study the
same notion for a larger class of algebras, but in terms of traces.

Definition 2.10 Let A be a C*-algebra with nonempty tracial simplex T(A). The

function S := m is called the scale of A. The scale S is said to be quasicontinuous

if the following hold:

(i) theset Fo := {7 € 0.(T(A)) | S(7) = oo} is finite (possibly empty) and hence
co(Fy ) is closed;

(ii) the complementary face F., of co(F ) is closed (possibly empty);

(iii) the restriction S [p_: F, — (0, 0o] of the scale S to F_, is continuous and hence
finite-valued.
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Notice first that while the scale function S depends on the normalization chosen
for T(A), the quasicontinuity of S does not. Indeed, let g, f be two positive nonzero
elements in Ped(A) and S, and S be the scales relative to T(A) g1 and T(A) fols
respectively, (see (2.3)). Let y be the homeomorphism y: T(A) g1 T(A) fo18iven

by y(7) := %f)r. Then Sy(y (7)) = ng(—(:)) Ve "Jv’(.A)ng. Since f € Ped(A), by

the definition of the topology on T(A) g—l> f is a continuous function on T(A) g1
which by the simplicity of A never vanishes, thus % is continuous. Furthermore, as
stated in §2.2, y maps faces onto faces, thus if S, satisfies conditions (i)-(iii), so does
S. Because of this, we can drop the reference to the specific normalization used and
just refer to the scale S.

Notice also that when | 9.(T(A))| < oo, the scale is necessarily quasicontinuous.
Indeed then all faces are convex hulls of subsets of d.(T(A)) and hence are closed,
and all functions on a face are continuous.

In the notations introduced in §2.5,

Fo = F(lM(A)) n ae(T(.A)) and F:,o = F(lM(.A)),

Then by (2.12) and (2.8) F,, N 0e(T(A)) = {7 € 9e(T(A)) | S(7) < oo}. By (ii) we
have from (2.10) and the Krein—Millman theorem that

{1eT(A)|S(1) <o} cco{Tede(T(A))|S(r) <00} =F..
On the other hand, by (iii) we have that S is finite on F., and hence
Fl o ={1eT(A)|S(1) < oo}.
In Section 6 we will use the following lemma.

Lemma 2.11 Let A be a C*-algebra with quasicontinuous scale S. Let B € NM(A),.
Then F(B) = co{t € Fo | B¢ I} and F(B)' = co{t € Fo, | B € I, }+F.,. Hence both
F(B) and F(B)' are closed.

Proof If B ¢ I, for some 7 € d.(T(A)), then necessarily 7 € Fo,. Thus by (2.9),
F(B) =co{t € Fs | B¢1,}. Since |Fs| < o0,

co(Fs) =F(B)+co{t€Fs | BeI,}
and both F(B) and co{7 € F., | B € I} are closed faces. But then
(2.14) T(A) = co(Fo )+F., = F(B)+(co{T € Fo | B€ I, }+F.)).

Since co{T € Fo | B € I, }+F. is the direct convex hull of two closed faces, it is a
closed face [18, Proposition 5.2]. It is immediate to verify that the direct complement
of afaceisunique, i.e.,if F+G = F+H where F, G, H are faces, then G = H. Thus from
(2.14) we conclude that F(B)' = co{7 € Fos | B € I} +F., and again by Definition 2.10,
that F(B)' is closed. [ |
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3 Dimension Functions of Cut-offs of Monotone Sequences

Lemma 3.1 Let Abea C*-algebra, T,, T be normal elements of M(A), and K < C be
a compact set for which the spectrum o(Ty) is contained in K for all n and o(T) c K,
and assume that T, — T strictly. Then f(T,) — f(T) strictly for every continuous
function f:K - C.

Proof This is immediate when f is a polynomial in one complex variable. Then
apply the Stone—Weierstrass theorem. ]

Lemma 3.2 Let A be a o-unital C*-algebra, 7 € T(A), T,, T € M(A),, and assume
that T, — T in the strict topology.

(i) IfT, < Ty foralln, thend ((T, - 8)+) 1t d.((T-29),) forall§>0.
(i) IfT=0,T,> Ty foralln, and T € 1., then d . ((T, - 8)+) | 0 forall § > 0.
(iii) If T, > Tys1 foralln and Ty € I, then forall0 <e < §

d=((T - 0),) <limdy (T, - 8),) < de((T - 8 +€).).

Proof Assume without loss of generality that | T|| < 1. Since strict convergence im-
plies strong convergence in the enveloping W*-algebra, it is easy to verify that in case
(i) T, < T,and in case (ii) T, > T.

(i) Since T, — 6 < Tp,11—8 < T -8 for every n and hence, by Lemma 2.3, (T, - 8), <
(Ty41 = 0)+ = (T - 9),, it follows by Lemma 2.1 (v) that

do((Ty = 8)4) < de((Tur - 8).) < do((T - 3),)
and hence

(3.0) lirllndr((Tn_(sL) <d:((T-9)+).

Now we prove the opposite inequality.

Since A is o-unital, there is an approximate identity of A consisting of an in-
creasing sequence e, such that e, e, = e, for all n. As T, — T strictly and since
0(T),o(Ty,) c [0,1] for all n, by Lemma 3.1, it follows that for every N € N,

(T, - S)i/N - (T- 6)£r/N strictly, and

lim e,lc/z(T,, - S)L/Ne}c/z = ei/Z(T - S)L/Ne}(/z in norm.
n

Now 7 is norm continuous on e,lsz(A)e}(/z = e,lc/ZAe}(/z because ey € Ped(A), which
implies that 7(eg) < co. As a consequence,

(3.2) lirrln 7( e;(/z(Tn - 6)1/Ne,1c/2) = T( ei/z(T - 8)¥Ne]1(/2)
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and thus for all N € N,
7( ((T—5)+)1/N) = lilrcn (T - 8) )N e ((T - 6)+)1/2N) (normality of 7)

=lim7( )" (T - 8).)""¢/?) (trace property)
= limlim ( ¢;”*((T, - 8).)"Ve/?) (by (3.2))
= limlim 7( (T, - 6)-)*Nex (T, ~ 6).)/*Y) (trace property)
<lim 7(((T, - 8)+)"N) (monotonicity of 7)
< limd,((T, - 6),) (as | (T, = 8),] <1)
- limd (T, 5).) (35 d:((T, - 9)1) ).

Hence lim, d-((T, = 8)+) > limy 7( ((T = 8):)N) = d.((T - 8).), where the
last equality is a consequence of the definition (2.4) of d,. This, together with (3.1)
completes the proof of part (i).

(ii) Let € > 0 and let Q, = ¥(6,00)(Tn), Pe := X(e,w)(Tll/z). These spectral pro-
jections belong to the von Neumann algebra A** and commute with T, and Tj, re-
spectively. Recall that we identify every 7 € T(A) with its extension to A** (see
[39, Proposition 5.2] and also §2.2) and that the trace of the range projection of a
positive operator is just the dimension function of that operator. In particular,

(33) 7(Qn) = d:((Ta = 8)+) < d:((T1 - 8)+) = 7(Q1) < o0.

Since Qu < § Ty Qu, it follows that

G4 d((T=0),) < 57(T1Q0) = 5 (F(PATi QR + T(P(T, Q)EL)).
Also, 7(P.) = d.((T, - €*);) < oo by (2.6) and the hypothesis that T; € I, and hence
7 is o-weakly continuous on P.A** P,. Therefore

(3.5) T(Pe(T,Qn)P:) < 7(P.T,P:) — 0.

