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Magnetic reconnection leads to the formation of island-shaped magnetic structure(s).
Due to disagreement between theoretical evaluations of the characteristic reconnection
time and observations, it is commonly accepted that the collisionality (or resistivity) is
too low to explain magnetic reconnection phenomena in fusion plasmas. Thus, magnetic
reconnection still raises many open questions. The work presented here aims to improve
the fundamental knowledge about ‘the life of a magnetic island’. Here, in the light of the
many works of the last 70 years, a new paradigm for understanding magnetic reconnection
in fusion plasmas is proposed. The life of a magnetic island (whatever its scale) follows
three phases: the origin, the growth and the saturation. The possible physical mechanisms
at play in these three phases will be investigated. First, for the island origin, typical time
scales in link with magnetic reconnection will be evaluated for three tokamaks of different
sizes (TCV, WEST and JET) to verify if magnetic reconnection is such an unexplained
phenomenon in fusion plasmas. Second, for the island drive, the richness of possible
mechanisms leading to ‘rapid’ magnetic island growth in fusion devices will be presented
for small and large scales. Third comes the island saturation step. Results on the prediction
of a large island width at saturation are presented and discussed.

Keywords: fusion plasma, plasma simulation, plasma nonlinear phenomena

1. Introduction

That magnetic field-line topology and its evolution are crucial for plasma dynamics,
which has been known since the pioneering works of Alfvén (1950) and Dungey (1953).
Ideally, the magnetic field and plasma are bound together. This is the well-known frozen-in
law for a magnetic field immersed in a moving plasma: ideally, in a moving plasma
flow, the magnetic flux and the magnetic connectivity are conserved in time. However,
under non-ideal effects which break the frozen-in law, magnetic connectivity cannot be
conserved: a magnetic field line can tear and then reconnect into a different topology. This
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fundamental process is described by an elegant physical concept: magnetic reconnection
(Biskamp 2000).

Magnetic reconnection is ubiquitous in nature. It is observed in space plasmas: as an
example, during solar flares, reconnection processes convert magnetic energy stored in
a sunspot into kinetic energy accelerating locally particles (Giovanelli 1946). It is also
observed in fusion plasma: non-ideal effects (like collisions/resistivity and/or electron
inertia) initiate magnetic reconnection process where a global rearrangement of the
magnetic field topology leads to the formation of magnetic island shape structure(s)
characterized by their radial extension (also called island width). In the presence of an
unstable current layer, leading to ‘tearing-like’ instabilities, the width of reconnected
structure(s) (i.e. magnetic island(s)) grows in the linear phase and then is limited by
nonlinear processes.

Magnetic reconnection is at the heart of various challenging open questions in fusion
by magnetic confinement. Some of these questions are listed below.

(i) From a seed magnetic island (whose origin is still unknown) the nonlinear growth
of radially large (a few tens of centimetres) magnetic island(s), called ‘neoclassical
tearing mode(s)’ (NTMs) (Chang et al. 1995; La Haye 2006; Sauter et al. 2010), can
destroy the equilibrium magnetic structure of a fusion plasma. Such modes lead to a
brutal and catastrophic end of plasma discharge (i.e. disruption) and to a damage of
the device walls. Advances have been made in recent years to control NTMs, which
is essential for fusion plasmas (Kong et al. 2022). Improving such control strategies
– these strategies are expensive and, some, time ineffective – requires improvement
of understanding the physical mechanisms triggering NTMs (Muraglia et al. 2017;
Kong et al. 2020).

(ii) The main scenario for operating most tokamaks, and the future device ITER, is
based on an improved confinement regime where the turbulence intensity is reduced
in a layer located at the plasma edge, called the ‘pedestal’. Such improved regimes,
known as the high-confinement mode (H-mode), experience edge localized modes
(ELMs) that are busty edge perturbations. Having a predictive understanding of the
physics of an ELM is still an open question (Snyder et al. 2002). Recent works
(Hamed et al. 2019; Hatch et al. 2021; Hamed et al. 2023) have highlighted that the
electron temperature gradient in the pedestal can drive microtearing modes creating
small (of the order of millimetres) reconnected structures. The resulting electron
heat transport, which is still not fully understood, is required to develop predictive
pedestal models, which is of the utmost importance for the success of fusion by
magnetic confinement.

