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Abstract. With the advent of wide-field surveys, cosmology has entered a new golden age of
data where our cosmological model and the nature of dark universe will be tested with unprece-
dented accuracy, so that we can strive for high precision cosmology. Observational probes like
weak lensing, galaxy surveys and the cosmic microwave background as well as other observa-
tions will all contribute to these advances. These different probes trace the underlying expansion
history and growth of structure in complementary ways and can be combined in order to ex-
tract cosmological parameters as best as possible. With future wide-field surveys, observational
overlap means these will trace the same physical underlying dark matter distribution, and extra
care must be taken when combining information from different probes. Consideration of probe
combination is a fundamental aspect of cosmostatistics and important to ensure optimal use of
future wide-field surveys.
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1. Introduction
In recent decades, complementary observational cosmological probes have contributed

to building our currently accepted standard model of cosmology: a universe dominated
by a mysterious dark energy required to explain its acceleration and with most matter
being in the form of yet another mysterious component called dark matter. The matter-
energy densities (ΩDE, ΩDM, etc . . . ) have been studied quantitatively for several decades,
often referred to as “precision cosmology” (Dicke et al. (1965)). However, this picture
of our Universe leaves room for several open questions: 1) on the nature of dark energy
and 2) the nature of dark matter, 3) on understanding the initial conditions of the
Universe and 4) on testing whether Einstein’s theory of General Relativity is the correct
prescription for gravity on cosmological scales. Answering these questions requires new
physical parameters to be considered.

To answer these open questions, cosmologists have access to two fundamental probes:
the expansion history of the Universe and the growth of structures. In practice, these can
be observed through several observational probes. At low redshifts, weak gravitational
lensing, galaxy clustering (Albrecht et al. (2006), Peacock et al. (2006)), as well as strong
lensing and other observables have been used and are promising tools for further experi-
ments. At high redshift, the cosmic microwave background has been studied extensively
with COBE (Bennett et al. (1990)), WMAP (Bennett et al. (2013)) and Planck (Planck
Collaboration (2011)) as well as other smaller scale experiments. Cross-correlation of low
and high redshift observables have also been used to further constrain our cosmologi-
cal model, as for example with the integrated Sachs-Wolfe (ISW) effect (Sachs & Wolfe
(1967)).

With the advent of wide-field surveys, observational overlap means that different ob-
servational probes will trace the same physical underlying dark matter distribution and
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extra care must be taken when combining information. This consideration of probe com-
bination methods is a fundamental aspect of reaching precision and accurate cosmology.

2. Forecasting with the Fisher Information Matrix
In order to discuss the constraining power of different observational probes and how

best to combine them, we consider the Fisher Information Matrix (FIM).

2.1. Fisher Information Matrix (FIM)
It is possible to forecast the precision with which a future experiment will be able to
constrain cosmological parameters, by using the FIM (for a detailed derivation of the
following see Tegmark et al. (1997) or Dodelson (2003)). This method requires only
three fundamental ingredients:
• A set of cosmological parameters �θ for which one wants to forecast errors, and

assumed values of these for a true underlying universe. For example, this could be a set
of parameters �θ = (ΩDE , w0) for which one can assume: Ωtrue

DE = 0.75, wtrue
0 = −1.”

• A set of n measurements of the data �x = (x1 , x2 , ..., xn ), say the gravitational weak
lensing angular power spectrum CGG (�) over a range � = 1...n, and a model for how the
data depend on cosmological parameters, i.e.: CGG (�) = CGG (�, �θ)

• An estimate of the uncertainty on the data ΔCGG (�), which may depend on the
given experiment (instrument noise, shot noise, etc...) as well on the data estimator
(e.g., cosmic variance).

The FIM is defined by:

Fαβ =
〈

∂2L
∂θα∂θβ

〉
, (2.1)

where L = − ln L and L = L(�x, �θ) is the likelihood function or the probability distribution
of the data �x, which depends on some model parameter set �θ. If the data are correlated,
the Fisher matrix then this might instead be the inverse of the covariance matrix between
data points. In this chapter, I only consider uncorrelated data points.

