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Abstract

Image registration is the process of finding an alignment between two or more images

so that their appearances match. It has been widely studied and applied to several

fields, including medical imaging and biology, where it is related to morphometrics.

In this paper, we present a construction of conformal diffeomorphisms which is based

on constrained optimization. We consider a set of different penalty terms that aim to

enforce conformality, based on discretizations of the Cauchy–Riemann equations and

geometric principles, and demonstrate them experimentally on a variety of images.

2020 Mathematics subject classification: primary 68U10; secondary 65E10.

Keywords and phrases: conformal diffeomorphisms, image registration, constrained

optimization, numerical computation.

1. Introduction

Image registration is the process of finding an alignment between two or more images

so that their appearances match. One of the key choices of image registration is the

set of allowable transformations that can be used to deform the images. In this paper,

methods of image registration using the set of conformal diffeomorphisms are derived

and demonstrated. The motivation for the use of this group is the pioneering work of

Thompson [26], who suggested that “simple” transformations that deformed an image

of one animal to look like another could suggest evolutionary relationships between

them.

Brown [5] gave a comprehensive review of image registration as it existed in

1992. The basic steps have not changed since; Brown suggests that they are (i) a
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feature space (which contains information about the images), (ii) a search space

(which consists of the set of allowable transformations), (iii) a search strategy (a

way to select transformations to get an optimal solution), and (iv) a similarity

metric (to measure the discrepancy between the images). However, the choice

of possible transformations has certainly changed; Brown lists only three sets of

transformations, all finite-dimensional: (a) affine transformations (rigid, shearing and

aspect ratio, two-dimensional), (b) perspective transformations (of which projective

transformations are special case) and (c) polynomial transformation, which can be

used when less information is available about the camera geometry.

While there have been many developments in image registration since 1992

[9, 10, 24], the most significant change is the adoption of diffeomorphic (that is,

smooth functions with smooth inverses) image registration [29]. The area where

diffeomorphisms are most used in image registration is medical imaging, where

images of parts of the human body from a variety of scanning methods, such as CT

and MRI, are aligned either to assist in diagnosis of a disease, or to assist in surgical

planning. This area is now known as computational anatomy [12, 27].

The most common approach of performing diffeomorphic registration is known as

the large deformation diffeomorphic metric mapping (LDDMM) method [3, 15, 20].

The diffeomorphism group is infinite-dimensional, hence there may be many

possible solutions to a matching between two images. However, it is a manifold as well

as a group (although as an infinite-dimensional group, it is not a Lie group), which

enables differential geometric methods to be applied in order to choose particular

elements of the group, such as the geodesic between the representations of the

two images (which is the source of the word metric in the LDDMM method). The

metric on the diffeomorphism group can be used to identify images that are close

together and, it is ultimately hoped, to perform statistical analysis of groups of images

[8, 22, 25].

To date, diffeomorphic image registration has used the full group of diffeo-

morphisms. However, there are natural processes such as biological growth and

evolution that seem to produce conformal deformations [23, 26, 27]. A possible

biological explanation for this is that conformal deformations are locally rigid:

linearization around any point yields a Euclidean similarity. In this paper we study

conformal image registration.

1.1. Image registration using a conformal diffeomorphism Let Ω ⊂ R2 be an

image domain, and let I1, I2 : Ω→ R be two greyscale images. We identify R2 with the

standard complex plane C and write z = x1 + ix2 for (x1, x2) ∈ R2. Let con(Ω,C) be the

set of maps ϕ̂ that obey the following two properties: (i) ϕ̂(z) is complex analytic for

all z ∈ Ω; (ii) ϕ̂′(z) , 0 for all z ∈ Ω. These ensure that ϕ̂ is conformal, invertible on its

image, and has a conformal inverse. We define the objective function

E(ϕ̂) =

∫

Ω

((I1 ◦ ϕ̂
−1)(x) − I2(x))2 dx1 dx2, (1.1)
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where x = (x1, x2)T and ϕ̂ ∈ con(Ω,C). A process in which we find a ϕ̂ that minimizes

E(ϕ̂) over ϕ̂ ∈ con(Ω,C) is called a conformal image registration.

The issues that arise in image registration also turn up here. The two most

significant challenges are: (i) the domain of I1 ◦ ϕ̂
−1 is ϕ̂(Ω), not Ω, that is, the

domains of the target and transformed source are not equal; (ii) the choice of

an optimization algorithm. These are standard issues [19, 21, 29]. The new issue

that arises in infinite-dimensional registration (that is, a registration which involves

infinite-dimensional groups such as the full set of diffeomorphisms, the conformal

group in this paper) is how to represent the diffeomorphisms. For diffeomorphic

registration, this has been addressed in various ways [1, 3, 14, 17, 18]; this may in

turn affect the optimization. Here we focus on how to represent the conformal maps.