(iii) Sawtooth crashes can, on the one hand, degrade the performance of fusion devices
by driving NTMs while, on the other hand, preserve it by flushing impurities out of
the core. The theoretical understanding of this phenomenon is still incomplete. In
particular, the role of magnetic reconnection, which occurs during crashes, must be
investigated in more detail (Samoylov et al. 2022; Yu & Günter 2022).

(iv) The observation of runaway electrons in post-disruption plasmas is another
phenomenon where understanding the role of magnetic reconnection is critical. This
is because the runaway current can replace the plasma current in its entirety and
drives a reconnection event (Helander et al. 2007; Grasso et al. 2022) which affects
the spread of the runaway-electrons beam when it hits the wall.

(v) In the so-called hybrid regime where the magnetic shear is low in the core region,
an accumulation of high-charge impurities is often observed in the plasma core.
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Magnetic islands due to magnetohydrodynamics (MHD) processes are suspected to
locally accelerate the penetration of impurities (Hender et al. 2016).

(vi) Recently, there has been renewed interest in the international community in magnetic
configurations that are smaller than present-day machines, such as field-reversed
configurations (FRCs) (Guo et al. 2015). These smaller machines require a high
magnetic field, and magnetic reconnection will play a major role in their stability.
The relevance for fusion applications of these FRCs has not yet been demonstrated,
which adds to the importance of studies aimed at improving the understanding of
the physical mechanisms related to magnetic reconnection.

In magnetic reconnection processes of plasmas fusion, various physical mechanisms
can be at play, and the width of the resulting magnetic island(s) ranges from a millimetre
(Hazeltine, Dobrott & Wang 1975; Drake & Lee 1977; Pueschel et al. 2013; Hamed et al.
2019), to a few tens of centimetres (Furth, Rutherford & Selberg 1973; Muraglia et al.
2011; Frank et al. 2020), i.e. a fraction of the radial extent of the plasma. The impact on
confinement and transport depends on the width, the characteristic frequencies and the
spatial distribution of the generated magnetic island(s). Although most fusion devices
probably exhibit magnetic islands with a radial width continuum, various efforts over
the last decades have separately focussed on the macro- and small-scales phenomena of
magnetic reconnection. Indeed, the theoretical and numerical tools are quite different due
to the scale differences involved. The MHD description (Agullo et al. 2014; Poyé et al.
2015; Agullo et al. 2017a,b; Muraglia et al. 2017) of large magnetic island dynamics
has proven to be a successful framework for both the study of fundamental phenomena
and predictions. At small scales, the microtearing instability requires a kinetic and/or
a gyrokinetic description (Applegate et al. 2007; Doerk et al. 2011; Hatch et al. 2012;
Dickinson et al. 2013; Predebon & Sattin 2013; Hatch et al. 2016; Hamed et al. 2018a,b,
2019, 2023; Hatch et al. 2021). Moreover, recently, strong efforts have been devoted to
the investigation of the large-scale tearing mode using a gyrokinetic framework (Hornsby
et al. 2015b, a, 2016; Bardóczi et al. 2017).

Magnetic reconnection is finally a multi-physics and multi-scale process. Nevertheless,
there is no fundamental reason precluding a global vision of magnetic reconnection in
fusion devices. Indeed, one can identify a ‘general magnetic island recipe’: whatever the
scales and the physical ingredients involved, a magnetic reconnection process will always
follow the same steps described by ‘the magnetic island life’. These steps are: (1) origin of
magnetic island; (2) its growth; and finally (3) its saturation. These three steps are related
to fundamental issues that should be addressed to enable solutions for critical fusion
problems and provide a framework to investigate magnetic reconnection in fusion devices.
Thus, in the light of many works of the last 70 years, a new paradigm for understanding
and studying two-dimensional magnetic reconnection in fusion plasmas is proposed here
following the framework of the magnetic island life. The paper is organized following the
three island life steps.

First (§ 2), to have a magnetic island, a physical mechanism allowing the rearrangement
of the magnetic field topology is required. Although several candidates exist
(collisions/resistivity (Muraglia et al. 2011; Hornsby et al. 2015a; Hamed et al. 2019),
electron inertia (Coppi et al. 1979; Grasso, Tassi & Waelbroeck 2010; Tassi et al. 2018;
Grasso et al. 2020), electron anisotropy (Cassak et al. 2015; Granier et al. 2021), etc.),
the identification of the dominant mechanisms leading to initial island-shaped structures
is still an open problem and concerns an important fraction of the magnetic reconnection
phenomena taking place in fusion devices. In this section, this question is investigated
again following the new paradigm proposed here, i.e. by distinguishing the physical
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mechanism that initially breaks the frozen-in law to generate a magnetic island from
the one that drives the growth of the island (this second step of the island life being
investigated in § 3). In particular, typical time scales in link with magnetic reconnection
will be computed for three tokamaks of different sizes (TCV, WEST and JET).

