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Abstract
Let σq : Rq → Sq \ Nq be the inverse of the stereographic projection with center the north pole Nq. Let Wi be a
closed subset of Rqi , for i = 1, 2. Let � : W1 → W2 be a bi-Lipschitz homeomorphism. The main result states that
the homeomorphism σq2 ◦� ◦ σ −1

q1
is a bi-Lipschitz homeomorphism, extending bi-Lipschitz-ly at Nq1 with value

Nq2 whenever W1 is unbounded.
As two straightforward applications in the polynomially bounded o-minimal context over the real numbers, we
obtain for free a version at infinity of: (1) Sampaio’s tangent cone result and (2) links preserving re-parametrization
of definable bi-Lipschitz homeomorphisms of Valette.

1. Introduction

Any subset S of Rq is equipped with the outer metric structure, where the distance between points of S
is their distance in Rq. Thus, (outer) Lipschitz mappings S1 → S2, for Si a subset of Rqi , are well defined.

The inverse of the stereographic projection of the unit sphere Sq of Rq+1 onto Rq with center the
north pole Nq = (0, . . . , 0, 1) ∈Rq ×R is denoted σq : Rq → Sq \ Nq. Let S̃ be the closure in Sq of σq(S)
where S is a closed subset of Rq. For i = 1, 2, let Wi be a closed subset of Rqi . If � : W1 → W2 is a
homeomorphism, the stereographic pre-compactification of � is the following homeomorphism:

σq2 ◦� ◦ σ−1
q1

: σq1 (W1) → σq2 (W2).

Since W1, W2 are closed, the stereographic pre-compactification of � extends as a homeomorphism
�̃ : W̃1 → W̃2 mapping Nq1 onto Nq2 whenever W1 is unbounded. We call this extension the stereographic
compactification of �.

The main result of this note is the following:

Theorem 10. The mapping � is bi-Lipschitz if and only if its stereographic compactification �̃ is bi-
Lipschitz.

The main result is a consequence of Lemma 9 presented below. We recall that the Euclidean inversion
of Rq is the following mapping:

ιq : Rq \ 0 →Rq \ 0, x �→ x
|x|2

.
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Let � : W1 → W2 be a homeomorphism between the closed subsets Wi of Rqi , i = 1, 2. The inversion of
the mapping � : W1 → W2 is defined as follows:

ι(�) : ιq1 (W1 \ 0) → ιq2 (W2 \ 0), x �→ ι(�)(x) := ιq2 ◦� ◦ ι−1
q1

(x).

The next result (so called the inversion lemma) is the main tool we use to obtain the main result. It is
of interest on its own and can be applied in many different contexts.

Lemma 9. Assume furthermore that, either Wi contains the origin 0 ∈Rqi for i = 1, 2 and �(0) = 0,
or 0 /∈ Wi for i = 1, 2. The homeomorphism ι(�) is bi-Lipschitz if and only � is. Moreover, if W1 is
unbounded, then ι(�) extends bi-Lipschitz-ly at 0 taking the value 0.

Our interest in this problem arose from results of the recent PhD Thesis of the second named author
[10], where a bi-Lipschitz classification of local plane objects germs, at the origin, respectively, at
infinity and in correspondence by the Euclidean inversion, presented strikingly similar properties, now
explained by Lemma 9. The main result is mostly a convenient reformulation of the inversion lemma.
It is also in tune with the joint works of the first named author [2–4] expanding the results of the recent
PhD Thesis [1]. Last, we want to point out that the proofs of the inversion lemma and of the main result,
presented here, are self-contained.

The paper is organized as follows: Section 2 introduces preliminary materials and notations. Section 3
presents the special case of a global bi-Lipschitz homeomorphism of Rq. Sections 4 and 5, respectively,
show germ-ified versions of the inversion lemma, namely Lemma 7 at ∞ and, respectively Lemma 8 at
0. Section 6 is the short proof of our main tool, the inversion Lemma 9. The main result is dealt with in
Section 7. The last section presents two immediate applications, versions at infinity of two results about
germs of definable subsets at the origin: Proposition 15 (tangent cone result [12]) and Proposition 17
(links preserving reparametrization of definable bi-Lipschitz homeomorphism [16]).

A few days after making public this result on ArXiv [7], the preprint [13] found independently (among
other results) what we present here.

2. Preliminaries
2.1. Notations

The Euclidean space Rq is equipped with the Euclidean distance, denoted | − |. We denote by Bq
r the

open ball of Rq of radius r and centered at the origin 0, by Bq
r its closure and by Sq−1

r its boundary. The
open ball of radius r and with center x0 ∈Rq is Bq(x0, r), its closure is Bq(x0, r), and Sq−1(x0, r) is its
boundary. The unit sphere Sq−1

1 is simply denoted by Sq−1.
If S is any subset of Rq, its closure in Rq is clos(S), and S∗ is S \ 0.
Let Uq be the punctured affine space Rq∗.
Compactifying the space Rq with the point ∞ at infinity as:

Rq := Rq 	 ∞ = 0 	 Uq 	 ∞
yields a space that is smoothly diffeomorphic to the unit sphere Sq of Rq+1, using the stereographic
projections centered at the “north” and “south” poles of Sq. Under this correspondence, the points 0 and
∞ are antipodal.