The task of minimizing E(ϕ̂) may be realized as a constrained optimization problem

in which E(ϕ̂) in equation (1.1) is defined for all invertible ϕ̂, but we wish to find its

minimum subject to the constraint that ϕ̂ is conformal. We thus choose a penalty term

and perform constrained optimization. This penalty term forces the diffeomorphism to

be conformal. In other words, instead of using the objective function given in equation

(1.1), we use the objective function

E(ϕ)con =

∫

Ω

{(I1 ◦ ϕ
−1)(x) − I2(x)}2dx1 dx2 + λ

∫

Ω

P(y)2 dy1 dy2. (1.2)

Here P(y), y = (y1, y2), is a penalty term that vanishes if and only if ϕ is a conformal

diffeomorphism, that is, if and only if ϕ satisfies the Cauchy–Riemann equations

[11, 28] at the points y and has nonzero derivative. Equation (1.2) is continuous and

hence needs to be discretized to enable numerical computation, as is discussed next.

In Section 2 we present the discrete version of equation (1.2) for our control points

method. Four penalty terms are derived and explained in Section 2. Implementation of

control points method (with four penalty terms) on a variety of images is presented in

Section 3. Section 4 discusses the conclusion of the research presented in this paper

and our future research.

2. Control points method

In this section we present a discrete form of equation (1.2). First, we define the

discrete domain S, the coordinates of the pixel locations. Typically these are arranged

in an N × N square in [−0.5, 0.5]2 leading to N2 pixels at locations xij. In the control

points method, the map ϕ is represented by the values of ϕ−1 on a much coarser grid

than that of the discrete image domain S. Thus, we first choose n2 grid points x̂ij (i, j =

1, . . . , n) from the discrete domain S, where n ≪ N, that are configured in an n × n grid.

We then transform these chosen points under ϕ−1 to generate another set of points of

same size. We define two sets of points, the set of chosen points x̂ij = {x̂11, x̂12, . . . , x̂nn},

and the set of transformed points ŷij = {ŷ11, ŷ12, . . . , ŷnn} such that ŷij = ϕ
−1(x̂ij). Here

x̂ij ∈ S and ŷij ∈ R
2. The variables ŷij, which determine the map ϕ, are the dependent

variables whose values will be determined during the optimization process. Larger
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values of n make the optimization process computationally much more expensive.

The remaining values of ϕ−1 that are needed to transform the source image, namely

ϕ−1(xij), are determined by bilinear interpolation from the known values ϕ−1(x̂ij). The

illustration of this approach with n = 4, that is, 16 control points and N = 16, that is,

256 grid points, is given in Figure 1.

The discrete form of equation (1.2) is now defined as

E(ϕ) =

N
∑

i=1

N
∑

j=1

((I1 ◦ ϕ
−1)(x̂ij) − I2(x̂ij))

2
+ λ

n
∑

i=1

n
∑

j=1

P(ŷij)
2. (2.1)

Equation (2.1) represents the general form of optimization function that will be used in

this paper. It has two parts: the first part measures how well registered the images are,

while the second part contains a penalty term P related to the conformality of ϕ. The

two terms are balanced by a parameter λ. We will see that for different choices of P

the second term may be either a constraint (in which case we will be interested in large

values of λ so that the constraint is satisfied, or nearly satisfied) or a regularization

term, in which case λ controls the trade-off between the quality of the registration and

the conformality of ϕ.

The question is now how to choose the parameters. Our general approach is based

on the continuation method, pioneered by Keller [16] and used here in a very simple

form. The continuation parameters are n and λ. For λ there are two possible strategies

to consider: (i) starting with a small or zero value of λ and increasing it; and (ii) starting

with a large or infinite value of λ and decreasing it. In approach (i), if λ = 0, then the

optimization problem reduces to the known problem of image registration, that is, the

conformality condition has been dropped. In theory, this approach would first find the

best registration with a diffeomorphism (which would necessarily be at least as good

as the best registration with a conformal diffeomorphism), and then, by increasing λ,

force it towards the best conformal registration. In approach (ii), if λ is very large, we

are initially enforcing the constraint or regularization term, which acts to better control

the allowable transformations.

Depending on the choice of penalty term, it seems that both approaches could

have some advantages and disadvantages. However, after conducting many numerical

experiments, we settled on a uniform strategy of starting with large values of λ

(specifically, λ = 204) and decreasing it in steps of factors of 20. The problem is that if

starting at λ = 0 the algorithm may fail to locate a smooth diffeomorphism registering

the images even if we know (for example, because we are using synthetic data) that

one exists.

In all the numerical experiments we have started with n = 4, that is, 16 control

points, and minimized the objective function in equation (2.1) for λ = 204, 203, 202,

20, using the output of each optimization as the input for the next. We then set n = 8,

that is, 64 control points, initializing the values for the new points by using bilinear

interpolation from the n = 4 solution. Here N = 100 throughout. The approach is

summarized in Algorithm 1.
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FIGURE 1. In the upper grid, the blue circles represent n = 4 selected control points from the discrete

domain. In the lower grid, the images of the control points under ϕ−1 are shown with red circles. Bilinear

interpolation is used to generate the rest of the grid points between these red circles (N = 16). (See the

online version of this paper for the colour scheme.)
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The algorithm is not sensitive to the value of N. In principle, if sufficient computing

power is available, then N can be made very large. However, increasing the number of

control points though n is more problematic. As n increases, the optimization step

becomes more difficult and the conformal penalty term P may not be sufficient to

regularize the problem. This case deserves further study.

