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Abstract. In this paper we study logical bilateralism understood as a theory of two primitive
derivability relations, namely provability and refutability, in a language devoid of a primitive
strong negation and without a falsum constant, ⊥, and a verum constant, �. There is thus
no negation that toggles between provability and refutability, and there are no primitive
constants that are used to define an “implies falsity” negation and a “co-implies truth” co-
negation. This reduction of expressive power notwithstanding, there remains some interaction
between provability and refutability due to the presence of (i) a conditional and the refutability
condition of conditionals and (ii) a co-implication and the provability condition of co-
implications. Moreover, assuming a hyperconnexive understanding of refuting conditionals and
a dual understanding of proving co-implications, neither non-trivial negation inconsistency nor
hyperconnexivity is lost for unary negation connectives definable by means of certain surrogates
of falsum and verum. Whilst a critical attitude towards ⊥ and � can be justified by problematic
aspects of the Brouwer-Heyting-Kolmogorov interpretation of the logical operations for these
constants, the aim to reduce the availability of a toggling negation and observations on
undefinability may also give further reasons to abandon ⊥ and �.

§1. Introduction. In this paper we will introduce a bilateral connexive logic B2C
(for “basic 2C”), which can be construed as a bilateral fragment (e.g. [13]) of the logic
2C introduced in [59]. First, we discuss some related systems and topics.

Logical bilateralism is usually associated with proof-theoretic semantics [21, 52],
although the two aspects that are involved can also be seen to have model-theoretic
counterparts. In the literature on logical bilateralism, the term ‘bilateralism’ is used
with different meanings: see [5, 12, 13, 19, 20, 26, 46–50, 60] and references therein, a
comparative presentation can be found in [64]. The common core of the notion can be
described by saying that according to bilateralism, meaning—in particular the meaning
of the logical operations—has two dimensions that are of equal importance, namely
the dimensions of proof, or verification, or support of truth on the one hand and
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2 HEINRICH WANSING ET AL.

refutation (dual proof), or falsification, or support of falsity on the other. Oftentimes
the two dimensions are presented in a way that reflects a ‘meaning-as-use’ perspective
on semantics by focusing on the speech acts of assertion and denial and the distinction
between warranted assertability and warranted deniability.1

In unilateral proof-theoretic semantics, where just verification, proof, or warranted
assertability is considered, the logic that is distinguished as sound is intuitionistic logic,
and often attention is restricted to propositional intuitionistic logic, Int. It has been
maintained2 that bilateralism enables a proof-theoretic account of the meaning of the
logical operations of classical logic [46, 49], however, for the purpose of bilateralism
as developed in [49], “co-ordination principles” have to be postulated that specify a
suitable interaction between warranted assertability and warranted deniability [50].
Without these additional assumptions, and with the classical understanding of the
falsification of conditionals, one naturally arrives (see [19]) at Nelson’s paraconsistent
four-valued constructive logic [1, 25, 33, 36, 44], often referred to as N4. Moreover,
while intuitionistic logic is sometimes identified with constructive logic, it has been
criticized from a bilateralist perspective for not being sufficiently constructive, and this
concern also led Edgar López-Escobar [28] to N4.

Unlike Int, N4 is a paraconsistent logic, meaning it allows for non-trivial negation
inconsistent theories. Axiomatically, N4 is obtained from Int (formulated in the
language {∧,∨,→,�,⊥}) by removing the verum constant � and the falsum constant
⊥ and adding a primitive negation connective, ∼. This connective is often called
strong negation in the literature; in this paper we will call this and similar connectives
toggling negations, owing to the fact that they internalize toggling between proofs and
refutations. The refutation conditions of compound formulas are then axiomatically
expressed by the following equivalences (where A↔ B abbreviates the conjunction
(A→ B) ∧ (B → A)):

∼∼A↔ A ∼(A→ B) ↔ (A ∧ ∼B)
∼(A ∧ B) ↔ (∼A∨ ∼B) ∼(A ∨ B) ↔ (∼A ∧ ∼B).

In [57], a new connexive logic, C, was introduced as a modification of N4. Following
ideas by Storrs McCall [30], we say that a system is connexive (with respect to ∼) if the
following principles are among its theorems:

AT ∼(A→∼A) (Aristotle’s thesis),
AT′ ∼(∼A→A) (Aristotle’s thesis′),
BT (A→B)→ ∼(A→∼B) (Boethius’ thesis),
BT′ (A→∼B)→ ∼(A→B) (Boethius’ thesis′),

and it satisfies the condition of non-symmetry of implication, saying that the schema
(A→B)→(B→A) is not a theorem.

The logics N4 and C differ from each other with respect to the meaning of negated
implications. Axiomatically, the difference is captured by replacing the principle
∼(A→ B) ↔ (A∧ ∼B) with ∼(A→ B) ↔ (A→∼B). The latter axiom expresses a

1 Logical bilateralism can be generalized to logical multilateralism by taking into consideration
n dimensions (2 ≤ n, n ∈ N) of meaning, see [64]; in this case bilateralism could mean treating
not just verification and falsification on a par in the constitution of linguistic meaning, but
any two from among the n dimensions.

2 and denied as well, see [22].
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BI-CONNEXIVE LOGIC, BILATERALISM, AND NEGATION INCONSISTENCY 3

connexive (even “hyperconnexive”3) reading of →. One important difference between
N4 and C is that C is not only paraconsistent but even negation inconsistent in the
sense that there is a formula A such that both A and ∼A are theorems of C.

The logic 2C [59] is obtained by adding a co-implication connective, –� , that is in a
certain sense dual to→, to C. In this way the co-implication of 2C is a connexive version
of the co-implication of 2Int [58]. 2Int, in turn, was introduced as an alternative to bi-
intuitionistic logic (or Heyting-Brouwer logic; see [14, 24, 45] and references therein)
BiInt. The main idea behind 2Int was to use a bilateralist perspective to give natural
deduction rules for the language of bi-intuitionistic logic, i.e., {∧,∨,→, –� ,�,⊥}. In
both 2Int and 2C co-implication internalizes the preservation of refutability (support of
falsity) in much the same way as implication internalizes the preservation of provability
(support of truth). On the other hand, in the logics N4 and C such an inferential
relationship can be expressed by negating the premises and the conclusion. In systems
with implication, co-implication and truth and falsity constants (such as BiInt, 2Int and
2C) two negation connectives can be defined naturally: (A→ ⊥) (“A implies falsity”)
and (�–�A) (“A co-implies truth”). Obviously, the meanings of these negations in
2Int and BiInt are different.4

In the terminology of [41, p. 2 et seq.], the logical bilateralism to be found in 2Int,
N4, C and 2C can be seen as supplementing positive reasoning with negative reasoning,
where negative reasoning is characterized as

that which involves an inference to the falsity of a proposition, or in
modal, epistemic and deontic contexts an inference to impossibility,
disbelief, prohibition, etc. (Notice that this may, but need not, be
tantamount to reasoning to the negation of the proposition, belief,
etc.) Clearly, such reasoning is ‘mixed’ in the sense that it may be based
on inference from the truth of some proposition as well as inference
from the falsity of some proposition. We can then distinguish a special
case of negative reasoning, which we might call inverse inference, as
that involving only inference from falsity to falsity.

One may wonder to which extent in logical bilateralism an interaction between positive
and negative reasoning depends or ought to depend on the presence of a negation
connective. This is one of the main topics of the present investigation.

Since the logic C (like N4) does without ⊥ and �, the intuitionistic negation as
“implies ⊥” and the co-negation as “co-implies �” cannot be defined, and instead
there is the primitive negation that toggles back and forth between verification (support
of truth) and falsification (support of falsity). The language of 2C was introduced
including the two constants � and ⊥ in order to compare 2C with 2Int. The idea now
is to drop the toggling negation, �, and ⊥, and this move will bring us to the logic B2C.
More concretely, a problem with 2Int can be seen in that the defined negation A→ ⊥
of a formula A already is non-constructive and therefore problematic from the point
of view of the Brouwer-Heyting-Kolmogorov (BHK) interpretation of Int, and that
the co-negation of 2Int is plagued by an analogous problem once the co-conditional

3 I.e., the converses of BT and BT′ are valid as well. For an overview of the terminology for
various connexive principles, see [61, 65].

4 There is also a system called “da Costa Logic” which contains the co-negation of BiInt as
primitive but lacks co-implication [43].
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4 HEINRICH WANSING ET AL.

Table 1. Logics and languages

Language Nelsonian connexive
conditionals conditionals

{∧,∨,→,∼} N4 C
{∧,∨,→, –� ,�,⊥} 2Int

{∧,∨,→ –� ,�,⊥,∼} 2C
{∧,∨,→, –� } B2C

is dealt with in a BHK-style interpretation for 2Int. Moreover, if these concerns about
constructiveness are taken seriously, it may be seen as problematic that the refutability
condition of the conditional and the provability condition of the co-implication are
not connexive. Constructivity and connexivity are in principle properties that are
independent of each other; in [63], however, it has been suggested that constructivists
should be (hyper)connexivists.5

We summarize key logics and their language in Table 1. When it comes to provability,
the logics listed there share a common conjunction/disjunction fragment, {∧,∨},
namely the distributive lattice logic from [16, Definition 2.1] that characterizes
the so-called ‘additive’ or ‘extensional’ conjunction and disjunction connectives of
intuitionistic logic by a number of postulates and rules:

• A 	 A
• A 	 B,B 	 C/A 	 C
• A ∧ B 	 A, A ∧ B 	 B
• A 	 B , A 	 C / A 	 B ∧ C
• A 	 C , B 	 C / A ∨ B 	 C
• A 	 A ∨ B , B 	 A ∨ B
• A ∧ (B ∨ C ) 	 (A ∧ B) ∨ (A ∧ C ).

The designation of the conditionals of N4 and 2Int as Nelsonian stems from their
semantic characterization and is mostly used to contrast them with the connexive
conditionals of C, 2C and B2C.

In this paper we want to explore the expressive capabilities of the language of B2C.
There are two main themes we want to convey: first, that the language is quite weak, as
most of the results of the paper are undefinability results; second, that it is still strong
enough to result in a meaningful system. In particular, we will show that B2C still
can be construed as a connexive (and even “bi-connexive”), negation inconsistent and
non-trivial logic—all that despite lacking either a primitive negation, or constants that
are usual employed in defining a negation.

Let us outline the plan of the paper. §2 is dedicated to motivating our choice of the
language. There we will first discuss the choice of using connexive implication and co-
implication connectives and then motivate the lack of truth and falsity constants and of

5 Relatedly, it is observed in [34] that the expansion C⊥ of C by falsum (introduced in [17])
satisfies a constructive property that fails in the corresponding expansion N4⊥ of N4. This
can be seen to suggests that C⊥ answers some constructive criticisms against Int better than
N4⊥.
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BI-CONNEXIVE LOGIC, BILATERALISM, AND NEGATION INCONSISTENCY 5

the toggling negation. In §3 we formally introduce the system B2C via a bilateral natural
deduction calculus and obtain some initial results regarding it. More specifically, we
will discuss its status as a non-trivial negation inconsistent system, show its embedding
into the positive fragment of intuitionistic logic and provide it with semantics. The
proof of the corresponding soundness and completeness result concludes the section.
In §4 we obtain the first non-definability results, showing, in particular, that neither
� and ⊥, nor the toggling negation ∼ are definable in B2C. We then show how these
connectives could be recovered both proof- and model-theoretically. §5 deals with
variants of constants that are available to us proof-theoretically given the bilateralist
approach. This part also allows us to comment on some technical details of fashioning
natural deduction rules in a bilateral context. Finally, in §6 we investigate various ways
of toggling between proofs and refutations that are (for the most part) not available to
us, despite clearly non-trivial interaction between them.

§2. On the language of the system. In this section we discuss choices made with
regards to the language of the system B2C. We start by motivating the presence of
connexive implication and its corresponding co-implication and then comment on the
absences of both truth and falsity constants and of the toggling negation.

2.1. What speaks for connexive implication and co-implication? Why should one
prefer the (hyper)connexive reading of negated implications and co-implications, that
is expressed in 2C by

∼(A→ B) → (A→∼B), (A→∼B) →∼(A→ B),

being provable and

∼(∼B–�A)–� (B–�A) ∼(B–�A)–� (∼B–�A),

being refutable, over the Nelsonian (and classical) understanding of negated
conditionals, that can be seen in N4 by

∼(A→ B) → (A∧ ∼B), (A∧ ∼B) →∼(A→ B),

being provable?
This question asks for a motivation of (hyper)connexive logics. A detailed motivation

goes beyond the scope of the present paper. One reason, see [59], for considering
connexive implication, →, and connexive co-implication, –� , instead of assuming the
familiar understanding of negated implications in Nelson’s and other logics, is that
one obtains a neat encoding of derivations in the language with → and –� by typed
�-terms built up from atomic terms of two sorts, one for proofs and one for refutations
(dual proofs), using only

(i) functional application and functional abstraction, and
(ii) certain sort/type-shift operations that turn an encoding of a dual proof of

a formula A (∼A) into an encoding of a proof of ∼A (A) and that turn an
encoding of a proof of a formula A (∼A) into an encoding of a dual proof of
∼A (A).6

6 In [56] an encoding of derivations in Nelsons’s constructive logics N3 and N4 was obtained
by giving up the unique types of terms. The use of terms of two sorts avoids this: every term
is uniquely typed.
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6 HEINRICH WANSING ET AL.