If S is any subset of Rq its closure in Rq is S. Thus, S is unbounded if and only if S = clos(S) ∪ ∞.
The germ (Rq, ∞) of Rq at infinity is well defined and can be considered as a germ in Rq and in Rq.
Let γ be a point of Rq. Let (xn)n, (yn)n be two sequences of Rq converging to γ in Rq. Let zn be xn or

yn and let

zn :=
{ |zn − γ | if γ ∈Rq

|zn| if γ = ∞
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We will use the following notation:

xn ∼ yn ⇐⇒ xn

yn

∈ [a, b] for a, b> 0 whenever n � 1,

as well as the next one

xn � yn ⇐⇒ xn

yn

∈ [0, a] for a> 0 whenever n � 1,

and the last one

xn = o(yn) ⇐⇒ lim
n

xn

yn

= 0.

2.2. On affine subsets

Any non-empty subset S of Rq inherits from the ambient Euclidean structure of Rq the outer metric
space structure (S, dS), where

dS(x, x′): = |x − x′|
for any pair of points x, x′ of S. We recall that if a mapping ϕ : (S, dS) →Rp is Lipschitz with Lipschitz
constant C, it extends as a Lipschitz mapping (clos(S), dclos(S)) →Rp with the same Lipschitz constant
C. In practice, we can assume that S is closed in Rq.

In order to ease the accumulation of hypotheses and notations, we introduce the following:

Definition 1. A q-affine subset is a non-empty closed subset of Rq with q ≥ 1.
An affine subset is a q-affine subset for some positive integer q.

Since any affine subset S is equipped with the outer metric space structure (S, dS) described above,
we introduce the following

Definition 2. A Lipschitz mapping S → T between the affine subsets S, T is a Lipschitz mapping
(S, dS) → (T , dT).

2.3. On the inversion

The inversion of the (punctured) affine space Rq, defined as:

ιq : Uq → Uq, x �→ x
|x|2

is a C∞ (semi-algebraic) diffeomorphism and extends as a (semi-algebraic) homeomorphism
(C∞ actually) over Rq exchanging the origin 0 and the point at infinity ∞.

Let x be any point of Uq. Let

R(x) := Rx

be the real vector line through x. The tangent space of Uq at x decomposes as the Euclidean orthogonal
sum:

TxUq = R(x) ⊕ S(x) where S(x) := TxSq−1
R .

Observe that S(sx) = S(x) and R(sx) = R(x), as vector subspaces of Rq, whenever s �= 0. An elementary
computation shows that in the previous orthogonal basis of TxUq we obtain

Dxιq := − 1

|x|2
IdR(x) ⊕ 1

|x|2
IdS(x) = 1

|x|2

[−IdR(x) ⊕ IdS(x)

]
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In particular, Dxιq is an orthogonal mapping, since |x|2Dxιq is simply the orthogonal symmetry w.r.t. the
hyperplane S(x). We thus deduce the (Euclidean) norm of Dxιq:

‖Dxιq‖ = 1

|x|2
. (2.1)

2.4. Elementary, yet very useful, identities

We recall the following known estimates

Claim 3. Let x, x′ ∈Rq and C> 0 such that |x′| ≥ (1 + C)|x|. Then,
C

1 + C
|x′| ≤ |x′ − x| ≤ 2 + C

1 + C
|x′|.

Given x1, x2 ∈ Uq, we define

e := |x1 − x2|, ri := |xi|, yi := ιq(xi), E := |y1 − y2| and Ri := |yi|, i = 1, 2.

We assume that r1 = (1 + C)r2 for some C ≥ 0. Let 2θ ∈ [0, π ] be the angle between x1, x2 (thus between
y1, y2 as well). Let r1 − r2 = Cr2 and R2 − R1 = CR1. We recall that the law of cosines is the following
identity:

e2 = (r1 − r2)
2 cos2 θ + (r1 + r2)

2 sin2 θ = r2
2[C2 + 4(1 + C) sin2 θ ]. (2.2)

The inversion and the law of cosines give the following identity:

E = R1R2 · e and e = r1r2 · E. (2.3)

3. Inversion mapping and global bi-Lipschitz homeomorphisms

We present a special occurrence of the inversion lemma. Although it is likely that it has already been
written in a few books, we give a proof, following from elementary Lipschitz analysis.

Let L(a, b) be the space of R-linear mappings Ra →Rb.
Let ϕ : Rp →Rq be a Lipschitz mapping with Lipschitz constant Aϕ:

x, x′ ∈Rp =⇒ |ϕ(x) − ϕ(x′)| ≤ Aϕ · |x − x′|.
Let D(ϕ) be the set of points where ϕ is differentiable. Rademacher Theorem states that the complement
Rp \D(ϕ) is of null measure [8, 11]. We consider the following closed subset:

	(ϕ) := clos ({(x, Dxϕ) ∈D(ϕ) ×L(q, p)})⊂Rp ×L(p, q).

Let πL : Rp ×L(p, q) →L(p, q) be the projection onto the second factor. Let

L(ϕ) := πL(	).

For any x ∈D(ϕ), the Lipschitz condition on ϕ yields the following estimate about the norm of Dxϕ:

‖Dxϕ‖ ≤ Aϕ .