In the remainder of this paper we develop four alternative forms of the penalty

term, that is, four alternative conceptions of a ‘discrete conformal map’, and test

them using this algorithm. The performance of the algorithm may depend on the

choice of the penalty term, whether we are using synthetic or real data (in synthetic

data, the target is generated from the source using a known transformation, which

may or may not be conformal), the smoothness of the images, the quality of the

initial guess for the transformation, and how closely related the images are by a

conformal map. Thus each form of the penalty term will be tested on a variety of

images.

Algorithm 1: Image registration using control points and equation (2.1)

input : I1 and I2: source and target images

N2: number of grid points

n2: number of control points

x̂ij: selected control points from the discrete domain S

output

:

Warp ϕ−1 and deformed image I1 ◦ ϕ
−1

for n = 4 do
initialize ŷij to x̂ij+ small random perturbation

for λ = 204, 203, 202, 20: do

optimize equation (2.1) to determine ŷij = ϕ
−1(x̂ij)

for n = 8 do

for λ = 20 do
x̂ij: initialize the values for the new points by using bilinear

interpolation from the n = 4 solution.

minimize equation (2.1) to determine ŷij = ϕ
−1(x̂ij)

use bilinear interpolation to produce transformed grid,

yij = ϕ
−1(xij),∀xij ∈ S.

use bilinear interpolation to obtain transformed version of the source,

I1 ◦ yij.

PENALTY 1 (First discrete form of the Cauchy–Riemann equations). Our first discrete

form is a naive finite difference of the Cauchy–Riemann equations at each of the n2

control points. First we compute the numerical gradient and then determine the first

form of the Cauchy–Riemann equations. Note that we identify R2 with the complex

plane C as needed.
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We calculate the gradient of ŷij using central differences at the interior points,

(∆xŷ)i,j = (ŷi+1,j − ŷi−1,j)/2, i = 2, 3, . . . , n − 1, (2.2)

(∆yŷ)i,j = (ŷi,j+1 − ŷi,j−1)/2, j = 2, 3, . . . , n − 1, (2.3)

and one-sided differences at edge points,

(∆xŷ)1,j = ŷ2,j − ŷ1,j, (∆xŷ)n,j = ŷn,j − ŷn−1,j, (2.4)

(∆yŷ)i,1 = ŷi,2 − ŷi,1, (∆yŷ)i,n = ŷi,n−1 − ŷi,n. (2.5)

Identifying ŷ with ϕ, the first discrete form of the Cauchy–Riemann equations that we

use is

∆xŷij = −i∆yŷij, i, j = 1, . . . , n. (2.6)

Note that we are using here the fact that the reference grid of control points, x̂ij, is a

uniform square grid, as we use such a grid in all our experiments. The mesh size of

this grid has been effectively absorbed into the parameter λ. This discrete form of the

Cauchy–Riemann equation is used to define our Penalty 1 as

P1(ŷij) = |(∆xŷij + i∆yŷij)|. (2.7)

We found in our numerical experiments (not reported in this paper) that when λ→

∞, ‖P1(ŷ)‖ → 0 and that the discrete maps produced in this way were always rigid

transformations, that is, Euclidean similarities [2, 7]. ♠

PENALTY 2 (Second discrete form of the Cauchy–Riemann equations). We consider

the linear discrete form of the Cauchy–Riemann equations introduced by Bobenko

et al. [4].

Penalty 2 is based on the linear discrete Cauchy–Riemann equations [4]:

ϕm,n+1 − ϕm+1,n = i(ϕm+1,n+1 − ϕm,n). (2.8)

This compact finite difference is a second order discretization of the Cauchy–Riemann

equations. On a square cell centre 0 and side 2h, equation (2.8) yields

(ϕ(−h, h) − ϕ(h,−h)) = i(ϕ(h, h) − ϕ(−h,−h)). (2.9)

Taylor series expansion at (0, 0) yields

(−2hϕx + 2hϕy) − i(2hϕx + 2hϕy) = O(h3) (2.10)

or

(ϕx + iϕy)(−1 − i) = O(h2). (2.11)

That is, if ϕ(z) satisfies the Cauchy–Riemann equations then it satisfies the linear

discrete Cauchy–Riemann equations with a discretization error of O(h2).
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We therefore define our second penalty term, based on the linear discrete

Cauchy–Riemann equations, as

P2(ŷij) = |(ŷi,j+1 − ŷi+1,j) − i(ŷi+1,j+1 − ŷi,j)|, i, j = 1, . . . , n − 1. (2.12)

♠

PENALTY 3 (Third discrete form of the Cauchy–Riemann equations). Penalty 3 is

based on the nonlinear discrete Cauchy-Riemann equations [4]:

(ϕm+1,n − ϕm,n)(ϕm+1,n+1 − ϕm,n+1)

