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The gas-particle flow with multiple dispersed solid phases is associated with a complicated
multiphase flow dynamics. In this paper, a unified algorithm is proposed for the
gas-particle multiphase flow. The gas-kinetic scheme (GKS) is used to simulate the gas
phase and the multiscale unified gas-kinetic wave–particle (UGKWP) method is developed
for the multiple dispersed solid particle phase. For each disperse solid particle phase, the
decomposition of deterministic wave and statistic particle in UGKWP is based on the local
cell’s Knudsen number. The method for solid particle phase can become the Eulerian fluid
approach at the small cell’s Knudsen number and the Lagrangian particle approach at
the large cell’s Knudsen number. This becomes an optimized algorithm for simulating
dispersed particle phases with a large variation of Knudsen numbers due to different
physical properties of the individual particle phase, such as the particle diameter, material
density, etc. The GKS-UGKWP method for gas-particle flow unifies the Eulerian–Eulerian
and Eulerian–Lagrangian methods. The particle and wave decompositions for the solid
particle phase and their coupled evolution in UGKWP come from the consideration
to balance the physical accuracy and numerical efficiency. Two cases of a gas–solid
fluidization system, i.e. one circulating fluidized bed and one turbulent fluidized bed,
are simulated. The typical flow structures of the fluidized particles are captured, and the
time-averaged variables of the flow field agree well with the experimental measurements.
In addition, the shock particle–bed interaction is studied by the proposed method, which
validates the algorithm for the polydisperse gas-particle system in the highly compressible
case, where the dynamic evolution process of the particle cloud is investigated.
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1. Introduction

Gas-particle two-phase flow appears in chemical, petroleum, environmental and other
industries. Quantitative study of the system is of great importance in both basic
scientific research and practical industrial production (Marchisio & Fox 2013; Ceresiat,
Kolehmainen & Ozel 2021). Most granular flow systems include multiple types of solid
particles with different material densities, diameters, shapes, etc., which is named as the
polydisperse gas-particle flow. For the polydisperse system, it may become problematic
to regard all kinds of solid particles as a single phase, especially as particle properties
differ significantly from each other. For instance, the inter-phase heat conduction and
the rate of chemical reaction highly depend on the solid particle’s size. As a result, the
effect from the particle size distribution (PSD) cannot be ignored (Zhong et al. 2016; Yan
et al. 2023). Besides, the mixing and segregation of different types of solid particles are
important issues that deserve much attention in the chemical and food industries, and thus
the numerical method for the multi-disperse particulate flow should be employed (Fox
& Vedula 2010). In addition, the interaction between different types of solid particles,
which is usually modelled by the so-called solid-to-solid drag, plays a significant role
in predicting the particles’ behaviours, indicating the necessity of accurately modelling
the polydisperse system (Syamlal 1987; Mathiesen et al. 1999). Therefore, developing an
advanced computational fluid dynamics tool for polydisperse gas-particle flow is more
challenging than its monodisperse counterparts due to the increased complexity in the
multi-particle system (Zhang et al. 2023).

Generally, two approaches, Eulerian–Eulerian (EE) approach and Eulerian–Lagrangian
(EL) approach, are used for the study of gas-particle two-phase flow. In both approaches,
the gas phase is described by the Navier–Stokes (NS) equations, i.e. the so-called Eulerian
approach; while the treatment of the solid particle phase can be Eulerian or Lagrangian.
In the EE approach, the particle phase is modelled as a continuum fluid, and the
hydrodynamic solvers are used in the simulation (Gidaspow 1994; Saurel & Abgrall 1999;
Lu & Gidaspow 2003). In the EL approach, all solid particles or parcels, standing for
a group of solid particles with the same properties, are tracked individually by solving
the Newtonian equation of particle motion. At the same time, the collisions between
solid particles are modelled, such as these collision rules in the discrete element method
(DEM) (Tsuji, Kawaguchi & Tanaka 1993; Zhang et al. 2017b) and in the multiphase
particle-in-cell method (MP-PIC) (Snider 2001, 2007; Verma & Padding 2020). In general,
the EL approach works well in all flow regimes. Although the EE approach may not
be able to accurately predict the particular flow when the Knudsen number (Kn) of the
solid phase is large, it is still the dominant method in practical engineering applications
due to the efficiency of the EE approach in comparison with the EL one (Zhong et al.
2016; Zhang et al. 2023). However, the recent studies also show that at some points the
EL approach may be more accurate and efficient than the finely resolved two-fluid EE
model (Benyahia 2022). In addition to the aforementioned methods, other commonly used
numerical methods for granular flow include, but are not limited to, method of moment
(Fan & Fox 2008; Marchisio & Fox 2013), direct simulation of Monte Carlo (He et al.
2015), compressible multiphase particle-in-cell method (Tian et al. 2020) and hybrid EL
method (Zhang et al. 2017a), and many others.

For the solid particle evolution, the dynamics from the particle free transport with the
interaction with the gas phase and inter-particle collisions should be modelled (Marchisio
& Fox 2013; Yang et al. 2023). For the polydisperse flow, the inter-particle collision
includes the monodisperse and polydisperse types of particles. For the EL approach, such
as DEM, the effect on the particle in the polydisperse case can be added straightforwardly

983 A37-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.80
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in the simulation, since all solid particles’ transport will be tracked with the explicit
inter-particle collision according to the collision law (Feng et al. 2004; Zhang et al. 2017b).
However, the computational cost is high, especially at small Kn, due to the explicit tracking
of tremendous amount of particles. For the EE approach, the multi-fluid strategy is one
of the commonly adopted methods in the polydisperse flow study, where many sets of
governing equations are employed to describe the disperse phases (Mathiesen et al. 1999;
Lu & Gidaspow 2003). For example, in the study of hydrodynamic behaviours from the
PSD, the particle phase is modelled in different discrete phases according to the particle
size (Qin, Zhou & Wang 2019). In the multi-fluid model, the closure of one solid phase
will involve the properties of other disperse phases. It becomes crucially important to
develop valid numerical methods for polydisperse gas-particle flow (Zhao & Wang 2021).
The determination of the solid-to-solid drag in the momentum exchange between different
disperse phases has to be properly modelled (Syamlal 1987; Mathiesen et al. 1999; Fan &
Fox 2008). Another approach is to use one set of governing equations for the whole solid
phase, and additional modifications are added with the consideration of different particle
sizes (Chen, Wang & Li 2013).

In addition, the gas–solid interaction also plays a significant role in monodisperse/
polydisperse particular flow in both EE and EL approaches. In particular, the drag on a
solid particle from the gas flow is of great importance to accurately predict the flow field
of the gas-particle system (Li et al. 2009; Zhang et al. 2017b). For example, different
polydisperse drag models are compared to evaluate their performance in capturing the
mixing and segregation of different dispersed solid flows (Zhang et al. 2017b). Two
methods are widely adopted to construct the drag model in the polydisperse system. Firstly,
each disperse phase uses directly the drag model developed for monodisperse flow (Lu &
Gidaspow 2003; Fan & Fox 2008). Secondly, the total drag of the whole multi-disperse
system is evaluated from either experiment or direct numerical simulation (DNS) and is
distributed to individual disperse phases according to the interaction rule (Cello, Di Renzo
& Di Maio 2010; Rong, Dong & Yu 2014). It is worth mentioning that the mesoscale
flow structures in the gas–solid system have a significant effect on the modelling of phase
interaction. Particularly, the energy-minimization multiscale (EMMS) theory has been
systematically developed for gas-particle flow (Li & Kwauk 1994; Yang et al. 2003; Wang
& Li 2007). Recently, the EMMS has been developed and employed in the polydisperse
particular flow system, with a preferred hydrodynamic performance in the EE approach
(Qin et al. 2019). Besides, the filtered subgrid model is another important mesoscale
method for both monodisperse and polydisperse gas-particle two-phase flows (Zhu et al.
2021; Lei, Zhu & Luo 2023). For example, the material property-dependent drag model
presents satisfactory results in comparison with the experiment measurements (Zhu et al.
2019a).

The unified gas-kinetic wave–particle (UGKWP) method is able to simulate the
equilibrium and non-equilibrium transports in different regimes under a unified
framework. The multiscale gas-kinetic scheme (GKS)-UGKWP method for gas-particle
two-phase flow is a regime-adaptive method to recover the EE and EL approaches in the
limiting conditions (Yang et al. 2022b; Yang, Shyy & Xu 2022c; Yang et al. 2023). The
UGKWP is an extension of the unified gas-kinetic scheme (UGKS). The UGKS models
the flow physics directly on the scales of cell size and time step (Xu & Huang 2010;
Xu 2021). The method was initially developed for rarefied flow and further extended to
radiation transfer, plasma, particular flow, etc. (Sun, Jiang & Xu 2015; Liu & Xu 2017;
Liu, Wang & Xu 2019). Both UGKS and UGKWP update macroscopic flow variables.
However, different from the UGKS method with the update of the gas distribution function
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with the discretized particle velocity space in a deterministic way, the UGKWP method
decomposes the distribution function into analytical wave and statistical particle, where
the weights for the wave and particle depend on the local cell’s Knudsen number (Kn),
such as (1 − exp(−1/Kn)) for the wave component and exp(−1/Kn) for the particle
component. Due to the absence of a discretized particle velocity space, the UGKWP
method increases its computational efficiency greatly in high-speed and high-temperature
flow simulations, especially for flow simulation close to the equilibrium (Zhu et al. 2019b;
Liu, Zhu & Xu 2020). In the continuum flow regime, UGKWP gets back to the GKS
(Xu 2001, 2021; Yang et al. 2022a), which is the kinetic theory-based second-order NS
solver. The GKS is used directly to compute the gas phase in the current gas–solid particle
system. Due to the Kn-dependent wave–particle decomposition, UGKWP is suitable for
the simulation of particle flow. In the high particle collision regime with a small Kn, no
particles will be sampled in UKGWP, and thus a hydrodynamic formulation will emerge
for the evolution of the solid particle phase. The whole GKS-UGKWP will recover the
EE approach automatically. On the contrary, when Kn is large, such as the collisionless
regime for the solid particle phase, the evolution of the solid phase will be determined
by tracking the discrete particles, and the GKS-UGKWP automatically gets back to the
EL approach. At an intermediate Kn, both hydrodynamic wave and microscopic discrete
particles will be updated in UGKWP for capturing the local non-equilibrium particle flow.
In this paper, for the first time, the GKS-UGKWP is constructed to solve polydisperse
gas-particle flow with multiple disperse particle phases, where particle’s transport in the
gas flow and particle collisions between same-type and different-type particles will be
incorporated into the scheme.