A more recent motivation for first-order connexive logic, in particular for a certain
extension of C to first order, the system QC, is presented in [63]. There the axiom
∼(A→ B) ↔ (A→∼B) is justified by its use in proving the “drinker truism” and the
“dual drinker truism” (cf. the “drinker paradox” in classical logic [54]):

∼∃x(P(x) →∼∃yP(y)), (DT)

(“It is false that there is someone such that if she drinks, then it is false that someone
drinks.”)

∼∃x(∀yP(y) →∼P(x)). (DDT)

(“It is false that there is someone such that if everybody drinks, it is false that she
drinks.”)

The two formulas DT and DDT are valid in QC and have simple derivations in
the sequent calculus G3C for QC. The provability of DT and DDT in the Hilbert-
style proof system HQC for QC is guaranteed by the axiom ∼(A→ B) ↔ (A→∼B).
With it, DT is provably interderivable in HQC with ∀x(P(x)→∃yP(y)), and DDT is
provably interderivable in HQC with ∀x(∀yP(y)→P(x)).

The above reading of DT and DDT is rather non-idiomatic. Usually, the negated
existential ∼∃xP(x) is read as “No one drinks”. Under that reading, it seems that DT
indeed ought to be valid: No one is such that if she drinks, no one drinks.

Another recent motivation for quantified (hyper)connexive logic is given in [38]
and [66].

2.2. On dispensing with ⊥ and �. Irrespective of whether A→ ⊥ in Int is accepted
as a negation connective, the presence of ⊥ leads to a problem with the BHK
interpretation of the intuitionistic connectives. Jean-Yves Girard [23] presents the
BHK interpretation of Int as follows (notation and presentation adjusted):

1. for atomic sentences, we assume that we know intrinsically what a proof is (for
example, pencil and paper calculation serves as a proof of “27 × 37 = 999”);

2. (a construction) c is a proof of A ∧ B iff c = 〈d, e〉, where d is a proof of A and
e is a proof of B;

3. c is a proof of A ∨ B iff c = 〈i, d 〉, where i = 0 and d is a proof of A, or i = 1
and d is a proof of B;

4. c is a proof of A→ B iff c is a function, which maps any proof of A to a proof
of B;

5. no construction is a proof of ⊥.

In general, the negation ∼ is treated as A→ ⊥. The BHK-interpretation has been
criticized for this treatment of negation by Ingebrigt Johansson, Edgar López-Escobar,
and others. López-Escobar [28, p. 362 f.] remarks that

if one accepts that there is no construction that proves an absurdity
(as do most people) then a salient property of the construction � that
proves “not-A” is that when � is applied to a particular non-existent
construction (namely a proof of A) it yields another non-existent
construction!

By the BHK-clause for negation, a proof of the intuitionistically valid ∼(A∧ ∼A) is
a function f, which maps each proof � of A∧ ∼A to a nonexistent proof f(�) of ⊥.
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BI-CONNEXIVE LOGIC, BILATERALISM, AND NEGATION INCONSISTENCY 7

Since (A∧ ∼A) itself has no proof, any function whatsoever proves ∼(A∧ ∼A), which
seems fairly non-constructive. A similar criticism can be found in the work of George
Griss. As Thomas Ferguson [18, p. 3] explains (notation adjusted), for Griss

[c]onstructions serving to witness a conditional act as transforma-
tions whose application to constructions of an antecedent yield
constructions of the consequent. In this context, the executability
of a construction is interpreted as the possibility of successful acts of
transformation. In principle the act of applying a function can only
be considered successful in case there exists some operand to which
the function is applied. Consequently, Griss’ reading requires that
the possibility of a construction of A serves as a precondition of the
possibility of constructions of A→ B .

López-Escobar [28] suggested to supplement the BHK-interpretation of positive
intuitionistic logic with the primitive notion of refutation to give a constructively
acceptable interpretation for negation. As a result, and upon disregarding ⊥, one
obtains a semantics that is sound for N4. López-Escobar gives the following refutation
interpretation of the intuitionistic connectives ∧, ∨, →, and the toggling negation ∼
(notation and presentation adjusted):

(i) c is a refutation of A ∧ B iff c = 〈i, d 〉, where i = 0 and d is a refutation of A
or i = 1 and d is a refutation of B;

(ii) c is a refutation of A ∨ B iff c = 〈d, e〉 and d is a refutation of A and e is a
refutation of B;

(iii) c is a refutation of A→ B iff c = 〈d, e〉, d is a proof of A and e is a refutation
of B;

(iv) c is a refutation of ∼A iff c is a proof of A.

Definition 2.1. The López-Escobar interpretation of the connectives ∧, ∨, →, and ∼ is
obtained from the BHK-interpretation by replacing the clause 5 for negation by the above
clauses i) – iv) and adding the clauses

(v) for atomic sentences, we assume that we know intrinsically what a refutation is;
(vi) c is a proof of ∼A iff c is a refutation of A.

The connexive López-Escobar interpretation [63] is obtained from the López-Escobar
interpretation by replacing clause iii) by the following

iii’) c is a refutation of A→ B iff c is a function, which maps any proof of A to a
refutation of B.

Definition 2.2. The bi-connexive López-Escobar interpretation is obtained from the
connexive López-Escobar interpretation by adding the following two clauses:

(vii) c is a refutation of B–�A iff c is a function, which maps any refutation of A to
a refutation of B.

(viii) c is a proof of B–�A iff c is a function, which maps any refutation of A to a
proof of B.

In bilateral proof systems with such a pair of derivability relations for N4, its
connexive variant C, and the bi-connexive logic 2C, a direct interaction between the two
relations comes with the primitive toggling negation connective, ∼. The relationship
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8 HEINRICH WANSING ET AL.

is so tight that in the BHK-style interpretations of N4, C, and 2C, proofs of A are
seen as identical with refutations of ∼A and refutations of A are identified with proofs
of ∼A.

Importantly, after discarding� and⊥we still have access to some connectives similar
to two definable negations of 2Int and 2C. We can define surrogates of verum and falsum
constants as �:= p → p and �:= p–�p and define the new negation ¬A := A→� and
co-negation – A :=� –�A. These two connectives will play an important role in the
paper.

2.3. On dispensing with the toggling negation. If assertion and denial are both
primitive speech acts that are on a par, then asserting the negation of A can be achieved
by denying A, and denying the negation of A can be brought about by asserting A.
Similarly, if proofs and refutations are two primitive kinds of derivations that are on a
par, a proof of the toggling negation of A amounts to a refutation of A, and a refutation
of the toggling negation of A amounts to a proof of A, cf. the discussion in [62]. Yet
in the bilateral sequent calculi for N4 and its modifications C and 2C, there is already
some interaction between proofs and refutation even without the toggling negation. Is
there, then, indeed a need for the toggling negation?

There are various reasons for dispensing with the toggling negation, but most
importantly for us is that we take proofs and refutations to be primitive notions and the
toggling negation to be just a device for internalizing refutations within proofs and the
other way around. Some authors, instead, take incompatibility to be the prime notion
behind the concept of negation, see [9–11, 42]. Among these [42] is notable in that it is
nevertheless quite close to our version of bilateralism and [9] in that it holds negation
to be a modal operator: a view that seems to be incompatible with bilateralism. Let us
discuss more specific reasons for abandoning the toggling negation.

In [13] Drobyshevich shows that given a relatively well-behaved semantics, the
toggling negation can be introduced conservatively to a bilateral system but argues that
this does not constitute a limitation for the bilateral approach. As a demonstration,
in the same paper a few examples of non-trivial bilateral systems without the toggling
negation are given—both in the form of sequent calculi and via semantics—including
one for the bilateral negation-free fragment of C (confusingly, under the name P2C as
opposed to, say, PC). Sara Ayhan [6, sec. 3.2] takes an even stronger stance, saying
that it is “preferable not to have [the toggling] negation as a primitive connective
in the language since, in a way, it stands against the bilateralist idea that refutation
(or denial, or rejection, etc.) is a concept prior to negation,” and “incorporating
[the toggling] negation would mean to have a primitive connective that is basically
expressing exactly what is expressed by our derivability relations.” She also points to
the fact that in Nelson’s constructive logics, the toggling negation is non-congruential,
namely, that it prevents provable equivalence from being a congruence relation for
which a replacement theorem holds.

The toggling negation in C and 2C is also non-congruential because, as in N4, for
distinct propositional variables p and q, p → p and q → q are provably equivalent,
whereas ∼(p → p) and ∼(q → q) are not. However, one could argue that, exactly
from a bilateralist point of view, it is to be expected that provable equivalence fails to be
and that provable strong equivalence is a congruence relation. Interreplaceability of A
and B in all linguistic contexts requires that A and B are provably strongly equivalent,
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BI-CONNEXIVE LOGIC, BILATERALISM, AND NEGATION INCONSISTENCY 9

meaning that A and B as well as ∼A and ∼B are provably equivalent, i.e., that A and
B are mutually provable and refutable.

Another issue of debate is the nestability of negation versus the non-nestability of
speech acts and derivability relations.7 We remind the reader that two negations · → ⊥
and �–� · are definable in 2Int. Ayhan [6, footnote 17] remarks that because of this,
“an objection coming from a ‘Frege-Geach-point’ angle [...], that we need a negation
in our language to express it in subclauses of sentences (where an interpretation as
refutation would not suffice), does not seem to be a concern” for 2Int. This gives rise to
the question whether it nevertheless might be desirable to embed the toggling negation
instead of negations · → ⊥ and �–� ·, and whether it is justified to refer to ¬A defined
as A→� and – A defined as � –�A as ‘negations’ of A. There is no general agreement
about the properties that a one-place connective should have in order to be justifiably
called a negation. In [29] some minimal conditions for a unary connective ∗ to qualify
as a negation are listed, the chief among them being that (with respect to provability) A
cannot be derived from ∗A and ∗B cannot be derived from B for some A and B. In our
bilateral setting with both proofs and refutations, we may require that either the above
condition is satisfied or that with respect to refutability A cannot be derived from ∗A
and ∗B cannot be derived from B for some A and B. According to this, both A→�
and � –�A can be considered as negations (we make these conditions more formal in
Fact 3.5).

Irrespective of such a discussion, we believe that it is interesting to explore what
effects dispensing with the toggling negation has for B2C. What are the results of
letting the interaction between proofs and refutations emerge from the meaning of the
binary connectives → and –� only? That is, we assume the relations of provability and
refutability, internalize them by → and –� , moreover do without � and ⊥, and do not
stipulate a direct back and forth between proofs and refutations enabled by the toggling
negation. This approach of “better fewer, but better” allows us, at least, to take a fresh
look back at the very connectives we abandoned. As we shall see later in §5 and 6, such
a perspective can then be utilized in making an informed choice about restoring some
of these connectives in the language, if one so desires. Note that the language of B2C is
in some sense minimal if one i) considers the presence of conjunction, disjunction and
implication as essential and ii) takes the desiderata of having proofs and refutations on
par with each other very strongly. Observe that having a connective which internalizes
the preservation of provability but no connective that internalizes the preservation of
refutability can well be construed as a strong preference to provability over refutability.
Thus having both implication and co-implication keeps things in perfect balance. Still,
it is worth pointing out that as most of the results in our paper are non-definability
result, they trivially hold for the co-implication-free fragment of B2C.

§3. System B2C: its proof theory and semantics. In this section we will introduce
B2C starting with a natural deduction system. As is clear from the preceding discussion,
the language L of B2C is defined by the following grammar:

A ::= p | (A ∧ A) | (A ∨ A) | (A→ A) | (A–�A).

7 There is a literature on sequent calculi with embeddable sequent arrows. For an early reference
see [27] and [7].
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We denote the denumerable set of propositional variables with Prop and the set
of all formulas of L as FormL (similar notation will be adopted to other languages
introduced later in the paper).

To remind the reader, throughout the paper we will use the following definable
connectives:

�:= p → p; �:= p–�p; ¬A := A→�; – A :=� –�A.

We will call ¬ negation, – co-negation and ∼ (whenever it is present) the toggling
negation.

After introducing the natural deduction system we will show how it can be embedded
into positive intuitionistic logic, provide its semantics and establish the corresponding
completeness result.