The uncertainty on the parameter θα can be estimated directly from the FIM and has
been shown to obey:

Δθα � 1√
Fαα

, (2.2)

if all other parameters are known. This is known as the Cramér-Rao inequality. This is
the key strength of the FIM forecast method, in that it places a solid lower limit on the
parameter uncertainties, if the underlying probability distribution L(�x, �θ) is Gaussian. If
the parameters �θ also have Gaussian distribution around the fiducial value, then:

Δθα =
1√
Fαα

, (2.3)

when all the other parameters are fixed.
If the vector of parameters �θ is allowed to vary, then the uncertainties for each param-

eter can still be obtained, and obey:

Δθα �
√

(F−1)αα , (2.4)

where F−1 is the inverse of the FIM. In this case, the uncertainty for θα has been obtained
by implicitly marginalising over the other parameters. An unmarginalised estimate of the
uncertainty of θα would be 1/

√
Fαα .
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By assuming the errors on the spherical harmonic estimator CGG (�) are Gaussian,
then:

F =
〈

∂L
∂θα∂θβ

〉
=

1
2

〈
∂2χ2

∂θα∂θβ

〉
, (2.5)

since L = − ln L = 1
2 χ2 . Using the definition of χ2 :

Fαβ �
∑

�

1
(ΔCGG )2

∂CGG

∂θα

∂CGG

∂θβ
, (2.6)

where CGG implicitly depends on � and there is no covariance between the data points.

2.2. Figure of Merits (FoM)

In the context of future wide-field survey optimisation, it is often useful to have a single
quantity or Figure of Merit (FoM) in order to compare the constraining power of different
surveys or survey configurations. If one is interested in dark energy parameters, one can
use the dark energy FoM:

FoMDE =
1

σw 0 σwp

, (2.7)

where σw 0 and σwp
are the marginalised errors, and wp is the dark energy equation of

state parameter at the pivot redshift.
In order to compare the constraining power across different sectors of the cosmological

model, one can use a more general FoM which encompasses information from several
cosmological parameters, i.e. :

FoMTOT ≡ ln
(

1
det (F−1)cosm

)
. (2.8)

3. Observables vs. Probes
3.1. Distinction between an observable and a probe

It is useful to state the distinction here between an observable and a probe, with a
probe relating to a physical effect and an observable being independent of any model.
Often different probes are folded into a single observables, and different observables can
fundamentally measure a single probe. As an example, different observables are:
• ε: galaxy ellipticities,
• n: galaxy number counts,
• T : temperature.

Each observable can contain information related to several probes, e.g.:
• ε: gravitational lensing and intrinsic alignments,
• n: galaxy clustering (including redshift distortions, baryon acoustic oscillations) and

cosmic magnification,
• T : primary and secondary temperature fluctuations in the CMB.

Here, we give a few examples of how probe combination within a single observable can
have an important impact on observational cosmology or be useful to constrain different
sectors of the cosmological model.
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Figure 1. Taken from Kirk et al. (2012). Left : this figure shows the effect of ignoring intrinsic
alignments for different physical models by showing the cosmological bias on dark energy pa-
rameters w0 and wa (95% confidence limits). Right : This figure shows the effect of using the
’wrong’ IA model on cosmological parameters. In blue the latest IA model is used in the data
and in the fit, whereas in red, the latest IA model is in the data but an older IA model is used
in the fit.