This paper is organized as follows. Section 2 introduces the governing equations for the
particle phase and the UGKWP method. Section 3 presents the governing equations for the
gas phase and GKS method. Section 4 shows the numerical examples and the engineering
applications with experimental measurements. The last section is the conclusion.

2. Unified gas-kinetic wave–particle method for disperse solid particle phase

2.1. Governing equation for disperse phase
The evolution of disperse phase is governed by the kinetic equation

∂fk
∂t

+ ∇x · (ufk) + ∇u · (afk) = gk − fk
τk

+
N∑

i=1,i /= k

gik − fk
τik

, (2.1)

where fk is the distribution function of the kth disperse phase, u is the particle velocity, a
is the particle acceleration caused by the external force, ∇x is the divergence operator with
respect to space, ∇u is the divergence operator with respect to velocity, τk is the relaxation
time for the kth disperse phase and gk is the associated equilibrium distribution, which can
be written as

gk = εkρk

(
λk

π

)3/2

e−λk[(u−Uk)
2], (2.2)

where εk is the volume fraction of the kth disperse phase, ρk is the material density of
the kth disperse phase, λk is the variable relevant to the granular temperature θk with
λk = 1/(2θk) and Uk is the macroscopic velocity of the kth disperse phase. The second
term at the right-hand side (gik − fk)/τik stands for the cross-species collision, where N
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is the number of the solid disperse phase, τik is the auxiliary collision time and gik is the
auxiliary equilibrium distribution

gik = εkρk

(
λk

π

)3/2

e−λk[(u−U ik)
2], (2.3)

and note that the mass conservation for the cross-species collision can be satisfied
automatically with the above gik.

The particle acceleration a is determined by the external forces, such as the drag force
D, the buoyancy force F b and gravity mkG, etc. Particularly, D and F b are inter-phase
forces, standing for the force applied on the solid particles by the gas flow. The general
form of drag force can be evaluated by the drag force model

D = mk

τst
(Ug − u). (2.4)

In the numerical simulation, the τst in (2.4) will be closed by the drag model chosen for
the solid phase, which will be introduced in detail later. Besides, another interactive force
considered is the buoyancy force, which can be modelled as

F b = −mk

ρk
∇xpg, (2.5)

where pg is the pressure of the gas phase.

2.2. Unified gas-kinetic wave–particle method
In this subsection, the UGKWP for the evolution of disperse phase is introduced.
Generally, the splitting operator is used to solve (2.1) through the following procedures
within a numerical time step of the solid phase �ts:

Ld1 :
∂fk
∂t

+ ∇x · (ufk) = gk − fk
τk

, (2.6)

Ld2 :
∂fk
∂t

=
N∑

i=1,i /= k

gik − fk
τik

, (2.7)

Ld3 :
∂fk
∂t

+ ∇u · (afk) = 0. (2.8)

For brevity, the variables updated by Ld1, Ld2 and Ld3 are denoted as

Ld1 : W n → W ∗, Ld2 : W ∗ → W ∗∗, Ld3 : W ∗∗ → W n+1. (2.9a–c)

Firstly, we focus on the part Ld1 : W n → W ∗. The disperse phase kinetic equation
without external force and cross-species collisions of solid particles is

∂fk
∂t

+ ∇x · (ufk) = gk − fk
τk

. (2.10)

For brevity, the subscript k will be neglected in this subsection. The integral solution of
the kinetic equation can be written as

f (x, t, u) = 1
τ

∫ t

0
g(x′, t′, u) e−(t−t′)/τ dt′ + e−t/τ f0(x − ut, u), (2.11)

where x′ = x + u(t′ − t) is the trajectory of the particle, f0 is the initial distribution
function at time t = 0 and g is the corresponding equilibrium state. In UGKWP, both
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macroscopic conservative variables and microscopic distribution function will be updated
under a finite volume framework. The cell-averaged macroscopic variables W i of cell i are
updated by the conservation law

W ∗
i = W n

i − 1
Ωi

∑
Sij∈∂Ωi

F ijSij + Si�t, (2.12)

where W i = (εiρi, εiρiU i, εiρiEi) are the cell-averaged macroscopic variables defined as

W i = 1
Ωi

∫
Ωi

W (x) dΩ, (2.13)

where εiρiEi = 1
2εiρiU2

i + 3
2εiρiθi, Ωi is the volume of cell i, ∂Ωi denotes the set of cell

interfaces of cell i, Sij is the area of the jth interface of cell i and F ij denotes the fluxes for
W i passing through the interface Sij. The flux F ij in one step �t can be calculated by

F ij =
∫ �t

0

∫
u · nijfij(x, t, u)ψ du dt, (2.14)

where nij is the unit normal vector of interface Sij, fij(t) is the distribution function on the
interface Sij and ψ = (1, u, 1

2 u2)T. Here

Si =
[

0, 0, −Qi,loss

τk

]T

, (2.15)

stands for the lost energy due to the inelastic collision of solid particles

Qi,loss = (1 − e2)3
2εiρiθi, (2.16)

where e ∈ [0, 1] is the restitution coefficient for the determination of the percentage of the
lost energy in the inelastic collision, and e has a value of 0.8, unless given specifically in
this paper.

Substituting the time-dependent distribution function (2.11) into (2.14), the fluxes can
be rewritten as

F ij =
∫ �t

0

∫
u · nijfij(x, t, u)ψ du dt

=
∫ �t

0

∫
u · nij

[
1
τ

∫ t

0
g(x′, t′, u) e−(t−t′)/τ dt′

]
ψ du dt

+
∫ �t

0

∫
u · nij[e−t/τ f0(x − ut, u)]ψ du dt

def= F eq
ij + F fr

ij . (2.17)

The procedure for obtaining the local equilibrium state g0 at the cell interface and
the construction of g(t) are the same as that in GKS. For a second-order accuracy, the
equilibrium state g around the cell interface is written as

g(x′, t′, u) = g0(x, u)(1 + ā · u(t′ − t) + Āt′), (2.18)

where ā = [�a1, �a2, �a3]T, �ai = (∂g/∂xi)/g, i = 1, 2, 3, Ā = (∂g/∂t)/g and g0 is the local
equilibrium on the interface. Specifically, the coefficients of spatial derivatives �ai can be
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obtained from the corresponding derivatives of the macroscopic variables

〈�ai〉 = ∂W 0/∂xi, (2.19)

where i = 1, 2, 3, and 〈· · · 〉 means the moments of the Maxwellian distribution functions

〈· · · 〉 =
∫
ψ(· · · )g du. (2.20)

The coefficients of temporal derivative Ā can be determined by the compatibility condition

〈ā · u + Ā〉 = 0. (2.21)

Now, all the coefficients in the equilibrium state g(x′, t′, u) have been determined, and its
integration becomes

f eq(x, t, u)
def= 1

τ

∫ t

0
g(x′, t′, u) e−(t−t′)/τ dt′

= c1g0(x, u) + c2ā · ug0(x, u) + c3Ag0(x, u), (2.22)

with coefficients

c1 = 1 − e−t/τ ,

c2 = (t + τ) e−t/τ − τ,

c3 = t − τ + τ e−t/τ .

⎫⎬⎭ (2.23)

So, the flux from the equilibrium state F eq
ij is given by

F eq
ij =

∫ �t

0

∫
u · nijf

eq
ij (x, t, u)ψ du dt. (2.24)

Besides, the flux contribution from the particle’s free transport is calculated by tracking
the particles sampled from f0. Therefore, the updating of the cell-averaged macroscopic
variables can be written as

W ∗
i = W n

i − 1
Ωi

∑
Sij∈∂Ωi

F eq
ij Sij + wfr

i
Ωi

+ Si�t, (2.25)

where wfr
i is the net free streaming flow of cell i, obtained by counting the sampled particle,

and it stands for the flux contribution of the free streaming of particles.
The evolution of the particle distribution can be written as

f (x, t, u) = (1 − e−t/τ )g+(x, t, u) + e−t/τ f0(x − ut, u), (2.26)

where g+ is named as the hydrodynamic distribution function with the analytical
formulation. The initial distribution function f0 has a probability of e−t/τ to free transport
and (1 − e−t/τ ) to collision with other particles. The post-collision particle satisfies
the distribution g+(x, u, t). The free transport time before the first collision with other
particles is denoted as tc, and then the cumulative distribution function of tc is

F(tc < t) = 1 − e−t/τ , (2.27)

and therefore tc can be sampled as tc = −τ ln(η), where η is a random number generated
from a uniform distribution U(0, 1). Then, the free streaming time tf for each particle is
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determined separately by
tf = min[−τ ln(η), �t], (2.28)

where �t is the time step. Therefore, within one time step, all particles can be divided into
two groups: the collisionless particle and the collisional particle, and they are determined
by the relation between time step �t and free streaming time tf . Specifically, if tf = �t,
this particle is collisionless, and its trajectory is fully tracked in the whole time step. On the
contrary, if tf < �t, this particle is a collisional one, and its trajectory is tracked until tf .
The collisional particle will be eliminated at tf in the simulation and the associated mass,
momentum and energy carried by this particle are merged into the macroscopic quantities
in the relevant cell by counting its contribution through the fluxes across the cell interfaces.
More specifically, the particle trajectory in the free streaming process within time interval
t ∈ [0, tf ] is tracked by

x∗ = xn + untf . (2.29)

The term wfr
i can be calculated by counting the particles passing through the interfaces of

cell i
wfr

i =
∑

k∈P(∂Ω+
i )

φk −
∑

k∈P(∂Ω−
i )

φk, (2.30)

where P(∂Ω+
i ) is the particle set moving into cell i within one time step, P(∂Ω−

i )

is the particle set moving out of cell i, k is the particle index in the specific set and
φk = [mk, mkuk,

1
2 mk(u2

k)]
T is the mass, momentum and energy carried by particle k.