3.1. The natural deduction proof system NB2C. The natural deduction proof system
NB2C for B2C is obtained as a simplification and modification of the proof system N2C
for 2C from [59]. Derivations in NB2C combine proofs and dual proofs (corresponding
to refutations), which are differentiated by whether a single line (for proofs) or a double
line (for dual proofs) is drawn above a formula. Moreover, a proof may contain dual
proofs as subderivations, and a dual proof may contain proofs as subderivations.

First it will be convenient to introduce some notions. By a set-pair we will call a
pair of sets of formulas denoted as (Δ; Γ). For two set-pairs (Δ; Γ) and (Δ′; Γ′) we will
write (Δ; Γ) ≤ (Δ′; Γ′) if Δ ⊆ Δ′ and Γ ⊆ Γ′. In writing set-pairs we will sometimes
replace the union sign with a comma and drop curly brackets over finite sets so that,
for instance, (Δ, A1, ... , An; Γ,Γ′) denotes (Δ ∪ {A1, ... , An}; Γ ∪ Γ′). We say that a
set-pair is finite if both sets in it are finite.

The conclusions of proof and dual proofs depend on finite set-pairs (Δ; Γ) of
premises: a set Δ of assumptions that are taken to be provable, and a set Γ of
counterassumptions that are taken to be refutable. Single square brackets [ ] are used
to indicate assumptions that may be discharged, and double-square brackets � � are
used to indicate counterassumptions that may be discharged. We usually write [A]

instead of [A] and �A� instead of �A�. Note that we allow for the empty discharge
of assumptions and counterassumptions. Finally, in the statement of derivation rules
dotted horizontal lines are sometimes used: these stand uniformly for either provability
or dual provability in each instance of the rule.

Definition 3.1. We consider A as a proof of A from ({A};∅) and A as a dual proof
of A from (∅; {A}). In addition to these stipulations, the system NB2C comprises the
introduction and elimination rules from Tables 2 and 3. In the names of the rules E stands
for “elimination from”, I for “introduction into”, p for “proofs”, and dp for “dual proofs”.
We write (Δ; Γ) 	 A if there is a proof of A from (Δ; Γ); and we write (Δ; Γ) 	d A if
there is a dual proof of A from (Δ; Γ). We say that a formula A is provable (in NB2C) if
(∅;∅)	 A and refutable (in NB2C) if (∅;∅)	dA.

Note that the rules (∨Ep) and (∧Edp) generalize those from [59]. Such generalized
rules can also be found in the term-annotated natural deduction proof system for 2Int
in [6]. In the latter system the generalized rules are derivable by means of the negation
and co-negation operations of 2Int.

We make some observations regarding NB2C.
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Table 2. Introduction and elimination rules of NB2C with respect to proofs

Table 3. Introduction and elimination rules of NB2C with respect to dual proofs

The logics C and 2C are non-trivial negation inconsistent logics, see [35].
For example, (A∧ ∼A) →∼(A∧ ∼A) and ∼((A∧ ∼A) →∼(A∧ ∼A)) are provable
in both systems. Meanwhile, in 2C the formulas ∼(A∨ ∼A)–� (A∨ ∼A) and
∼(∼(A∨ ∼A)–� (A∨ ∼A)) are both dually provable. Moreover, 2C has an even
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more unorthodox property: the co-negation �–�A is provable and the negation
A→ ⊥ is refutable for any formula A. A similar observation can be made regarding
NB2C; since the empty discharge of assumptions is permitted,8 we have the
following:

Fact 3.1. – A =� –�A is provable and ¬A = A→� is refutable in NB2C for any
formula A.

Fact 3.2. In NB2C for any formula A we have:

1. A, –A are both provable iff A is provable;
2. A,¬A are both refutable iff A is refutable.

Since there are provable formulas in NB2C (e.g. �), the first item of the last fact
implies that NB2C is negation inconsistent with respect to –: there is a formula A
such that both A and –A are provable. Moreover, it even describes how all provable
contradictions of this kind in NB2C look like; see [35] for a similar inquiry. Similarly,
the second item implies a kind of incompleteness statement with respect to ¬: there is
a formula A (e.g. �) such that both A and ¬A are refutable. From the perspective of
classical logic this would also constitute a kind of contradiction albeit of a different
kind. Note that these two kinds of contradictions are equivalent if the negation in
question is the toggling negation. There is another sense in which B2C is inconsistent,
which is unique to the bilateral presentation of the system; namely

Fact 3.3. There is a formula A such that A is both provable and refutable in NB2C.

Proof. One can take A =–� as demonstrated by the following derivations:

[p]
p → p

(p → p)–� (p → p)

�p → p�
(p → p)–� (p → p) .

Similarly, one can take A = ¬ �.

In N2C the following dual versions of Aristotle’s and Boethius’ theses are refutable:

dAT ∼(∼A–�A),
dAT′ ∼(A–� ∼A),
dBT ∼(∼B–�A)–� (B–�A),
dBT′ ∼(B–�A)–� (∼B–�A).

Moreover, (A–�B)–� (B–�A) is not refutable in N2C. We can then say that a logic is
dually connexive (w.r.t. ∼) if its co-implication connective satisfies this non-symmetry
of co-implication and if it allows one to derive dAT–dBT′ for the derivability relation
internalized by co-implication.

Fact 3.4. The system NB2C is bi-connexive. It is connexive w.r.t. co-negation and
dually connexive w.r.t. negation.

8 Whereas the empty discharge of assumptions is rejected by proponents of relevance logic,
for constructivists it is unproblematic.
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3.2. Faithful embedding of B2C into positive intuitionistic logic. The connexive
logic C is faithfully embeddable into positive intuitionistic logic, Int+, under a single
translation function, �. This is possible because the toggling negation toggles between
provability and refutability, so that, in particular, a refutation of a formula A is a proof
of the toggling negation ∼A of A. In the absence of the toggling negation, the separate
treatment of proofs and refutations requires the use of two translation functions, �+

and �–.

Definition 3.2. Let Prop– := {p– | p ∈ Prop} and Prop+ := {p+ | p ∈ Prop}. We
define two mappings �+ and �–, from FormL based on Prop to the set of all formulas of
the language of Int+ defined over Prop+ ∪ Prop– as follows:

• �+(p) = p+, �–(p) = p– for p ∈ Prop;
• �+(A ◦ B) := �+(A) ◦ �+(B) for ◦ ∈ {→,∧,∨};
• �+(B–�A) := �–(A) → �+(B);
• �–(A ∧ B) := �–(A) ∨ �–(B);
• �–(A ∨ B) := �–(A) ∧ �–(B);
• �–(A→ B) := �+(A) → �–(B);
• �–(B–�A) := �–(A) → �–(B).

If Δ ⊆ FormL is finite, then �∗(Δ) = {A∗ | A ∈ Δ}, for ∗ ∈ {+, –}. Taking rules
(◦Ip) and (◦Ep) for ◦ ∈ {∧,∨,→} from Table 2 and restricting them to empty sets
of counterassumptions and, moreover, restricting (∨Ep) so that only a single line is
permissible above C, results in a notational variant of a natural deduction proof system
NInt+, for Int+. We write Δ 	 A if there is a proof of A from Δ in NInt+.

Theorem 3.1. For any finite {A} ∪ Δ ∪ Γ ⊆ FormL:

1. (Δ; Γ) 	 A in NB2C iff �+(Δ) ∪ �–(Γ) 	 �+(A) in NInt+;
2. (Δ; Γ) 	d A in NB2C iff �+(Δ) ∪ �–(Γ) 	 �–(A) in NInt+.

Proof. The directions from right to left are obvious because the rules of NInt+ are
restricted versions of the proof rules of NB2C. For the directions from left to right, the
proof is by simultaneous induction on derivations in NB2C. As to the induction bases,
i.e., the cases (∅; {A}) 	 A and ({A};∅) 	d A, we have �∗(A) 	 �∗(A). Simultaneous
induction is needed for the cases of rules that make use of both proofs and refutations.
We present two cases for claim (1) and derivations ending in a proof.

(–�Ep). Suppose

(Δ′; Γ′)

.

..
B–�A

(Δ; Γ)

.

.

.

A .

By the two induction hypotheses, we have �+(Δ) ∪ �–(Γ) 	 �–(A) and �+(Δ′) ∪
�–(Γ′) 	 �+(B–�A) in NInt+. Since �+(B–�A) = �–(A) → �+(B), we obtain in NInt+:

�+(Δ) ∪ �–(Γ)

.

..

�–(A)

�+(Δ′) ∪ �–(Γ′)

..

.

�–(A) → �+(B)
(→ Ep)

�+(B)

.
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(∧Edp). Suppose

(Δ; Γ)
...

A ∧ B

(Δ′; Γ′, �A�)
...
C

(Δ′′; Γ′′, �B�)
...
C .

By the two induction hypotheses, we have �+(Δ) ∪ �–(Γ) 	 �–(A ∧ B), �+(Δ′) ∪
�–(Γ′) ∪ {�–(A)} 	 �+(C ), and �+(Δ′′) ∪ �–(Γ′′) ∪ {�–(B)} 	 �+(C ) in NInt+. Since
�–(A ∧ B) = �–(A) ∨ �–(B), we obtain in NInt+:

�+(Δ) ∪ �–(Γ)
...

�–(A) ∨ �–(B)

�+(Δ′) ∪ �–(Γ′) ∪ {�–(A)}
...

�+(C )

�+(Δ′′) ∪ �–(Γ′′) ∪ {�–(B)}
...

�+(C )
(∨Ep)

�+(C )

.

The reasoning for claim (2) is similarly straightforward.

The functions �+ and �– could be used to complement the syntactical embedding
from Theorem 3.1, by a semantical embedding along the lines of the semantical
embedding of first-order C into first-order Int+ in [57], in order to obtain an embedding-
based completeness proof for NB2C. The embedding of B2C into Int+ clarifies the
non-trivial negation inconsistency of NB2C. Although for every provable formula A,
– A is provable and for every refutable formula A, ¬A is refutable, neither is every
formula provable in NB2C nor is every formula refutable in NB2C. Moreover, under
both translations the formula (p → p)–� (p → p), for example, that is both provable
and refutable in NB2C, is mapped to a theorem of Int+:

�+((p → p)–� (p → p)) = (p+ → p–) → (p+ → p+),

�–((p → p)–� (p → p)) = (p+ → p–) → (p+ → p–).

In the next section we shall present a direct completeness proof for NB2C. This
will demonstrate that our bilateral framework is robust enough to obtain the usual
completeness proof via prime theories even in the absence of the toggling negation.

3.3. Semantics. The following semantics for B2C is obtained by simply dropping
the missing connectives from the semantics for 2C [59].

Definition 3.3. A model M is a structure 〈I,≤, v+, v–〉 where (i) I is a non-empty set
of states, (ii) ≤ is a pre-order on I and (iii) for ∗ ∈ {+, –}, v∗ : Prop → 2I is such that
v∗(p) is upward closed for any p ∈ Prop (i.e., x ∈ v∗(p) and y ≥ x implies y ∈ v∗(p)).
Relations |=+ (support of truth), |=– (support of falsity) between states and formulas
are defined by:
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M, x |=+ p iff x ∈ v+(p);

M, x |=– p iff x ∈ v–(p);

M, x |=+ A ∧ B iff M, x |=+ A and M, x |=+ B ;

M, x |=– A ∧ B iff M, x |=– A or M, x |=– B ;

M, x |=+ A ∨ B iff M, x |=+ A or M, x |=+ B ;

M, x |=– A ∨ B iff M, x |=– A and M, x |=– B ;

M, x |=+ A→ B iff ∀y ≥ x(M, y |=+ A implies M, y |=+ B);

M, x |=– A→ B iff ∀y ≥ x(M, y |=+ A implies M, y |=– B);

M, x |=+ B–�A iff ∀y ≥ x(M, y |=– A implies M, y |=+ B);

M, x |=– B–�A iff ∀y ≥ x(M, y |=– A implies M, y |=– B).

Occasionally, we will use v∗(A) as a shorthand for {x : M, x |=∗ A} (∗ ∈ {+, –}).

Definition 3.4. A model 〈I,≤, v+, v–〉 will be called classical, if y ≥ x implies x = y
for all x, y ∈ I .

As usual, we have the following

Lemma 3.1 (monotonicity). For any model M = 〈I,≤, v+, v–〉, formula A ∈ FormL
and ∗ ∈ {+, –}:

∀x, y ∈ I (x ≤ y and M, x �∗ A implies M, y �∗ A).

Proof. By a simple induction on the complexity of A.

Next, we establish soundness and completeness of B2C with respect to this semantics.
To do so, let us first define the corresponding consequence relations.