Since the norm is continuous over L(q, p), we deduce that

L ∈L(ϕ) =⇒ ‖L‖ ≤ Aϕ . (3.1)

Let H : Rq →Rq be a bi-Lipschitz homeomorphism mapping the origin onto itself, with Lipschitz
constant AH > 0:

x, x′ ∈Rq =⇒ 1

AH

· |x − x′| ≤ |H(x) − H(x′)| ≤ AH · |x − x′|.
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Therefore from Estimate (3.1), we get

L ∈L(H) =⇒ 1

AH

≤ ‖L‖ ≤ AH .

The mapping H extends as a homeomorphism of Rq mapping ∞ onto ∞.
The inversion of H is the mapping ιq ◦ H ◦ ι−1

q . It is a homeomorphism of Uq which extends contin-
uously to 0, taking the value 0, as the homeomorphism ι(H) : Rq →Rq. More precisely, the following
holds true:

Proposition 4. The inversion ι(H) of H is bi-Lipschitz.

Proof. It is enough to show that ι(H) is Lipschitz, since ι(H−1) = ι(H)−1. Let y ∈ Uq and let x := ι−1
q (y)

and z := H(x). Since H(0) = 0, we find
1

AH · |y| ≤ |z| ≤ AH

|y| .

If x is a point of Uq at which H is differentiable, we find the following estimate:

‖Dyι(H)‖ ≤ 1

|z|2
· AH · 1

|y|2
≤ A3

H .

Since ιq is a C∞ diffeomorphism, the subset ιq(Rq \D(H)) has null measure. Thus, ι(H) is differentiable
outside a subset of zero measure with uniformly bounded first derivatives. Thus, it is Lipschitz.

Letω be either 0 or ∞. Let h :
(
Rq,ω

) → (
Rq,ω

)
be a germ of homeomorphism which is bi-Lipschitz

over (Uq,ω). Let ω∗ be the point of Rq antipodal to ω, that is,

{ω,ω∗} = {0, ∞}.
The map germ ιq ◦ h ◦ ι−1

q :
(
Uq,ω∗) → (

Uq,ω∗) extends as a homeomorphism germ ι(h) :
(
Rq,ω∗) →

(Rq,ω∗). A consequence of Proposition 4 is the (now expected) following result, initial motivation of
the paper:

Corollary 5. The germ of homeomorphism ι(h) is bi-Lipschitz over
(
Uq,ω∗).

Remark 6. The proof of Proposition 4 we gave uses Rademacher Theorem and is a direct proof. But
this result is a special case of Lemma 9, whose demonstration, although longer and mostly by absurd,
uses even more elementary arguments.

4. Inversion and germs of bi-Lipschitz homeomorphisms at infinity

Let σ be a point of Rq. Following Definition 1, the notion of germ of q-affine subset at σ is well defined.
If τ is a point of Rp, the notion of Lipschitz mapping of affine germs (S, σ ) → (T , τ ) is also well defined
by Definition 2.

Let φ : (Y1, ∞) → (Y2, ∞) be a germ of bi-Lipschitz homeomorphism between qi-affine subsets
germs (Yi, ∞) with i = 1, 2. There exists a positive constant Aφ such that

y, y′ ∈ Y1 =⇒ 1

Aφ

· |y′ − y| ≤ |φ(y′) − φ(y)| ≤ Aφ · |y′ − y|.
Thus, we can assume that the Lipschitz constant Aφ is such that the following estimates are also satisfied:

y ∈ Y1 =⇒ 1

Aφ

· |y| ≤ |φ(y)| ≤ Aφ · |y|.
With the previous notation, we deduce φ(y) ∼ y.
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For i = 1, 2, we denote by Xi the closure clos(ιqi (Yi)) of ιqi (Yi) inRq. The inversion of φ is the mapping
defined as follows:

ι(φ) : (X1, 0) → (X2, 0), x → ι(φ)(x) :=
{
ιq2 ◦ φ ◦ ι−1

q1
(x) if x ∈ X∗

1

0 if x = 0

It is a germ of homeomorphism which extends continuously at 0 taking the value 0 at 0. The homogeneity
of the Euclidean metric as well as the existence of the inversion mapping yield the following result.

Lemma 7. If φ:(Y1, ∞) → (Y2, ∞) is a bi-Lipschitz homeomorphism germ between qi-affine subsets
germs (Yi, ∞), for i = 1, 2, then its inversion ι(φ) : (X1, 0) → (X2, 0) is bi-Lipschitz homeomorphism
germ.

Proof. First, let us denote h := φ ◦ ι−1
q1

, that is

h(x) = φ

(
x

|x|2

)
.

Therefore, we get that

ι(φ)(x) = h(x)

|h(x)|2
.

Since |h(x)| ∼ |x−1|, we observe that ι(φ)(x) ∼ x, more precisely:

1

A3
φ

· |x| ≤ |ι(φ)(x)| ≤ A3
φ
· |x|.