Therefore, wfr
i /Ωi is the net conservative quantity caused by the free streaming of the

tracked particles. Now, all the terms in (2.25) have been determined and the macroscopic
variables W i can be updated.

All particles have been traced up to time tf . The collisionless particle with tf = �t will
survive at the end of the time step; while the collisional particle with tf < �t will be
deleted after its first collision and it is assumed to go to the equilibrium state in that cell.
Therefore, the hydrodynamic macroscopic variables of the collisional particles in cell i at
the end of each time step can be directly obtained by

W h
i = W ∗

i − W p
i , (2.31)

and W p
i are the mass, momentum and energy of remaining collisionless particles in the

cell. Here, the macroscopic variables W h
i account for all eliminated collisional particles,

which can be re-sampled from W h
i based on the Maxwellian distribution at the beginning

of the next time step. Now, the updates of both macroscopic variables and the microscopic
particles have been presented. The above method is the so-called unified gas-kinetic
particle (UGKP) method.

The above UGKP can be further developed to get an optimized UGKWP method in
terms of efficiency and memory reduction. In the UGKP method, all particles are divided
into collisionless and collisional particles in each time step. The collisional particles are
deleted after the first collision and re-sampled from W h

i at the beginning of the next time
step. However, only the collisionless portion of the re-sampled particles can survive in
the next time step, and all re-sampled collisional ones will be deleted again. Fortunately,
the transport fluxes from these collisional particles can be evaluated analytically without
using particles. Therefore, we do not need to re-sample these collisional particles from
W h

i at all. According to the cumulative distribution (2.27), the proportion of collisionless
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particles is exp (−�t/τ), and therefore, in UGKWP, only the collisionless particles from
the hydrodynamic variables W h

i in cell i will be re-sampled with the total mass, momentum
and energy

W hp
i = e−�t/τ W h

i . (2.32)

Then, the free transport time of all these re-sampled particles will be given by tf = �t
in UGKWP. The fluxes F fr,wave from these un-sampled collisional particles from (1 −
exp (−�t/τ))W h

i can be evaluated analytically (Zhu et al. 2019b; Liu et al. 2020). Now,
the same as UGKP, in UGKWP, the net flux wfr,p

i by the free streaming of the particles,
which include remaining particles from the previous time step and re-sampled collisionless
ones, can be calculated by

wfr,p
i =

∑
k∈P(∂Ω+

i )

φk −
∑

k∈P(∂Ω−
i )

φk. (2.33)

So, the macroscopic flow variables in UGKWP are updated by

W ∗
i = W n

i − 1
Ωi

∑
Sij∈∂Ωi

F eq
ij Sij − 1

Ωi

∑
Sij∈∂Ωi

F fr,wave
ij Sij + wfr,p

i
Ωi

+ Si�t, (2.34)

where F fr,wave
ij is the flux function from the un-sampled collisional particles (Zhu et al.

2019b; Liu et al. 2020)

F fr,wave
ij = F fr,UGKS

ij (W h
i ) − F fr,DVM

ij (W hp
i )

=
∫ �t

0

∫
u · nij[e−t/τ f0(x − ut, u)]ψ du dt

− e−�t/τ
∫ �t

0

∫
u · nij[gh

0(x, u) − tu · gh
x(x, u)]ψ du dt

=
∫

u · nij

[
(q4 − �t e−�t/τ )gh

0(x, u) +
(

q5 + �t2

2
e−�t/τ

)
u · gh

x(x, u)

]
ψ du,

(2.35)

with

q4 = τ(1 − e−�t/τ ), (2.36)

q5 = τ�t e−�t/τ − τ 2(1 − e−�t/τ ). (2.37)

In the second part Ld2, W ∗ → W ∗∗ models the effect of cross-species collision between
solid particles in different disperse phases. Taking the kth disperse phase for example, its
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collision with other disperse phases can be evaluated by

∂fk
∂t

=
N∑

i=1,i /= k

gik − fk
τik

. (2.38)

Obviously, ε∗∗
k = ε∗

k with the above formula of gik. Taking moment ψ = u in the Euler
regime with fk = gk + O(τk), we can obtain

∂(εkρkUk)

∂t
=

N∑
i=1,i /= k

εkρk(U ik − Uk)

τik
. (2.39)

In this paper, the auxiliary velocity between the ith and kth disperse phase, U ik, is assumed
as

U ik = εiρiU i + εkρkUk

εiρi + εkρk
. (2.40)

Now, we need to determine τik, i.e. the collision time between the ith and kth disperse
phase. Generally, the commonly employed parameter in the polydisperse particular flow is
βik, which is named the so-called inter-solid drag model and has the following relationship
with τik:

εkρk(U ik − Uk)

τik
= βik(U i − Uk). (2.41)

Substituting (2.40) into (2.41), the expression of τik can be explicitly obtained

τik = εiρiεkρk

(εiρi + εkρk)βik
, (2.42)

and the closure of βik will be introduced in the following. Here, U∗∗
k can be obtained by

the analytical solution

U∗∗
k = (1 − e−�ts/(βik/ε

∗
k ρk))U∗

i + e−�ts/(βik/ε
∗
k ρk)U∗

k . (2.43)

The parameter βik reflects the momentum and energy exchanges between different disperse
solid phases, which play an important role in polydisperse solid particle flow. Many studies
have been conducted about βik (Syamlal 1987; Mathiesen et al. 1999; Fan & Fox 2008).
In this paper, the inter-solid drag model proposed by Mathiesen based on kinetic theory of
granular flow (KTGF) will be used (Mathiesen et al. 1999)

βik = 3pc,ik

dik

[
2(m2

kθk + m2
i θi)

πm2
0θkθi

]1/2

+ pc,ik

|Uk − U i|

[
∇x ln

εk

εi
+ 3∇x

ln(miθi)

ln(mkθk)
+ θkθi

θk + θi

(
∇xθk

θ2
k

− ∇xθi

θ2
i

)]
, (2.44)

where pc,ik is the collisional pressure between the ith and kth disperse phase

pc,ik = π(1 + eik)d3
ikgikεiρiεkρkθiθk(mi + mk)

3(m2
i θi + m2

kθk)

[
(mi + mk)

2θiθk

(m2
i θi + m2

kθk)(θi + θk)

]3/2

, (2.45)
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UGKWP method for polydisperse gas-solid flow

with

m0 = mi + mk, mk = π

6
ρkd3

k , mi = π

6
ρid3

i , (2.46a–c)

eik = ei + ek

2
, dik = di + dk

2
, gik = N

2
εi + εk

1 − εg
g0. (2.47a–c)

In this paper, we take θ∗∗
k = θ∗

k , which means that the effect on the granular temperature
from intensive particles’ collisions is neglected due to the low value of the granular
temperature in the inelastic particles’ collision (Fox & Vedula 2010). Note that this effect
can be further considered by taking moment ψ = u2/2 on Ld2.

Finally, in the third part Ld3, W ∗∗ → W n+1 accounts for the acceleration

∂fk
∂t

+ ∇u · (afk) = 0, (2.48)

where the acceleration of one solid particle a can be decomposed into three parts

a = aD + ac + ap, (2.49)

where aD is the velocity-dependent drag force from the gas–solid interaction

aD = Ug − u
τst,k

, (2.50)

where ac is the velocity-independent buoyancy and gravitational force on the solid particle

ac = − 1
ρk

∇xpg + G, (2.51)

and ap is the force from the collisional and frictional pressure among solid phases. As
shown later, ap mainly contributes in dense particle flow and is similar to a normal stress.
It is conditionally updated in the MP-PIC method (Snider 2001, 2007; Verma & Padding
2020).

Taking moment ψ on the equation of Ld3, in the Euler regime with fk = gk + O(τk), we
get

∂W k

∂t
= Qk, (2.52)

where

Qk =

⎡⎢⎢⎢⎢⎣
0

εkρk(Ug − Uk)

τst,k
+ εkρk(ac + ap)

εkρkUk · (Ug − Uk)

τst,k
− 3

εkρkθk

τst,k
+ εkρkUk · (ac + ap)

⎤⎥⎥⎥⎥⎦ . (2.53)

Here, (2.52) will be updated in the following. Firstly, the gas–solid drag between the kth
disperse phase and gas flow

∂(εkρkUk)

∂t
= βk(Ug − Uk),

∂(ρ̃gUg)

∂t
= −βk(Ug − Uk),

⎫⎪⎬⎪⎭ (2.54)
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is discretized implicitly

εn+1
k ρkU∗∗∗

k − ε∗∗
k ρkU∗∗

k

�ts
= β∗∗

k (U∗∗∗
g − U∗∗∗

k ),

ρ̃n+1
g U∗∗∗

g − ρ̃∗∗
g U∗∗

g

�ts
= −β∗∗

k (U∗∗∗
g − U∗∗∗

k ),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.55)

where βk = εkρk/τst,k is determined based on the drag model of the kth disperse phase.
Obviously, we have εn+1

k = ε∗∗
k , ρ̃n+1

g = ρ̃∗∗
g , and thus we get

U∗∗∗
k = U∗∗

g �ts + U∗∗
k r�ts + U∗∗

k τst,k

�ts + r�ts + τst,k
,

U∗∗∗
g = U∗∗

g �ts + U∗∗
k r�ts + U∗∗

g τst,k

�ts + r�ts + τst,k
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.56)

with r = ε∗∗
k ρk/ρ̃

∗∗
g . Then, the particle’s acceleration due to drag can be written as

a∗∗∗
D

def= U∗∗∗
g − U∗∗∗

s

τst,k
= U∗∗

g − U∗∗
s

�ts + r�ts + τst,k
, (2.57)

and the acceleration without ap can be expressed as

a∗∗∗ = a∗∗∗
D + ac = U∗∗

g − U∗∗
s

�ts + r�ts + τst,k
+ ac. (2.58)

Then, the macroscopic variables of the kth solid phase are updated by

εn+1
k ρkU∗∗∗

k = ε∗∗
k ρkU∗∗

k + ε∗∗
k ρka∗∗∗�ts,

εn+1
k ρkE∗∗∗

k = ε∗∗
k ρkE∗∗

k +
(

ε∗∗
k ρkU∗∗

k · a∗∗∗ − 3
ε∗∗

k ρkθ
∗∗
k

τst,k

)
�ts,

⎫⎬⎭ (2.59)

where εn+1
k ρkE∗∗∗

k = 1
2εn+1

k ρkU2
k + 3

2εn+1
k ρkθ

∗∗∗
k .