Definition 3.5. Fix a set-pair (Γ; Δ) and a formula A. Then put

• (Γ; Δ) 	+
B2C A if (Γ0; Δ0)	 A in NB2C for some finite (Γ0; Δ0) ≤ (Γ; Δ);

• (Γ; Δ) 	–
B2C A if (Γ0; Δ0) 	d A in NB2C for some finite (Γ0; Δ0) ≤ (Γ; Δ);

Similarly, where ∗ ∈ {+, –} put (Γ; Δ) �∗
B2C A if for any model M = 〈I,≤, v+, v–〉

and any state x ∈ I , M, x �+ B for all B ∈ Γ and M, x �– C for all C ∈ Δ
implies M, x �∗ A.

We list some simple properties of the two syntactic consequence relations:

Proposition 3.1. Let ∗ ∈ {+, –}.

1. Reflexivity: if A ∈ Γ∗, then (Γ+; Γ–) 	∗
B2C A.

2. Monotonicity: if (Γ+; Γ–) 	∗
B2C A and (Γ+; Γ–) ≤ (Δ+; Δ–) then (Δ+; Δ–) 	∗

B2C A.
3. Cut: if (Γ+; Γ–) 	+

B2C A and (Γ+, A; Γ–) 	∗
B2C B , then (Γ+; Γ–) 	∗

B2C B .
4. Dual cut: if (Γ+; Γ–) 	–

B2C A and (Γ+; Γ–, A) 	∗
B2C B , then (Γ+; Γ–) 	∗

B2C B .
5. Compactness: if (Γ+; Γ–) 	–

B2C A then (Δ+; Δ–) 	–
B2C A for some finite (Δ+; Δ–) ≤

(Γ+; Γ–).

A bi-theory (in B2C) is a set-pair (Γ+; Γ–) such that for any formula A and ∗ ∈ {+, –}
we have

(Γ+,Γ–) 	∗
B2C A =⇒ A ∈ Γ∗.
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A bi-theory (Γ+; Γ–) is prime if Γ+,Γ– are both non-empty and the following
constructive disjunction and conjunction properties are satisfied:

A ∨ B ∈ Γ+ =⇒ A ∈ Γ+ or B ∈ Γ+; A ∧ B ∈ Γ– =⇒ A ∈ Γ– or B ∈ Γ–.

Lemma 3.2 (extension). Suppose (Γ+; Γ–) is a set-pair, A is a formula and ∗ ∈ {+, –}.
If (Γ+; Γ–) �∗

B2C A then there is a prime bi-theory (Δ+,Δ–) such that (Γ+; Γ–) ≤ (Δ+; Δ–)
and (Δ+,Δ–) �∗

B2C A.

Proof. We consider the case of ∗ = +, the other case is similar.
Take X to be the set of all expressions of the form A+ and A–, where A is a formula

and fix some enumeration {xi | i ∈ N} of elements of X. Put Δ+
0 := Γ+, Δ–

0 := Γ– and
for any i ∈ N:

(Δ+
i+1; Δ–

i+1) :=

⎧⎪⎨
⎪⎩

(Δ+
i , B ; Δ–

i ), if xi = B+ and (Δ+
i , B ; Δ–

i ) �
+
B2C A;

(Δ+
i ; Δ–

i , B), if xi = B– and (Δ+
i ; Δ–

i , B) �+
B2C A;

(Δ+
i ; Δ–

i ), otherwise.

Then put Δ∗ =
⋃
i∈N

Δ∗
i for ∗ ∈ {+, –}. We show that (Δ+,Δ–) is the required bi-theory.

That (Γ+; Γ–) ≤ (Δ+; Δ–) is trivial by the construction.
A simple induction shows that (Δ+

i ; Δ–
i ) �

+
B2C A for any i ∈ N and hence that

(Δ+; Δ–) �+
B2C A due to compactness.

Suppose (Δ+; Δ–) 	+
B2C B and B /∈ Δ+. Then there is i ∈ N such that B+ = xi and

(Δ+
i , B ; Δ–

i ) 	+
B2C A. By monotonicity we have (Δ+, B ; Δ–) 	+

B2C A hence by the cut we
have (Δ+; Δ–) 	+

B2C A, which contradicts the assumption. So (Δ+; Δ–) 	+
B2C B implies

B ∈ Δ+. Similarly, (Δ+; Δ–) 	–
B2C B implies B ∈ Δ–.

That Δ+ (Δ–) is non-empty then follows from the fact that � (�) is provable
(refutable) in NB2C using (dual) cut.

Finally, suppose B ∨ C ∈ Δ+, B /∈ Δ+ and C /∈ Δ+. Again, there are i, j ∈ N such
that B+ = xi , C+ = xj ,

(Δ+
i , B ; Δ–

i ) 	+
B2C A; (Δ+

j , C ; Δ–
j) 	+

B2C A.

Then the following derivation

(B ∨ C ;∅)
...

B ∨ C

(Δ+
i , [B]; Δ–

i )

...
A

(Δ+
i , [C ]; Δ–

i )

...
A (∨Ep)

A

,

shows that (Δ+; Δ–) 	+
B2C A. Similarly if B ∧ C ∈ Δ–, B /∈ Δ– and C /∈ Δ–, then there

are i, j ∈ N such that B– = xi , C – = xj ,

(Δ+
i ; Δ–

i , B) 	+
B2C A; (Δ+

j ; Δ–
j , C ) 	+

B2C A.

And hence the following derivation shows that (Δ+; Δ–) 	+
B2C A:
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(∅;B ∧ C )
...

B ∧ C

(Δ+
i ; Δ–

i , �B�)

...
A

(Δ+
i ; Δ–

i , �C �)

...
A (∧Edp)

A

.

The canonical model (for B2C) is MB2C = 〈IB2C,≤, v+
B2C, v

–
B2C〉, where

• IB2C is the set of all prime bi-theories for B2C;
• ≤ is the order relation on set-pairs defined above;
• (Γ+; Γ–) ∈ v+

B2C(p) iff p ∈ Γ+ for p ∈ Prop;
• (Γ+; Γ–) ∈ v–

B2C(p) iff p ∈ Γ– for p ∈ Prop.

Lemma 3.3 (truth). For any (Γ+; Γ–) ∈ IB2C and any formula A we have:

MB2C, (Γ+; Γ–) �+ A iff A ∈ Γ+; MB2C, (Γ+; Γ–) �– A iff A ∈ Γ–.

Proof. By induction on the complexity of A. The basis of induction follows from
the definitions. Let us consider the cases of conjunction and co-implication, the other
two cases are dual.

(∧,+). By the induction hypothesis it is enough to show that

A ∧ B ∈ Γ+ iff A ∈ Γ+ and B ∈ Γ+.

To show that, it is enough to use (∧Ip) and (∧Ep).
(∧, –). It is enough to show that

A ∧ B ∈ Γ– iff A ∈ Γ– or B ∈ Γ–.

For the right-to-left direction use (∧Idp), the left-to-right direction follows from the
definition of a prime bi-theory.

(–� ,+). It is enough to show that

B–�A ∈ Γ+ iff ∀(Δ+; Δ–) ∈ IB2C ((Γ+,Γ–) ≤ (Δ+,Δ–) and A ∈ Δ– implies B ∈ Δ+).

Suppose B–�A ∈ Γ+, (Γ+,Γ–) ≤ (Δ+,Δ–) and A ∈ Δ–. Then B–�A ∈ Δ+, A ∈ Δ–

and one application of (–�Ep) shows that B ∈ Δ+.
For the other direction assume thatB–�A /∈ Γ+. If, additionally, (Γ+; Γ–, A) 	+

B2C B ,
then by (–� Ip) we have (Γ+; Γ–) 	+

B2C B–�A, hence B–�A ∈ Γ+ by the definition of
a prime bi-theory. This contradicts the assumption. Hence (Γ+; Γ–, A) �+

B2C B and by
the extension lemma there is (Δ+; Δ–) ∈ IB2C such that (Γ+; Γ–) ≤ (Δ+; Δ–), A ∈ Δ–

and (Δ+; Δ–) �+
B2C B . The latter implies that B /∈ Δ+ and concludes the proof.

(–� , –). Again, it is enough to show that

B–�A ∈ Γ– iff ∀(Δ+; Δ–) ∈ IB2C ((Γ+,Γ–) ≤ (Δ+,Δ–) and A ∈ Δ– implies B ∈ Δ–).

The left-to-right direction is obtained easily using (–�Edp). For the other direction we
assume B–�A /∈ Γ+. As before, if (Γ+; Γ–, A) 	–

B2C B then an application of (–� Idp)
gives us a contradiction with B–�A /∈ Γ+. Then (Γ+; Γ–, A) �–

B2C B and applying the
extension lemma we obtain (Δ+; Δ–) ∈ IB2C such that (Γ+; Γ–) ≤ (Δ+; Δ–),A ∈ Δ– and
B /∈ Δ–.
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Theorem 3.2 (soundness and completeness). Where (Γ; Δ) is a set-pair, A ∈ FormL
and ∗ ∈ {+, –}:

(Γ+; Γ–) 	∗
B2C A iff (Γ+; Γ–) �∗

B2C A.

Proof. The soundness part can be established directly by an induction on the height
of the corresponding derivation. We skip this part of the proof as it follows from the
results in [59].

For the completeness part, assume that (Γ+; Γ–) �∗
B2C A. Then by the extension

lemma there is a prime bi-theory (Δ+; Δ–) such that (Γ+; Γ–) ≤ (Δ+; Δ–) and A /∈ Δ∗.
According to the truth lemma we have MB2C, (Δ+; Δ–) �∗′ B for every B ∈ Δ∗′ and
∗′ ∈ {+, –}, whereMB2C = 〈IB2C,≤, v+

B2C, v
–
B2C〉 is the canonical model for B2C. By the

definition of semantic consequence relations this demonstrates that (Γ+; Γ–) �∗
B2C A.

This concludes the proof.

Corollary 3.1. A formula A is provable (refutable) in NB2C iff for any model M =
〈I,≤, v+, v–〉 and any x ∈ I we have M, x �+ A (M, x �– A).

We are now ready to clarify the status of ¬ and – in B2C as negations. First, for a
unary connective � put �(0)A := A and �(n+1)A := ��(n)A where n ≥ 1. The following
is established by a straightforward application of the completeness result above.

Fact 3.5. For every n ∈ N the following conditions hold (where p �= q):

(i) (¬(n+1)p;∅) �+
B2C q; (ii) (¬(n+1)p;∅) �+

B2C ¬(n)p;

(iii) (∅;∅) �+
B2C ¬(n+1)p; (iv) (¬(n)p;∅) �+

B2C ¬(n+1)p;

(v) (–(n+1)p;∅) �–
B2C q; (vi) (–(n+1)p;∅) �–

B2C –(n)p;

(vii) (∅;∅) �–
B2C –(n+1)p; (viii) (–(n)p;∅) �–

B2C –(n+1)p.

Conditions (i)–(iv) are natural variations of requirements for a minimal negation
put forward in [29] (under the name mid-negation, where mid stands for “minimally
decent”), while conditions (v)–(viii) are their natural duals.

§4. Expansions. We will now consider expansions of the language L of B2C by
constants �, ⊥, n, the unary connective ∼, as well as the binary connectives ⇒ and =�.
The toggling negation ∼ as well as the constants � and ⊥ we have already discussed at
length. Constant n (for neither) corresponds to a statement for which neither support
of truth nor support of falsity are available. Along with its dual constant b (for both;
corresponds to a statement for which both support of truth and support of falsity are
available) it is a very natural addition given the informational interpretation of our
semantics [8]. Our interest in them here stems from the fact that the addition of both
constants seems to often lead to a stark increase in expressive power (e.g. [2, 3, 37]). The
reason we do not consider an expansion of B2C with b is that this constant turns out to
be definable in the logic, as we will see later. Likewise, strong implication is an important
connective for logics with toggling negation as it is involved in defining a congruence
relation on the set of formulas and, as a consequence, in obtaining algebraizability
results (see, e.g. [17] for the case of C). In the presence of the toggling negation, strong
implication can be defined asA⇒ B := (A→ B) ∧ (∼B → ∼A). Since we are working
in a language without strong implication it makes sense to consider this connective
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separately, as a primitive one. Meanwhile, strong co-implication =� can be construed
as its natural dual by having the definition A=�B := (A–�B) ∨ (∼B–�∼A) in mind.

Then denote by Lall the language

A ::= p | � | ⊥ | n | ∼A | (A ∧ A) | (A ∨ A) | (A→ A) | (A–�A) | (A⇒ A) | (A=�A).

We will sometimes use the notation LYX , where X,Y ⊆ Lall , X ∩ Y = ∅, to denote
the result of adding connectives in X to and simultaneously removing connectives in
Y from L. Thus, for instance, L→

{�,⊥} represents the language with connectives from
{∧,∨, –� ,�,⊥}.

4.1. Non-definability. Before we introduce these new connectives via natural
deduction rules it is imperative to show that they are not already definable in B2C
via a formula. The argument will be semantical, so by a connective c(p1, ... , pn) here
we will understand a pair of support of truth and support of falsity conditions of the
form

M, x �+ c(A1, ... , An) iff S+(x,A1, ... , An);

M, x �– c(A1, ... , An) iff S–(x,A1, ... , An).