It is sufficient to show that ι(φ) is Lipschitz.
Assume that ι(φ) is not Lipschitz. Therefore, there exist two sequences (xn)n and (x′

n)n of Uq1 such
that

lim
n

|ι(φ)(xn) − ι(φ)(x′
n)|

|xn − x′
n|

= ∞. (4.1)

We work with a representative of φ outside a compact subset C1 of Rq1 containing 0 and with the rep-
resentative of ι(φ) over X1, the closure clos(ιq1 (Y1 \ C1)). Thus, X1 is compact. For convenience sake let

yn := ιq1 (xn) and y′
n := ιq1 (x′

n).

We further define the following numbers:

en := |xn − x′
n|, ι(φ)n := |ι(φ)(xn) − ι(φ)(x′

n)|, tn := |xn|, t′n := |x′
n|, sn := |yn| and s′

n := |y′
n|.

Of course we have sntn = s′
nt

′
n = 1.

Without the loss of generality, we can assume that the sequence (xn)n converges to χ ∈ X1 and (x′
n)n

converges to χ ′ ∈ X1.

• Case 1. χ �= 0 and χ ′ �= 0.
In other words, there exists a compact subset K1 of Uq1 which contains xn, x′

n for all n. Since the
inversion ιq1 is bi-Lipschitz over K1, so is the mapping ι(φ), contradicting the estimate (4.1). Therefore,
this case cannot happen and we can assume that χ = 0.

• Case 2. χ = 0 and χ ′ �= 0.
Observe that the following estimates hold true

en = t′n + o(t′n), |ι(φ)(xn)| ∼ tn → 0, and |ι(φ)(x′
n)| ∼ t′n ∈ [a, b]
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for positive real numbers b> a. Therefore, we deduce that

ι(φ)n ∼ t′n

contradicting the estimate (4.1). Therefore, this case cannot happen and thus χ ′ = 0 as well.

• Case 3. χ = χ ′ = 0 and there exists B> 1 such that |x′
n| ≥ B|xn| for n large enough.

For n large enough, Claim 3 yields
en

t′n
∈

[
B − 1

B
,

B + 1

B

]
.

Since ι(φ)n ≤ (1 + B)A3
φ
t′n for large n, we produce again a contradiction to the estimate (4.1). This case

does not occur and we can assume, up to taking a subsequence that tn
t′n

→ 1 as n goes to ∞.
Let 2θn ∈ [0, π ] be the angle between the vectors xn and x′

n.

• Case 4. limn
|xn|
|x′

n| = 1 and lim infn 2θn ∈ ]0, π ].
We can assume that 2θn ≥ 2θ ∈ ]0, π ]. From Identity (2.2), we deduce that

lim
n

en

tn

≥ 2 sin θ > 0.

Since ι(φ)n ≤ A3
φ
(tn + t′n) for n large enough, estimate (4.1) cannot be satisfied and thus θ = 0.

Up to passing to subsequences, we can assume that (θn)n converges to 0.

• Case 5. limn
|xn|
|x′

n| = 1 and limn θn = 0.
We can assume that t′n ≥ tn and x′

n = xn + zn so that

υn := |zn|
t′n

= s′
nen → 0 as n → ∞.

Let an := cos (θn), bn := sin (θn), and δntn := t′n − tn. We get

|zn|2 = e2
n = (2bntn + δntnbn)2 + (δntnan)2 = t2

n · [δ2
n + 4b2

n + o
(
b2

n

)
].

Since we can write yn = y′
n + wn, equation (2.3) yields

|wn| = sns
′
n · |zn|

and thus we deduce that
|wn|
sn

= |zn|
t′n

= υn → 0 as n → ∞.

Since φ is bi-Lipschitz, we obtain the following estimate:

h(xn) = h(x′
n) + snun, where |un| ∼ υn,

from which we deduce
|h(x′

n)|2

|h(xn)|2
= 1 + rn where |rn|� υn.

Combining the various previous estimates yields the following one:

ι(φ)n = 1

|h(x′
n)|2

∣∣h(x′
n) − (1 + rn)[h(x′

n) + snun]
∣∣ � |rn| + (1 + rn)|un|

sn

∼ t′nυn = en,

contradicting estimate (4.1).

5. Inversion and germs of bi-Lipschitz homeomorphism at 0

This section is about the counterpart at the origin of the previous result at infinity Lemma 7, more
precisely its converse.

https://doi.org/10.1017/S001708952400017X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952400017X


Glasgow Mathematical Journal 589

Let ψ : (X1, 0) → (X2, 0) be a germ of bi-Lipschitz homeomorphism between qi-affine subsets Xi,
where i = 1, 2. Thus, there exists a positive constant Aψ such that

x, x′ =⇒ 1

Aψ

· |x′ − x| ≤ |ψ(x′) −ψ(x)| ≤ Aψ · |x′ − x|.

Thus, the following estimates are also satisfied:

x ∈ X1 =⇒ 1

Aψ

· |x| ≤ |ψ(x)| ≤ Aψ · |x|,

that is ψ(x) ∼ x, with the previous notation. Denoting Yi := ιqi (X
∗
i ) for i = 1, 2, the inversion of ψ is the

germ of mapping defined as follows:

ι(ψ) : (Y1, ∞) → (Y2, ∞), y → ι(ψ)(y) := ιq2 ◦ψ ◦ ι−1
q1

(y).