As in the treatment of MP-PIC method, ap is updated at the end as (Snider 2001, 2007)

ap = − 1
εkρk

∇x( pk,c + pk,f ), (2.60)

where pk,c and pk,f are the collisional pressure and frictional pressure of the kth disperse
phase, which are determined by (2.70) and (2.71), respectively. In this paper, the ap
obtained by (2.60) is further constrained by the following stability conditions:

|1
2 ap�t2s | ≤ kc�cell,

|U∗∗∗
k �ts + 1

2 ap�t2s | ≤ kcΔcell,

}
(2.61)

where Δcell is the cell size and kc is a safety factor with a value smaller than 1, such as 0.8,
as used in this paper. Now the acceleration can be fully determined as

an+1 = a∗∗∗ + ap. (2.62)

The macroscopic velocity of the kth solid phase Un+1
k is updated by

Un+1
k = U∗∗∗

k + ap�ts, (2.63)

with the granular temperature θn+1
k = θ∗∗∗

k .
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UGKWP method for polydisperse gas-solid flow

Besides, the velocity and location of the remaining free transport particles are updated
as

un+1 = u∗ + an+1tf , (2.64)

xn+1 = x∗ + 1
2 an+1t2f . (2.65)

The above procedures are used to update the disperse particle phase in one time step �ts.

2.3. The Kn and flow regime of the solid particle phase
The parameter Knk stands for the Knudsen number of the kth disperse particle phase,
and it is defined by the ratio of the collision time τk to the characteristic time scale of
macroscopic flow tref

Knk = τk

tref
. (2.66)

The characteristic time tref takes the time step of the solid phase �ts and τk is the time
interval between collisions of solid particles. In this paper, τk is defined as (Passalacqua
et al. 2010; Marchisio & Fox 2013)

τk =
√

πdk

12εkg0
√

θk
, (2.67)

where dk, εk and θk are the diameter of the solid particle, volume fraction and the granular
temperature of the kth disperse phase. Here, g0 is the radial distribution function with the
following form:

g0 = 2 − c
2(1 − c)3 , (2.68)

where c = εt/εs,max is the ratio of the total solid volume fraction εt to the allowed
maximum value εs,max for the polydisperse solid mixture. The flow regime of the kth
disperse phase is determined by Knk. Generally, for the dilute flow, the collision frequency
between solid particles is low, leading to a large Knk, and UGKWP will sample and track
the solid particles, keeping the non-equilibrium automatically. On the contrary, in the high
concentration region, the high collision frequency between particles means the solid phase
is in the equilibrium state, and no particles will be sampled in UGKWP. In the limit of the
continuum flow regime with e = 1, the above UGKWP method for (2.1) can recover the
solution of the following hydrodynamic equations:

∂(εkρk)

∂t
+ ∇x · (εkρkUk) = 0, (2.69a)

∂(εkρkUk)

∂t
+ ∇x · (εkρkUkUk + pkI) = εkρk(Ug − Uk)

τst,k

− εk∇xpg + εkρkG +
N∑

i=1,i /= k

βik(U i − Uk), (2.69b)

∂(εkρkEk)

∂t
+ ∇x · ((εkρkEk + pk)Uk) = εkρkUk · (Ug − Uk)

τst,k

− 3
εkρkθk

τst,k
− εkUk · ∇xpg + εkρkUk · G. (2.69c)
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In (2.69), pk is the pressure of the kth disperse solid phase, and it is the sum of the kinetic
pressure pk,k = εkρkθk, collisional pressure pc,k and frictional pressure pf ,k. Lots of studies
about pc,k and pf ,k have been done, especially for the dense particular flow (Dou et al.
2023). In this paper, the collisional pressure pc,k is calculate by

pc,k =
N∑

i=1,i /= k

pc,ik, (2.70)

where pc,ik is the collisional pressure between the ith and the kth disperse phases, given in
(2.45). The value of pf ,k accounts for the enduring inter-particle contacts and frictions of
the kth disperse phase, which play important roles when the solid phase is near packing.
In this paper, the Johnson–Jackson model is employed (Johnson & Jackson 1987; Houim
& Oran 2016)

pf ,k =

⎧⎪⎨⎪⎩
0, εt ≤ εs,crit,

0.1εk
(εt − εs,crit)

2

(εs,max − εt)5 , εt > εs,crit.
(2.71)

Here, εs,crit is the critical volume fraction of the whole solid phase. To avoid the solid
volume fraction εk exceeding its maximum value εs,max, i.e. the over-packing problem,
the proposed flux limiting model near the packing condition is employed in the UGKWP
method for the solid phase (Yang et al. 2022c).

3. Gas-kinetic scheme for gas phase

3.1. Governing equations for gas phase
The gas phase is regarded as the continuum flow and the governing equations are the NS
equations with source terms reflecting the inter-phase interaction (Gidaspow 1994; Ishii &
Hibiki 2006)

∂(ρ̃g)

∂t
+ ∇x · (ρ̃gUg) = 0, (3.1a)

∂(ρ̃gUg)

∂t
+ ∇x · (ρ̃gUgUg + p̃gI) − εg∇x · (μgσ )

= pg∇xεg −
N∑

k=1

εkρk(Ug − Uk)

τst
+ ρgG, (3.1b)

∂(ρ̃gEg)

∂t
+ ∇x · ((ρ̃gEg + p̃g)Ug) − εg∇x · (μgσ · Ug − κ∇xTg)

= −pg
∂εg

∂t
−

N∑
k=1

εkρkUk · (Ug − Uk)

τst
+

N∑
k=1

3εkρkθk

τst
+ ρgUg · G, (3.1c)

where ρ̃g = εgρg is the apparent density of the gas phase, pg = ρgRTg is the pressure of
the gas phase and p̃g = ρ̃gRTg. The strain rate tensor σ is

σ = ∇xUg + (∇xUg)
T − 2

3∇x · UgI, (3.2)
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UGKWP method for polydisperse gas-solid flow

and

μg = τgpg, κ = 5
2 Rτgpg. (3.3a,b)

In particular, on the right-hand side of (3.1), the term pg∇xεg is called the ‘nozzle’ term,
and the associated work term −pg(∂εg/∂t) is called the pDV work term, since it is similar
to the pDV term in the quasi-one-dimensional gas nozzle flow equations (Houim & Oran
2016). Unphysical pressure fluctuations might occur if the ‘nozzle’ term and pDV term are
not solved correctly. According to Toro (2013), (3.1) can be written as the following form:

∂(ρg)

∂t
+ ∇x · (ρgUg) = Cεgρg, (3.4a)

∂(ρgUg)

∂t
+ ∇x · (ρgUgUg + pgI − μgσ )

= CεgρgUg −
N∑

k=1

εkρk(Ug − Uk)

εgτst
+ ρgG

εg
, (3.4b)

∂(ρgEg)

∂t
+ ∇x · ((ρgEg + pg)Ug − μgσ · Ug + κ∇xTg)

= Cεg(ρgEg + pg) −
N∑

k=1

εkρkUk · (Ug − Uk)

εgτst
+

N∑
k=1

3εkρkθk

εgτst
+ ρgUg · G

εg
, (3.4c)

where Cεg = −(1/εg)(dεg/dt) with dεg/dt = ∂εg/∂t + Ug · ∇εg. The method to solve
Cεg will be introduced later.

3.2. Gas-kinetic scheme for gas evolution
The gas flow is governed by the NS equations with the inter-phase interaction, and its
solution will be obtained by the corresponding GKS, which is a limiting scheme of
UGKWP in the continuum regime. In general, the evolution of the gas phase (3.4) in
one time step �tg can be split into three parts

Lg1 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂(ρg)

∂t
+ ∇x · (ρgUg) = 0,

∂(ρgUg)

∂t
+ ∇x · (ρgUgUg + pgI − μgσ ) = 0,

∂(ρgEg)

∂t
+ ∇x · ((ρgEg + pg)Ug − μgσ · Ug + κ∇xTg) = 0,

(3.5)

Lg2 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂(ρg)

∂t
= Cεgρg,

∂(ρgUg)

∂t
= CεgρgUg,

∂(ρgEg)

∂t
= Cεg(ρgEg + pg).

(3.6)
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Lg3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂(ρg)

∂t
= 0,

∂(ρgUg)

∂t
= −εsρs(Ug − U s)

εgτst
+ ρgG

εg
,

∂(ρgEg)

∂t
= −εsρsU s · (Ug − U s)

εgτst
+ 3εkρkθk

εgτst
+ ρgUg · G

εg
.