Then by c(p1, ... , pn) being definable we will mean that there is a formula
B(p1, ... , pn, q1, ... , qm) (where q1, ... , qm are parameters) in the given language such
that

M, x �+ B(A1, ... , An, q1, ... , qm) iff S+(x,A1, ... , An);

M, x �– B(A1, ... , An, q1, ... , qm) iff S–(x,A1, ... , An)

holds for any model M = 〈I,≤, v+, v–〉, any x ∈ I and any formulas A1, ... , An. In
particular, we will sometimes talk of definability in classical models, when we restrict
our attention to those models.

To proceed we list the support of truth and falsity conditions for these connectives;
later in the section we will provide them with natural deduction rules and prove the
corresponding completeness results. Then assuming M = 〈I,≤, v+, v–〉 to be a model
put

M, x |=+ � and M, x �|=– �;

M, x �|=+ ⊥ and M, x |=– ⊥;

M, x �|=+ n and M, x �|=– n;

M, x |=+ b and M, x |=– b;

M, x |=+ ∼A iff M, x |=– A;

M, x |=– ∼A iff M, x |=+ A;

M, x |=+ A⇒ B iff ∀y ≥ x(M, y |=+ A implies M, y |=+ B) and

∀y ≥ x(M, y |=– B implies M, y |=– A);

M, x |=– A⇒ B iff ∀y ≥ x(M, y |=+ A implies M, y |=– B) or

∀y ≥ x(M, y |=– B implies M, y |=+ A);

M, x |=+ B=�A iff ∀y ≥ x(M, y |=– A implies M, y |=+ B) or

∀y ≥ x(M, y |=+ B implies M, y |=– A);
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M, x |=– B=�A iff ∀y ≥ x(M, y |=– A implies M, y |=– B) and

∀y ≥ x(M, y |=+ B implies M, y |=+ A).

As we discussed at the beginning of the section, the constant b turns out to be
definable in B2C. In fact, we have already established this in Fact 3.3.

Lemma 4.1. The b constant is definable in L as –� (or as ¬ �).

Proof. Follows from Fact 3.3 and the completeness result in the previous section.

We proceed to the non-definability results. The main technical lemma is the
following:

Lemma 4.2. Suppose M = 〈I,≤, v+, v–〉 is a model.

1. If M, x �+ p for any p ∈ Prop and x ∈ I , then M, x �+ A for any formula A
and x ∈ I .

2. If M, x �– p for any p ∈ Prop and x ∈ I , then M, x �– A for any formula A and
x ∈ I .

Proof. Both items are proved via a simple induction on the complexity of A
(simultaneously for all x). Consider the first item and the case of A = B–�C . By the
induction hypothesis we have M, x �+ B for all x ∈ I . But then trivially M, x �– C
implies M, x �+ B for all x ∈ I , hence M, x �+ B–�C for all x ∈ I .

Note that the claims of Lemma 4.2 do not hold for 2Int and N4.

Theorem 4.1. The connectives ⇒, =� , ⊥, �, n and ∼ are not definable in B2C.

Proof. ⇒. Consider a model M = 〈{x},≤, v+, v–〉 such that x ∈ v+(r) for all r ∈
Prop, x ∈ v–(q) and x /∈ v–(p). Then we should have M, x �+ p ⇒ q, yet according
to the previous lemma we have M, x �+ A for any formula A.

=� . Similarly, consider a model M = 〈{x},≤, v+, v–〉 such that x ∈ v+(q), x /∈
v+(p) and x ∈ v–(r) for all r ∈ Prop. Then M, x �– q=�p according to the support
of falsity clause for =� and M, x �– A for any formula A according to the previous
lemma.

∼. Consider a model M = 〈{x},≤, v+, v–〉 such that x ∈ v+(r) for all r ∈ Prop and
x /∈ v–(p). Then we should have M, x �+ ∼p, yet M, x �+ A for any formula A.

The constants are considered similarly.

Next, we shall check that the choice of having both implication and co-implication
in L is a reasonable one. This will be established by a McKinsey-style argument [31]
showing that implication and co-implication are inter-independent in the absence of
the toggling negation, even when ⊥ and � are present.

Proposition 4.1. The following statements hold.

(i) –� is not definable in L–�
{�,⊥}.

(ii) → is not definable in L→
{�,⊥}.

Proof. (i) Let I := {x, y} and ≤:= {〈x, x〉, 〈y, y〉} and M := 〈I,≤, v+, v–〉 be such
that 〈v+(p), v–(p)〉 ∈ {〈I, I 〉, 〈I, {x}〉, 〈I, ∅〉, 〈∅, I 〉} for all p ∈ Prop. Then we have the
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next tables of 〈v+(A), v–(A)〉 for each formula A in L–�
{�,⊥}: note that � and ⊥ are

assigned the pairs 〈I, ∅〉 and 〈∅, I 〉, respectively.

∧ 〈I, I 〉 〈I, {x}〉 〈I, ∅〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈∅, I 〉

〈I, {x}〉 〈I, I 〉 〈I, {x}〉 〈I, {x}〉 〈∅, I 〉
〈I, ∅〉 〈I, I 〉 〈I, {x}〉 〈I, ∅〉 〈∅, I 〉
〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉

∨ 〈I, I 〉 〈I, {x}〉 〈I, ∅〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, {x}〉 〈I, ∅〉 〈I, I 〉

〈I, {x}〉 〈I, {x}〉 〈I, {x}〉 〈I, ∅〉 〈I, {x}〉
〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉
〈∅, I 〉 〈I, I 〉 〈I, {x}〉 〈I, ∅〉 〈∅, I 〉

→ 〈I, I 〉 〈I, {x}〉 〈I, ∅〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, {x}〉 〈I, ∅〉 〈∅, I 〉

〈I, {x}〉 〈I, I 〉 〈I, {x}〉 〈I, ∅〉 〈∅, I 〉
〈I, ∅〉 〈I, I 〉 〈I, {x}〉 〈I, ∅〉 〈∅, I 〉
〈∅, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

Thus any formula in L–�
{�,⊥} has one of the four pairs of values. Now suppose

that 〈v+(p), v–(p)〉 = 〈I, {x}〉 and 〈v+(q), v–(q)〉 = 〈∅, I 〉. Then v+(q–�p) = {y} and
v–(q–�p) = I , but 〈{y}, I 〉 does not belong to the collection of pairs. Therefore it
cannot be defined in L–�

{�,⊥}.
(ii) This time, let v+, v– be s.t. 〈v+(p), v–(p)〉 ∈ {〈I, I 〉, 〈I, ∅〉, 〈{x}, I 〉, 〈∅, I 〉} for all

p ∈ Prop. Then we obtain the following tables for 〈v+(A), v–(A)〉 for each formula A
in L→

{�,⊥}.

∧ 〈I, I 〉 〈I, ∅〉 〈{x}, I 〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, I 〉 〈{x}, I 〉 〈∅, I 〉
〈I, ∅〉 〈I, I 〉 〈I, ∅〉 〈{x}, I 〉 〈∅, I 〉

〈{x}, I 〉 〈{x}, I 〉 〈{x}, I 〉 〈{x}, I 〉 〈∅, I 〉
〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉

∨ 〈I, I 〉 〈I, ∅〉 〈{x}, I 〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, ∅〉 〈I, I 〉 〈I, I 〉
〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉

〈{x}, I 〉 〈I, I 〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, I 〉
〈∅, I 〉 〈I, I 〉 〈I, ∅〉 〈{x}, I 〉 〈∅, I 〉

–� 〈I, I 〉 〈I, ∅〉 〈{x}, I 〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, ∅〉 〈{x}, I 〉 〈∅, I 〉
〈I, ∅〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

〈{x}, I 〉 〈I, I 〉 〈I, ∅〉 〈{x}, I 〉 〈∅, I 〉
〈∅, I 〉 〈I, I 〉 〈I, ∅〉 〈{x}, I 〉 〈∅, I 〉

Thus any formula in L→
{�,⊥} has one of the four pairs of values. Now suppose

that 〈v+(p), v–(p)〉 = 〈{x}, I 〉 and 〈v+(q), v–(q)〉 = 〈I, ∅〉. Then v+(p → q) = I and
v–(p → q) = {y}, but 〈I, {y}〉 does not belong to the collection of pairs. Therefore it
cannot be defined in L→

{�,⊥}.

4.2. Natural deduction rules and completeness. We are ready to introduce natural
deduction rules corresponding to the new connectives introduced in this section. These
rules are listed in Tables 4 and 5.

The subsystems/expansions of B2C defined with some of these rules will be denoted
similarly to their linguistic counterpart: e.g. B2C→

{�,⊥} is a system in L→
{�,⊥} obtained

by removing →-related rules from B2C and adding the �- and ⊥-related rules from
Table 4.
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Table 4. Natural deduction rules for �, ⊥, n and ∼

Remark 4.1. Notice that implication and co-implication appear explicitly in rules
(⇒ Edp) and (=�Ep), which makes these rules not ‘pure’ [15, p. 257]. Although this
feature does not cause a problem in our current enquiry, the rules still make it appear that
strong implication/co-implication conceptually depend on implication/co-implication,
which may not necessarily be the case. One way to rectify this would be to use higher-
order rules [51]. On the other hand, the use of a more complex framework, if it turns out
to be essential, may also provide a reason not to include strong implication/co-implication
in one’s preferred language.

We proceed to extend our completeness result to the new connectives. Suppose Li is
a language such that L ⊆ Li ⊆ Lall and B2Ci is its corresponding expansion.

We have to modify the notion of a prime bi-theory. Note that for B2C itself there is a
prime bi-theory 〈Γ+,Γ–〉 such that both Γ+ and Γ– coincide with the set of all formulas.
This is consistent with the semantics since we can have support of truth and support
of falsity for all formulas in a given state. This is no longer the case once we introduce
one of the constants �, ⊥ or n. On the other hand, the presence of ⇒ or =� forces us
to adopt properties similar to those of the constructive properties for conjunction and
disjunction.

Then a bi-theory (for B2Ci) is a set-pair (Γ+; Γ–) such that for any formula A and
∗ ∈ {+, –} we have

(Γ+,Γ–) 	∗
B2Ci A implies A ∈ Γ∗.

A bi-theory (Γ+; Γ–) is prime (for B2Ci) if Γ+,Γ– are both non-empty; Γ+ satisfies the
constructive disjunction property, Γ– satisfies the constructive conjunction property
and, additionally:

1. Γ+ �= FormLi in case ⊥ ∈ Li or n ∈ Li ;
2. Γ– �= FormLi in case � ∈ Li or n ∈ Li ;
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Table 5. Natural deduction rules for strong implication and strong co-implication
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3. A⇒ B ∈ Γ– implies A→ B ∈ Γ– or A–�B ∈ Γ+ in case ⇒∈ Li ;
4. A=�B ∈ Γ+ implies A–�B ∈ Γ+ or A→ B ∈ Γ– in case =� ∈ Li .

The canonical model (for B2Ci) is defined exactly as for B2C.
First, we see how this modification changes the proof of the extension lemma.

Lemma 4.3 (extension; for expansions). Fix some expansion B2Ci where L ⊆ Li ⊆
Lall . Suppose (Γ+; Γ–) is a set-pair, A is a formula and ∗ ∈ {+, –}. If (Γ+; Γ–) �∗

B2Ci
A then there is a prime bi-theory (Δ+,Δ–) such that (Γ+; Γ–) ≤ (Δ+; Δ–) and
(Δ+,Δ–) �∗

B2Ci
A.

Proof. We consider the case ∗ = + as an example. So suppose (Γ+; Γ–) �+
B2Ci
A and

from there (Δ+,Δ–) is obtained like in the proof of Lemma 3.2. That is Δ∗ =
⋃
i∈N

Δ∗
i

for ∗ ∈ {+, –}, where Δ+
0 = Γ+, Δ–

0 = Γ– and for any i ∈ N:

(Δ+
i+1; Δ–

i+1) :=

⎧⎪⎨
⎪⎩

(Δ+
i , B ; Δ–

i ), if xi = B+ and (Δ+
i , B ; Δ–

i ) �
+
B2Ci
A;

(Δ+
i ; Δ–

i , B), if xi = B– and (Δ+
i ; Δ–

i , B) �+
B2Ci
A;

(Δ+
i ; Δ–

i ), otherwise;

and {xi | i ∈ N} is some enumeration of the set X of all expressions of the form A+

and A– (A ∈ FormLi).
All of the properties established in Lemma 3.2 are proved in exactly the same way,

so we consider them to be already established. We show the additional properties.
1. Suppose n ∈ Li and Δ+ = FormLi . Then n ∈ Δ+ and by (nEp) we have

(Δ+; Δ–) 	+
B2Ci
A, which contradicts the already established. The case ⊥ ∈ Li is treated

similarly.
2. Suppose n ∈ Li and Δ– = FormLi . Then n ∈ Δ– and by (nEdp) we have

(Δ+; Δ–) 	+
B2Ci
A. The case � ∈ Li is similar.