The second step of the island life concerns the growth of the magnetic island (§ 3).
A physical mechanism (which is not necessarily the one which originates in the magnetic
island) is required to drive the island growth. Once again, many candidates exist (magnetic
equilibrium and collisions (Hornsby et al. 2015a), turbulent modes (Muraglia et al. 2011;
Hornsby et al. 2015b, 2016; Poyé et al. 2015; Bardóczi et al. 2017; Ishizawa, Kishimoto &
Nakamura 2019; Dubuit et al. 2021), electric temperature gradient (Applegate et al. 2007;
Doerk et al. 2011; Dickinson et al. 2013; Predebon & Sattin 2013; Hamed et al. 2019;
Hatch et al. 2021; Hamed et al. 2023), bootstrap current (Sauter et al. 2010; Kong et al.
2020, 2022), Hall effect, electron anisotropy (Cassak et al. 2015; Granier et al. 2021), etc.).
The question of the drive is still open at the small scale (for microtearing modes) as well at
the large scale (origin of the seed island required for the nonlinear growth of a NTM as an
example). Here, a review of possible mechanisms leading to a magnetic island growth (at
small scale as well as at large scale) and their relevance for the fusion context is presented.

Third comes the last step of saturation (§ 4). Once again, saturation mechanisms are still
unknown at the small scale as well as at the large scale. Here, the focus will only be on the
possible saturation mechanisms for predicting the saturated island width in a case of a large
magnetic island (saturation at small scale for microtearing modes remaining a fully open
question). Since the pioneer work of Rutherford (Rutherford 1973) where a first model
has been derived to predict the saturated island width, many works have subsequently
been performed to improve this first model (Carrera, Hazeltine & Kotschenreuther 1986;
Escande & Ottaviani 2004; Militello & Porcelli 2004; Smolyakov et al. 2013) and to
test their validity against simulations. Here, a review of these past studies is presented
showing that although generalized Rutherford models are widely and successfully used in
experiment (Sauter et al. 2010; Kong et al. 2020, 2022), their agreement with first principle
numerical simulations still needs to be demonstrated (Militello, Grasso & Borgogno 2014;
Poyé et al. 2014; Muraglia et al. 2021).

In the last part dedicated to the conclusions (§ 5), a summary and open questions related
to magnetic reconnection in fusion plasmas will be drawn.

2. Origin
2.1. What is magnetic reconnection?

Magnetic reconnection is a concept that primarily relates to electromagnetic phenomena
taking place in a medium in the plasma state. Naturally, the theoretical framework of
magnetic reconnection is initially linked to the motion of a plasma immersed in a magnetic
field and is, as a consequence, intimately linked to the concept of field-line motion, which
was first introduced by H. Alfvén in 1945 (Alfvén 1950) and was developed later by
J. W. Dungey in 1953 (Dungey 1953). Starting with the historical point of view (i.e. using a
fluid approach), one can consider a bath of charged, moving and non-relativistic particles
immersed in an electromagnetic field (E,B). At large scales, the charge distribution is
such that the plasma is electrically neutral and the fluid framework is usually adopted to
describe the plasma behaviour. Due to the coupling of the plasma with the electromagnetic
field (E,B), a complete description of the dynamics requires a coupling of the fluid
equations to the Maxwell equations: this framework is well known as the MHD model that
offers an efficient understanding of the magnetic reconnection concept (Biskamp 2000).
As a starting point to understand magnetic reconnection, one can investigate the impact
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FIGURE 1. Notion of plasma-fluid element: plasma is a multi-scale medium where L �
dxfluid � λD � dxmicro (λD is the Debye length). There exist three main levels of description that
can be used to model plasma dynamics: particulate at scale dxmicro, kinetic at scale dxmicro, fluid
at a larger scale dxfluid. For a plasma-fluid element, quasi-neutrality is conserved (i.e. Q = 0)
since dxfluid � λD. The fluid velocity u can be evaluated from the MHD framework.

of a plasma-fluid element (figure 1) moving with u through a magnetic field B on this
magnetic field in terms of magnetic flux and magnetic connectivity.