(3.7)

The variables updated by Lg1, Lg2 and Lg3 are denoted as

Lg1 : W n → W ∗, Lg2 : W ∗ → W ∗∗, Lg3 : W ∗∗ → W n+1. (3.8a–c)

Firstly, the kinetic equation without the nozzle and acceleration term Lg1 for W n → W ∗
for the gas phase is modelled by

∂fg
∂t

+ ∇x · (ufg) = gg − fg
τg

, (3.9)

where u is the velocity, τg is the relaxation time for the gas phase, fg is the distribution
function of the gas phase and gg is the corresponding equilibrium state (Maxwellian
distribution). The local equilibrium state gg can be written as

gg = ρg

(
λg

π

)(K+3)/2

e−λg[(u−Ug)
2+ξ2], (3.10)

where ρg is the density, λg is determined by the gas temperature through λg = mg/2kBTg,
mg is the molecular mass and Ug is the macroscopic velocity of the gas phase. Here, K
is the internal degree of freedom with K = (5 − 3γ )/(γ − 1) for the three-dimensional
diatomic gas, where γ = 1.4 is the specific heat ratio. The collision term satisfies the
compatibility condition ∫

gg − fg
τg

ψ dΞ = 0, (3.11)

where ψ = (1, u, 1
2 (u2 + ξ2))T, the internal variables ξ2 = ξ2

1 + · · · + ξ2
K and dΞ =

du dξ .
For brevity, the subscript g will be neglected in this subsection. For (3.9), the integral

solution of f at the cell interface can be written as

f (x, t, u, ξ) = 1
τ

∫ t

0
g(x′, t′, u, ξ) e−(t−t′)/τ dt′ + e−t/τ f0(x − ut, u, ξ), (3.12)

where x′ = x + u(t′ − t) is the trajectory of particles, f0 is the initial gas distribution
function at time t = 0 and g is the corresponding equilibrium state. The initial NS gas
distribution function f0 in (3.12) can be constructed as

f0 = f l
0(x, u)(1 − H(x)) + f r

0 (x, u)H(x), (3.13)

where H(x) is the Heaviside function, f l
0 and f r

0 are the initial gas distribution functions on
the left and right sides of one cell interface. More specifically, the initial gas distribution
function f k

0 , k = l, r, is constructed as

f k
0 = gk(1 + ak · x − τ(ak · u + Ak)), (3.14)

where gl and gr are the Maxwellian distribution functions on the left-hand and right-hand
sides of a cell interface, which can be fully determined by the macroscopic conservative
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UGKWP method for polydisperse gas-solid flow

flow variables W l and W r. The coefficients al = [al
1, al

2, al
3]T and ar = [ar

1, ar
2, ar

3]T are
related to the spatial derivatives in the normal and tangential directions, which can be
evaluated from the corresponding derivatives of the initial macroscopic variables

〈al
i〉 = ∂W l/∂xi, 〈ar

i 〉 = ∂W r/∂xi, (3.15a,b)

where i = 1, 2, 3, and 〈· · · 〉 means the moments of the Maxwellian distribution functions

〈· · · 〉 =
∫
ψ(· · · )g dΞ. (3.16)

Based on the Chapman–Enskog expansion, the non-equilibrium part of the distribution
function satisfies

〈al · u + Al〉 = 0, 〈ar · u + Ar〉 = 0, (3.17)

and therefore the coefficients Al and Ar can be fully determined. The equilibrium state g
around the cell interface is modelled as

g = g0(1 + ā · x + Āt), (3.18)

where ā = [ā1, ā2, ā3]T, g0 is the local equilibrium of the cell interface. More specifically,
g can be determined by the compatibility condition∫

ψg0 dΞ = W 0 =
∫

u>0
ψgl dΞ +

∫
u<0

ψgr dΞ, (3.19)∫
ψ�aig0 dΞ = ∂W 0/∂xi =

∫
u>0

ψal
ig

l dΞ +
∫

u<0
ψar

i gr dΞ, (3.20)

i = 1, 2, 3, and
〈ā · u + Ā〉 = 0. (3.21)

After determining all parameters in the initial gas distribution function f0 and the
equilibrium state g, substituting (3.13) and (3.18) into (3.12), the time-dependent
distribution function f (x, t, u, ξ) at a cell interface can be expressed as

f (x, t, u, ξ) = c1g0 + c2ā · ug0 + c3Āg0

+ [c4gr + c5ar · ugr + c6Argr](1 − H(u))

+ [c4gl + c5al · ugl + c6Algl]H(u), (3.22)

with coefficients

c1 = 1 − e−t/τ ,

c2 = (t + τ) e−t/τ − τ,

c3 = t − τ + τ e−t/τ ,

c4 = e−t/τ ,

c5 = −(t + τ) e−t/τ ,

c6 = −τ e−t/τ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.23)

Then, the flux transport over a time step can be calculated

F ij =
∫ �t

0

∫
u · nijfij(x, t, u, ξ)ψ dΞ dt, (3.24)
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where nij is the normal vector of the cell interface. Then, the cell-averaged conservative
variables of cell i can be updated as follows:

W ∗
i = W n

i − 1
Ωi

∑
Sij∈∂Ωi

F ijSij, (3.25)

where Ωi is the volume of cell i, ∂Ωi denotes the set of the interface of cell i, Sij is the area
of the jth interface of cell i, F ij denotes the projected macroscopic fluxes in the normal
direction and W g = [ρg, ρgUg, ρgEg]T are the cell-averaged conservative flow variables
for the gas phase.

In the second part, Lg2 : W ∗ → W ∗∗ is about the nozzle term

ρ∗∗
g = ρ∗

g + C∗
εg

ρ∗
g�tg,

ρ∗∗
g U∗∗

g = ρ∗
g U∗

g + C∗
εg

ρ∗
g U∗

g�tg,

ρ∗∗
g E∗∗

g = ρ∗
g E∗

g + C∗
εg

(ρ∗
g E∗

g + p∗
g)�tg,

⎫⎪⎬⎪⎭ (3.26)

where

C∗
εg

= − 1

εn+1
g

(
εn+1

g − εn
g

�ts
+ U∗

g · ∇εn
g

)
, (3.27)

with

εn
g = 1 −

N∑
k=1

εn
k , εn+1

g = 1 −
N∑

k=1

εn+1
k , ∇εn

g = −
N∑

k=1

∇εn
k . (3.28a–c)

It is worth noting that ∇εg is the cell-averaged volume fraction gradient of the gas phase
in the cell. Taking ∂εg/∂x for example, it is calculated by

∂εg,i

∂x
= εg,i+1/2 − εg,i−1/2

�x
, (3.29)

where εg,i−1/2 and εg,i+1/2 are volume fractions of the gas phase at the left and right
interfaces of cell i, which can be obtained from the reconstructed εs at the interface based
on εs + εg = 1.

In the third part, Lg3 : W ∗∗ → W n+1 is for the phase interaction

Lg3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(ρg)

∂t
= 0,

∂(ρgUg)

∂t
= −

N∑
k=1

εkρk(Ug − Uk)

εgτst
,

∂(ρgEg)

∂t
= −

N∑
k=1

εkρkUk · (Ug − Uk)

εgτst
+

N∑
k=1

3εkρkθk

εgτst
,

(3.30)

Obviously, we have ρn+1
g = ρ∗∗

g . Then, the second equation represents the momentum
exchange between the gas phase with multi-disperse phases

∂(ρgUg)

∂t
= −

N∑
k=1

εkρk(Ug − Uk)

εgτst

def= − 1
εg

βt(Ug − U t), (3.31)
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Solid

phase

Calculate time step �ts,k and �tg

�ts = min(�ts,k)

1th

Ls1 Ls1

Lg1

Lg2

Lg3

Ls2 Ls2

Ls3 Ls3

kth

Flow field Ws,k and Wg

Calculate �tg,i

�i �tg,i < �ts

Finish time �ts

Yes

Gas

phase

Figure 1. The flow chart of GKS-UGKWP method for polydisperse gas-particle two-phase flow.

where βt and U t are the equivalent momentum transfer coefficient and velocity of the
whole solid phase

βt
def=

N∑
k=1

βk =
N∑

k=1

εkρk

τst,k
, U t

def=
N∑

k=1

βkUk

βt
. (3.32a,b)

The calculations of βt and Uk are based on the variables of the n + 1 state of the solid
phase. For the above equation, the analytical solution of Ug can be obtained

Un+1
g = Un+1

t + (U∗∗
g − Un+1

t ) e−(βn+1
t �tg/εn+1

g ρn+1
g ). (3.33)

Finally, the energy of the gas phase can be updated by

ρn+1
g En+1

g = ρ∗∗
g E∗∗

g −
[ N∑

k=1

1

εn+1
g

βn+1
k Un+1

k · (Un+1
g − Un+1

k ) −
N∑

k=1

3εn+1
k ρkθ

n+1
k

εn+1
g τst

]
�tg.

(3.34)

Now, the evolution of the gas phase in �tg is finished.
In the evolution, �ts,k and �tg will be calculated based on the Courant–Friedrichs–Lewy

(CFL) condition; the solid phase will be updated firstly by one solid time step �ts =
min(�ts,k); then, the gas phase will be updated based on the gas time step �tg until∑

i �tg,i = �ts, and the evolution of gas-particle two-phase flow in �ts will be finished.
The flow chart of GKS-UGKWP for polydisperse gas-particle flow is given in figure 1, and
the main difference from the monodisperse counterpart is the calculation of solid phase,
marked by the blue box.
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Total mass (kg) Mass fraction Diameter (μm) Material density (kg m−3)

Small particle 2.223 78.0 % 225 2480
Large particle 0.627 22.0 % 416 2480

Table 1. The properties of the solid particles for the CFB case (Niemi 2012).