Since T, < T, there are elements G,, € A** such that T,l,/ 2 - G, Tll/ 2 - Tll/ ZG; and

|Gn| <118, Lemme L.1.2]. Then | P} T,yzﬂ = HX[O,S)(TII/Z)TII/ZG; | < e. From here
and (3.3) we have

(P T,Q,P) = 1(Q, TY?PATY?Q,) < 1(Q,) < €21(Q).
Thus by (3.5) and (3.4), it follows that d.((T, — §)+) — 0. (iii) By the same argument

as in part (i), d.((T, — 8)+) | and hence lim, d.((T, - 8)+) > d.((T - §)+). By
Lemma 2.4 (iii), for every0 < e < §

d.((T,-6)1)<d,((T-8+¢€)y)+d.((T, - T-¢€)4).
By part (i), lim,, d.((T,, - T — €)) = 0, which concludes the proof. ]
Remark 3.3 Unlike in (i), for part (ii) we need to assume that § > 0. Indeed, let P be

a projection with 0 < 7(P) < co. Then T, := 2P | 0 in norm, yet d.(T,) = 7(P) + 0.
Similarly, in (iii) we need to assume that € > 0. Indeed, as above, let P be a projection
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with 0 < 7(P) < co. Then T}, := (§++)P | 6P = T innorm, yetd.((T,-9).) = 7(P)
while d,((T - 8),) =0.

For ease of use in the following section, let us single out the following special case.

Corollary 3.4 Let A be o-unital C*-algebra, D := ¥7° dy € M(A) be the sum of a
series of elements dy. € A, converging in the strict topology, and let T € T(A). Then

() lim,d, (i, di—0)s)=d.((Xi2,,a:i — 8)+) forevery § > 0 and m e N.
(ii) IfDel, thenlim, d.((X5,di—8):) =0 forevery § > 0.

4 Bi-diagonal Decomposition

Inspired by Theorem 2.2 of [51], in the following theorem we decompose positive
elements in a general o-unital C*-algebra into the sum of a bi-diagonal series and
small remainder in A. Notice that the proof in [51, Theorem 2.2] uses the existence of
an approximate identity of projections, while we need only approximate identities of
positive elements. Also, here we obtain a bi-diagonal decomposition, rather than the
tri-diagonal in [51]. By bi-diagonal we mean the following.

Definition 4.1 Let A be a C*-algebra. A series Y;° dj that converges in the strict
topology of M(A) is said to be bi-diagonal if d,,d,,, = 0 for |n — m| > 2.

Notice that every bi-diagonal series };° dy can be decomposed into the sum of
two diagonal series (37° dak, and ¥;° dak41), but the sum of two diagonal series is
not necessarily bi-diagonal.

Theorem 4.2  Let A be a o-unital C*-algebra and let T € M(A),. Then for every
€ > 0 there exist a bi-diagonal series Y.1° dy with each dy, € A, and a selfadjoint element
t. € Awith |t < esuchthat T = ¥1° dy+t.. The elements dy. can be chosen in Ped(A).

For every approximate identity {e, } of A with e 1€, = e,, we can choose dj. and
t. that satisfy the above conditions and such that for every n € N there is an N € N for
which e, .3 d = 0.

Proof Let{e,} be an increasing approximate identity of A and as usual we assume
that e, 1€, = e, and set eg := 0 (see (2.2)). As a consequence

(en—en1)(em—€m1)=0 VY|n-—m|>2.

Assume without loss of generality that | T|| = 1and let aj := T"?(ej —ex_1) T/2. Then
ar € A, forall kand T = Y;° a; where the series converges strictly. We will construct
inductively two strictly increasing sequences of positive integers {my }¢° and {ny }¢°
as follows. Start by setting mg := 0, ng := 0, m; := 1, and b; := a;. Then choose n; > 1
such that ||a; — ey, are,, | < 5 since e, — 1strictly and a; € A. Now choose m, > m;
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and n, > n; such that

oo 2 oo
lew, > ajf < (is) (since Y a; — Ostrictlyand e,, € A)
j=may+1 2 j=m
my € my
[(1-en) Y ajl < (since e, — strictlyand ) a;ecA).
j=mi+1 2 j=mi+l
Set b, := Z;.":Zml 41 @j and iterate the construction.
(4.1) Choose my so that | en,_, Z aj| < (ﬁ)
jEmg+1
my
Set by = Z aj,
j=mg_q+1
so bk < [T =1.
€
(4.2) Choose 1 so that  [[(1-e,, )bi| < Jez
Setforall k > 1
1= enbien,
(4.3) ck = (en, — enp, )bk (en, — €np_y) Vk>2.
From (4.1) (applied to k — 1) we see that
1/2
lemesbill < len b = len, ,brem, |
< Henk—z Z Ajeny_, Hl/z
jEmg_+1
ad €
< Henk—z Z a]'HI/Z < k2"
j=mg_a+l 2

From the decomposition
br—ck=(1—en )bk +enbi(1—en,) +enbren,_, +eun_,bk(en, —€n_,)

and from the above inequality and (4.2), we thus obtain that |by — ¢k | < 5% V k. Asa

consequence, the series t, := Y 2, (bx — ¢k ) converges in norm and hence t, = ¢} € A.
Since T = Y io1 Gk = Xpey bk the series Y72, by converges strictly. Then the series
> ko1 Ck»> being the sum of the strictly converging series and of a norm converging one,
is also strictly converging and D := 377, ¢, = T — t.. Now set

(4.4) dii=cCyp1+cae Vk2>1
Then D = Y37, di and
di=c1+c2=epbiey +en,bren, € ey, ey,
dk = (enzk—l - e”zk—})bZk_l(enzk—l - e”zk—s) + (e”zk - e"zk—z)bZk(enzk - e”zk—z)'

As a consequence, d,,d,,, = 0 for all |n — m| > 2.
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By construction, all the elements dj have a local unit and hence belong to Ped(A).
Finally, it is immediate to verify that e,, Y d; = 0 for every N > ""TH. Given n € N,
choose k and N so that n, > nand N > ""TH.Then en 2y dj=0. [ |

The method of the proof of Theorem 4.2 can be applied to give a joint bi-diagonal
form to multiple elements in M(A),. Indeed if T}, T»,..., Ty € M(A),, and we
decompose as above each T; = Y72, a; k. then the sequences {m; }¢° and {ny }¢° can
be chosen so to satisfy (4.1)-(4.2) simultaneously for all1 < i < N:

ad € \2
lens . ' Z aijf < (W) >
jEmg+l
mp
bz k= Z ai,js
JjEmg_1+1
€
10 en )ikl < 55

Then defining ¢; x and d; x for each 1 < i < N as in (4.3) and (4.4), we see that
dindjm = 0for |n—m| >2andalll < i,j < N. Thus we obtain the following
extension of Theorem 4.2.

Corollary 4.3  Let A be a o-unital C*-algebraandlet Ty, T, ..., Ty € M(A),. Then
for every e > 0 there exist N bi-diagonal series Y. o, d; x with d; ;. € A, and self-adjoint
elements t; . € A, with |t; || < € such that T; = X" d; x + ti,c and d; ndjm = O for
|n—m|>2andalll<i,j<N. Inparticular, if T € M(A), there is a bi-diagonal series
> req di with dy € A and an element t. € A, with |t.|| < e such that T = Y77 dy + t. .
If T = T%, the elements dy and t. can be chosen selfadjoint.

Thus, up to a small remainder, every element in M(A), is bi-diagonal and hence
the sum of two diagonal series. Diagonal series are used extensively in multiplier
algebras. We will need the following result relating Cuntz subequivalence of (cut-offs
of) summands in two diagonal series to Cuntz subequivalence of (cut-offs of) their
sums. Notice that we do not need to require that the summands belong to A.

Proposition 4.4 Let A be a C*-algebra, A = ¥.1° Ay, B = Y.° By where A,, B, €
M(A)y, AyA, =0, ByB,, = 0 for n # m, and the two series converge in the strict
topology. If A,, < (B, — 8), for some § > 0 and for all n, then A < (B - 8"), for all
0<d <é.