3.2. Intrinsic alignments and galaxy ellipticities
Weak gravitational lensing has been shown to be one of the most promising probes to
study the nature of dark energy. Gravitational lensing can be studied statistically by
looking at the correlation function of galaxy elliipticities. One fundamental assumption
is that galaxies are randomly oriented before they are affected by gravitational lensing.
However, it is known that galaxies can have instrinsic alignments due to tidal forces so
that the measured ellipticity is statistically given by:

ε = γ + I, (3.1)

where γ is the galaxy shear and I is the intrinsic alignment component so that the total
measured correlation function is given by (for references and further details, see Kirk
et al. (2012):

Cεε = CGG + CII + CGI . (3.2)
The IA terms contain cosmological information through their dependence on the matter

power spectrum and is therefore a secondary probe that can help constrain cosmology.
not only does IA contain extra cosmological information, but ignoring this effect can lead
to a bias on cosmological parameters as shown in the left hand side of figure 1 taken from
Kirk et al. (2012) showing the importance of performing an analysis including secondary
signals from the start.

In the right hand side of figure 1, also taken from Kirk et al. (2012), shows the cos-
mological bias from a different IA model in the analysis than the one contained in the
observable, showing again the importance of a good physical model for secondary probes.

3.3. Galaxy number counts
Galaxy number counts are used in the literature to measure clustering information in
the large scale structure (LSS) by indirectly measure the matter power spectrum. As
shown in figure 2, the matter power spectrum itself measures different physical effects or
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Figure 2. Taken from Rassat et al.(2008). The matter power spectrum is shown on the left,
and different physical components or probes are shown on the right, including: the broad band
power spectrum, baryon acoustic oscillations and redshift distortions.

probes, for e.g.: the broad band power spectrum, baryon acoustic oscillations and redshift
distortions. Each of which probe cosmological parameters in different and complementary
ways.

4. Probe Combination: Cross-correlations as a probe
Previously, we have briefly discussed how different observables can be studied by

considering their auto-correlation functions. Cross-correlating different observables can
also be used to study certain physical effects that are different to study with the auto-
correlations, such as the integrated Sachs-Wolfe effect, which we discuss in section 4.1.
We also use the example of tomographic analysis of LSS to show the importance of using
cross-correlations in section 4.2.

4.1. The integrated Sachs-Wolfe effect
As photons from the last scattering surface travel towards us, they pass through the
gravitational potentials of structures along the line of sight. Photons will gain energy
as they enter the gravitational potentials and loose energy on exit. If the potential is
unchanged during this travel time, the net effect will be null. However, if the gravitational
potential decreases with time (as in universes with dark energy, positive curvature or in
some alternative models), the net effect will be that photons will have gained energy
by passing through the gravitational potentials. This effect, called the integrated Sachs-
Wolfe effect, adds power to the observed CMB temperature-temperature power spectrum,
but is difficult to measure due to cosmic variance. Instead, this effect can be measured
by cross-correlating tracers of the gravitational potential (e.g. with galaxy surveys) with
the CMB (Sachs & Wolfe (1967), Boughn & Crittenden(2002), Rassat et al. (2007)).

Measuring the ISW effect can be used as an independent measure of the presence of
dark energy, as well as a measure of its equation of state parameters. Though the effect
is small, combination of different tracers of large scale structure at different redshifts can
also increase the amplitude of the signal (Giannantonio et al. (2008)).
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Reconstructing the ISW effect (Dupé et al. (2011), Rassat & Starck (2013), Rassat et al.
(2013)Rassat, Starck, & Dupe, Rassat et al. (2014)), i.e. by reconstructing a map of the
temperature anisotropies due to the ISW effect can be used to study claimed anomalies
in the anisotropies of the primordial CMB. The premise is that the most interesting cause
of the anomalies would be one resulting from early Universe physics, and that we are
therefore interested in studying the primordial CMB instead of the observed CMB, i.e.,
one free from Galactic emissions, astrophysical and secondary cosmological foregrounds.
The observed CMB temperature fluctuations can be written as:

δOBS
T = δprim

T + δISW
T + δother

T + δNT , (4.1)

where δOBS
T is the total observed CMB, δprim

T the primoridal CMB flucutations, δISW
T the

signal due to the ISW effect, δother
T other effects, and δNT the noise. On large scales, δother

T

is expected to include the kinetic Sunyave-Zel’dovich and the kinetic Doppler quadrupole
effects, and δNT should be negligible.