It clearly extends as a germ of homeomorphism (Y1, ∞) → (Y2, ∞).
The converse of Lemma 7 is

Lemma 8. If ψ : (X1, 0) → (X2, 0) is a bi-Lipschitz homeomorphism germ between qi-affine subset
germs (Xi, 0), for i = 1, 2, then its inversion ι(ψ) : (Y1, ∞) → (Y2, ∞) is a bi-Lipschitz homeomorphism
germ.

The proof will be symmetric to that of Lemma 7 in the sense that arguments at 0 are replaced by their
exact analogs at ∞, as expected from such a statement.

Proof. First, let g := ψ ◦ ι−1
q1

, that is,

g(y) =ψ

(
y

|y|2

)
.

Therefore, we get that

ι(ψ)(y) = g(y)

|g(y)|2
,

and since |g(y)| ∼ |y|−1 we find that ι(ψ)(y) ∼ y, more precisely
1

A3
ψ

· |y| ≤ |ι(ψ)(y)| ≤ A3
ψ

· |y|.

As in the previous section, it is enough to show that ι(ψ) is Lipschitz.
Assume that ι(ψ) is not Lipschitz. Therefore, there exist two sequences (yn)n and (y′

n)n of Uq1 such
that

lim
n

|ι(ψ)(yn) − ι(ψ)(y′
n)|

|yn − y′
n|

= ∞. (5.1)

We work with a representative of ψ within a compact subset K1 of Rq1 containing 0. Let

xn := ιq1 (yn) and x′
n := ιq1 (y′

n).

In order to ease computations, we further define the following numbers:

En := |yn − y′
n|, ι(ψ)n := |ι(ψ)(yn) − ι(ψ)(y′

n)|, sn := |yn|, s′
n := |y′

n|, tn := |xn| and t′n := |x′
n|.

Of course we find again that sntn = s′
nt

′
n = 1.

• Case 1. lim supn max (|yn|, |y′
n|) <∞.

In other words, there exists a compact subset C1 of Uq1 which contains yn, y′
n for all n. Since the

inversion ιq1 is bi-Lipschitz over C1, so is the mapping ι(ψ), contradicting the estimate (5.1). Therefore,
this case cannot happen and we can assume, after taking a subsequence, that (y′

n)n converges to ∞.
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• Case 2. y′
n → ∞ and lim supn |yn|<∞.

Observe that the following estimates hold true

En = s′
n + o

(
s′

n

)
, |φ(y′

n)| ∼ s′
n → ∞, and ι(ψ)(yn)| ∼ sn ∈ [a, b]

for positive real numbers b> a. Therefore, we deduce that

ι(ψ)n ∼ s′
n

contradicting the estimate (5.1). This case cannot happen and therefore a subsequence of (y)n converges
to ∞ as well.

• Case 3. yn, y′
n → ∞ and there exists B> 1 such that |y′

n| ≥ B|yn| for n large enough.
For n large enough, Claim 3 yields

En

s′
n

∈
[

B − 1

B
,

B + 1

B

]
.

Since ι(ψ)n ≤ (1 + B)A3
ψ

s′
n, we produce again a contradiction to the estimate (5.1). This case does not

occur and we can assume up to taking subsequences that sn
s′n

→ 1 as n goes to ∞.
Let 2θn ∈ [0, π ] be the angle between the vectors yn and y′

n.

• Case 4. limn
|yn|
|y′

n| = 1 and lim infn 2θn ∈ ]0, π ].
We can assume that 2θn converges to 2θ ∈ ]0, π ]. We check that

lim
n

En

sn

≥ 2 sin θ > 0.

Since ι(ψ)n ≤ A3
ψ

(sn + s′
n) for n large enough, estimate (5.1) cannot be satisfied and thus θ = 0.

• Case 5. limn
|yn|
|y′

n| = 1 and limn θn = 0.
We can assume that sn ≥ s′

n and yn = y′
n + wn so that

υn := |wn|
sn

= tnEn → 0 as n → ∞.

Let an := cos (θn), bn := sin (θn), and δns′
n := sn − s′

n. We get

|wn|2 = E2
n = (

2bns′
n + δns

′
nbn

)2 + (
δns

′
nan

)2 = [
δ2

n + 4b2
n + o

(
b2

n

)] (
s′

n

)2
.

Since we can write x′
n = xn + zn, equation (2.3) yields

|zn| = tnt
′
n · |wn|

and thus we deduce that
|zn|
t′n

= |wn|
sn

= υn → 0 as n → ∞.

Since ψ is bi-Lipschitz, we obtain the following estimate:

g(yn) = g(y′
n) + t′nun, where |un| ∼ υn,

from which we deduce
|g(y′

n)|2

|g(yn)|2
= 1 + rn where |rn|� υn.

Combining the various previous estimates yields the following one:

ι(ψ)n = 1

|g(y′
n)|2

|g(y′
n) − (1 + rn)(g(y′

n) + t′nun)|� |rn| + (1 + rn)|un|
t′n

∼ snυn = En,

contradicting estimate (5.1).
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6. Inversion and bi-Lipschitz homeomorphisms

This section presents the inversion lemma, that is, the main tool of this note. It is a rather straightforward
consequence of Lemmas 8 and 7.