3. Suppose ⇒∈ Li . Assume additionally that B ⇒ C ∈ Δ– but B → C /∈ Δ– and
B–�C /∈ Δ+. Then there are i, j ∈ N such that xi = B → C –, xj = B–�C+ and

(Δ+
i ; Δ–

i , B → C ) 	+
B2C A; (Δ+

j , B–�C ; Δ–
j) 	+

B2C A.

Then the following derivation

(∅;B ⇒ C )
...

B ⇒ C

(Δ+
i ; Δ–

i , �B → C �)

...
A

(Δ+
i , [B–�C ]; Δ–

i )

...
A (⇒ Edp)

A

,

shows that (Δ+; Δ–) 	+
B2Ci
A, which gives us a contradiction. The case of =� ∈ Li is

considered similarly.

Lemma 4.4 (truth; for expansions). Fix some expansion B2Ci where L ⊆ Li ⊆ Lall .
For any (Γ+; Γ–) ∈ IB2Ci and any A ∈ FormLi we have:

MB2Ci , (Γ+; Γ–) �+ A iff A ∈ Γ+; MB2Ci , (Γ+; Γ–) �– A iff A ∈ Γ–.

Proof. We consider the case of ⇒, the rest is either similar or simple.
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(⇒,+). It is enough to show that for (Γ+; Γ–) ∈ IB2Ci

A⇒ B ∈ Γ+ iff ∀(Δ+; Δ–) ≥ (Γ+; Γ–)
(
(A ∈ Δ+ implies B ∈ Δ+) and

(B ∈ Δ– implies A ∈ Δ–)
)
.

The left-to-right direction follows easily from the definition of ≤ using rule (⇒ Ep).
For right-to-left, assume that A⇒ B /∈ Γ+. Suppose also that both of the following
conditions hold:

(i) (Γ+, A; Γ–) 	+
B2Ci
B ; (ii) (Γ+; Γ–, B) 	–

B2Ci A.

Then by (⇒ I ) we conclude that (Γ+; Γ–) 	+
B2Ci
A⇒ B , thus A⇒ B ∈ Γ+, which

contradicts the assumption. Then either (i) or (ii) does not hold. In the former case by
the extension lemma we obtain (Δ+; Δ–) ∈ IB2Ci such that (Γ+; Γ–) ≤ (Δ+; Δ–),A ∈ Δ+

and B /∈ Δ+; in the latter case by again the extension lemma we find (Δ+; Δ–) ∈ IB2Ci
such that (Γ+; Γ–) ≤ (Δ+; Δ–), B ∈ Δ– and A /∈ Δ–, as required.

(⇒, –). Similarly, it is enough to show that

A⇒ B ∈ Γ– iff ∀(Δ+; Δ–) ≥ (Γ+; Γ–) (A ∈ Δ+ implies B ∈ Δ–) or

∀(Δ+; Δ–) ≥ (Γ+; Γ–) (B ∈ Δ– implies A ∈ Δ+).

If A⇒ B ∈ Γ–, then according to the definition of prime bi-theories (in case ⇒∈ Li)
we have A→ B ∈ Γ– or A–�B ∈ Γ+. As already established, the former implies the
first disjunct and the latter implies the second disjunct of the condition on the right-
hand side.

SupposeA⇒ B /∈ Γ–. If, additionally, (Γ+, A; Γ–) 	–
B2Ci
B , then by (⇒ Idp) we con-

clude that (Γ+; Γ–) 	–
B2Ci
A⇒ B , which contradicts our assumption. Then applying

the extension lemma we obtain (Δ+; Δ–) ∈ IB2Ci such that (Γ+; Γ–) ≤ (Δ+; Δ–),A ∈ Δ+

and B /∈ Δ–, as required.
Similarly (Γ+; Γ–, B) 	+

B2Ci
A cannot be the case by (⇒ Idp) and the assumption, so

one application of the extension lemma gives us (Δ+; Δ–) ∈ IB2Ci such that (Γ+; Γ–) ≤
(Δ+; Δ–), B ∈ Δ– and A /∈ Δ+. This concludes the proof.

Theorem 4.2 (soundness and completeness). Fix some expansion B2Ci whereL ⊆ Li ⊆
Lall . Suppose (Γ; Δ) is a set-pair in Li , A ∈ FormLi and ∗ ∈ {+, –}. Then

(Γ+; Γ–) 	∗
B2C A iff (Γ+; Γ–) �∗

B2C A.

Proof. The soundness part is established as usual via a routine induction on the
height of the corresponding derivation tree. The completeness part is the same as in
Theorem 3.2.

§5. Restricted rules for constants. In the rules for � and ⊥ given in §3.1, we made
use of dotted lines to permit an inference step with respect to both proofs and dual
proofs. This formulation is necessary to make the natural deduction system complete
with respect to the semantics in absence of the toggling negation. On the other hand,
it is perhaps up to debate whether this formulation is always acceptable. (�Ep), for
instance, allows one to infer from a dual proof of � both the proof and dual proof
of any formula. This is unlike (�Ip) that only concerns proofs. Some may find this
discrepancy undesirable. Or from a different perspective, consider a scenario in which
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an intuitionistic logician learns about bilateralist perspectives, and accordingly decides
to extend one’s logical framework (here taken to be a natural deduction system) so as
to incorporate the dimension of refutation. The simplest way to achieve this would be
to add rules about dual proof for the intuitionistic connectives without making any
changes to the familiar rules about proof. In particular, the proof rules for ⊥ should
remain unchanged, only allowing one to infer arbitrary proofs from a proof for ⊥.
A logician adopting this kind of approach would thus fail to arrive at the rules with
dotted lines.9

This motivates us to study alternative rules for constants �, ⊥ and n. For �, there
can be three forms of (�Edp):

(Δ; Γ)
...

�1. . . . (�1Edp)
A

(Δ; Γ)
...

�2 (�2Edp)
A

(Δ; Γ)
...

�3
(�3Edp)

A

,

where (�1Edp) is identical to the rule (�Edp) in Table 4. Notice that they become
inter-derivable if the toggling negation is present.

We can also think of three kinds of (⊥Ep):

(Δ; Γ)
...
⊥1. . . . (⊥1Ep)
A

(Δ; Γ)
...
⊥2 (⊥2Ep)
A

(Δ; Γ)
...
⊥3

(⊥3Ep)
A

,

where (⊥1Ep) is identical to (⊥Ep) in Table 4. For n, we have three choices for both
(nEp) and (nEdp), resulting in nine notions. Not all of them are distinct, however.
For example, a pair of rules:

9 It must be admitted that the same reasoning can be used against the dotted lines in (∨Ep).
Although we will not address this question for (∨Ep) (and (∧Edp)) in the present paper, it
is certainly of interest to consider different forms of disjunction/conjunction rules as well. At
the same time, it might be possible to defend the current rules on the ground of an analogy
with the fact that e.g. the generalized rule for conjunction (cf. e.g. [32]):

(Δ; Γ)

...
A ∧ B

([A], [B],Δ′; Γ′)

.... . .
C. . . . . . . . . . . . . . . . . . . . . .

C

is admissible in NB2C, independent of how the dual proof rules for conjunction are
formulated.
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(Δ; Γ)
...
c. . .
A

(Δ; Γ)
...
c
A

,

gives the constant in Table 4: a dual proof of the constant enables to prove any formula
as well.

c
c. . .
A

Consequently, we end up instead with six distinct variations of n listed below:

(Δ; Γ)
...

n1. . . . (n1Ep)
A

(Δ; Γ)
...

n1. . . . (n1Edp)
A

(Δ; Γ)
...

n2. . . . (n2Ep)
A

(Δ; Γ)
...

n2
(n2Edp)

A

(Δ; Γ)
...

n3 (n3Ep)
A

(Δ; Γ)
...

n3. . . . (n3Edp)
A

(Δ; Γ)
...

n4 (n4Ep)
A

(Δ; Γ)
...

n4 (n4Edp)
A

(Δ; Γ)
...

n5 (n5Ep)
A

(Δ; Γ)
...

n5
(n5Edp)

A

(Δ; Γ)
...

n6
(n6Ep)

A

(Δ; Γ)
...

n6
(n6Edp)

A

.

A natural question now is how these constants can be captured semantically. If
we use, like before, the absence of the support of truth/falsity at a state as forcing
conditions for them, then it does not seem obvious e.g. how a support of truth of ⊥2

gives only the supports of truth for other formulas, and not of the falsity (assuming,
at least, the classical metalogic).

For this reason, we shall employ a non-standard Kripke semantics introduced by K.
Segerberg [53] and W. Veldman [55]. This type of semantics allows a constant, e.g. ⊥
of intuitionistic logic, to be forced in a state. The set of such worlds can be subjected
to additional conditions, resulting in different logics.

Here we shall concentrate on the case for n5, and show how a system (whose syntactic
consequence relation will be denoted by 	∗

q) with the constant (in Ln5 ) corresponds to
a non-standard semantics.

Definition 5.1. Let a queer model10 Mq be a quadruple 〈I,≤, Q+, Q–, v+, v–〉 s.t. (i)
〈I,≤, v+, v–〉 is a model, (ii)Q+, Q– ⊆ I are upward closed and (iii)Q∗ ⊆ v∗(p) for any

10 Segerberg uses the term queer in a more limited sense, to refer to a model s.t. I = Q.
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p ∈ Prop and ∗ ∈ {+, –}. We define the support of truth |=+
q and support of falsity |=–

q

relations as before, except that:

Mq, x |=+
q n5 iff x ∈ Q+

Mq, x |=–
q n5 iff x ∈ Q–.

The corresponding semantical consequence relations �+
q an �–

q are defined as in
Definition 3.5.

It is not difficult to recognize from this example how non-standard semantics for
other restricted constants can be formulated. When it comes to other types of neither
constants, for n2 (n3), we can additionally impose Q+ ⊆ Q– (Q– ⊆ Q+). Then for n6

(n4), we have to drop the condition about Q+ from v+ (Q– from v–) in the semantics
of n2 (n3).

The above clause for n5 clearly succeeds in restricting the constant to imply only
one of support of truth/support of falsity for propositional variables. What becomes
crucial then is that this property can be generalized to all formulas in Ln5 .

Lemma 5.1. For any formula A, (∅; ∅) |=+
q n5 → A and (∅; ∅) |=–

q A–� n5.

Proof. Let Mq be a queer model, and x ∈ I . We shall show the statement by
induction on A. If A = n5, then the statements follow immediately.

For a propositional variable p, if Mq, y |=+
q n5 for y ≥ x then y ∈ Q+ ⊆ v+(p) by

definition of v+. Thus Mq, y |=+
q p and so Mq, x |=+

q n5 → p. The case for p–� n5 is
shown analogously.

Cases for other connectives then follow straightforwardly from the I.H..

Remark 5.1. In the above lemma, it is crucial that the support of falsity conditions are
based on those of 2C. If instead those of 2Int were used, then for implication we would
have:

Mq, x |=–
q A→ B iff Mq, x |=+

q A and Mq, x |=–
q B.

Then a countermodel for |=–
q (p → p)–� n5 is easily constructed, by means of a state

which is in Q– but not supporting the truth of p. (Cf. Corollary 5.1 below.) For a
similar reason, we cannot allow strong implication/co-implication in the current setting.
Thus, restricted constants can provide useful information when the acceptability of strong
implication/co-implication is not clear.

The soundness of the system with the non-standard semantics now follows by
standard induction.

Theorem 5.1. If (Γ+; Γ–) 	∗
q A then (Γ+; Γ–) |=∗

q A, where ∗ ∈ {+, –}.

Corollary 5.1. (∅; ∅) �–
q n5 → A and (∅; ∅) �+

q A–� n5.

Proof. Here we show the first part. Let Mq = 〈{x}, {〈x, x〉}, {x}, ∅, v+, v–〉 be a
queer model s.t.: v+(q) = {x} and v–(q) = ∅ for any propositional variable q. Note
in particular that the conditions for v+ and v– are satisfied. Now Mq, x |=+ n5 but
Mq, x �|=– p; so the statement follows.

Next, we move on to show the completeness direction.

Theorem 5.2. (Γ+; Γ–) |=∗
q A then (Γ+; Γ=) 	∗

q A, where ∗ ∈ {+, –}.
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Proof. The basic outline is the same as the one for B2C in §3.3. In particular, the
construction of prime bi-theory goes through as in Lemma 3.2, and the notion of the
canonical model is almost identical to the one in §3.3 except that the sets Q+ and Q–

are defined by:

• (Γ+,Γ–) ∈ Q+ iff n5 ∈ Γ+.
• (Γ+,Γ–) ∈ Q– iff n5 ∈ Γ–.