(ϕm,n+1 − ϕm,n)(ϕm+1,n+1 − ϕm+1,n)
= −1. (2.13)

We now show that this form is also a second order discretization of the

Cauchy–Riemann equations. Equation (2.13) for a square is

(ϕ(h,−h) − ϕ(−h,−h))(ϕ(h, h) − ϕ(−h, h))

(ϕ(−h, h) − ϕ(−h,−h))(ϕ(h, h) − ϕ(h,−h))
= −1. (2.14)

Rearranging equation (2.14),

{ϕ(h,−h) − ϕ(−h,−h)}{ϕ(h, h) − ϕ(−h, h)}

+ {ϕ(−h, h) − ϕ(−h,−h)}{ϕ(h, h) − ϕ(h,−h)} = 0. (2.15)

Expanding equation (2.15) in Taylor series about (0,0) gives

(ϕx + iϕy)(ϕx − iϕy) = O(h2). (2.16)

Therefore, if ϕ(z) is either conformal or anticonformal (a conformal map of z̄, that is,

a composition of a reflection and a conformal map) then it will satisfy the nonlinear

discrete Cauchy–Riemann equations with a discretization error of O(h2). Thus, the

third penalty term is defined as

P3(ŷij) = |(ŷi+1,j − ŷi,j)(ŷi+1,j+1 − ŷi,j+1) + (ŷi,j+1 − ŷi,j)(ŷi+1,j+1 − ŷi+1,j)|,

i, j = 1, . . . , n − 1. (2.17)

♠

The linear form (Penalty 2) is based on the cross-ratio, whereas the nonlinear

form (Penalty 3) is based on the notion of a circle pattern. They both have strong

theoretical reasons to be considered as natural discrete analogues of conformality,

including applications to integrability.

It is possible that, when using the Penalty 3, the penalty term could be zero and the

grid would approximate an anticonformal map instead of a conformal map. However,

this has not happened in any of our experiments, but it is a difference between Penalty 2

and Penalty 3.

Penalty 2 (P2(ŷij) in equation (2.12)) and Penalty 3 (P3(ŷij) in equation (2.17)) are

less restrictive than Penalty 1 (P1(ŷij) in equation (2.7)). This is because they contain

fewer equations (one per cell instead of one per grid point), and they can be satisfied
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by many nonrigid mappings. A discrete mapping is determined by 2n2 real parameters,

while the equations P2(ŷij) = 0 for i, j = 1, . . . , n − 1 (respectively, P3) require 2(n − 1)2

equations. Thus we expect there to be 2n2 − 2(n − 1)2
= 4n − 2 free parameters in their

solution.

Note that the counting of these discrete forms is different from that of the

continuous Cauchy–Riemann equations. For the continuous form, the real part of ϕ

can be specified on the boundary and its values in the interior determined by solving

Laplace’s equation ∇2(ℜ(ϕ)) = 0 which has a unique solution. The imaginary part of

ϕ is then determined up to a constant. But in the discrete case, once the real part of

ŷij is specified on the boundary (that is, 4n − 4 conditions imposed), there remain two

degrees of freedom (not one) for the imaginary part.

Also note that there are discrete maps satisfying P2 = 0 or P3 = 0 which contain

“butterflies” in which the edges of the image quadrilateral intersect. The resulting

continuous map obtained by bilinear interpolation would not then be invertible (see

Examples 2 and 3 in Section 3). In fact, the poor results of the first three penalty

terms (P1(ŷij), P2(ŷij), P3(ŷij) in equations (2.7), (2.12) and (2.17), respectively) on

some registration problems motivated us to introduce a fourth penalty term, explained

below.

PENALTY 4 (Fourth form of the penalty term). Let ϕ : Ω→ C be a conformal map.

The following equation indicates expanding about any point z0 ∈ Ω in Taylor series as

ϕ(z) = ϕ(z0) + (z − z0)ϕ′(z0) + O(|z − z0|
2). (2.18)

Thus, conformal maps are local similarities in the neighbourhood of any point.

Therefore, small squares map to squares, with an error that vanishes as the square

becomes smaller. Therefore, we use this geometric property of the conformal trans-

formation to compute our fourth penalty term.

Consider a square in Figure 2 whose sides are a, b, c, d, respectively, considered as

displacement vectors in the complex plane (equivalently, as complex numbers) taken

in an anticlockwise sense. The following equations holds for a square:































a + ib = 0,

b + ic = 0,

c + id = 0,

d + ia = 0.

(2.19)

This leads us to define our fourth penalty term

P4(ŷij) =
(a + ib, b + ic, c + id, d + ia)

|(a, b, c, d)|
(2.20)

for i, j = 1, . . . , n − 1. Here a, b, c, and d are the vectors of the sides of the quadrilateral

with vertices ŷi,j, ŷi+1,j, ŷi+1,j+1, and ŷi,j+1 and (a, b, c, d) is the cross-ratio. Thus

the fourth penalty term in equation (2.20) contains four complex or eight real
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a

d

c

b

FIGURE 2. A square with four displacement vectors, a, b, c and d, in the complex plane with anticlockwise

orientation.

terms per cell. There are (n − 1)2 cells, so the penalty contains 8(n − 1)2 real terms

altogether. ♠

The motivation for regarding P4 (equation (2.20)) as a discrete version of conform-

ality is that:

• when P4 is small, squares map to approximate squares;

• it is invariant under translation, rotation, scaling, and cyclic permutations of the

vertices;

• each term (for example, a + ib) is a first-order finite difference of the Cauchy–

Riemann equations at one vertex;

• linear combinations of the conditions at adjacent cells give the standard central

difference discretization of the Cauchy–Riemann equations used in the first

penalty term.