Lemma 9. Let � : W1 → W2 be a homeomorphism between qi-affine subsets Wi, for i = 1, 2. Assume
furthermore that, either Wi contains the origin 0 ∈Rqi for i = 1, 2 and �(0) = 0, or 0 /∈ Wi for i = 1, 2.
The mapping defined as

ι(�) : ιq1

(
W∗

1

) → ιq2 (W∗
2 ), x → ι(�)(x) := ιq2 ◦� ◦ ι−1

q1
(x).

is bi-Lipschitz if and only if� is. Moreover if W1 is unbounded, the mapping ι(�) extends bi-Lipschitz-ly
at 0, taking the value 0.

Proof. Since ι(ι(�)) =�, it is enough to show the result when � is bi-Lipschitz. Since ι(�)−1 =
ιq1 ◦�−1 ◦ ι−1

q2
, we only need to show that ι(�) is Lipschitz.

By construction, we already know that ι(�) is a homeomorphism of ιq1

(
W∗

1

) → ιq2 (W∗
2 ) which extends

homeomorphically to ιq1

(
W∗

1

) → ιq2 (W∗
2 ), mapping 0 to 0 whence W1 is unbounded.

Let 0< r< R<∞ be radii. We define the following subsets:

C∗
r := {

y ∈ ιq1

(
W∗

1

)
: 0< |y| ≤ r

}
CR

r := {
y ∈ ιq1

(
W∗

1

)
: r ≤ |y| ≤ R

}
CR := {

y ∈ ιq1

(
W∗

1

)
: R ≤ |y|}.

The “annulus” CR
r is compact and does not contain the origin. We recall that the mapping ιq induces

a bi-Lipschitz homeomorphism K → ιq(K) over any compact subset K of Uq. Thus, ι(�) induces a bi-
Lipschitz homeomorphism from CR

r onto its image. By Lemma 8, ι(�) is a bi-Lipschitz homeomorphism
from CR onto its image. If W1 is compact, we can take r small enough so that C∗

r is empty. If W1 is
unbounded, Lemma 7 implies that ι(�) is a bi-Lipschitz homeomorphism from C∗

r onto its image and
extends bi-Lipschitz-ly at 0.

Let A, B ∈ {CR, CR
r , C∗

r } with A �= B. If ι(�) is not Lipschitz in A ∪ B, then there exist a pair of
sequences (an)n of A and (bn)n of B such that

lim
n→∞

|ι(�)(an) − ι(�)(bn)|
|an − bn| = ∞.

Up to taking some subsequences, we can further assume that each sequence (an)n and (bn)n either con-
verges or goes to infinity. We check that the only scenario where such a pair of sequences could exist
satisfying the required limit condition above is when both converge to a point c ∈ A ∩ B, thus c �= 0.
Which is absurd since nearby the point c the inversion ι−1

q1
is Lipschitz as is ιq2 near the point �(ι−1

q1
(c)).

Thus, ι(�) is Lipschitz over each A ∪ B with A, B ∈ {CR, CR
r , C∗

r } with A �= B. Let C be the remaining
subset among {CR, CR

r , C∗
r } so that A ∪ B ∪ C = ιq1 (W1). Working with A′ = A ∪ B and B′ = C instead of

A, B as we did in the previous case, we conclude that ι(�) is Lipschitz.

7. Main result

Let Nq = (0, . . . , 0, 1) ∈Rq+1 be the north pole of the unit sphere Sq. Let

σq : Rq → Sq \ Nq, x �→
(

2x
1 + |x|2

,
|x|2 − 1

|x|2 + 1

)
be the inverse of the stereographic projection with center Nq. Given a subset of S of Rq, let

S̃ := clos(σq(S)).
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If � : W1 → W2 is a homeomorphism, where each subset Wi is qi-affine, i = 1, 2, its stereographic
pre-compactification is the homeomorphism σq2 ◦� ◦ σ−1

q1
. If W1 is unbounded, the stereographic

compactification of � is the mapping �̃, extension of σq2 ◦� ◦ σ−1
q1

to W̃1.

Theorem 10. Let Wi be qi-affine subsets, i = 1, 2. A mapping � : W1 → W2 is bi-Lipschitz, if and only
if its stereographic compactification �̃ : W̃1 → W̃2 is bi-Lipschitz

The rest of this section is devoted to the proof of this result.
We recall that the quotient space obtained from gluing two copies of Rq, when both Uq are identified

by the inversion ιq is Sq. Therefore, the next result, somehow tuned with [3, Lemma 7.2], should not
come as a surprise.

Lemma 11. Suppose that W1 is unbounded. The mapping germ � : (W1, ∞) → (W2, ∞) is bi-Lipschitz
if and only if �̃ :

(
W̃1, Nq1

) → (
W̃2, Nq2

)
is bi-Lipschitz.

Proof. Let z = (z′, t) be Euclidean coordinates on Rq+1 =Rq ×R. The following mapping

βq : Bq
1
2
→ Sq ∩

{
t ≥ 3

5

}
, y →

(
1

1 + |y|2
· y,

1 − |y|
1 + |y|2

)
is a C∞ diffeomorphism; thus, it is a bi-Lipschitz homeomorphism mapping 0 onto Nq. We also check
that

|x| ≥ 2 =⇒ βq ◦ ιq(x) = σq(x).

The lemma follows from Lemmas 8 and 7, and the fact that βq is bi-Lipschitz.