Proof Lete > 0.ByLemma2.2appliedto A, < (B,—68); = ((B,-0")+—(8-8")).,
for every n there is an X, € A such that
(Ap-€); =X, (B, -8, X},
< JAal _ sup, [An]
d-0 0-0¢
Xu X, <ciu(An—€)ss
X:Xn < CZ,n(Bn - 6)+,

[ X2
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for some scalars ¢ ,, and ¢, ,. Then

XXy < |Xul* Ry, x; < 50p [ Xa|*Rea, o), €

n=€)s =

sup X, 7 ,
n
€

Similarly, X X, < an. Since the elements A, are mutually orthogonal, so are
the elements (A, — €), and hence also the elements X, X;;. Similarly, the elements
X X, are mutually orthogonal and hence X, X}, = X X,, = 0 for all n # m. Thus for
everym <ne€NandaeA,

i 2
Ja X X" = ||a
k=m

Supn HX ” ”

i XkX;a*
Supn ” nH ” ZA ”

Similarly
| Xa]®

n n
|3 Xal* < Jal = 2 S Bl
k=m k=m

Since the series };° A, and Y';° B,, converge strictly, it follows that }';° X,, converges
strictly. Let X := Y¥7° X,,. Then X € M(A) and since X,, = X,Rp, and R, (B,-¢"), =
(B, - 8")4 for every n,

(A-¢), = i::(A,, —€), = i::Xn(B,, ~8).X

= (EX,,) Z(Bn - 8l)+( ZX;) = X(B - 6’)+X
1 1 1
Since € is arbitrary, it follows that A < (B - 8'),. [ |

Remark 4.5 From the above proof we see that if the series >.;° A, converges in
norm, then the series }';° X,, also converges in norm.

5 Strict Comparison: The Finite Boundary Case

For which simple C*-algebras A does strict comparison of positive elements by traces
hold for M(A) when it holds for A? In this section we prove that a sufficient condition
is that d¢(T(A)) is finite. In the next section we extend this result to the case when
the scale is quasicontinuous (see §2.7).

Our main tool is the following technical lemma, which deals with the case of bi-
diagonal series. It is convenient for its further use in Section 6 to formulate this lemma
without assuming that the extremal boundary is finite.

Lemma 5.1 Let A be a o-unital nonunital simple C*-algebra with strict comparison
of positive elements by traces. Let a;, b; € A, be such that Y72 a; and ¥ 7o, b; are two
bi-diagonal series in N(A),. Let F be a closed face of T(A), F’ be its complementary
face (either F or F' can be empty), and assume that |F 0 0.(T(A)) | < co. Assume also
that for some €, §, « > 0 we have the following:
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B (ZZbi-0)+ ¢ A

(i) d:((X72,bi—08);)=c0oVTeF,meN;

(i) d:((Xai—€)s)+a<d, (X7 bi—08)s) <oV TeF;

(iv) d((XF,,bi-08):) = d.((X2,,bi —8)+) uniformlyon F',V m e N;
v) d:((X3,ai—€)s) — 0uniformly on F'.

Then (X1 ai —2€)4 < (X2  bi — 8")4 forall 8" with 0 < 8" < 6.

Proof The main step in the proof is to construct two series .2, ¢k and >.77, dy,
converging strictly and with entries in A, such that

(5.1) Z di < Z by and the series Z dy, is diagonal,
k=1 k=1 k=1

(5.2) Z Ck = Z ay and the series Z c is bi-diagonal,
k=1 k=1 k=1

(5.3) de((ck—€)s) <de((dx—0):+) VTeT(A), keN.

We first assume that F # @ and F’ # @. Notice that since the extremal boundary
F N 0.(T(A)) of F is finite, its convex hull is closed. Thus by the Krein-Millman
theorem,

(5.4) F=co(Fnode(T(A))).

Next we construct iteratively three strictly increasing sequences of integers my, ny,
and n}_such that

mo =0, ng:=-1, ng:=mn
(5.5) ng+2<ng <y -2 Vk>1L
If we set
Mg n;71 M1
Ck = Z ai, &k = Z bi, hy:= Z bi,

i=mp_1+1 i=ng_1+2 i=n;(+2
then for all k > 1
(5.6) d:(( Y ai-e€), ) <di((gc-0)s) VreF,

i=myp_1+1
(5.7) de((ck —€)+) <de((hx—0):) VreF.

In the first step of the construction, which is different from the subsequent steps, we
choose the integers ny, n{, m,, and n, as follows. By (iii) and (iv), we choose ny > 1s0

that
d((3bi-8) ) > de((3bi=0) ) ~a VreF!
i=1 i=1

Notice that Y11, b; = g, so by (iii), condition (5.6) is satisfied for k = 1.

Next, by (ii) we have (¥.;2, ., bi — 8)+ # 0. Hence by (iv) (or directly by Lem-
ma 3.1), we can choose nj > nj + 2, so that (g» — 8). # 0. Since the map T(A) 37 >
d.((g2 — 8).) is lower semicontinuous and strictly positive, we have that

Tegrrl(f/l)dr((gz—5)+) > 0.
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Then by (v) we choose m; > mg = 0 so that

dr(( X ai=e),) < inf dil(g2-0)) <del(g2=0).) Ve,

that is, condition (5.6) is satisfied for k = 2.

Lastly, by (ii) and Corollary 3.4 (i), d.( (Z?=n{+2 b;—8)+) 1 oo forall T € Fand
this convergence is uniform on F because F is the convex hull of a finite set by (5.4).
Moreover, d( (X% a;—€).) < oo forall 7 € T(A) by (2.7). Therefore, we can choose
ny > ny + 2 so that

de((Lai-e),) <del( 3 bi=0).) VreF,
i= i=nj+

i.e., condition (5.7) is satisfied for k = 1.

In the second step of the construction, we choose the integers nj, m,, and ns as
follows. Reasoning as in step 1, we choose nj > n, + 2 so that (g3 — §), # 0 and hence
infreq(a) d:((g3 = 8)+) > 0. Then by (v), we choose m, > m; so that

d:(( > ai—€)+) < inf d.((g3-0)s) VreF,
i=my+1 TE{‘T(‘A)
and hence condition (5.6) is satisfied for k = 3. Again by (ii), Corollary 3.4 (i), and
(5.4), we have d,( ( Z:’zn;” b; — 8) +) 1 oo uniformly on F and d.((c; — €)4) < o
for all 7 € T(A) by (2.7). Thus we can choose n3 > 1, + 2 so that condition (5.7) is
satisfied for k = 2.

The construction now continues as for the case of k = 2, that is, assuming we have
{n;}s, {n &8 {m;}§7" that satisfy (5.5), (5.6), and (5.7), we choose 1}, > ny +2 to
have TienTE;dT((ng —-08)+) >0, my > my_; to satisfy condition (5.6) for k +1, and nj,
to satisfy condition (5.7) for k.

Now we draw two conclusions from this construction. First, since nonconsecutive
terms in a bi-diagonal series are orthogonal, it is immediate to see that

igi=0 Vit
ghj=0 Vi j,
hihj=0  Vif],
cicj=0 Vii-j>2.

(5.8)

Set di = gk + hg. Then conditions (5.1) and (5.2) are satisfied. Next, we see from
Lemma 2.3 and (5.6) that for all k > 1

(5.9) d:((cx—€)y) <d:((gk—08)y) VTeF.
But then if 7 € F U F’, we have by (5.9) and (5.7) that

dr((ck —€)+) <de((gk = 6)+) + dr((hy = 8)+).

Now

(5.10) (g —0)+ L (hx—=9).
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as g L hy by (5.8), and thus by Lemma 2.4 (ii),

de((gk — 0)4) +de((hi = 8).) = de((gi ~ 0)+ + (h — 8).)
= d,((gk +he - 0).)
= do((dx - 8).).

The second equality follows also from (5.10). Thus we have
d:((ck—¢€)y) <d((d - 98),) VreFuUF.

This inequality extends immediately to all 7 € T(A) because, since F is closed, every
7 € T(A) is a convex combination of elements in F and F’. Thus (5.3) also holds.
This concludes the construction of the two series Y po; cx and Y 5o, di satisfying (5.1),
(5.2), and (5.3) for the case that F and F’ are both nonempty.

The cases when F or F’ are empty are considerably simpler. Assume that F' = @
and hence F = T(A). Then d,((ax — €)+) < oo for all 7 by (2.7) and for every m,
d:((Xibj = 6)+) 1 co uniformly because | de(T(A)) | < co. Thus we can choose
a strictly increasing sequence of integers #; starting with 7y = 0, such that if we set
cx = ay and dj := Z;’:"nkil” bj, then

dr((ck —€)+) <d:((dx—6)+) V7eT(A), keN.