Like P2 and P3 it is associated with the cells, rather than the control points like

P1, but compared to P1, P2 and P3 it controls far more terms. Note that for any

quadrilateral, a, b and c together determine d, so only six of the eight real terms are

independent.

If P4(ŷij) = 0 for all i, j = 1, . . . , n − 1, then the transformation determined by

the ŷij is rigid. So P4 is like P1 in this regard. Therefore λ→ ∞ will yield

only rigid transformations, and we again regard λ as a regularization parameter,

offering the opportunity for parameter continuation between λ = 0 (unconstrained

image registration), moderate λ (squares map to near squares), and large λ (rigid

registration).

As we will be minimizing the sum of the registration error plus λ times ‖P4‖
2, the

solutions will map squares to near squares only in an average sense; some squares may

suffer extreme distortion. In view of the difficulties faced by our first three penalty

terms, we argue that the extra flexibility this allows will be needed. A possible topic

for future research would be to replace P4 by related functions (such as Pα
4

for α > 1)

that penalize nonsquareness more severely.
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FIGURE 3. The source and target images for Example 1. The source is exp(−5x2 − 7y2), the target is

exp(−5x2 − 2y2). The corresponding contour plots can be seen in the second row. (Colour available

online.)
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–0.5
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FIGURE 4. The two nonsmooth images of ellipses used as the source and target in Example 2. (Colour

available online.)
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FIGURE 5. Implementation of Algorithm 1 produced two sets of conformal image registrations using

two penalty terms. Top: Results for Penalty 1 and Penalty 2 (from left to right). Bottom: Comparison of

contour plots and corresponding deformation grids for Penalty 1 and Penalty 2 (from left to right). The

conformality parameters λ is 20 for each penalty. (Colour available online.)

3. Experiments

In this section we present the results of applying each of the four discrete

conformal penalty terms to three examples: (1) a pair of smooth images that are

nearly conformally related; (2) a pair of nonsmooth images that are nearly conformally

related; (3) a pair of nonsmooth images that are not known to be conformally related.

In all examples, the domain is Ω = [−0.5, 0.5]2 and N = 100.

EXAMPLE 1. In this example we take a pair of smooth images, I1 = exp(−5x2 − 7y2)

and I2 = exp(−5x2 − 2y2). The level sets of each are ellipses (see Figure 3). By the

Riemann mapping theorem, any ellipse can be mapped conformally to any other

ellipse, although the images themselves are not conformally related. As shown in

Figures 5 and 6, all four penalty forms produce a smooth transformation and a good

registration, although there are some differences. The registration errors for the four

penalties are 0.92, 1.09, 0.16, and 1.41, respectively. Penalty term 3 has produced the
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FIGURE 6. Implementation of Algorithm 1 produced two sets of conformal image registrations using

two penalty terms. Top: Results for Penalty 3 and Penalty 4 (from left to right). Bottom: Comparison of

contour plots and corresponding deformation grids for Penalty 3 and Penalty 4 (from left to right). The

conformality parameters λ for the Penalty 3 and Penalty 4 are 20 and 150, respectively. (Colour available

online.)

best registration (that is, the minimum error), with a mean error of just 0.0016 per

pixel (on a scale of [0, 1]). In other tests (not shown), we have confirmed that all

four penalties can produce a good registration and a smooth transformation, when

the images are smooth and are related by a smooth conformal map.

EXAMPLE 2. In this example the images are nonsmooth, but are known (from the

Riemann mapping theorem) to be very nearly conformally related. We take drawings

of two different ellipses (see Figure 4). The boundaries are drawn with thick black

lines to penalize any mismatch of the boundaries. The results are shown in Figures 7

and 8. The black region (here and elsewhere) in the transformed source indicates the

set of points that have no colour information (missing values). These missing values

are dealt with by appropriate scaling (see [28, Ch.3]). Penalty 1 produces an acceptable

solution, although the mapping is less smooth than necessary. This is clearly visible
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FIGURE 7. The source and target are filled drawings of ellipses of different aspect ratios. Some small

textural differences between the two images can be seen in the background of the images. This is an

interpolation artefact caused by the interpolation of the images onto the 100 × 100 pixel grid. Top:

Registration results for Penalty 1 and Penalty 2. Bottom: Comparison of contour plots along with

deformation grids for Penalty 1 and Penalty 2. The conformality parameters λ is 20 for first two penalty

terms. (Colour available online.)

in the transformed source. Penalty 2 produces a very irregular mapping that fails to be

invertible in two places. (The huge deformations outside the domain can be ignored; as

there are no overlapping parts of the images here, the values of ŷij are constrained only

by the discrete conformality constraint, not the images.) In Penalty 3, the transformed

source is smoother, but the mapping is very poor, failing to be invertible in many

places. Penalty 4 produces a good registration and a smooth, invertible mapping. (Note

that the optimization process has found a solution that includes a rotation by 90◦; the

top of the source has mapped to the left of the target.) The registration errors for the

four penalties are 4.62, 8.51, 3.94, and 5.73, respectively.