Then the truth lemma for n5 follows easily, and otherwise the lemma is shown as in
Lemma 3.3.

Completeness for systems with other restricted constants can similarly be shown:
the same construction of their canonical models assures the conditions Q– ⊆ Q+ (for
n3, n4) or Q+ ⊆ Q– (for n2, n6).

The difference between the two semantics can shed light on whether an intuitionistic
logician should prefer ⊥1 or ⊥2. If one’s intended semantics is that of queer models
(for intuitionistic logic, obtained by removing notions related to |=–), then adding
the dimension of supports of falsity validates (⊥2Ep) but not (⊥1Ep); so ⊥2 will
be the natural choice for such a logician. In contrast, an analogous extension for
the standard intuitionistic Kripke semantics does validate (⊥1Ep); so if this is the
intended intuitionistic semantics, then an intuitionistic logician has no problems in
accepting ⊥1.

§6. Expansions of B2C and weaker notions of toggling. We have earlier discussed
reasons why the choice of connectives in the languageLmay be preferable, in particular
on why the constants ⊥ and � as well as the toggling negation ∼ need not be included.
Between these decisions, the second one is perhaps more novel, because ⊥ and � are
often excluded in constructive logics such as N4. Indeed, if we take N4 as paradigmatic
(cf. [36]), then it makes some sense, at least technically, to take the inclusion of the
constants as optional, whereas the rejection of the toggling negation is taken as more
fundamental. More generally, one may think of adding other connectives as long as it
does not reproduce the toggling negation as a definable connective.

One thing to note here is that the last requirement still allows connectives exhibiting a
“partial” characteristics of the toggling negation to be in the framework. For instance,
recall that the defined negation ¬A and co-negation – A in 2Int each shows one side of
the “toggling” property of the toggling negation: a dual proof of ¬A is inter-derivable
with a proof of A, and a proof of – A is inter-derivable with a dual proof of A. Even
though these connectives play essential roles for the theoretical purpose of 2Int, it is
at the same time at least imaginable that somebody who abhors the toggling negation
finds the two connectives unwelcome as well.

Extrapolating from this example, we shall study the acceptability of expansions of L
relative to the degree of toggling they introduce. With duality in mind, we concentrate
on the pairs ⊥&�, ⇒ &=� and n.

6.1. Half-toggling connectives. Semantically, the characteristic property of the
toggling negation is that both x |=+ ∼A iff x |=– A for all A, and x |=– ∼A iff x |=+ A
for all A. One way to liberalize it is then to require only one of the equivalences.

Let us call a unary connective ∼∗ half-toggling if it shares the condition for the
support of truth or the support of falsity with the toggling negation: i.e., it satisfies
either M, x |=+ ∼∗A iff M, x |=– A for all A, or M, x |=– ∼∗A iff M, x |=+ A for all
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A.11 When we want to be more specific, the former will be called positively half-
toggling and the latter will be called negatively half-toggling. Proof-theoretically, we
may understand these by the admissibility of the next pairs of rules, respectively.

A
∼∗A

, ∼∗A

A
or A

∼∗A
, ∼∗A
A

.

For some immediate examples, the toggling negation is a half-toggling connective,
and negation and co-negation in 2Int are each negatively and positively half-toggling.
In addition, the variants of the FDE-negation discussed in [40] are all positively half-
toggling.12 In particular, among them is a connective named ∼4, which has the next
support of truth/falsity condition.

M, x |=+ ∼4A iff M, x |=– A.

M, x |=– ∼4A.

The connective ∼4 in addition satisfies Belnap’s criterion [8] that an operator in the
bilattice FOUR must be monotone with respect to the informational ordering (Scott’s
thesis). Therefore there are good reasons to think that it is a legitimate connective. In
terms of natural deduction, ∼4 can be defined by adding to the rules for positively
half-toggling connectives the next 0-premise rule.

(∅; ∅)

∼4A

This consideration informs us about the acceptability of adding strong implication
(along with strong co-implication) to B2C as well, for it will allow us to define ∼4.

Proposition 6.1. ∼4 is definable in L{⇒,=� }.

Proof. The following shows that A⇒ b serves the purpose. (See Lemma 4.1 for a
definition of b.)

b A
A⇒ b

A⇒ b b
A

b
A⇒ b

.

Note that the proof above only uses strong implication. One may also obtain a
negatively half-toggling connective by means of strong co-implication alone, using
b=�A.

On the other hand, if we stay in L then we are saved from half-toggling connectives.
In fact, the addition of n to the language does not affect the undefinability of such
connectives.

11 Cf. the notions of positive/negative definability in a classical setting [39].
12 Indeed, the enquiry in [40] is based on the idea of A. Avron [4] that positive half-toggling

characterizes the intuitive notion of negation in the four-valued setting.
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Proposition 6.2. A half-toggling connective is not definable in Ln.

Proof. The argument is like for Proposition 4.1: we offer countermodels for
both positively and negatively half-toggling connectives. Let I := {x, y} and ≤:=
{〈x, x〉, 〈x, y〉, 〈y, y〉}. Let M1 := 〈I,≤, v+

1 , v
–
1〉 be s.t.

〈v+
1 (p), v–

1 (p)〉 ∈ {〈I, I 〉, 〈I, {y}〉, 〈I, ∅〉, 〈∅, I 〉, 〈∅, {y}〉, 〈∅, ∅〉},

for all p ∈ Prop. Note that n is assigned the pair 〈∅, ∅〉. Then we obtain the following
tables.

∧ 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉
〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉

〈I, {y}〉 〈I, I 〉 〈I, {y}〉 〈I, {y}〉 〈∅, I 〉 〈∅, {y}〉 〈∅, {y}〉
〈I, ∅〉 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉
〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉

〈∅, {y}〉 〈∅, I 〉 〈∅, {y}〉 〈∅, {y}〉 〈∅, I 〉 〈∅, {y}〉 〈∅, {y}〉
〈∅, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉

∨ 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉
〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈I, I 〉 〈I, {y}〉 〈I, ∅〉

〈I, {y}〉 〈I, {y}〉 〈I, {y}〉 〈I, ∅〉 〈I, {y}〉 〈I, {y}〉 〈I, ∅〉
〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉
〈∅, I 〉 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉

〈∅, {y}〉 〈I, {y}〉 〈I, {y}〉 〈I, ∅〉 〈∅, {y}〉 〈∅, {y}〉 〈∅, ∅〉
〈∅, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈∅, ∅〉 〈∅, ∅〉 〈∅, ∅〉

→ 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉
〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉

〈I, {y}〉 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉
〈I, ∅〉 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉
〈∅, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

〈∅, {y}〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉
〈∅, ∅〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

–� 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉
〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉

〈I, {y}〉 〈I, I 〉 〈I, I 〉 〈I, ∅〉 〈∅, I 〉 〈∅, I 〉 〈∅, ∅〉
〈I, ∅〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉
〈∅, I 〉 〈I, I 〉 〈I, {y}〉 〈I, ∅〉 〈∅, I 〉 〈∅, {y}〉 〈∅, ∅〉

〈∅, {y}〉 〈I, I 〉 〈I, I 〉 〈I, ∅〉 〈∅, I 〉 〈∅, I 〉 〈∅, ∅〉
〈∅, ∅〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

So the set {〈I, I 〉, 〈I, {y}〉, 〈I, ∅〉, 〈∅, I 〉, 〈∅, {y}〉, 〈∅, ∅〉} is closed under the opera-
tions. Now if a positively half-toggling connective is definable, then v+

1 (A) = {y} must
be possible; a contradiction. Next, Let M2 := 〈I,≤, v+

2 , v
–
2〉 be a model such that

〈v+
2 (p), v–

2 (p)〉 ∈ {〈I, I 〉, 〈I, ∅〉, 〈{y}, I 〉, 〈{y}, ∅〉, 〈∅, I 〉, 〈∅, ∅〉},

for all p ∈ Prop. Then we obtain the following tables.
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∧ 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈I, I 〉 〈I, I 〉 〈I, I 〉 〈{y}, I 〉 〈{y}, I 〉 〈∅, I 〉 〈∅, I 〉
〈I, ∅〉 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉

〈{y}, I 〉 〈{y}, I 〉 〈{y}, I 〉 〈{y}, I 〉 〈{y}, I 〉 〈∅, I 〉 〈∅, I 〉
〈{y}, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉
〈∅, ∅〉 〈∅, I 〉 〈∅, ∅〉 〈∅, I 〉 〈∅, ∅〉 〈∅, I 〉 〈∅, ∅〉

∨ 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈I, I 〉 〈I, I 〉 〈I, ∅〉 〈I, I 〉 〈I, ∅〉 〈I, I 〉 〈I, ∅〉
〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I.∅〉 〈I, ∅〉 〈I, ∅〉

〈{y}, I 〉 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈{y}, I 〉 〈{y}, ∅〉
〈{y}, ∅〉 〈I, ∅〉 〈I, ∅〉 〈{y}, ∅〉 〈{y}, ∅〉 〈{y}, ∅〉 〈{y}, ∅〉
〈∅, I 〉 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈∅, ∅〉 〈I, ∅〉 〈I, ∅〉 〈{y}, ∅〉 〈{y}, ∅〉 〈∅, ∅〉 〈∅, ∅〉

→ 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈I, I 〉 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈I, ∅〉 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉

〈{y}, I 〉 〈I, I 〉 〈I, ∅〉 〈I, I 〉 〈I, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈{y}, ∅〉 〈I, I 〉 〈I, ∅〉 〈I, I 〉 〈I, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈∅, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉
〈∅, ∅〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

–� 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈I, I 〉 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈I, ∅〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

〈{y}, I 〉 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈{y}, ∅〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉
〈∅, I 〉 〈I, I 〉 〈I, ∅〉 〈{y}, I 〉 〈{y}, ∅〉 〈∅, I 〉 〈∅, ∅〉
〈∅, ∅〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

Hence the set {〈I, I 〉, 〈I, ∅〉, 〈{y}, I 〉, 〈{y}, ∅〉, 〈∅, I 〉, 〈∅, ∅〉} is closed under the
operations. Now if a negatively half-toggling connective is definable, then v–

2 (A) = {y}
must be possible; a contradiction.

Corollary 6.1. A half-toggling connective is not definable in L{�,⊥}.

Proof. This follows immediately by noticing that � and ⊥ become definable once
we have b and n available to us, respectively by b ∧ n and b ∨ n.

Remark 6.1. If we restrict our attention to classical models, then a different picture
emerges. The formula (⊥–�A) → ⊥ in L{�,⊥} then has the next forcing condition in a
model M where I = {x}.

M, x |=+ (⊥–�A) → ⊥ iff M, x �|=+ ⊥–�A.

iff M, x |=– A and M, x �|=+ ⊥.
iff M, x |=– A.
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Similarly, the formula �–� (A→ �) gives:

M, x |=– �–� (A→ �) iff M, x |=– A→ �.
iff M, x |=+ A and M, x �|=– �.
iff M, x |=+ A.

Now it is also easily checked that (A→ B) ∧ (∼∗B → ∼∗A) defines strong implication
when ∼∗ is positively half-toggling, and (B–�A) ∨ (∼∗A–�∼∗B) defines strong co-
implication when ∼∗ is negatively half-toggling. (Note that classical models always
support the falsity of A⇒ B/the truth of B=�A.)

6.2. The toggling connective. Our second concern is the definability of the toggling
negation. We shall first observe that the language L{�,⊥,⇒,=� } does not define the
toggling connective. We utilize the fact that the languages L{�,⊥} and L{�,⊥,⇒,=� }
have no difference in classical models in their expressiveness.

Proposition 6.3. The toggling negation is not definable in L{�,⊥} in a classical model.

Proof. We shall use the same model as for Proposition 4.1, except that for all p ∈
Prop:

〈v+(p), v–(p)〉 ∈ {〈I, I 〉, 〈I, {x}〉, 〈I, {y}〉, 〈I, ∅〉, 〈{x}, I 〉,
〈{x}, {y}〉, 〈{y}, I 〉, 〈∅, I 〉}.

Then we obtain the following tables for 〈v+(A), v–(A)〉 for each formula A in L{�,⊥}.