2.1.1. Magnetic flux balance
One can consider two times t1 and t2 during which the plasma-fluid element

displacement is u(t2 − t1) = u�t (figure 2). At time t1, the magnetic flux Φ1 through the
surface S1 bounded by the contour C1 is

Φ1 =
∫

S1

B (x, t) · dS1, (2.1)

where dS1 is the oriented surface element related to the surface S1.
At time t2 = t +�t, the plasma-fluid element has moved by a distance u�t and crosses

a new surface S2 (deformed with respect to S1) and delimited by the contour C2 (also
deformed with respect to C1). The magnetic flux Φ2 through this new surface is Φ2 = ∫

S2

B(x, t) · dS2 (with dS2 being the oriented surface element related to S2).
A first Taylor expansion, in time, gives Φ2 ∼ ∫

S2
B(x + u�t, t) · dS2 +�t

∫
S2
∂tB(x +

u�t, t) · dS2. Then, a second Taylor expansion in x (with dx = u�t) gives B(x +
u�t, t) ∼ B(x, t)+ u�t(∂B(x, t)/∂x), where the position x is related to the surface S1
and the position x + u�t is related to the surface S2. Finally, keeping only the order 1
terms (with �t � �t2), the linearized Φ2 can be written as

Φ2 ∼
∫

S2

B (x + u�t, t) · dS2 +�t
∫

S1

∂tB (x, t) · dS1. (2.2)

Applying the Ostrogradski theorem to the local Maxwell–Thomson equation, it is
well known that at a given time,

∫
V ∇ · B dV = ∫

S B · dS = 0, where S = S1 + S2 + SL
(with dS its associated oriented surface element) is the surface enveloping the volume
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FIGURE 2. Magnetic flux balance.

V crossed by the plasma-fluid element. At a time t, the plasma-fluid element ‘enters’ by
S1 and ‘leaves’ the volume V through S2 and Sl. This simple balance of flows gives

∫
S

B · dS = 0 = −
∫

S1

B (x, t) · dS1 +
∫

S2

B (x + u�t, t) · dS2 +
∫

Sl

B (x, t) · dSl . (2.3)

Using the expressions of the fluxes Φ1 (2.1) and Φ2 (2.2), one can write

Φ1 −Φ2 +�t
∫

S1

∂tB (x, t) · dS1 −
∫

Sl

B (x, t) · dSl = 0. (2.4)

Then (figure 2), on the lateral surface Sl, dSl = dl × u�t, where dl is the oriented
displacement element along the contour Cl = C1 which is the common boundary of
the surfaces S1 and Sl. Using the Stokes theorem, one can get

∫
Sl

B · dSl = ∫
Cl

B · (dl ×
u�t) = �t

∫
(u × B) · dl = �t

∫
S1

∇ × (u × B) · dS1.
Finally, the flux balance (2.4) can be re-written using the Maxwell–Faraday equation

and representing the conservation (or the non-conservation) of the magnetic flux during
the plasma motion:

dΦ
dt

= Φ2 −Φ1

�t
=

∫
S1

[−∇ × (E + u × B)] · dS1. (2.5)

2.1.2. Magnetic connectivity
At a given time t, M1 is a plasma-fluid element of the magnetic field line moving

with u1 ≡ u and M2 is another plasma-fluid element (moving with v2) belonging to the
same line and very close to M1: M1 and M2 are separated by the infinitesimal length
�l and �u = u2 − u (figure 3). By definition, magnetic field lines are parallel at any
point of the magnetic field B leading to �l × B = 0, and it is said that M1 and M2
are connected by the same magnetic field line. The notion of magnetic reconnection is
therefore naturally linked to the non-conservation (between two moments t and t + dt) of
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FIGURE 3. Magnetic connectivity concept. At t, M1 and M2 belong to the same magnetic field
line: they are connected and �l × B = 0. If the connectivity is conserved, at t + dt, M′

1 and M′
2

still belong to the same magnetic field line and (�l + d(�l))× B = 0.

this magnetic connectivity which should be investigated by computing (d/dt)(�l × B) =
(d�l/dt)× B︸ ︷︷ ︸

I

+�l × dB/dt︸ ︷︷ ︸
II

.