EXAMPLE 3. This example involves source and target images that are nonsmooth

and are presumed not to be nearly conformally related. The example is inspired
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FIGURE 8. Implementation of Algorithm 1 for Example 2 using Penalty 3 and Penalty 4. Top: Registration

results for Penalty 3 and Penalty 4 (left to right). Bottom: Deformation grid and contour plots for Penalty

3 and Penalty 4, respectively. The conformality parameters λ for Penalty 3 and Penalty 4 are 20 and 150,

respectively. (Colour available online.)

by one of Thompson’s nonrigid registrations of fish [27]. Indeed, Thompson, in

an informal model-selection procedure, tended to select transformations from the

simplest set that gave what was, to him, an acceptable registration. Where affine,

projective or axis-preserving transformations would not do the job, he was forced to

use more highly nonlinear mappings and choose a conformal map (unless forced by

the images not to do so). He wrote: “It is true that, in a mathematical sense, it is not

a perfectly satisfactory, or perfectly regular, deformation, for the system is no longer

orthogonal; but nevertheless it is symmetrical to the eye, and obviously approaches to

an orthogonal system under certain conditions of friction or lateral constraint.” The

cartoon images of fish used in this example are shown in Figure 9 and the results

in Figures 10 and 11. Although in all four penalties the optimizer has managed to

broadly overlap the fish bodies, in Penalties 1, 2 and 3 the transformations are wildly

irregular and noninvertible. In striking contrast, Penalty 4 has produced an acceptable
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FIGURE 9. The two nonsmooth cartoon fish images used in Example 3. The images are presumed not to

be closely conformally related.
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FIGURE 10. Implementation of Algorithm 1 over pair of non-smooth images with non-synthetic data

using Penalty 1 and Penalty 2. Top: Registration results for Penalty 1 and Penalty 2 (left to right). Bottom:

Respective deformation grids. The conformality parameter λ is set as 20 for Penalty 1 and Penalty 2.
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FIGURE 11. Implementation of Algorithm 1 on a pair of nonsmooth images with nonsynthetic data. Top:

Registration results for Penalty 3 and Penalty 4. Bottom: Deformation grids for Penalty 3 and Penalty 4,

respectively. The conformality parameters λ for the Penalty 3 and Penalty 4 are 20 and 150, respectively.

registration with an invertible (and fairly smooth) mapping. The registration errors are

19.00, 15.37, 13.77 and 13.19, respectively.

As Penalty 4 looks promising we present further results in Figure 12, which

shows the registration results for six different λ values selected from the continuation

process. The graph of registration error against 1/λ shows a classic L-curve [6]

widely seen in (for example, Tikhonov [13]) regularization in inverse problems: the

usual prescription there is to choose λ near the corner of the L-curve (although this

is coordinate-dependent). The registrations begin to deteriorate markedly only for

λ & 300; beyond this point the transformation is constrained to become more and more

nearly rigid, tending to a Euclidean similarity. The best trade-off between a better

registration and a more nearly conformal mapping is not one that can be determined

definitively. What is striking is that the transformations that are produced are invertible

and are fairly regular with few highly distorted cells, even for the smallest value of λ

considered. This is in marked contrast to the other penalties.
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FIGURE 12. Effect of conformality parameter λ on registration for Example 3, discrete conformal

Penalty 4. As λ→ ∞, the transformation tends to a Euclidean similarity. At λ = 0, conformality is

ignored and we are simply fitting an arbitrary piecewise bilinear transformation. Top: The transformed

sources (which can be compared to the target shown in Figure 9 and the grid transformations. Bottom:

The registration error plotted against 1/λ, showing a classic regularization L-curve. (Colour available

online.)
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4. Conclusions

All four discrete conformality conditions can produce acceptable results in some

conditions, especially if the images are smooth and nearly conformally related. Numer-

ical experiments (including others not shown here) have convinced us that Penalties 1,

2, and 3 are not sufficiently robust for this application, but that Penalty 4 shows promise

and deserves further consideration as a criterion of discrete conformality, both in the

present conformal image registration problem and elsewhere.

Penalties 2 and 3, based on known discrete conformality conditions with many

appealing theoretical properties, do not perform well for conformal registration. The

mappings are not invertible. The discrete conformality condition under-constrains the

mappings, even at λ = ∞. It would be difficult to constrain them to be invertible as

this is an open condition (that is, it would produce mappings that almost fail to be

invertible), while adding further regularization based on, for example, ‖ det Dϕ‖ (which

blows up as ϕ−1 approaches noninvertibility) is possible, but would compete with the

conformality.