∧ 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈{x}, I 〉 〈{x}, I 〉 〈{y}, I 〉 〈∅, I 〉

〈I, {x}〉 〈I, I 〉 〈I, {x}〉 〈I, I 〉 〈I, {x}〉 〈{x}, I 〉 〈{x}, I 〉 〈{y}, I 〉 〈∅, I 〉
〈I, {y}〉 〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈I, {y}〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
〈I, ∅〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉

〈{x}, I 〉 〈{x}, I 〉 〈{x}, I 〉 〈{x}, I 〉 〈{x}, I 〉 〈{x}, I 〉 〈{x}, I 〉 〈∅, I 〉 〈∅, I 〉
〈{x}, {y}〉 〈{x}, I 〉 〈{x}, I 〉 〈{x}, {y}〉 〈{x}, {y}〉 〈{x}, I 〉 〈{x}, {y}〉 〈∅, I 〉 〈∅, I 〉
〈{y}, I 〉 〈{y}, I 〉 〈{y}, I 〉 〈{y}, I 〉 〈{y}, I 〉 〈∅, I 〉 〈∅, I 〉 〈{y}, I 〉 〈∅, I 〉
〈∅, I 〉 〈∅, I 〉 〈∅.I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉 〈∅, I 〉

∨ 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈I, I 〉 〈I, {y}〉 〈I, I 〉 〈I, I 〉

〈I, {x}〉 〈I, {x}〉 〈I, {x}〉 〈I, ∅〉 〈I, ∅〉 〈I, {x}〉 〈I, ∅〉 〈I, {x}〉 〈I, {x}〉
〈I, {y}〉 〈I, {y}〉 〈I, ∅〉 〈I, {y}〉 〈I, ∅〉 〈I, {y}〉 〈I, {y}〉 〈I, {y}〉 〈I, {y}〉
〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉 〈I, ∅〉

〈{x}, I 〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈I, I 〉 〈{x}, I 〉
〈{x}, {y}〉 〈I, {y}〉 〈I, ∅〉 〈I, {y}〉 〈I, ∅〉 〈{x}, {y}〉 〈{x}, {y}〉 〈I, {y}〉 〈{x}, {y}〉
〈{y}, I 〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉 〈{y}, I 〉
〈∅, I 〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
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→ 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉

〈I, {x}〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
〈I, {y}〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
〈I, ∅〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉

〈{x}, I 〉 〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈I, {y}〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉 〈{y}, I 〉
〈{x}, {y}〉 〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈I, {y}〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉 〈{y}, I 〉
〈{y}, I 〉 〈I, I 〉 〈I, {x}〉 〈I, I 〉 〈I, {x}〉 〈{x}, I 〉 〈{x}, I 〉 〈I, I 〉 〈{x}, I 〉
〈∅, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

–� 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
〈I, I 〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉

〈I, {x}〉 〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈I, {y}〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉 〈{y}, I 〉
〈I, {y}〉 〈I, I 〉 〈I, {x}〉 〈I, I 〉 〈I, {x}〉 〈{x}, I 〉 〈{x}, I 〉 〈I, I 〉 〈{x}, I 〉
〈I, ∅〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

〈{x}, I 〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
〈{x}, {y}〉 〈I, I 〉 〈I, {x}〉 〈I, I 〉 〈I, {x}〉 〈{x}, I 〉 〈{x}, I 〉 〈I, I 〉 〈{x}, I 〉
〈{y}, I 〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉
〈∅, I 〉 〈I, I 〉 〈I, {x}〉 〈I, {y}〉 〈I, ∅〉 〈{x}, I 〉 〈{x}, {y}〉 〈{y}, I 〉 〈∅, I 〉

Hence the set of values are closed under the operations. Now if the toggling negation
∼ is definable, then 〈v+(p), v–(p)〉 = 〈{x}, {y}〉 implies v+(∼p) = {y} and v–(∼p) =
{x}, but 〈{y}, {x}〉 does not belong to the collection of pairs. Therefore ∼ cannot be
defined in L{�,⊥}.

Corollary 6.2. The toggling negation is not definable in L{�,⊥,⇒,=� }.

Proof. If it is definable, then it is definable in classical models in L{�,⊥}, by
Remark 6.1. Yet Proposition 6.3 shows that this is impossible.

Let us next consider languages including n. We have already seen that Ln does not
define half-toggling connectives; so a fortiori it does not define the toggling connective.
As for L{n,⇒,=� }, the situation is rather different from that of L{�,⊥,⇒,=� }. Recall that
half-toggling connectives are definable already in the latter language. We may then
apply a technique of combining the support of truth condition of one connective and
the support of falsity condition of another connective, in order to define the toggling
negation (cf. e.g. [3, 37]).

Proposition 6.4. The toggling negation is definable in L{n,⇒,=� }.

Proof. We claim that the formula (A⇒ b) ∨ ((b=�A) ∧ n) defines the toggling
negation. Indeed:
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b

A⇒b

b A

(b=�A)

(b=�A)∧n

(A⇒b)∨((b=�A)∧n)

(A⇒b)∨((b=�A)∧n)

(b=�A)∧n
�b=�A� b

A

�n�

A

A

b A

A⇒b
(A⇒b)∨((b=�A)∧n)

(A⇒b)∨((b=�A)∧n)

�(A⇒b)� b

A

[(b=�A) ∧ n]
n
A

A

.

Hence if one wishes to keep clear of the toggling negation (in the present setting),
then it is necessary and sufficient to give up either the neither constant or the strong
implication/co-implication pair.

6.3. Indirectly half-toggling connectives. It is possible to come up with a notion
of toggling that is less direct than half-toggling. We shall call a unary connective ∼∗
indirectly half-toggling if it satisfies either:

M, x |=+ ∼∗A iff ∀y ≥ x∃z ≥ yM, z |=– A, or

M, x |=– ∼∗A iff ∀y ≥ x∃z ≥ yM, z |=+ A.

As before, we will call the former the positive and the latter the negative form of indirect
half-toggling. This notion clearly coincides with that of a half-toggling connective in a
classical model, which provides a potential reason to be sceptical of the acceptability
of these connectives for those who take a more strict stance towards the separation of
proof and disproof.

It is straightforward to check that positive/negative indirectly half-toggling connec-
tives are definable in L{�,⊥} via the formulas in Remark 6.1, namely (⊥–�A) → ⊥
and �–� (A→ �). In comparison, once � and ⊥ are discarded, we can avoid such
formulas, again even in the presence of ⇒ and =� .

Proposition 6.5. An indirectly half-toggling connective is not definable in L{⇒,=� }.

Proof. Let I := {x, y, z}, ≤:= {〈x, x〉, 〈x, y〉, 〈y, y〉, 〈z, z〉}. Let M := 〈I,≤, v+, v–〉
be s.t. 〈v+(p), v–(p)〉 ∈ {〈I, I 〉, 〈I, {y}〉, 〈{y}, I 〉} for all p ∈ Prop. Then we obtain the
following tables for 〈v+(A), v–(A)〉 for each formula A in L{⇒,=� }.

∧ 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉
〈I, I 〉 〈I, I 〉 〈I, I 〉 〈{y}, I 〉

〈I, {y}〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉
〈{y}, I 〉 〈{y}, I 〉 〈{y}.I 〉 〈{y}, I 〉

∨ 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉
〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈I, I 〉

〈I, {y}〉 〈I, {y}〉 〈I, {y}〉 〈I, {y}〉
〈{y}, I 〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉

→ 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉
〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉

〈I, {y}〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉
〈{y}, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

–� 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉
〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉

〈I, {y}〉 〈I, I 〉 〈I, I 〉 〈I, I 〉
〈{y}, I 〉 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉

⇒ 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉
〈I, I 〉 〈I, I 〉 〈I, I 〉 〈{y}, I 〉

〈I, {y}〉 〈{y}, I 〉 〈I, I 〉 〈{y}, I 〉
〈{y}, I 〉 〈I, I 〉 〈I, I 〉 〈I, I 〉

=� 〈I, I 〉 〈I, {y}〉 〈{y}, I 〉
〈I, I 〉 〈I, I 〉 〈I, {y}〉 〈I, I 〉

〈I, {y}〉 〈I, I 〉 〈I, I 〉 〈I, I 〉
〈{y}, I 〉 〈I, {y}〉 〈I, {y}〉 〈I, I 〉
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Now if ∼∗ s.t. M, w |=+ ∼∗A if and only if ∀w′ ≥ w∃w′′ ≥ w′(M, w′′ |=– A) is
definable, then for v–(A) = {y}we would need v+(∼∗A) = {x, y}, but this is not possi-
ble. Similarly, if∼∗ s.t.M, w |=– ∼∗A if and only if ∀w′ ≥ w∃w′′ ≥ w′(M, w′′ |=+ A)
is definable, then for v+(A) = {y} we would need v–(∼∗A) = {x, y}, but this is again
impossible.

Remark 6.2. Connectives satisfying one of the next conditions can be used to
define positive/negative indirectly half-toggling connectives (when both of them exist),
respectively by †+ †– A and †– †+ A.

M, x |=+ †+A iff ∀y ≥ xM, y �|=– A, or M, x |=– †–A iff ∀y ≥ xM, y �|=+ A.

The converse is generally not the case, as can be shown by an argument similar to the
proof of Theorem 4.1. However it is not difficult to see that they are definable from an
indirectly half-toggling connective once we are in L{�,⊥}. So the definability of a pair of
indirectly half-toggling connectives and the pair †+, †– turns out to be equivalent, when it
comes to the languages under consideration.

Proof-theoretically, †+ and †– have an advantage over an indirectly half-toggling
connective in that they have a simpler presentation in terms of the admissibility of pairs
of rules: respectively,

(Δ; Γ, �A�)
...

†+A

†+A

,

(Δ; Γ)
...

†+A

(Δ′; Γ′)
...

A

B

and

([A],Δ; Γ)
...

†–A

†–A

,

(Δ; Γ)
...

†–A

(Δ′; Γ′)
...
A

B

.

Then we may observe a behaviour similar to positive/negative half-toggling, but with
respect to †+A→ A or A–� †– A. For the former:

[†+A]

†+A→ A [†+A]

A

†+(p–�p)
∼∗A

∼∗A [†+A]

†+(p–�p)
�p�

p–�p

A

†+A→ A

,

(where ∼∗A := †+A→ †+(p–�p)). For the latter:

�†–A�

A–� †– A �†–A�

A

†–(p → p)

∼∗A

∼∗A �†–A�

†–(p–�p)
[p]
p → p

A
A–� †– A

,

(where ∼∗A := †–(p → p)–� †– A). In particular, if one of the following:

†+A→ A
A

(for the former case) or A–� †– A

A
(for the latter case),

is satisfied, then ∼∗A becomes positively/negatively half-toggling in each case.
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Table 6. Hierarchy in constructive (left) and classical (right) settings

6.4. The indirectly toggling connective. It is of course possible to think of a
connective which relates to indirectly half-toggling connectives in the same way the
toggling negation relates to half-toggling connectives: i.e., the connective defined by:

M, x |=+ ∼∗A iff ∀y ≥ x∃z ≥ yM, z |=– A, and

M, x |=– ∼∗A iff ∀y ≥ x∃z ≥ yM, z |=+ A.

We shall call this connective the indirectly toggling connective, for which we have the
next observation.

Proposition 6.6. The next statements hold.

1. The indirectly toggling connective is definable in Ln.
2. The indirectly toggling connective is not definable in L{�,⊥,⇒,=� }.

Proof. 1. This follows, as in Proposition 6.4, from the availability of both b and
n in the language. Recalling that both positive and negative indirectly half-toggling
connectives are definable in L{�,⊥}, let us denote them by ∼+ and ∼–. Then (∼+A ∧
b) ∨ (∼–A ∧ n) defines the indirectly toggling connective.

2. Suppose that the indirectly toggling connective is definable inL{�,⊥,⇒,=� }. Then in
particular it is definable in all classical models, wherein the notions of indirect toggling
and the plain toggling become undistinguished. We know from Corollary 6.2, however,
that the toggling connective is not definable with respect to the class of classical models
in L{�,⊥,⇒,=� }: a contradiction.

6.5. Summary. We end up with Table 6, which exhibits the hierarchy of languages
for models/classical models. Table 7 displays more in detail possibilities of defining
types of toggling connectives under various languages.

An emerging picture is that a bilateralist who wishes to include only �, ⊥ or only
⇒, =� can adopt a criterion that half-toggling/indirectly half-toggling is acceptable
while other types of toggling are not. Alternatively, one can be permissive and allow
both half- and indirectly half-toggling connectives in order to include all of �, ⊥ and
⇒, =� . Or, one can accept the indirectly toggling connective along with the neither
constant. Even with such liberal attitudes, however, one must at least make a choice
between the neither constant and strong implication/co-implication, so as to avoid the
toggling negation. Finally, one can remain strict and reject all four kinds of toggling,
which supports the position of B2C that does not accept any of n, �, ⊥ or ⇒, =� .
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Table 7. Definability of toggling connectives

Definable? L L{⇒,=� } L{�,⊥} L{�,⊥,⇒,=� } Ln L{n,⇒,=� }

toggling No No No No No Yes
indirectly toggling No No No No Yes Yes

half-toggling No Yes No Yes No Yes
indirectly half-toggling No No Yes Yes Yes Yes

Definable in classical models? L L{⇒,=� } L{�,⊥} Ln

toggling No No No Yes
indirectly toggling No No No Yes

half-toggling No Yes Yes Yes
indirectly half-toggling No Yes Yes Yes
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