Then the series > 72 ¢k and Y 5o, dj satisfy conditions (5.1), (5.2), and (5.3).

Assume nextthat F = &, i.e., F = T(A), and by (iii) and (iv) choose 1, as in the first
part of the proof, so that d,((X72; aj —€)+) < d,((Z}EI bj—9).). By Lemma 2.4 (i),
we have for every m € N, (252, b; = 8), < X b+ (252, bi — 6. Since .77 b; €
A, it follows by (i) that (X72,, b; — 8)+ # 0. Since by Lemma 3.1,

n (o)

(i;nbi—she(i;nb,-—ah

in the strict topology, we can find a strictly increasing sequence 7y such that if we set
di =3 bj, then (di - 8)+ # 0. Notice that d;d; = 0 forall i # j. By (v) we can

j=ng—1+2
choose a strictly increasing sequence my, starting with m, = 0 such that

de(( 3 a —e),) <de((di - 0),) VreT(A).

Then set ¢ := Y. *

m
j:mk_

dr((ck —€)+) <d:((dx = 6)+) V7eT(A).

41 4 for all k and a fortiori, we have

In this case, too, the series Y 5o, cx and ¥ ¢, di satisfy conditions (5.1), (5.2), and (5.3).

Now if we have two series 2, cx and Yo, dj satisfying conditions (5.1), (5.2), and
(5.3), by the hypothesis that A has strict comparison of positive elements, we obtain
that (cx—€)4 < (dr—8)4 V k. Since Y 5o ¢k is bi-diagonal, both the series 34 cox and
>k Cak+1 are diagonal and hence, so are the series Y (c2x —€)+, 2k (Cak41—€)+. Since
> iy dx is diagonal, so are also the series Y dak, and Y dax41- Then by Proposition
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4.4, for every 0 < 8’ < § we have

(5.11) (Zczk—€)+ =Y (cak —€)+ S(Zdzk—5')+,
X

k

k
( ZC2k+1 —€)+ = Z(Czku —€)s < (Zdzku - 5,)+-
k k k

As a consequence,

( ZI: ar-2¢), = ( Zk: Cok—€), + (zkj Coke1 —€), (by Lemma 2.4 (i))
<( Ekj dy - 0"), @ ( gkj dak1 - 0")  (by (5.11), Lemma 2.1 (iv))
= ( ; di-9'), (since ; da L zkj dyka)
< (;bk—a')+ (since Y. dy < ;bk),
k
which concludes the proof. ]

For the rest of this section we focus on the case when the extremal boundary
0e(T(A)) is finite. Recall from (2.9) that F(B) := co{7 € 9.(T(A)) | B ¢ I} and that
by the finiteness of 9. (T(A)),

(5.12) F(B) =co{1€0.(T(A))|Bel,} ={reT(A)|Bel,}.

Lemma 5.2 Let A be a o-unital simple C*-algebra with |0¢(T(A))| < oo. Let
A, B e M(A), such that A € I(B) and d,(A) < d.(B) for all those T € T(A) for which
d.(B) < oo. Then for every € > 0, there are § > 0 and a > 0 such that

(i) di((A-€e)s)+a<d ((B-90):)<ooifreF(B);

(i) dr((B-8),)=ocoifreF(B).

Proof For every 7 € T(A) for which B ¢ I, by (2.6) there is a 8 > 0 such that
d.((B-9,),) = oo. Let

. {min{(s; |7€9.(T(A), BEL) if{red(T(A)), B{I} #2,
1 if {7€3c(T(A)), B¢ I} = 2.

Since 0. (T(A)) is finite, it follows that 8" > 0. A fortiori, d.((B—8"),) = oo for every
7€ {1€0.(T(A))| B¢ I} and hence, by the definition of F(B), for every 7 € F(B),
i.e., (i) holds for ¢&’.

Now assume that B € I, for some 7 € 9.(T(A)); hence A € I,.. By (2.6) we have that
d.((A-€)y) <ooand d,((B-8),) < oo for every d. In the case when d;(B) = oo,
we can find 87 > 0:

(5.13) d:((A-e€)+) <d((B-687)+).

By Lemma 3.2 d,((B - §)+) — d,(B). In the case when d.(B) < oo, we can use the
same fact and the inequalities d.((A - €)+) < d;(A) < d,(B) to find a §7 > 0 for
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which (5.13) also holds. Let

s o {min{(S’T’ |7€9.(T(A)), BeL} if{red.(T(A)|BelL} 42,
T if {1€d.(T(A))|Bel,} =o.

Again 8" > 0, and a fortiori, (5.13) holds if we replace 8, by 6"
In case F(B)' # @, let

a:=min{d,((B-0");) —d:((A-€);) | 1€ 0.(T(A)), Be I}
Then a > 0 and by (5.12) it is immediate to see that

d:((A-€);)+a<d.((B-8");) VreF(B).

Now set § := min{d’, 8" }. A fortiori, (ii) and the first inequality in (i) hold for 6.
The second inequality in (i) holds by (2.6). [ |

We are now in position to state and prove our main theorem.

Theorem 5.3 Let A be a o-unital simple C*-algebra with strict comparison of posi-
tive elements by traces and with | 0. (T(A)) | < co. Then strict comparison of positive
element by traces holds in NI(A).

Proof Let A,B € M(A), such that A € I(B) and d,(A) < d.(B) for all those T €
T(A) for which d,(B) < oco. Since strict comparison holds on A, we can assume
without loss of generality that B ¢ A. Since (B - ), — Bin norm as § — 0, there is
some &8’ > 0 such that (B-¢"), ¢ A. Lete > 0. By Lemma 5.2 we can choose §” > 0
and « > 0 such that

di((A-e)y) +a<d((B-8"),)<oo ifreF(BY,
do((B-8"),) = 0o if 7 € F(B).

For every 7 € F(B)’, B € I, by (2.10) and hence d,((B — v),) < oo for all v > 0 by
(2.6). Thus (5.14) holds also if we replace 8" with min{4’, 8" }. Notice also that then

(5.15) (B-0). ¢ A.

By Theorem 4.2 we can find bi-diagonal decompositions A = Y2 a; + ap and B =
>0, bi+bg, where the series converge strictly, a;, b; € A, (in fact they are in Ped(A)),
ajaj=0,b;bj=0for|i-j| >2,ag, by € Asqa, |ao| <€ and | byl < % Our next step is
to verify that the hypotheses of Lemma 5.1 are satisfied for the two bi-diagonal series
Y ai, Yoy by, the face F = F(B), and the scalars 2e, g, and a. First of all, notice
that |[F N 0e(T(A))| < |0e(T(A))| < oo and that the face F is closed as are all the
faces of T(A). Furthermore, pointwise convergence of affine finite-valued functions
on F' is necessarily uniform.

By Lemma 2.1 (ii) and (i),

(5.14)

@38, &0
(5.16) (B=0). < (X bi-7), < (Xbi-3).
i=1 i

i=1
(o]

(5.17) (Yai-2), <(A-e),.

i=1

https://doi.org/10.4153/CJM-2016-015-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-015-3

394 V. Kaftal, P. W. Ng, and S. Zhang

From (5.16) we see that (352, b; — g)Jr ¢ A, thus satisfying Lemma 5.1 (i).
By Lemma 2.4 (iii) and (5.14), for every m € Nand 7 € F,

& 5 S &, 9
o =de((Sbi-3).) < (R b= )) +dl(Zhi-5).).

Since d(( X745 bi - $),) < oo forall 7€ T(A) by (2.7), it follows that
(5.18) dT((ib,—gL):oo VieF, meN,

which satisfies Lemma 5.1 (ii).
From (5.14), (5.16), and (5.17) we have

(5.19) %«im—kﬁ)+mgu(ih—

i=1

g /
E)+) VteF.