4. Numerical simulations

4.1. Circulating fluidized bed

4.1.1. Case description
The first case is a circulating fluidized bed (CFB) with two disperse solid phases (Niemi
2012; Wang et al. 2015). The experiment data will be used to validate the GKS-UGKWP
method. As in previous studies (Wang et al. 2015), a two-dimensional domain with
D × H = 0.4 m × 3 m is employed in this paper. The uniform rectangular mesh is used
in the whole domain with mesh number 66 × 500, and correspondingly the cell size
Δx ≈ Δy = 6 × 10−3 m. According to the experiment measurement (Niemi 2012), the
total inventory of solid particles is 2.85 kg, and the mass fraction, diameter and material
density of each disperse phase are listed in table 1. The maximum solid volume fraction
is taken as εt,max = 0.55 in this case. Initially, the solid phase is uniformly distributed in
the whole domain, and according to the mass shown in table 1, the initial solid volume
fractions are ε1 = 0.0498 and ε2 = 0.0140, with the assumption of a riser thickness of
T = 1.5 cm, which is the same as the value employed in Wang et al. (2015). In the
simulation, the solid particles are free to leave the domain at the top boundary. To simplify
the simulation, the left and right boundaries are fixed walls, and thus the escaped solid
particles will be replenished in the computational domain from the bottom boundary,
instead of opening the right boundary as adopted in Wang et al. (2015). A gas with velocity
Ug = 2.25 m s−1 flows into the domain through the bottom boundary to fluidize the solid
particles. For the left and right wall boundaries, the mixed wall boundary condition, shown
in Appendix A, and no-slip wall boundary condition are used for the solid phase and gas
phase, respectively. For this case, the widely used drag correlation proposed by Gibilaro is
employed for both disperse phases (Gibilaro et al. 1985; Mckeen & Pugsley 2003), which
can be written as

βk =
(

17.3
Res,k

+ 0.336
)

ρg|Ug − uk|
dk

εkε
−1.8
g , (4.1)

where Res,k = εgρgdk|Ug − uk|/μg is the Reynolds number (Re) of the kth disperse solid
phase. It is worth noting that for each disperse phase, τst,k can be obtained by the relation
βk = εkρk/τst,k.

4.1.2. Results
In this case, the simulation time is 10.0 s, and the results from 6.0 to 10.0 s are used for
the averaging. Physically, to study the flow properties at different vertical positions in the
riser, four gauges are set at h = 0.32, 0.40, 0.80, 1.20 m in the experiment. Numerically,
the total solid volume fraction εt and the overall vertical velocity of solid phase Us at
the above four heights are averaged and compared with experimental measurements in
figure 2. Note that the overall vertical velocity of the whole solid phase Us is obtained
by the individual velocities weighted by solid volume fractions, Us = ∑

k εkUs,k/
∑

k εk.
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Figure 2. The profiles of (a) time-averaged total solid volume fraction εt and (b) time-averaged overall vertical
velocity of solid phase Us at different riser heights by GKS-UGKWP method with a total 66 × 500 mesh points
and the comparison with the experimental measurements.

X/D

S
o
li

d
 v

o
lu

m
e 

fr
ac

ti
o
n

0.2 0.4 0.6 0.8 1.00

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

GKS-UGKWP H0.23m

GKS-UGKWP H0.40m

GKS-UGKWP H0.80m

GKS-UGKWP H1.20m

Experiment H0.23m

Experiment H0.40m

Experiment H0.80m

Experiment H1.20m

X/D

S
o
li

d
 v

er
ti

ca
l 

v
el

o
ci

ty

0 0.2 0.4 0.6 0.8 1.0
–3

–2

–1

0

1

2

Figure 3. The profiles of (a) time-averaged total solid volume fraction εt and (b) time-averaged overall vertical
velocity of solid phase Us at different riser heights by GKS-UGKWP method with a total 80 × 600 mesh points
and the comparison with the experimental measurements.

The mesh is further refined to 80 × 600 grid points, and the time-averaged results of εt
and Us are shown in figure 3. Similar results have been obtained from the refined mesh
in comparison with those in figure 2, and therefore the following analysis is based on the
coarser mesh with 66 × 500 points only.

Figure 2 shows that the numerical results by the GKS-UGKWP method basically agree
with the experiment measurements, validating the reliability and accuracy of the proposed
method. At h = 1.20 m, the computational results εt � 2 %–3 % are somehow lower than
the experiment values �6 %, which may be due to the boundary treatment, such that the
escaped particles from the top boundary are replenished at the bottom boundary, but not
from the sidewalls. The choices of drag model will affect the solution as well. As described
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Figure 4. The profiles of solid volume fraction evaluated from the time-averaged pressure gradient, εt =
−(∂pg/∂y)/ρsG, at different riser heights by GKS-UGKWP method and the comparison with the experimental
measurements.

in the introduction, the drag model with the consideration of mesoscopic sub-grid flow
structures performs better than the traditional homogeneous drag model (Wang & Li 2007;
Zhu et al. 2021). The current method may give better prediction around h = 1.20 m if the
mesoscale drag model is employed, which will be studied in the future. In experiment,
it is usually assumed that the solid concentration is the same as the pressure gradient
along the vertical riser, i.e. εs ∼= −(∂pg/∂y)/ρsG. Here, the predicted εt evaluated by the
time-averaged pressure gradient is also presented in figure 4. Compared with figure 2(a),
the solid concentration values by these two approaches show some deviations in the bottom
dense regions, i.e. h = 0.23, 0.40 m, but agree well in other regions, i.e. h = 0.80, 1.20 m.

Besides, the snapshots of solid particles εt at different times are presented in figure 5.
In general, the solid particles prefer to accumulate at the riser’s bottom and near
the wall, resulting in a relatively higher concentration in these zones. Furthermore,
the instantaneous results clearly show the instantaneously coexisting and dynamically
intervening dilute/dense flow regions. The spatially evolving solid volume fraction can
be hardly captured smoothly by the hybrid EE/EL methods. The above characteristics are
also found in the studies of monodisperse CFB cases.

For each disperse solid phase, Knk, defined by Knk = τk/�ts with the local collision
time τk of the kth disperse phase, is presented in figure 6. Distributed by Knk, the wave
component, contour of εwave

k and the particle component, the set of sampled particles
coloured by their vertical velocity Pk, are also shown in figure 6. Note that the sum of the
wave εwave

k and the solid particle Pk components is equal to εk, as shown in figure 6. The
vertical velocity of each solid phase Us,k is also given in figure 6. The spatial distributions
of ε and Us of two particle phases are distinguishable, indicating the necessity of the
polydisperse method. For both solid phases, Kn is generally smaller in the near-bottom
and near-wall zones of the riser due to the accumulation and collisions of particles in these
regions. The two disperse solid particle phases adjust their weights to the wave and particle
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0.01

Figure 5. The instantaneous snapshots of total solid volume fraction εt at (a) t = 6.0 s, (b) t = 7.0 s,
(c) t = 8.0 s, (d) t = 9.0 s and (e) t = 10.0 s.

components in UGKWP according to their respective Kn. One obvious advantage of the
GKS-UGKWP for polydisperse flow is that each disperse phase can take the independent
wave and particle decompositions.

4.2. Turbulent fluidized bed

4.2.1. Case description
The dense turbulent fluidized bed (TFB) was applied in the petroleum refining industry
and was studied experimentally and numerically (Gao et al. 2009; Li et al. 2009). In
this problem, two kinds of particles, such as the fluid catalytic cracking (FCC) catalyst
(fine) and millet (coarse), are involved with detailed properties given in table 2. Table 2
shows that the densities of two types of particles are very close, while the particle sizes
are very different. This flow condition brings challenges to the numerical methods for
the gas-particle system with a single solid phase alone, where the tracking of multiple
solid phases in GKS-UGKWP seems suitable for this problem. The case of initial bed
height H0 = 1.155 m and gas velocity Ug = 0.53 m s−1 is studied in this paper. The
computational domain is D × H = 0.5 m × 4 m and is covered by a uniform rectangular
mesh 40 × 300. The maximum solid volume fraction is taken as εs,max = 0.65 in this
study. At the beginning of the simulation, all solid particles are uniformly distributed in
the whole riser with initial volume fraction ε1 = 0.118 and ε2 = 0.070 for the small and
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(a) (b) (c) (d ) ( f )(e) (h) (i) ( j)(g)
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–2.0 –1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0
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Us:
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Figure 6. The instantaneous snapshots of Kn, solid volume fraction ε, solid volume fraction by wave in
UGKWP εwave, the set of sampled particles in UGKWP P and the vertical velocity of solid phase Us at
t = 8.0 s: (a) Kn1, (b) ε1, (c) εwave

1 , (d) P1, (e) Us,1, (f ) Kn2, (g) ε2, (h) εwave
2 , (i) P2, (j) Us,2. The figures

with subscript 1 are the results of the 1st solid phase (small particle), and the figures with subscript 2 are the
results of the 2nd solid phase (large particle). The value of Knk is coloured by the Kn-legend. The solid volume
fraction εk and the corresponding wave component εwave

k are coloured by the eps-legend. The discrete particles
in particle set Pk and the vertical velocity of solid phase Us,k are coloured by the Us-legend, with k = 1, 2. The
legend of Kn is in the exponential distribution. Note that the sum of ε1 and ε2 is exactly equal to εt at t = 8.0 s,
as shown in figure 5.

Solid phase Mass fraction Diameter (μm) Material density (kg m−3) Geldart group

FCC catalyst 64.2 % 60 1500 Geldart A
Millet 35.8 % 930 1402 Geldart D

Table 2. The properties of fine and coarse particles in TFB (Gao et al. 2009).

large particle phases, respectively. The solid particles escaping from the top boundary
will be recirculated back to the computational domain through the bottom boundary.
For the gas phase, the standard atmospheric condition is employed at the top boundary,
and the gas blows into the riser through the bottom boundary with the velocity Ug
and a pressure difference of �p = εs,max(ρ

∗
s − ρg)GH0 from the top boundary, where

ρ∗
s = 1463.3 kg m−3 is the density of the solid particles weighted by their initial volume

fractions. The same as the above CFB case, the mixed boundary condition and no-slip
wall boundary condition are employed on the sidewalls for the particle phase and gas
phase, respectively.