Proof of Theorem 10. We recall that σq is bi-Lipschitz over any given compact subset of Rq. If W1 is
compact, the result is thus obvious.

Assume that W1 is unbounded. Let K1 = Bq1
R1

∩ W1 and K2 =�(K1) with R1 ≥ 2 chosen so that Wi \ Ki

is contained in Rqi \ Bqi
2 , where i = 1, 2. Thus, the mapping

�b := �|K1 : K1 → K2

is bi-Lipschitz, if and only if �̃b := �̃|K̃1 : K̃1 → K̃2 is bi-Lipschitz.
Up to increasing R1, following the proof of Lemma 11, we deduce that the mapping

�u := �|W1\K1 : W1 \ K1 → W2 \ K2

is bi-Lipschitz if and only if the mapping �̃u := �̃|W̃1\K̃1 : W̃1 \ K̃1 → W̃2 \ K̃2 is observe that�u and �̃u,
respectively, extend bi-Lipschitz-ly on the closure of their domains when � and �̃, respectively, are
bi-Lipschitz.

• Assume that� is bi-Lipschitz. Thus, �̃ is a homeomorphism and both �̃b and �̃u are bi-Lipschitz.
If �̃ were not Lipschitz, there would exist two sequences (zn)n, (z′

n)n of W̃1 such that

lim
n→∞

∣∣�̃(z′
n) − �̃(zn)

∣∣
|z′

n − zn| = ∞.

Since W̃1 is compact, up to passing to subsequences we can assume that both sequences converge
toω1. Since�u,�b are bi-Lipschitz and�u extends bi-Lipschitz-ly onto clos(W̃1 \ K̃1), necessarily
one of the sequences is contained in K̃1 and the other one in W̃1 \ K̃1. Thus, ω1 ∈ K̃1 and ω2 :=
�̃(ω1) ∈ K̃2. Since σ−1

q1
is bi-Lipschitz nearby ω1 and σ−1

q2
is bi-Lipschitz nearby ω2, the mapping

�̃ is Lipschitz nearby ω1, yielding a contradiction.
• Assume that �̃ is bi-Lipschitz. Thus,� is a homeomorphism and both�b and�u are bi-Lipschitz.

Moreover,�u extends bi-Lipschitz-ly to clos(W1 \ K1). If� were not Lipschitz, there would exist
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two sequences (xn)n and (x′
n)n of W̃1 such that

lim
n→∞

∣∣�(x′
n) − �̃(xn)

∣∣
|x′

n − xn| = ∞.

Necessarily one sequence belongs to K1 and the other one to clos(W1 \ K1). Assume that (xn)n

is contained in K1. So, we can assume it converges to y1. If y1 does not lie in the compact set
L1 = K1 ∩ clos(W1 \ K1), thus

lim inf
n

|x′
n − xn| ∈ (0, ∞]

therefore�(x′
n) goes to ∞, and using �̃, we conclude that x′

n → ∞. Let M be a Lipschitz constant
common to �b and �u. Let y′

1 be a point of L1. Thus,

|�(x′
n) −�(xn)| ≤ |�u(xn) −�u(y′

1)| + |�b(y′
1) −�b(xn)| ≤ M|xn − y′

1| + M|y′
1 − xn|

yielding a contradiction since |xn − y′
1| → ∞. Thus, y1 lies in L1.

The same argument involving the point y′
1 = y1 implies that lim infn |x′

n − xn| = 0, so we can assume
that (x′

n)n converges to y1 as well. Since σ−1
q1

is bi-Lipschitz nearby y1 and σq2 is bi-Lipschitz nearby
�(y1), the mapping � is Lipschitz nearby y1, yielding a contradiction.

8. Geometry at infinity of tame sets

There are many possible applications of the inversion Lemma 9. In particular, any bi-Lipschitz clas-
sification problem of subsets at infinity is equivalent to a bi-Lipschitz classification problem at the
origin.

There are quite a few questions of bi-Lipschitz definable geometry at infinity which now reduce to a
problem at the origin by our main result. Many of them would require some specific preparations, that
is why we present here only two such applications, which are immediate consequences of Lemma 9.

8.1. Bi-Lipschitz definable sets at infinity and their tangent cones

A non-negative cone C of Rq is any subset of Rq stable by non-negative rescaling:

x ∈ C =⇒ t · x ∈ C, ∀t ≥ 0.

For a given non-negative cone C, the link of C is defined as;

S(C) := C ∩ Sq−1.

Let S be a non-empty subset of Rq. The non-negative cone over S with vertex the origin 0 is the subset
of Rq defined as:

Ŝ+ := {tu ∈Rq : u ∈ S, t ≥ 0}.
In particular, a subset C is a non-negative cone of Rq if and only if it is the non-negative cone over its
link:

C = Ŝ(C)
+

.

Definition 12. Let S be a subset of Rq.

(i) The asymptotic set of S at 0 is the closed subset of the unit sphere Sq−1

S0 :=
{

u ∈ Sq−1 : ∃ (xk)k ∈ S∗ such that xk → 0 and
xk

|xk| → u
}

.
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(ii) The asymptotic set of S at ∞ is the closed subset of the unit sphere Sq−1

S∞ :=
{

u ∈ Sq−1 : ∃ (xk)k ∈ S such that |xk| → ∞ and
xk

|xk| → u
}

.