Moreover, B — Y72, b; € A, thus for every 7 € F/, 2, b; € I, and hence by (2.6),
d. (X572, b; - g)+) < o0o. Thus Lemma 5.1 (iii) is satisfied.
By Corollary 3.4 (i), forall m e N

a(Sbi-3),) il

As stated above, the convergence is uniform on F’. Thus Lemma 5.1 (iv) is satisfied.
For all 7 € F’ we have B € I, hence A € I,. Since ay € A c I, it follows that
Y1 ai = A-ag € I,. By Corollary 3.4 (ii), d.((X 72, aj - 2¢)+) — O for every 7 € F’
and again the convergence is uniform on F’. Thus Lemma 5.1 (v) is satisfied.
Thus all the conditions of Lemma 5.1 being satisfied, it follows that

(2”'%%S(§h'jh'

n
i=m i

b,~—§)+) VreT(A).

oo
=m

By Lemma 2.1 (ii) we have

(A-5€), < (> a;—4e), and (Zbi—§)+53,
i=1 i=1
Thus (A - 5¢), < B for every € > 0, and hence A < B. ]

6 Strict Comparison: The Quasicontinuous Scale Case

In the previous section we have shown that if a o-unital simple C*-algebra with strict
comparison of positive elements by traces has finite extremal boundary, then strict
comparison of positive elements by traces holds in M(A) (Theorem 5.3). In this sec-
tion we prove that the same result holds in the more general case when the algebra
has a quasicontinuous scale (see Definition 2.10).

Now we start with the following lemmas.

Lemma 6.1 Let A be a simple C*-algebra, K ¢ T(A) a closed set, and A < B €
M(A),. If B |g is continuous, then A | also is continuous.
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Proof AsB |x= A |x +B - A |k and since the first function is continuous and the
second two functions are lower semicontinuous, it is immediate to see that both must
be continuous. |

Lemma 6.2 Let A be a o-unital simple C*-algebra, K c T(A) a closed set, A,B €
M(A), with A |k continuous, and assume that d.(A) < d.(B) for all T € K for which
d.(B) < co. Then for every € > 0, there exist § > 0 and o > 0 such that

d.((A-€),)+a<d,((B-98),) V7TeK.
Furthermore, if B |k is continuous, then d((B - 8),) < oo forall T € K.

Proof Assume without loss of generality that |A|| = 1 and let ¢, be the function
defined in (2.1). Then y(e,11(t) < ¢e(t) < min{ y(o,17(#), £}, and hence

(6.1) Ria-e), < ¢e(A),

(6.2) pelA) < 2,

(6.3) ¢ (A) < Ra.

From (6.1) we have

(6.4) (AN (1) > dy((A=c).) VreT(A).

N

From (6.2) and Lemma 6.1 it follows that ¢.(A) |k is continuous. From (6.3) it follows
that ¢.(A)(7) < 7(R4) = d.(A) < d,(B), with the last inequality being strict when

d,(B) < oo. As a consequence, the function (d(B) —¢.(A)(7)) |k is strictly positive
lower semicontinuous, and hence

o= %min{ d.(B) - m(‘r)) ik} >0.

Let B, = (B - %)Jr Then 0 < B, 1 B (in norm) and hence d,(B,) t d,(B) for
every 7 € T(A). Since all the functions d.(B,) are lower semicontinuous, by the
compactness of K there is an n such that d.(B,) > m(r) + a V1 € K. Thus for
0:= % we have

S

d:((B=8),) 2> e(A) (1) +a>do((A—€)) +a VreKk,

where the last inequality follows from (6.4).

If in addition B is continuous on K, then by the same reasoning as for A, for every
d>0wehaved,((B-0)+) < ¢s(B)(7) < %E(T). Thus d.((B - 8),) < oo for every
TeK. u

The previous two lemmas permit us to extend Lemma 5.2 to the case when A has
quasicontinuous scale.

Lemma 6.3 Let A be a o-unital simple C*-algebra with quasicontinuous scale. Let
A, B e M(A), such that A € I(B) and d,(A) < d.(B) for all those T € T(A) for which
d.(B) < oo. Then for every € > 0 there are § > 0 and a > 0 such that

(i) di((A-€)s)+a<d((B-0);)<ooifreF(B),

(i) dr((B-0),) = oo if T € F(B).
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Proof Assume without loss of generality that |A| < 1, | B|| < 1. For every 7 € T(A)
for which B ¢ I, by (2.6) there is a &/, > 0 such that d,((B - 8.),) = 0. Let

5 o {min{6; | 7€ Fo, B¢1,} if{reFu, B¢1,}#0,
1 if {1€Fo, B¢ I,} = 2.
Since Fo is finite, 8" > 0 is finite, and a fortiori, for every 7 € {7 € Fo, | B ¢ I, } and
hence for every 7 € co{t € Fo, | B ¢ I}, it follows that d,((B — 8"),) = oo. Since by
Lemma 2.11 the latter set coincides with F(B), we conclude that (ii) holds for 8" and
hence for any 0 < § < §".
Now assume that B € I, for some 7 € Fo,. Hence A € I,. By (2.6) we have that
d.((A-€)y) <ooand d,((B-8),) < oo for every §. Since d,((B - 8)+) — d.(B)
we can find 67 > 0 such that

(6.5) d:((A=-¢€)+) <d((B-67)+).
In the case when d.(B) = oo, this is obvious, and in the case when d,(B) < oo, this
follows from the inequality d.((A —¢€).) < d.(A) < d,(B). Let

s e min{8? | 7€ Fo, Be1,} if{r€Fs|Bel;}+a,

1 if{reFo|Bel,} =02.
Again 8" > 0, and a fortiori, (6.5) holds if we replace 87 by §”.
If{t€Fo|Bel,} #J,let

a :==min{d,((B-6")+) - d.((A-¢€);)| 7€ Fo, Be I, }.
Then a’ > 0 and
(6.6) d.((A-¢€);)+a”" <d.((B-8")y) Vteco{reFs |Bel,}.

Since A, B < Iy(4) and since S|r_ is continuous by hypothesis, the functions Al F
and B|p,_ are also continuous by Lemma 6.1. Thus by Lemma 6.2 there are 6"’ > 0
and a’”’ > 0 such that
(6.7) d((A-e))+a" <d.((B-8"),)<o0 VreF.,.

Now set § := min{d’,8”,8”} and a := min{a”,a’’}. It is obvious that (6.6)
holds if we replace a’’ and 8" by a and &, respectively. Also, by (2.6) we have that
d.((B-9");) <ooforall 7€ co{r € Foo | B € I }. Similarly, (6.7) holds if we replace
o’ and 8" by « and &, respectively. Thus

(6.8) d((A-¢€)y)+a<d,((B-68);)<oo Vreco{reF,|Bel,JUF..

Since by Lemma 2.11 F(B)’ = co{7 € Fo | B € I;}+F.,, it is immediate to see that
(6.8) holds for all 7 € F(B)’, that is, (i) holds. [ |

Lemma 6.4 Let A be a g-unital nonunital simple C*-algebra, P € M(A) a projec-
tion, K c T(A) a closed set such that P | is continuous, and let Y21 Aj be the strictly
converging sum of elements Aj € (P M(A)P),. Assume furthermore that there exists
an increasing approximate identity {e, } ooy for (PAP), with ey1e, = e, foralln e N
such that for all m > 1, there exists N € N with e, 32725 Aj = 0. Then for every § > 0,

(i) dT((Z;’in Aj—-6)4) = 0 uniformly on K,
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(i) d:((Xj1Aj=0)+) = d:((X72Aj - 8)+) uniformly on K.

Proof Assume without loss of generality that | ¥.7%; Aj| < 1and let e > 0 be given.
(i) Since d-((X32, Aj - 6)+) < d:(X32, Aj) for every n by Lemma 2.3, it is enough
to prove the statement for § = 0.