Penalty 1, which like Penalty 4 is over-constrained and produces transformations

that tend to Euclidean similarities as λ→ ∞, also performs poorly. It is more sensitive

to the precise value of λ (not shown). and does not produce good transformations and

registrations over a wide range of λ values. Thus our investigation suggests that both

Penalty 1 and Penalty 4 produce poor transformations and registrations over a wide

range of λ values.

We do not have a full understanding of the implications of the discrete conformality

condition presented in Penalty 4, equation (2.20). Based on its geometric origin, its

symmetries, its connection to finite differences of the Cauchy–Riemann equation, and

its good performance in conformal image registration, it warrants further attention.
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Te Apārangi.

References

[1] V. Arsigny, O. Commowick, N. Ayache and X. Pennec, “A fast and log-Euclidean polyaffine

framework for locally linear registration”, J. Math. Imaging Vis. 33 (2009) 222–238;

doi:10.1007/s10851-008-0135-9.

[2] J. Ashburner and K. J. Friston, “Rigid body registration”, in: Statistical parametric mapping: the

analysis of functional brain images (eds. W. Penny, K. Friston, J. Ashburner, S. Kiebel and T.

Nichols), (Elsevier, Amsterdam, 2007) 49–62; doi:10.1016/b978-012372560-8/50004-8.

[3] M. F. Beg, M. I. Miller, A. Trouvé and L. Younes, “Computing large deformation metric mappings

via geodesic flows of diffeomorphisms”, Int. J. Comput. Vis. 61 (2005) 139–157;

doi:10.1023/b:visi.0000043755.93987.aa.

[4] A. I. Bobenko, C. Mercat and Y. B. Suris, “Linear and nonlinear theories of discrete analytic

functions. Integrable structure and isomonodromic Green’s function”, J Reine Angew. Math. 583

(2005) 117–161; doi:10.1515/crll.2005.2005.583.117.

https://doi.org/10.1017/S144618112000022X Published online by Cambridge University Press

http://dx.doi.org/10.1007/s10851-008-0135-9
http://dx.doi.org/10.1016/b978-012372560-8/50004-8
http://dx.doi.org/10.1023/b:visi.0000043755.93987.aa
http://dx.doi.org/10.1515/crll.2005.2005.583.117
https://doi.org/10.1017/S144618112000022X


254 S. Marsland, R. I. McLachlan and M. Y. Tufail [20]

[5] L. G. Brown, “A survey of image registration techniques”, ACM Comput. Surv. 24 (1992) 325–376;

doi:10.1145/146370.146374.

[6] D. Calvetti, S. Morigi, L. Reichel and F. Sgallari, “Tikhonov regularization and the l-curve for large

discrete ill-posed problems”, J. Comput. Appl. Math. 123 (2000) 423–446;

doi:10.1016/S0377-0427(00)00414-3.

[7] K. L. Elmore and M. B. Richman, “Euclidean distance as a similarity metric for principal

component analysis”, Mon. Weather Rev. 129 (2001) 540–549;

doi:10.1175/1520-0493(2001)129<0540:EDAASM>2.0.CO;2.

[8] P. T. Fletcher, “Geodesic regression and the theory of least squares on Riemannian manifolds”, Int.

J. Comput. Vis. 105 (2013) 171–185; doi:10.1007/s11263-012-0591-y.

[9] C. A. Glasbey and K. V. Mardia, “A review of image-warping methods”, J. Appl. Stat. 25 (1998)

155–171; doi:10.1080/02664769823151.

[10] A. A. Goshtasby, Image registration principles, tools and methods (Springer, London, 2012);

doi:10.1007/978-1-4471-2458-0.

[11] S. J. Greenfield, “Cauchy–Riemann equations in several variables”, Ann. Sc. Norm. Super. Pisa Cl.

Sci. 22 (1968) 275–314, available at https://eudml.org/doc/83459.

[12] U. Grenander and M. I. Miller, “Computational anatomy: an emerging discipline”, Q. Appl. Math.

56 (1998) 617–694; doi:10.1090/qam/1668732.

[13] C. W. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the first kind,

(Pitman, London, 1984), available at

https://www.researchgate.net/publication/233814596_The_theory_of_Tikhonov_regularization_

for_Fredholm_equations_of_the_first_kind.

[14] H. Hsiao, C. Hsieh, X. Chen, Y. Gong, X. Luo and G. Liao, “New development of nonrigid

registration”, ANZIAM J. 55 (2014) 289–297; doi:10.1017/S1446181114000091.

[15] S. C. Joshi and M. I. Miller, “Landmark matching via large deformation diffeomorphisms”, IEEE

Trans. Image Process. 9 (2000) 1357–1370; doi:10.1109/83.855431.

[16] H. B. Keller, “Lectures on numerical methods in bifurcation problems”, Appl. Math. 217 (1987)

50, available at https://www.math.tifr.res.in/∼publ/ln/tifr79.pdf.