Recently, Rassat et al. (2014) analysed six of these claimed anomalies in a new full-sky
map of the CMB (provided in Bobin et al. (2013)). Analysis of the observed CMB maps
showed that only the low quadrupole and quadrupole-octopole alignment seemed signif-
icant, but that the planar octopole, Axis of Evil, mirror parity and cold spot were not
significant. After subtraction of astrophysical (kinetic Sunyaev-Zel’dovich) and cosmolog-
ical secondary effects (ISW and the kinetic Doppler quadrupole), only the low quadrupole
could still be considered anomalous, meaning the significance of only one anomaly was
affected by secondary effect subtraction out of six anomalies considered.

4.2. Large Scale Structure: tomography vs. 3D analysis
Unlike the CMB, information in a spectroscopic galaxy survey will be 3-dimensional. It
can therefore naturally be split into radial bins. Cosmological information is contained in
each bin, but also in the cross-correlation between redshift bins. The question is therefore
of how best to combine the information from the galaxy number counts to extract the
3-dimensional information.

This can be done either using tomography, i.e. a spherical harmonic approach including
cross-correlation between various bins, or using a full 3D spherical Fourier-Bessel (SFB)
approach (Heavens & Taylor (1995)), i.e. by decomposing the field using:

f(�r) =

√
2
π

∫
dk

∑
�m

f�m (k)kj�(kr)Y�m (θ, φ). (4.2)

The SFB approach is motivated physically and has natural prescription for selection and
physical effects (e.g., redshift distortions).

Figure 3 is taken from Lanusse et al. (2014) and shows that while a tomographic recon-
struction can recover the information extracted using a SFB analysis, in the case where
nuisance parameters are included, the 3D approach should be preferred (see Lanusse
et al. (2014) for details).

5. Probe Combination: Uncorrelated probes and priors
Different observables can constrain cosmological parameters in complementary ways,

for e.g. by having different directions of degeneracy. This complementarity can be used
to provide higher precision constraints. For independent probes A and B, the forecasting
FIMs can simply be added so that:

FTOT = FA + FB . (5.1)
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Figure 3. Taken fromLanusse et al. (2014). The two different figures of merit for a tomo-
graphic vs. SFB analysis, considering only cosmological parameters (top) or including nuisance
parameters (bottom).

This method can be applied to different observables of a same experiment (e.g., the
expected constraints from gravitational lensing and galaxy number counts for a given
wide-field survey), as well as for constraints from different experiments, or to include
priors from past experiments.

Combining information in such a way can be used to either provide tighter constraints
on cosmological parameters, or expand the parameter space to includ more general pa-
rameters. For example, by including CMB Planck priors with gravitational lensing con-
straints, one can expand the parameters space of the initial conditions sector whilst
simultaneously allowing for massive neutrinos (Debono et al. (2009)). The parameter
space can also be expanded to simultaneously constrain dark energy and modified grav-
ity parameters (Laureijs et al. (2011)).

6. Probe Combination: Accounting for correlations
For future wide-field surveys, observational overlap will mean that different observables

will often probe the same physical underlying dark matter field, so that these will not
in practice be uncorrelated observables. Taking the example of galaxy ellipticities ε and
galaxy number counts n as before. In section 5, we considered the observables Cεε and
Cnn separately. If the observables are correlated, we must consider the Cnε as a new
measurement. In this case, we can no longer consider the Fisher matrices to simply add
as in equation 5.1, but must calculate a single Fisher matrix for all observables using a
covariance matrix which takes into account correlations. The Fisher matrix elements are
given by (see Joachimi & Bridle (2010) for full details):

Fαβ =
lm a x∑

l= lm i n

∑
(i,j ),(m,n)

∂Cij (l)
∂θα

Cov−1 [Cij (l), Cmn (l)]
∂Cmn (l)

∂θβ
. (6.1)

Where the power spectra are now combined into a total data vector:
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Figure 4. Taken from Kirk et al. (2012). The 95% confidence limits on dark energy parameters
w0 and wa from galaxy ellipticities and number counts, accounting for correlations between
both observables, in the context of a future wide-field survey. The blue contours have the same
intrinsic alignment model in the fit as in the data, while the red contours have another intrinsic
alignment model in the fit. In the left hand side, the Fisher matrix contains only cosmological
parameters, while in the right hand side nuisance parameters regarding the galaxy bias and in-
trinsic alignment amplitude have been marginalised over. In the case where nuisance parameters
are considered, the cosmological bias is not longer problematic.