To that purpose, figure 3 is plotted: M
′
1 and M

′
2 are respectively M1 and M2 after dt.

An evaluation of I1 gives d�l/dt × B = [(B · ∇)u] ×�l. Additionally, an evaluation
of II2 gives �l × dB/dt = [∇ × E − (u · ∇)B] ×�l. As a consequence, one can write
that (d/dt)(�l × B) = I + II = [(B · ∇)u + ∇ × E − (u · ∇)B] ×�l. Finally, thanks to
vector identities, one can write the conservation (or the non-conservation) of the magnetic
connectivity:

d
dt
(�l × B) = [∇ × (E + u × B)] ×�l. (2.6)

2.1.3. Frozen-in law and general definition of magnetic reconnection
It is very interesting to highlight that, so far, the fluid character of the plasma has not

been used, in particular, to obtain (2.5) and (2.6). M1 and M2 have been considered as a
plasma-fluid volume element δV = dx3

fluid (see figure 1) attached to the magnetic field line
as well as to a single point that belongs to this line. However, at this stage, it is useful
to use the MHD framework where M1 and M2 are plasma-fluid volume elements moving
with the fluid velocity u which satisfies the well-known generalized Ohm’s law (Biskamp
2000):

E = Eind + EOhm + EHall + Einer + Etherm. (2.7)

In (2.7):

(i) Eind = −u × B is the ideal induction or dynamo field representing the electric field
created by the global motion u of the plasma within the magnetic field B. It plays at
large fluid scale L (see figure 1);

(ii) EOhm = ηj is the non-ideal ohmic field, the plasma being an electric conductor of
resistivity η and of current j. This term becomes important in thin resistive layer
Lη � L (see further for an evaluation of Lη for typical tokamaks);

1From figure 3, one can write that ���l + (�u +�u) dt =��u dt +���l + d(�l) giving �u = u2 − u = d(�l)/dt. A
first-order Taylor expansion of u along the magnetic field line leads to u2 = u + (�l · ∇)u and then d(�l)/dt = (�l ·
∇)u. Moreover, B = |B|b and as�l × B = 0, one can write�l = |�l|b. As a consequence, d�l/dt × B = [|�l||B|(b ·
∇)u]×b = [(B · ∇)u] ×�l.

2Separating the local variation of B and its advection by u, one can write the particular derivative dB/dt = ∂tB +
(u · ∇)B. Additionally, using the Maxwell–Faraday equation, II is evaluated as �l × dB/dt = [∇ × E − (u · ∇)B] ×
�l.
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(iii) EHall = (1/nee)j × B is the non-ideal Hall field corresponding to the Lorentz force
j × B (ne being the fluid density of the electrons and e being the elementary charge).
This term becomes important at scales of the order of the ionic Larmor radius ρi �
Lη � L;

(iv) Einer = (me/nee2)[∂tj + ∇ · (uj + ju − (1/nee)jj)] (where ¯̄• represents a tensor) is
the non-ideal inertial term which plays a role at scales of the order of the electron
skin depth de � ρi � Lη � L (me being the electron mass);

(v) Etherm = −(1/nee)∇ · Pe is the non-ideal thermal electromotive field playing a role
at ion sound Larmor radius scale being smaller than L and with Pe being the
electron’s pressure tensor.

Thus, at large scale, non-ideal effects can be neglected and the ideal Ohm’s law is
simply E = Eind = −u × B leading to a conservation of the magnetic flux ((2.5) becomes
dΦ/dt = 0) and the magnetic connectivity ((2.6) becomes (d/dt)(�l × B) = 0). This is
the well-known frozen-in law, where at large scale, the plasma and the magnetic field B
are strongly coupled in the same dynamic and where magnetic reconnection cannot occur.