Since e, has alocal unit, it belongs to the Pedersen ideal and hence by the definition
of the topology on T(A), &, is continuous. As &, 1 P, and P | is continuous, by Dini’s
theorem the convergence is uniform on K. Thus choose m such that 0 < P — &, < e
on K. Now choose N such that e,, Y72y A = 0. Then for every n > N

oo

S Aj=(P-en)( D Aj)(P—em)<(P—en) <P-ep.
j=n n
Since RZ}’; A; <Rp_, < P—ey 1, because (P —ep1)(P—en) = (P~ en), we thus
have for every 7 € K that d- (X2, Aj) < 7(P - ep-1) < €, which proves (i).
(ii) By Lemma 2.3 and Lemma 2.4 (iii) we have, for all n > 1and 7 € K, that

(54-9),) <l(54,-6).,)
<d((341-9),) vl ¥ 4)

j=n+l

Thus (ii) follows from (i). |

Remark 6.5 The condition that for every n there exists an N € N such that
en Z AJ' =0
j=N

cannot be removed for § = 0. Consider for instance an element b € A, such that
|b| = 1and R, = P and let A, := 5:¢y/,(b) (see (2.1). Then ¥{° A, converges in
norm, hence strictly, but since Ry 4, = Ry, for all n, it follows that d.(¥,° A,) + 0.

Set A = Z;;A j- Then by Lemma 6.1, A is continuous on K. Notice that if we
substitute the continuity of P | with the weaker condition of the continuity of A |,
we still obtain uniform convergence on K for every é > 0. Indeed, by Dini’s theorem,
(X7 Aj) = 0 uniformly on K and hence for every § > 0 so does

4((24-9).) = 57(24).

However, this convergence does not hold for § = 0 as we see by considering the
case of A := B®X with B unital and simple, K = T(A), P = Ly¢(a), Ak = 3¢ 18® ek
and A := ¥ Ag. Then A(7) = 1for all T € T(A), hence it is continuous, and for all
mwehave lg ® €,y S Ar =0, but d, (X7 Ax) = oo forall T € T(A) and n € N.

Theorem 6.6  Let A be a o-unital simple C* -algebra with strict comparison of positive

elements by traces and with quasicontinuous scale. Then strict comparison of positive
element by traces holds in M(A).

https://doi.org/10.4153/CJM-2016-015-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-015-3

398 V. Kaftal, P. W. Ng, and S. Zhang

Proof Let A,B € M(A), such that A € I(B) and d,(A) < d.(B) for all those 7 ¢
T(A) for which d;(B) < co. Lete > 0. Assume without loss of generality that || A| < 1,
|B|| <1, and that B ¢ A. Then

(6.9) (B-8")s ¢ A

for some 8’ > 0. By Lemma 6.3, there is an a > 0 and 6" > 0 such that

(6.10) d:((A-€);)+a<d((B-8");) <00 V1 e F(B)
d:((B-68")y) =00 V1 e F(B).

Clearly, (6.9) and (6.10) hold if we replace ¢’ and ¢” with § := min{d’, 6" }.

Since we have obtained the same conditions as in (5.14) and (5.15), now we can
proceed as in the remainder of the proof of Theorem 5.3. Thus we decompose A and
B into bidiagonal series:

oo oo 6
A:Zdi+(lo and B:Zb,‘+b0, Ha0H<e,Hb0H<Z.

i=1 i=1
Here we will also use the fact that both bidiagonal series can be chosen so that for every
n € N there is an N € N for which e, Y% ax = e, > bx = 0 for some approximate
identity {e, } satisfying the condition e, e, = e, for all n (see Theorem 4.2). Then
we proceed to verify that the hypotheses of Lemma 5.1 are satisfied for the two bi-
diagonal series Y ;c; a;, 301 b;, the face F = F(B), and the scalars 2, g, and a.

By (2.11), F(B) N 0¢(T(A)) c Fe and hence it is finite. By Lemma 2.11, F(B)’
is closed. By the same reasoning as in the proof of Theorem 5.3, we obtain (5.16),
(5.17), (5.18), and (5.19), which show that conditions (i), (ii), and (iii) of Lemma 5.1
are satisfied.

Finally, conditions (iv) and (v) are also satisfied, because by Lemma 6.4 applied to
P = 1y(x) and K = F[, the convergence of both limits is uniform on F,. Further-
more, by Corollary 3.4, the convergence is pointwise on {7 € Fo, | B € I} and by
the finiteness of Fe, it is uniform on co{r € Fe, | B € I;}. Thus all the conditions
of Lemma 5.1 are satisfied and the rest of the proof of Theorem 5.3 applies without
change. ]

In a future paper, we will study the case when the extremal boundary is infinite, and
we show that for a large class of C*-algebras A, strict comparison of positive elements
by traces holds in M(A ® X) ifand only if | 0. (T(A)) | < oo, which for stable algebras
is equivalent to the quasicontinuity of the scale. That class includes simple separable
C*-algebras of real rank zero and stable rank one with strict comparison of positive
elements by traces and simple separable finite Z-stable C*-algebras.

7 Positive Linear Combinations of Projections

It is well known that every element of B(H) is a linear combination of projections.
The same property holds for all von Neumann algebras without a finite type I direct
summand with infinite dimensional center [17]. However this property may fail even
for C*-algebras of real rank zero [25, Proposition 5.1].

In the process of investigating linear combination of projections in C*-algebras,
we found it convenient to consider the following stronger condition.
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Definition 71 A C*-algebra A has a LCP constant V if every selfadjoint element
a in A is a linear combination of N projections p; € A with a = YN jp;j for some
N €N, and }; € R, satisfying the condition Y1' |A;| < V||a|. Furthermore if N can be
chosen independently of the element a, we say that A has an LCP pair of constants V
and N.

The LCP constant V was first introduced in B(H) by Fong [16].
C*-algebras that have LCP pairs (V, N) of constants include the following.

* von Neumann algebras without a finite type I summand with infinite dimensional
center. More precisely, the following estimates for (V, N) are implicit in [17].
- If A is a properly infinite von Neumann algebra, then (8, 6) is an LCP pair.
- If Ais a type II; von Neumann algebra, then (14,12) is an LCP pair.
- If A is the direct sum of m matrix algebras, then (m + 4, m + 4) is an LCP pair.

* unital properly infinite C*-algebras [21, Propositions 2.6, 2.7];

* unital simple separable C*-algebras with real rank zero, stable rank one, strict com-
parison of projections, and finite extremal tracial boundary [25, Theorem 4.4];

* corners PM(A ® X) P with P a projection in M(A ® X) for a unital simple sep-
arable C*-algebra A with real rank zero, stable rank one, strict comparison of pro-
jections, and finite extremal tracial boundary [26, Theorem 4.4].

Estimates of LCP pairs (V, N) for C*-algebras are mostly missing or very far from
sharp (“horrendous” according to Marcoux [35]). Suffice it to quote the case when
A is a unital simple C*-algebra of real rank zero with a unique tracial state and with
strict comparison of projections by traces. Then by [34, Remark 5.3], every element
of a € A can be written as a linear combination of 113 projections and the coefficients
are bounded by 9,537, 600 a|. Thus (9, 537, 600, 113) is an LCP pair!

A linear combination A = Y[ a;p; with projections p; € A and scalars a; > 0 will
be called a positive linear combination of projections or PCP for short. This notion was
studied in [21,23,25,26], and, in particular, we proved that if a C*-algebra A has such
LCP constants and if furthermore A, is the closure of PCPs in A, then every positive
invertible element of A is a PCP [21, Proposition 2.7].

Thus if both conditions hold for all corners pAp of A, then all positive locally
invertible elements are PCP. A key tool for the further investigation of PCP elements
is the fact that a direct sum of projection and of a “small” positive perturbation is also
PCP [21, Lemma 2.2].

We can obtain the following result under less restrictive conditions.

Lemma 7.2 Let A be a C*-algebra, p € A be a projection such that the corner algebra

pAp has LCP constant V.

(i) p+bisaPCP foreveryb = b* € pAp with |b| < . If the corner algebra pAp
has an LCP pair of constants V and N, the number of projections needed in the
PCPis N +1

(ii) p+bisaPCPforeverybe A, withb = qb = bq for some projection q € A such
that q L p with q < p and |b| < X. Furthermore, if pAp has an LCP pair of
constants V and N, p + b can be decomposed as a PCP of N + 4 projections.
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(iii) p+ bisa PCP for every b € A, with b = qb = bq for some projection q € A such
that q L p with m{q] < [p] for some m e Nwith m > |b||(1+ V).