In GKS-UGKWP, each solid phase can choose the most accurate and suitable drag
model for the polydisperse system. As shown in table 2, the fine and coarse particles
are the Geldart A and D groups, respectively, and different drag models are employed to
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evaluate the gas–solid interaction in the FCC catalyst and millet particle phases. Different
drag models and their modifications are studied and compared (Gao et al. 2009). More
specifically, for the coarse particle, the Gidaspow model is used (Gidaspow 1994)

βk =

⎧⎪⎪⎨⎪⎪⎩
150

εk(1 − εg)μg

εgd2
k

+ 1.75
εkρg|Ug − uk|

dk
, εg ≤ 0.8,

3
4

Cd(Res,k)
εkεgρg

dk
|Ug − uk|ε−2.65

g , εg > 0.8,

(4.2)

while, for the fine FCC catalyst particles, the four-zone drag model is employed

βk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

150
εk(1 − εg)μg

εg(d∗
k )2 + 1.75

εkρg|Ug − uk|
d∗

k
, 0 ≤ εg ≤ 0.8,

5
72

Cd(Re∗
s,k)

εkεgρg

d∗
k (1 − εg)0.293 |Ug − uk|, 0.8 < εg ≤ 0.933,

3
4

Cd(Res,k)
εkεgρg

dk
|Ug − uk|ε−2.65

g , 0.933 < εg ≤ 0.990,

3
4

Cd(Res,k)
εkρg

dk
|Ug − uk|, 0.990 < εg ≤ 1.0,

(4.3)

where dk is the diameter of the solid particle and d∗
k in (4.3) is the effective diameter of the

FCC catalyst phase, taken as 300μm for better agreement with experimental measurement
(Gao et al. 2009; Li et al. 2009). The proposed drag model in (4.3) has fully considered
the effect of the particles’ clusters, which is also employed in this paper. Besides, in (4.2)
and (4.3), Cd and Res,k are defined as below

Cd(Rek) =
⎧⎨⎩

24
Rek

(1 + 0.15Re0.687
k ), Rek ≤ 1000,

0.44, Rek > 1000,

(4.4)

and

Res,k = εgρgdk|Ug − uk|
μg

, Re∗
s,k = εgρgd∗

k |Ug − uk|
μg

. (4.5a,b)

4.2.2. Results
The time-averaged results from 10.0 to 15.0 s are shown in figure 7. The solid phase in the
riser shows higher concentration at the bottom zone and lower density in the top zone, and
a sharp transition occurs in a very small region around 1.7–2.0 m. Overall, the predicted
apparent density of the solid phase agrees well with the experimental measurements.
It is worth mentioning that the choice of a reasonable and accurate drag model which
involves the subgrid information is very important for the accurate prediction in numerical
simulation (Wang & Li 2007; Zhu et al. 2021). Besides, figure 7 also presents profiles of
ε for two solid phases and shows a similar trend along the riser height.

The instantaneous snapshots of the solid phase density,
∑

k εkρk in the range 10.0–15.0 s
are given in figure 8, which indicates a typical feature of TFB. The coexistence pattern of
bottom dense/middle transition/up dilute regions is well captured. All solid particles in the
top dilute region are FCC catalyst (Geldart A) type. Figure 8 shows the particle-cluster
phenomenon, which has difficulty in the drag modelling in these regions. In the bottom
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Figure 7. (a) The profiles of time-averaged apparent density of whole solid phase
∑

k εkρk along the riser
height by GKS-UGKWP method and comparison with experimental measurements. (b) The profiles of
time-averaged solid volume fraction of each disperse phase εk, k = 1, 2 and their sum εt.
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Figure 8. The instantaneous snapshots of apparent density of the whole solid phase
∑

k εkρk at
(a) t = 10.0 s, (b) t = 11.0 s, (c) t = 12.0 s, (d) t = 13.0 s, (e) t = 14.0 s and (f ) t = 15.0 s.
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(a) (b) (c) (d ) (e) ( f ) (g) (h)

0.25Kn:

Apparent

density:

Us:

0.49 0.95 1.84 3.58 6.97

–3.0 –2.0 –1.0 0 1.0 2.0 3.0

13.57 26.41 51.39 100.00 10 50 150 250 350 450 550 650 750 850

Figure 9. The instantaneous snapshots of Knk, solid apparent density εkρk, solid apparent density by wave in
UGKWP εwave

k ρk and the set of sampled particles in UGKWP Pk at t = 11.0 s: (a) Kn1, (b) ε1ρ1, (c) εwave
1 ρ1,

(d) P1, (e) Kn2, (f ) ε2ρ2, (g) εwave
2 ρ2 and (h) P2. The subscripts 1 and 2 stand for the 1st (FCC catalyst particle)

solid phase and the 2nd (millet particle) solid phase, respectively. The Knk is coloured by the Kn-legend, the
solid apparent density εkρk and wave component εwave

k ρk are coloured by the legend of apparent density and
the discrete particles in particle set Pk are coloured by the Us-legend (vertical velocity of the solid particle),
with k = 1, 2. The legend of Kn is in an exponential distribution.

dense region, the gas bubble with variable solid particles inside shows a complex pattern
and its tangling with the dense solid phase.

Since the diameters of two solid phases (60 and 930 μm) have a 15 times difference, it
is interesting to present their respective distributions. Figure 9 shows the apparent density
of each phase εkρk, k = 1, 2 at t = 11.0 s. The summation

∑
k εkρk is exactly the apparent

density at 11.0 s in figure 8(b). The obvious characteristic feature is that, in the up-dilute
regions, only the smaller (FCC catalyst) particles exist without millet particles, as shown
in the time-averaged profile of ε of figure 7. Also, for both solid phases at h ≈ 1.7 m, there
is a separation zone with a large Kn above and a small Kn below. Compared with the FFC
catalyst phase, the millet phase shows a strong non-equilibrium with a large Kn in the
bottom dense region. The decompositions of wave and particle, determined by the local
Kn, are presented in figure 9 through the contoured apparent density εkρk and scattered
particle set Pk. For the FCC catalyst phase, the Lagrangian particle fully determines its
evolution in the up-dilute region, while the wave component is dominant in the bottom
region with tremendous amount of real particles and their collisions. For the millet large
particle phase, even in the bottom dense region, lots of particles are sampled and tracked
in its evolution.

It is necessary to understand the flow properties related to the dilute/dense and
non-equilibrium/equilibrium in the gas-particle system. The dilute or dense flow is
generally determined by the solid volume fraction, while non-equilibrium/equilibrium
is determined by the Kn of the solid particle phase. The dilute and dense flow regions
can be associated with either non-equilibrium and equilibrium regimes, especially for the
dense particle flow, with many differences in their particle diameters or material density.
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(a) (b) (c) (d ) (e) ( f ) (g) (h)

Kn
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51.39
26.41
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Figure 10. The instantaneous snapshots of Kn of FCC catalyst particle phase at different times: (a) t = 10 s,
(b) t = 12 s, (c) t = 14 s and (d) t = 15 s. The instantaneous snapshots of Kn of millet particle phase at different
times: (e) t = 10 s, (f ) t = 12 s, (g) t = 14 s and (h) t = 15 s. The legend of Kn is in an exponential distribution.

In UGKWP, Kn is used to determine the decomposition of wave and particle according
to the extent of local non-equilibrium. The snapshots of Kn for each disperse phase at
different times are shown in figure 10. For both disperse phases, in the bottom dense
region at h < 1.7 m the non-equilibrium/equilibrium regimes are not spatially fixed and
become dynamically inter-convertible. The proposed GKS-UGKWP for polydisperse flow
is suitable to treat each individual solid phase with the optimal decompositions of wave
and particle.

4.3. Interaction of a shock wave with a dense particle curtain

4.3.1. Case description
The interaction of a shock wave with a solid particle bed is a highly challenging problem
for a numerical method to be capable of capturing the shock wave propagation at
supersonic speed and calculating the gas–solid phase interaction and particle–particle
collisions at moderate/dense cases (Ling et al. 2012; Tian et al. 2020). Here, the interaction
of a planar shock with a particle curtain is studied by the GKS-UGKWP method in
two-dimensional space, and the simulation solution is compared with the experimental
measurement (Ling et al. 2012). As sketched in figure 11(a), a planar shock with Mach
number (Ma) = 1.66 in the gas tube moves from the left to the right (x direction), and
encounters an initially stationary particle curtain with a width of L = 2 mm. Starting
from the impingement of the shock on the solid particles bed, a reflecting shock moving
to the left and a transmitting shock moving to the right will occur. Simultaneously,
driven by the high-speed gas flow, the solid particles will move to the right by following
the transmitted shock front. The computational domain X × Y is [−0.375m, 0.125 m] ×
[−0.04 m, 0.04 m] and is covered by a uniform rectangular mesh with 1000 × 160 cells.
In the experiment, the diameter of solid particles is distributed by 106–125 μm. While
in the computation, the simulation is based on two disperse phases with solid particle
diameters d1 = 110 μm and d2 = 120 μm. The material density of all solid particles is
ρs = 2520 kg m−3 with the restitution coefficient e = 0.95. Initially, the solid particles
are uniformly distributed with ε1 = 0.105 and ε2 = 0.105. The initial state of the gas
phase in the domain is the same as the experiment: pg,1 = 8.27 × 104 Pa, Ug,1 = 0 m s−1
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Inlet flow

with shock
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64.2 mm Gauge

y

Y

X

87 % Y
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(b)(a)

Figure 11. The sketch of the interaction of a shock Ma = 1.66 with the dense particle curtain: (a) the whole
domain without near-wall gap; (b) the local particle distribution with near-wall gap (87 % spanwise particle
curtain).

and Tg,1 = 296.40 K, with gas constant R = 287.05 J (kg K)−1 and specific heat ratio
γ = 1.4. At the left boundary, the pre-shock condition at Ma = 1.66 is given by pg,2 =
2.52 × 105 Pa, Ug,2 = 304.16 m s−1 and Tg,2 = 423.79 K. The free boundary condition
is employed at the right boundary. Besides, for the top and bottom boundaries, the no-slip
and slip boundary condition are taken for the gas and solid particle phases, respectively. To
monitor the pressure of the gas flow, two gauge positions are set at 68.6 mm upstream and
64.2 mm downstream of the left front of the initial particle curtain. In this case, the internal
degree of freedom of the gas phase is modelled by K(t̃) = K0 + 1.0 × (t̃/t̃end)

3 to mimic
the increased turbulence intensity of gas flow due to the interaction with disperse solid
particles. Here, t̃ = t/(L/us) is the normalized time by the initial width of the particle
curtain L and shock velocity us = 572.00 m s−1, and t̃end is the normalized simulation
time, taken as 350.0 in this case.