[17] S. Marsland and R. McLachlan, “A Hamiltonian particle method for diffeomorphic image

registration”, in: Biennial international conference on information processing in medical imaging,

(Springer, Berlin, 2007) 396–407; doi:10.1007/978-3-540-73273-0_33.

[18] S. Marsland and C. J. Twining, “Clamped-plate splines and the optimal flow of bounded

diffeomorphisms”, in: Statistics of large datasets, proceedings of Leeds annual statistical research

workshop, (University of Leeds, Leeds, 2002) 91–95, available at

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.5291rep=rep1type=pdf.

[19] R. McLachlan and S. Marsland, “Discrete mechanics and optimal control for image registration”,

ANZIAM J. 48 (2007) 1–16; doi:10.21914/anziamj.v48i0.82.

[20] M. I. Miller, A. Trouvé and L. Younes, “Hamiltonian systems and optimal control in computational

anatomy: 100 years since D’Arcy Thompson”, Annu. Rev. Biomed. Eng. 17 (2015) 447–509;

doi:10.1146/annurev-bioeng-071114-040601.

[21] J. Modersitzki, Numerical methods for image registration, (Oxford University Press, Oxford, 2004);

doi:10.1093/acprof:oso/9780198528418.001.0001.

[22] X. Pennec, “Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements”,

J. Math Imaging Vis. 25 (2006) 127; doi:10.1007/s10851-006-6228-4.

[23] S. V. Petukhov, “Non-Euclidean geometries and algorithms of living bodies”, Comput. Math. Appl.

17 (1989) 505–534; doi:10.1016/0898-1221(89)90248-4.

[24] S. Saxena and R. K. Singh, “A survey of recent and classical image registration methods”, Int. J.

Signal Process. Image Process. Pattern Recognit. 7 (2014) 167–176; doi:10.14257/ijsip.2014.7.4.16.

[25] S. Sommer, F. Lauze, S. Hauberg and M. Nielsen, “Manifold valued statistics, exact principal

geodesic analysis and the effect of linear approximations”, in: European conference on computer

vision, (Springer, Berlin, 2010) 43–56; doi:10.1007/978-3-642-15567-3_4.

https://doi.org/10.1017/S144618112000022X Published online by Cambridge University Press

http://dx.doi.org/10.1145/146370.146374
http://dx.doi.org/10.1016/S0377-0427(00)00414-3
http://dx.doi.org/10.1175/1520-0493(2001)129$ < $0540:EDAASM$ > $2.0.CO;2
http://dx.doi.org/10.1007/s11263-012-0591-y
http://dx.doi.org/10.1080/02664769823151
http://dx.doi.org/10.1007/978-1-4471-2458-0.
https://eudml.org/doc/83459
http://dx.doi.org/10.1090/qam/1668732
https://www.researchgate.net/publication/233814596_The_theory_of_Tikhonov_regularization_for_Fredholm_equations_of_the_first_kind
https://www.researchgate.net/publication/233814596_The_theory_of_Tikhonov_regularization_for_Fredholm_equations_of_the_first_kind
http://dx.doi.org/10.1017/S1446181114000091
http://dx.doi.org/10.1109/83.855431
https://www.math.tifr.res.in/$\sim $publ/ln/tifr79.pdf
http://dx.doi.org/10.1007/978-3-540-73273-0{_}33.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.5291rep=rep1type=pdf
http://dx.doi.org/10.21914/anziamj.v48i0.82
http://dx.doi.org/10.1146/annurev-bioeng-071114-040601
http://dx.doi.org/10.1093/acprof:oso/9780198528418.001.0001.
http://dx.doi.org/10.1007/s10851-006-6228-4
http://dx.doi.org/10.1016/0898-1221(89)90248-4
http://dx.doi.org/10.14257/ijsip.2014.7.4.16
http://dx.doi.org/10.1007/978-3-642-15567-3{_}4.
https://doi.org/10.1017/S144618112000022X


[21] Conformal image registration based on constrained optimization 255

[26] D. W. Thompson, On growth and form, (Cambridge University Press, Cambridge, 1942);

doi:10.5962/bhl.title.6462.

[27] M. Y. Tufail, “Image registration under conformal diffeomorphisms”, Ph. D. Thesis, Massey

University, 2017, available at https://mro.massey.ac.nz/handle/10179/12459.

[28] J. R. Wells, “The Cauchy–Riemann equations and differential geometry”, Bull. Am. Math. Soc. 6

(1982) 187–199; doi:10.1090/s0273-0979-1982-14976-x.

[29] L. Younes, Shapes and diffeomorphisms, (Springer, Berlin, 2010); doi:10.1007/978-3-642-12055-8.

https://doi.org/10.1017/S144618112000022X Published online by Cambridge University Press

http://dx.doi.org/10.5962/bhl.title.6462.
https://mro.massey.ac.nz/handle/10179/12459
http://dx.doi.org/10.1090/s0273-0979-1982-14976-x.
http://dx.doi.org/10.1007/978-3-642-12055-8.
https://doi.org/10.1017/S144618112000022X

	1 Introduction
	1.1 Image registration using a conformal diffeomorphism

	2 Control points method
	3 Experiments
	4 Conclusions