Proof (i) By hypothesis we can find N real numbers A; and projections q; € A with
< psuchthatb = Zf’zl Ajq; and Zfil |Aj| < V[b] < 1. Thus
prb= 3 Aigi+ 3 (A (p-a;) +(1+ 30 A;)p
1,20 2;<0 ;<0

isa PCP of N + 1 projections.
(ii) Assume without loss of generality that b # 0. Notice that V|b|| < 1 and let
B =i VHbH Then1< f < HbH Following the proof of [21, Lemma 2.9],letv € A be a

partial isometry such that v*v = g and vv* = p’ < p. Define
r1:= Bb+v\/Bb — (Bb)% +/Bb — (Bb)2v* + p' - Bvbv*,
ry = Bb = v\/Bb - (Bb)? = \/Bb — (Bb)>v* + p’ — Bvbv*.

Then r; and r; are projections in A and b = E(rl +13) — p' + fvbv*. Hence

p+b=21/3(7’1+72)+;(P—P,)Jr(l_/lg)(fH—vaj)'

1=

vby vby* b : vbv*
Now 0 < 1b1/;3 e p’Ap' c pApand || 1f)1//3 | = % = <. Then by part (i) p + 17b1//3

PCP, and hence so is p + b. Furthermore, if pAp has an LCP pair of constants V and
N, by part (i) p + l"_bl‘;; can be decomposed as a PCP of N + 1 projections and hence
p + b can be decomposed as a PCP of N + 4 projections.

(iil) Decompose p = @, p; into projections p; € A with g < p; for each i. Then
p+b= Z:’ll(pi + #b) . For each i it follows from part (ii) that p; + b is a PCP and
hence sois p + b. u

isa

Our next lemma permits us to embed isomorphically certain o-unital hereditary
sub-algebras of M(A ® K) into unital corners of M(A ® X) with control on the “size”
of the corner. When B e M(A ® X), we use the following notations.

* her(B) := B(A ® X)B hereditary subalgebra of A ® X,
* Her(B) = BM(A ® X) B hereditary subalgebra of M(A ® X).

Lemma 73 Let A be a C*-algebra and B € M(A ® X), be such that the heredi-

tary algebra her(B) of A ® X, has an approximate unit { f;} consisting of an increasing

sequence of projections. Then there is a partial isometry W € (A ® K)** such that

(i) W*W =Rp,

(i) WW*eM(A®X),

(iii) WBe M(A®X),

(iv) WHer(B)W* ¢ RM(A ®X) R where R := WW*.

(v) TheontomapHer(B) 5> X - ®(X) := WXW™* € Her(®(B)) is a *-isomorphism
of hereditary algebras.

Proof Lete;:= f; — fj1 (with fo := 0) and let I(aex) = Y.1° E; be a decomposi-
tion of the identity into a strictly converging series of mutually orthogonal projections
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Ej ~ Iy(agx)- As ej < Ej, there are partial isometries v; € A ® X such that v;vj =e;j
and vjvi < E;. Let W := ¥ v;. The series converges in the strong topology of
(A ®X)** because both the range projections of the partial isometries v; are mu-
tually orthogonal and so are the range projections of the partial isometries v;. Then
W*W = ¥.1° e; = lim; f; = Rp and the convergence is again in the strong topology
of (A ® X)**. On the other hand, WW* = ¥:1° v;v7 in the strict topology because
vjv; < Ejand };” E; converges strictly. Thus the projection R := WW™ belongs to
M(A®XK).

Next we show that WB € M(A ® X). Let a € A® XK. Then Baa*B ¢ her(B).
Hence fyBa — Ba in norm, or equivalently }{' e;Ba converges in norm to Ba.
Since We; = v; for all j, we have W Y.{'e;Ba = Y[ v;Ba - WBa € A ® K since
the convergence is in norm. On the other hand, since ¥;° v;v} converges strictly,
la¥y vivill » 0forn — oo, and hence [[a 337 v;v; W| = [[a ;7 v;| — 0. Thus
aW € A ® X, and hence aW B € A ® K. This concludes the proof of (i)-(iii).

Next BW* € M(A ® X). Hence WBM(A ® X) BW* c M(A ® K) and hence
W Her(B)W* ¢ RM(A ® X) R, i.e., (iv) holds. Finally, proving (v) is routine. ~ W

Remark 74  The above result can be seen as the construction of a projection P €
M(A ® X) that is equivalent to the open projection Ry in the sense of Peligrad and
Zsido [43] (see also [39]).

A has real rank zero if and only if every hereditary subalgebra of A has an approx-
imate identity of projections [5].

Proposition 75 Let A be a simple separable C*-algebra with real rank zero, sta-
ble rank one, strict comparison of projections, and finite extremal boundary. Let P €
M(A®K)NA®XK be a projection. Then for every B € (P M(A ® X) P*), such
that T(Rp) < oo for all those T € T(A) for which T(P) < oo, it follows that P + B is a
PCP.

Proof Let 0.(T(A)) = {7;}] and notice that F(B)" = {r € T(A) | 7(P) < oo}.
Since A has real rank zero and Rjp is an open projection, R has a decomposition
Rp = @;° r; into the sum of mutually orthogonal projections r; € A ® X converging
strongly in (A ® X)**. By [26, Theorem 5.1], PM(A ® X) P has an LCP constant V.
Let m > | B[ (1+ V') be an integer. Since 7(@;” ;) < oo for all those 7 € 9. (T(A)) for

which 7(P) < oo and since there are only finitely many extremal traces, there exists a
k such that (@7’ r;) < = 7(P) forall € F(B)'. Let

k-1 oo
B':=B"(@r;)B"*> and B":=B-B =B"*(®r;)B"%
1 k
Then B’ ¢ A ® K, and B” e M(A ® X),. Moreover,
k-1 oo
Rp < & rj and Rpr < EBT‘J'
1 k
where the Murray-von Neumann subequivalences < are in (A ® K)**. Thus

t(Rp) < 00 V1 € 3o(T(A)) and 7(Rpr) < %T(p) vt e F(B).

https://doi.org/10.4153/CJM-2016-015-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-015-3

402 V. Kaftal, P. W. Ng, and S. Zhang

By [25, Theorem 6.1], B’ is a PCP. Thus it remains to prove that P + B” is also a PCP.
By Lemma 7.3 there is a partial isometry W € (A ® X)** with W*W = Rpn,
R:= WW* e M(A ® X) and that induces an isomorphism

Her(B") 5 X - ®(X) := WXW"* ¢ Her(®(B")) c RM(A ® KX)R.
Notice that R ~ Rp~ in (A ® K)** and hence

7(R) = 7(Rg) < 7(Rp) = T@ r) < T(P) VT e T(A).

Thus if 7(P*) < oo, then 7(@;° rj) < oo, and hence 7(Rp») < (@ rj) < T(P*).
By strict comparison of projections in M(A ® X) (see [26, Theorem 3.2]), or as a
consequence of Corollary 2.9 and Theorem 5.3, it follows that R < P*. Without loss
of generality we can assume that R < P*. Now let W’ := P @ W. Then the map

Her(P®B")> X - ®'(X) = W' XW" € Her(®'(P @ B"))

is a *-isomorphism. Now ®'(P @ B”) = P & ®(B") = P @ RO(B")R. Furthermore,
7(R) < L7(P) forall 7 € F(B)' and since P ¢ A ® K, by the strict comparison of
projections in M(A ® X), m[R] < [P]. Then ®'(P@® B") isa PCP by Lemma 7.2 (iii).
Since @' is an isomorphism of hereditary algebras, P + B” is also a PCP and hence so
is P+ B. |

Next we need some results on principal ideals.

Lemma 7.6 Let A be a real rank zero C*-algebra such that M(A ® X) has only
finitely many ideals. Then every ideal of M(A ® X) is generated by a projection.