The subsets S0 and S∞ are classical objects, with various names. We decided for a common denom-
ination. The subset Sω is often called, misleadingly, the tangent cone at ω. Note that S0 is call set of
directions in [9]. The subset Sω is not empty if and only if S contains ω, and observe that

clos(S)ω = Sω

where ω= 0 or ∞. Since we are interested in the non-negative cones Ŝ0+ and Ŝ∞+, we will work only
with closed subsets. The non-negative cone Ŝω

+ is also known as the tangent cone of S at ω, for ω= 0
or ∞.

Given x ∈ Uq, observe the following obvious fact

x
|x| = ιq(x)

|ιq(x)| .

Let X be a closed subset of Rq and let ι(X) be the closure clos(ιq(X∗)). The following result is obvious
from the definitions of asymptotic sets and the inversion.

Lemma 13. The following identities hold true:

X∞ = ι(X)0 and X0 = ι(X)∞.

From this lemma, we deduce

X̂∞+ = ̂ι(X)0+ and X̂0+ = ι̂(X)∞+
. (8.1)

Let M be a polynomially bounded o-minimal structure expanding the real field (R, +, ., ≥ ) (see [5]).
A subset of an Euclidean space Rq is definable if it is definable inM. Let S be a subset of Rq. A mapping
S →Rp is definable if its graph is definable.

We recall the following result of Sampaio about tangent cones:

Theorem 14 ([12]). Let (Xi, 0) be the germ of a definable set of Rqi at the origin, i = 1,2. If there exists a
bi-Lipschitz homeomorphism (X1, 0) → (X2, 0), then there exists a bi-Lipschitz homeomorphism X̂0

1

+ →
X̂0

2

+
mapping 0 onto 0.

In truth [12] deals only with sub-analytic subsets, but the part of the demonstration using sub-
analyticity goes through the definable context readily.

We recall that the inversion ιq is a rational mapping, thus semi-algebraic, therefore definable in M.
As a corollary of this latter fact, of the inversion Lemma 9 and of identity (8.1), we deduce the following
( [6, Theorem 2.19], [14, Theorem 3.1])

Proposition 15. Let (Wi, ∞) be the germ of a closed definable set of Rqi at infinity, i = 1,2. If there exists
a bi-Lipschitz homeomorphism (W1, ∞) → (W2, ∞), then there exists a bi-Lipschitz homeomorphism
Ŵ∞

1

+ → Ŵ∞
2

+ mapping 0 onto 0.

8.2. On the link at infinity

Let S be a subset of Rq. For any positive radius R, we define the following subsets:

SR := S ∩ Sq−1
R , S≤R := S ∩ Bq

R and S≥R := S \ Bq
R.
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Let again denote ι(S) the closure of ιq(S∗). Thus, we get the obvious identifications:
ιq(SR) = ι(S) 1

R
, ιq(S

∗
≤R) = ιq(S)≥ 1

R
and ιq(S≥R) = ιq(S)∗

≤ 1
R
.

When X is definable and contains the origin 0, the local conic structure theorem states that there
exists r0 such that for any radius r0 ≥ r> 0, the definable subset X≤r is definably homeomorphic with
(X̂r

+
)≤r, the “non-negative cone over Xr” [5]. Moreover, such a definable homeomorphism can be found

so that it preserves the distance to 0 [15]. In particular, Xr has constant topological type for r ≤ r0. It can
also be shown that for any pair of radii 0< r< r′ ≤ r0, the links Xr and Xr′ are bi-Lipschitz definably
homeomorphic [15, 17, 18], although the Lipschitz constant in general cannot be uniform over ]0, r0].

Let W be a definable subset of Rq. Using the inversion and the local conicstructure theorem yield the
locally conic structure theorem at infinity: there exists a positive radius R0 such that for any R ≥ R0,
the subset W≥R is definably homeomorphic to

(
ŴR

+)
≥R

, the “non-negative cone over WR” at infin-
ity. Moreover, such a definable homeomorphism can be found so that it also preserves the distance
to the origin. Last given any pair of radii R, R′ ≥ R0, the links WR and WR′ are definable and bi-Lipschitz
homeomorphic.

We have mentioned the local conic structure theorems and the bi-Lipschitz constancy of the links
in light of the following result about links preserving reparametrization of definable bi-Lipschitz
homeomorphism of Valette:

Theorem 16 ([16–18]). Let (Xi, 0) be a closed definable germ of Rqi , i = 1, 2. If there exists a
definable bi-Lipschitz homeomorphism (X1, 0) → (X2, 0), then there exists a definable bi-Lipschitz
homeomorphism (X1, 0) → (X2, 0) preserving the distance to the origin.

Again as a corollary of our main result of Theorems 10 and 16 and the semi-algebraicity of the
inversion, thus definable in M, we find the following

Proposition 17. Let (Wi, ∞) be a closed definable germ of Rqi , i = 1, 2. If there exists a definable
bi-Lipschitz homeomorphism (W1, ∞) → (W2, ∞), then there exists a definable bi-Lipschitz homeomor-
phism (W1, ∞) → (W2, ∞) preserving the distance to the origin.
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