The drag force on the solid particle of the kth disperse phase can be written in a general
form

D = 3πμgdk(Ug − u)
Rek

24
C∗

D, (4.6)

where Rek is the particle Reynolds number, and C∗
D is the particle drag coefficient. With

the definition of D in (2.4), τst,k can be obtained

τst,k = 4
3

ρkd2
k

μgC∗
DRek

. (4.7)

In this paper, the particle drag coefficient C∗
D is calculated by C∗

D = c1(εk)c2CD,tad, where
CD,std is the standard drag correlation proposed by Clift (1970)

CD,std = 24
Rek

(1.0 + 0.15Re0.687
k ) + 0.42

(
1.0 + 42500

Re1.16
k

)
, (4.8)

where c1(εk) = (1 + 2εk)/(1 − εk)
2 is the correlation factor for the effect of the finite

particle volume fraction given by Sangani et al. (Parmar, Haselbacher & Balachandar
2008), and c2 is the correlation factor with a value 4.0 for a better agreement with the
experimental measurement, which can be interpreted as the collective effect from other
forces, such as added-mass force, viscous-unsteady force, etc.
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Figure 12. Numerical results (denoted by ‘Num’) and experimental measurements (denoted by ‘Exp’): (a) the
time-dependent gas pressure at upstream and downstream gauge points; (b) the trajectories of particle cloud
fronts.

4.3.2. Results
The time-dependent pressure at gauging positions is presented in figure 12(a) and
compared with the experimental measurements. Note that the pressures at upstream and
downstream gauging positions are averaged in the y direction. As used in (Ling et al.
2012), the pressure pg(t̃) is normalized by (pg(t̃) − pg,1)/(pg,2 − pg,1). In general, both the
reflected shock and transmitted shock can be captured well. Besides, the trajectories of the
upstream front and downstream front of the solid particle cloud are shown in figure 12(b),
which agree well with the experiment data. The instantaneous snapshot of the distribution
of solid particles at t̃ = 193.0 is presented in figure 13. The solid particles are not
uniformly distributed in the existing region: the central zone (around x = 0.045 m) shows
higher concentration than the regions near the upstream and downstream fronts. Also, a
slight particle-cluster phenomenon can be observed. Further comparison of 1st and 2nd
dispersed phases shows that the 1st solid phase with smaller particle d1 = 110 μm moves
faster (approximately 3 mm) than the 2nd phase with d2 = 120 μm in both upstream front
and downstream fronts.

In the experiment, the solid particle curtain is generated by the free fall of particles
from a reservoir into the test section (Ling et al. 2012). As pointed out in the experiment,
the particle curtain occupies approximately 87 % in the spanwise direction (y direction
in figure 11). Therefore, a gap between the particle curtain and the walls exists, which is
studied here as well. According to the experiment with 87 % occupation by the particle
curtain in the tube, a 13 % gap close to the wall will be taken into account. With the
new set-up, the newly calculated pressure and particle trajectories are given in figure 14.
Interestingly, the pressure variation at the downstream gauge position at time t̃ = 50–80
has an early drop and a later increase in gas pressure after the passage of the transmitted
shock and has a better agreement with the experimental data than the previous calculation
with 100 % particle curtain occupation, which is marked by the blue circle in figure 14.
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Figure 13. Instantaneous snapshots of the apparent density of particle phases at a normalized time t̃ = 193.0:
(a) the whole solid particle phases (summation of particles from phases 1 and phase 2), (b) the 1st particle
phase with d1 = 110 μm and (c) the 2nd particle phase with d2 = 120 μm. Note that only the region of
[0 m, 0.06 m] × [−0.04 m, 0.04 m] is shown here.
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Figure 14. Numerical results (denoted by ‘Num’) and experimental measurements (denoted by ‘Exp’) with
87 % spanwise particle occupation as shown figure 11(b): (a) the time-dependent gas pressure at upstream and
downstream gauge points; (b) the trajectories of particle cloud fronts.

5. Conclusion

In this paper, a multiscale GKS-UGKWP method is developed for the polydisperse
gas-particle system. Particularly, the cell resolution-dependent dynamic model for the
system with a coupled disperse solid particle phase and gas phase is directly used in the
design of the corresponding multiscale method. In order to capture both equilibrium and
non-equilibrium particle evolution processes efficiently, the particle distribution function
is decomposed into wave and discrete particle components in UGKWP according to the
respective local Kn for each solid particle phase. The UGKWP will choose an optimal
way to describe the dynamics of solid particles by separately evolving the Eulerian
deterministic wave and tracking the individual Lagrangian particle with a balance of
physical accuracy and numerical efficiency. The properties of the solid particles, such
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as the particle size, concentration and concrete material, have been taken into account in
the determination of the solid particle dynamics. One distinguishable feature in UGKWP
is that the wave–particle decomposition can automatically lead the scheme to the EE
and EL methods for the gas–solid particle system in the corresponding equilibrium and
non-equilibrium regimes for the solid particle phase. Two cases of dense polydisperse flow
in the fluidization bed are studied. Specifically, in the FCC catalyst reactor, the diameters
of large millet particles and small FCC catalyst particles differ in particle size by 15 times.
The numerical experiments show that only the fine FCC catalyst particles appear in the
top zone of the riser, while the millet particles only exist in the bottom dense region. In
addition, for the FCC catalyst phase, the discrete particle description plays a key role in the
top dilute regions, and the wave description contributes mostly in the bottom dense zone
region, even with the existence of a tremendous number of real particles. For the large
particle phase, millet particles only exist in the bottom dense region and need a discrete
particle description to capture the local non-equilibrium state. The above observation
indicates the flexibility of wave–particle decomposition in describing the disperse solid
phases and the adaptivity in dynamically following the equilibrium and non-equilibrium
flow evolutions. At the same time, the interaction of a Ma = 1.66 shock wave impinging
on a dense particle curtain with polydisperse solid particle phases is studied by the current
method. The numerical solutions, such as the pressures of the gas flow at gauge points and
the trajectories of the fronts of the solid particle cloud, are compared with the experimental
measurements. Even though the current studies only involve the particle system with two
dispersed phases, the algorithm itself can be easily extended to a gas-particle system
with multiple dispersed solid particle phases. Overall, the decomposition of the wave and
particle evolution for the solid particle phase has advantages in simulating the polydisperse
gas-particle multiphase flows with a multiscale nature.
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Appendix A. The mixed wall boundary condition for the solid particle phase

This section introduces the details of the mixed wall boundary condition for the solid
particle phase employed in this paper. More specifically, the tangential velocity near the
wall, v∗

t , will be determined based on the method proposed by Johnson and Jackson
(Johnson & Jackson 1987). For the wall stress

τw
def= μ

∂v

∂x
= π

6

√
3θsρsg0

εs

εs,max
φvslip, (A1)

where vslip = v∗
t − vwall is the slip velocity between solid particles and the wall, and

vslip = v∗
t for the fixed wall. With the introduction of A

A
def= π

6

√
3θsρsg0

εs

εs,max
φv∗

t , (A2)
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and the discretization of ∂v/∂x, (A1) can be written as

μ
vt,c − v∗

t

�x/2
= Av∗

t , (A3)

where vt,c is the tangential velocity at the centre point of the near-wall cell. Therefore, v∗
t

can be determined as

v∗
t = Bvt,c, B

def= 1
1 + A�x/2μ

, (A4a,b)

where φ ∈ [0, 1] is the so-called specularity coefficient. In this paper, φ is evaluated by
φ = (εs/εs,max)

ω with ω = 4. Then, in the dilute region with small εs, φ → 0, we have
A → 0, B → 1, v∗

t → vt,c. The tangential velocity of the particle phase near the wall will
be the same as that in the near-wall cell. On the contrary, in the dense region with large
εs and φ (with the maximum value 1), we get g0 → ∞ , A → ∞, B → 0, v∗

t → 0. The
tangential velocity of the particle phase near the wall approaches to 0.

In the simulation, the solid particle velocity at the inner side of the wall, denoted as
(vl

t, v
l
n), can be obtained by reconstruction. Then, the solid particle velocity at the outer

side of the wall, denoted as (vr
t , v

r
n), can be obtained as the following:

vr
t = (2B − 1)vl

t, vr
n = −vl

n. (A5a,b)

Besides, the solid volume fraction and granular temperature at the outer side of the wall
are assumed to be equal to the corresponding values at the inner side by reconstruction,
which implies, εr

s = εl
s and θ r

s = θ l
s. As a result, the fluxes for solid particles at the wall can

automatically accommodate the slip and no-slip wall boundary conditions in the limiting
dilute and dense flows, respectively.
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