Proof Let {Ji}] be the collection of all the ideals of M(A ® X), including the zero
ideal. Let ] be a nonzero ideal, and let S := {k | J ¢ Ji}. Notice that S is nonempty.
Since by [51, Theorem 2.2] every ideal in the multiplier algebra of a real rank zero
algebra is the closed linear span of its projections, for every k € S there must be a
projection Py € J  Ji. Let P := @ycs Px. Then P € J and hence I(P) c J. Assume by
contradiction that I(P) # J, hence J ¢ I(P), and hence I(P) = Ji for some k € S, a
contradiction, since P ¢ Ji because Py ¢ J. [ |

By [44, Theorem 4.4] (see Theorem 2.8) the conditions of the above lemma are sat-
isfied if A is simple, unital, with real rank zero, strict comparison of positive elements
by traces, and finite extremal boundary. But in that case we can say more.

Proposition 7.7  Let A be a simple unital C*-algebra with real rank zero, strict com-
parison of positive elements by traces, and with finite extremal boundary, and let T €
MA@ K), NA®X. Then there is a § > 0 such that

(i) I(T)=I((T-8):)

(ii) there is a projection P such that I(P) = I(T) and T > §P.

Proof The case when A ® X = X, and hence M(A ® X) = B(H), follows from
standard operator theory, so assume without loss of generality that A is nonelemen-
tary.
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(i) By definition, for every 7 € F(T) n 0.(T(A)), T ¢ I,; hence by (2.6), there
isa &, > 0such that (T —68;), ¢ I;. Let § := inf{d; | 7 € F(T) nd.(T(A))}.
By the assumption that d.(T(A)) is finite, § > 0. Thus (T - ), ¢ I, forall 7 €
F(T)Nn0e(T(A)). It follows that we have the inclusion F(T) c F((T - §).). On the
other hand, (T - §), < T. Henceif 7€ F((T - 8)+) N 0e(T(A)),i.e, (T-9), ¢ 1,
then T ¢ I, i.e., 7€ F(T). Thus F((T - 8),) c F(T), whence F((T - 8),) = F(T),
and hence F((T - 8),)" = F(T)'. By (2.13), I((T - 8),) = I(T).

(ii) By (i), I((T = 8)+) = I(T), and hence

d.((T-98),)<ooforreF(T),
d.((T-6),)=ooforteF(T).

By Lemma 7.6, there is a projection Q € M(A ® K) such that I(Q) = I(T). By
[54, Theorem 1.1], for every n € N we can find a projection Q’ such that @2 Q' =
Q. Notice that I(Q’) = I(Q). By choosing n large enough, and using the fact that
|0e(T(A))| < oo, we obtain 7(Q") < d,((T - §),) forall T € F((T - §),). Then
by strict comparison of positive elements in M(A ® X) (Theorem 5.3) it follows that
Q' = (T - §).. Thus by Lemma 2.5, there is a projection P € M(A ® X) such that
T >d8Pand P~ Q, and hence I(P) = I(Q) = I(T). [ |

We list here a property we will need in the proof of our the next theorem

Lemma 7.8 Let B be a C*-algebra. For every g € C([0,1]) the function B 5 b
g(b) is uniformly continuous on the positive part of the unit ball of B.

Proof Let a,b be in the unit ball of B and let € > 0. Find a polynomial p, such
that g - p, | < 5 Then [g(a) - pu ()] < & and [g(b) - p, (b) | < £. Moreover,
lpn(a) = pa(b)| < clla - b| where p,(t) = ¢ a;t/ and ¢ = ¥} jlaj|. Indeed, since

la" 5" < lla"la- bl +[a"2[[b]]a b+ + 6" [[a - b] < n|a-b]

and hence
n n

[pn(a@) = pu (D) = | 2 aj(a’ = b)) < Y lajl @’ = b7] < 3 jlajl |a - b].
1 1 1
Set § = 5. For every |a - b| < & it follows that | p,(a) - p,(b)|| < 5. Thus
Ig(a) - g(b)] <e. u

Theorem 7.9 Let A be a simple separable C*-algebra with real rank zero, stable
rank one, strict comparison of projections, and finite extremal boundary, and let T €
M(A®X),. Then T is a PCP if and only if T(Rr) < oo for all T € F(T)', that is, for
all T for which T € I.

Proof We first prove the necessity. Assume that T = %, A;P; for some A; > 0
and projections P; € M(A ® X) and assume that T € I, for some 7 € T(A). Let
R=V{Pje(A®XK)*™. Since P; < %jT, it follows that P; € I, and thus 7(P;) < co.
Also, P; < Ry for all j, hence R < Ry. On the other hand RT = T, and hence Rt = R.
Then 7(R7) = 7(R) < Y.f 7(P;) < oo.
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Now we prove the sufficiency. If T € A ® K, the result was proved in [25, The-
orem 6.1]. Thus assume that T ¢ A ® X and further that |T|| < 1. By Proposition
7.7, there isa 0 < § < 1 and a projection P € M(A ® X) for which I(P) = I(T) and
T > 6P. Assume further that 6 < g. Since P ¢ A ® X, by [54, Theorem 1.1 (ii)] P can
be decomposed into the sum P = P; + P, of two projections P; ~ P,. Then for i = 1,2

7(P;) < oo for 7 € F(T)’,
7(P;) = oo for T € F(T),
and hence I(P) = I(P;) = I(T). Nowset T' = T — P = T — 8P + 2P, + §P,. Since

T=T + gPl, it is enough to prove that T’ is a PCP. Notice that Rr» < Ry. Let f; and
f2 be the continuous functions defined by

t te [%%5], 0 te[0,24],
f(t) =140 te[g&l], and fo(t) =1t te[26,1],
. 25 5
linear e [28,326], linear te[30,320].
Now consider the continuous functions g; and g, defined by
% tefo,]u[Z,1], 0 te0,%2]u[2,1],
qi(t) = B t:g, and g (t) =46 t=4,

linear elsewhere, linear elsewhere.

Then for all ¢ € [0,1],
(7.1) fi(t) + fo(t) = ¢,

(7.2) gi(t) < fi(t) and (1) < fo(1),
(73) @S0 =0 and g(0fi(1) =0,
(7.4) fi(t) > g where g1(t) #0,
(75) fa(t) > % where g,(¢) #0.

Since the functions g and g, are both continuous on [0, 1], by Lemma 7.8 they are
uniformly continuous on the set of positive contractions. Thus there is an integer n
such that | g;(A) - gi(B)| < % whenever 0< A<1, 0<B<1land [A-B| <1

Reasoning as in the first part of the proof, we can subdivide the projections P; and
P, into an orthogonal sum of n projections P, = 3.} P;, jand P, = TP, j such that
I(P;j) =I(T)foralli=1,2and 1< j < n. Then

oA 5
T :Z(;(T_6P)+EP1’J+8P2’])

1

Thus it is enough to prove that for every pair of projections Q; L Q,, with Q; < Rr,
and I(Q;) = I(T) for i = 1,2, we have that the positive element

T" = l(T—(SP) + éQ] +6Q2
n 2
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is a PCP. Notice that Rt~ < Rt. Now
é é )
g(FQ+8Q) =2Q and g(SQi+0Q) =0Q,.

Since | (T - 8P)| < 4, it follows that
5 . 5 5
a1~ Sl - L) - s Su s 502) | <

Then [ 26,(T”) - Q] < 3 and by Lemma 2.1 (ii), Q1 = (Q1— 1)+ < 2g1(T”). Hence
Qi = &1(T"). As a consequence and by (7.4), there is a projection Q] < Rg () <
ﬁfl(T”) with Q] ~ Q; and hence I(Qy) = I(T). Similarly, there is a projection

Q3 < Ry (1) < Wl/()fz(T”) with Q) ~ Q, and hence I(Q5) = I(T).
Notice that T" = fi(T") + f2(T") by (7.1). Then

1= (A1) - Q) + Q) + (A1) - 2a1) +30)

is a decomposition of T” into the sum of two positive elements. From (7.3), it follows
that g;(T") f2(T") = 0 and hence Q; L Ry (1. Moreover, (R, () < T(R1) < 00
forall 7 € F(T)" and hence for all  for which 7(Q3) < co. Similarly Q] L Ry, (7+y and
T(Rg, (7)) < oo for all 7 for which 7(Q[) < oco. Thus both summands of T" satisfy
the conditions of Proposition 75 and hence are a PCP, which concludes the proof.

|
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