D(�) =
{

C(11)
εε (�), .. , C(N z b in N z b in )

εε (�), C(11)
nε (�), .. , (6.2)

C(N z b in N z b in )
nε (�), C(11)

nn (�), .. , C(N z b in N z b in )
nn (�)

}

for every angular frequency considered. The corresponding covariance, again for every
�, reads

Cov(�) =

⎛
⎜⎜⎝

Cov(ijkl)
εεεε (�) Cov(ijkl)

εεnε (�) Cov(ijkl)
εεnn (�)

Cov(ijkl)
nεεε (�) Cov(ijkl)

nεnε (�) Cov(ijkl)
nεnn (�)

Cov(ijkl)
nnεε (�) Cov(ijkl)

nnnε (�) Cov(ijkl)
nnnn (�)

,

⎞
⎟⎟⎠ (6.3)

where the sub-matrices are the usual matrices for each individual observable (i.e., Cεε ,
Cnn , Cnε).

In this approach, different probes are combined in several ways. Several probes are
folded directly into single observables (e.g., intrinsic alignments and weak gravitational
lensing are both included in the physical effects contributing to galaxy ellipticities), while
correlations between different observables are accounted for in the covariance matrix.

This “full” calculation returns tighter constraints than using only information from the
galaxy ellipiticities (Kirk et al. (2013)), as shown in the left-hand side of figure 4. However,
there is still evidence of a catastrophic bias on the cosmological parameters when the
‘wrong’ intrinsic alignment model is used to fit the data, indicating that including all
secondary signals is still of utmost importance for precision and accurate cosmology
even when correlations between galaxy ellipticities and number counts are accounted for.
However, in the right hand side of figure 4, the same calculation is done using a series of
nuisance parameters (see Kirk et al. 2012 for details).
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7. Conclusion
The 20th century saw cosmology transition from a theoretical endeavour to data-driven

field. With the advent of future wide-field surveys covering large areas on the sky and
wide redshift ranges, this new golden age of data in cosmology will no longer be limited by
access to data but by statistical challenges in their processing. Observables such as galaxy
ellipticities, galaxy number counts and temperature fluctuations in the microwave sky
are each linked to a variety of physical effects, sometimes present in different observables.
Future surveys are aiming at high precision cosmology, and correct treatment of all of
these effects will be necessary to achieve not only precision cosmology but also accurate
cosmology.

These observables can also be cross-correlated in order to study subtle physical effects
like the integrated Sachs-Wolfe effect. In addition, correct understanding of these different
effects can also help link different sectors of the cosmological model, for example, a
correct understanding of secondary cosmological effects in the CMB can help recover the
primordial CMB temperature fluctuations.

Together these observables will trace the underlying expansion history and growth of
structure in complementary ways and can be combined in order to extract cosmological
parameters as best as possible. With future wide-field surveys, observational overlap
means these will trace the same physical underlying dark matter distribution, and extra
care must be taken when combining information from different probes.

Consideration of probe combination is a fundamental aspect of cosmostatistics and im-
portant to ensure optimal use of future wide-field surveys. Probe combination will require
combining information from different fields and sub-fields of astrophysics, cosmology and
statistics, linking specialists working on different observational probes but that might be
considering similar or identical effects, meaning effort within the cosmological community
may be duplicated. This effort might be made more efficient by a systematic commit-
ment by all researchers to reproducible research, which includes publication of codes and
intermediate results both for existing data analysis and future forecasts.
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