However at smaller scales, non-ideal effects can originate from an electric field leading
to a non-conservation of the magnetic connectivity with (2.6) becoming

d
dt
(�l × B) = [∇ × ENI

] ×�l �= 0. (2.8)

To go further by investigating the required form of ENI leading to a non-conservation of
magnetic connectivity (2.8), a general definition of magnetic reconnection can be drawn.
Indeed, magnetic reconnection is due to a particular dynamics of the magnetic field and
as a consequence of the Faraday law due to the existence of non-zero rotational electric
field. However, not all rotational electric fields can lead to magnetic reconnection. More
precisely, having ENI �= 0 is not sufficient to allow magnetic reconnection. Additionally,
to get a general definition of magnetic reconnection, the impact of the form of ENI has
to be investigated on (2.5) and (2.8). Let us set ENI = ENI

‖ + ENI
⊥ , where the subscripts ‖

and ⊥ refer respectively to the parallel direction to B = Bb with ENI
‖ = (b · ENI)b and to

the orthogonal direction with ENI
⊥ = b × (ENI × b). Thus, ENI

⊥ can be written as ENI
⊥ =

v × B, where the physical meaning of the velocity v will be understood just after. As a
consequence, ENI = ENI

‖ + v × B. The expression of the generalized Ohm’s law written
as E = −u × B + v × B + ENI

‖ leads to the following expression for the conservation of
the magnetic flux (2.5):

dΦ
dt

=
∫

S1

− [∇ × ENI ‖
] · dS1 (2.9)

and for the conservation of the magnetic connectivity (2.8):

d
dt
(�l × B) = [∇ × ENI

‖
] ×�l (2.10)

in the moving frame of velocity w = u − v with d/dt = ∂t + w · ∇. One can note that
the perpendicular non-ideal electric field ENI

⊥ does not contribute to the magnetic field
connectivity conservation (2.10). From (2.9) and (2.10), one can conclude that the
perpendicular component of the non-ideal terms in generalized Ohm’s law (2.7) written
as ENI

⊥ = v × B leads only to a non-conservation of the magnetic flux (2.9) in the plasma
flow frame of velocity u.
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So having ENI = ENI
⊥ in a thin non-ideal layer does not originate in magnetic

reconnection. However, this term leads to a slippage of the magnetic field line moving at a
velocity v different to the plasma velocity u. (It is interesting to note that in the generalized
Ohm’s law (2.7), the Hall term EHall induces such slippage of magnetic field lines and can
accelerate (without originating it) magnetic reconnection.) Finally, following (2.9) and
(2.10), only the parallel component of the non-ideal electric field ENI

‖ in the generalized
Ohm’s law (2.7) leads to a non-conservation of magnetic connectivity in a thin non-ideal
layer and as a consequence leads to magnetic reconnection.

In the past (Vasyliunas 1975; Axford 1984; Sonnerup 1984; Schindler & Hesse 1988;
Hornig & Rastätter 1997, 1998; Priest & Forbes 1998), from a general form of ENI ,
attempts have been made to provide a general definition of magnetic reconnection and
some questions are still open today. Here, associating the magnetic reconnection to a
non-conservation of magnetic connectivity given by (2.10) and following the point of
view of Schindler & Hesse (1988), a general definition of magnetic reconnection is given:
having EN

‖ �= 0 in a extremely thin region is a necessary and sufficient condition for
general magnetic reconnection in two-dimensional (2-D) as well as in three-dimensional
(3-D) space. Magnetic reconnection is the result of a local non-conservation of magnetic
connectivity between two times due to non-ideal effects leading to the presence of ENI

‖ in
the thin non-ideal region. The 2-D process can be illustrated by figure 4 where magnetic
field lines are not conserved during the magnetic reconnection process: two plasma-fluid
elements P1, P2 (regardless of the distance separating them), connected by the same
magnetic field line at a given time, are no longer so after the magnetic field lines have been
disconnected and then reconnected. Thus, magnetic reconnection is by nature a multi-scale
process. Most of the time, the frozen-in law is satisfied, the plasma and the magnetic
field being strongly attached together. However, there exist extremely thin regions where
non-ideal effects become important to break the frozen-in law. In these non-ideal regions
(also known as diffusive regions), magnetic field lines can experience a local tearing and
then a local reconnection leading to a global change of magnetic field topology and to the
formation of magnetic island(s) (for a 2-D picture, see figure 4). It is said that the magnetic
field diffuses through the plasma. As mentioned in the introduction, although the historical
point of view emphasizes large-scale topology changes, the resulting structures (with an
island shape) can develop on both small and large scales.

2.2. Inventory of possible mechanisms at the origin of magnetic reconnection in fusion
plasmas

In the MHD framework, the possible mechanisms leading to magnetic reconnection are
summarized in the generalized Ohm’s law (2.7) where the EOhm, Einer and Etherm terms
exhibit the parallel component. Magnetic reconnection is well observed in fusion plasma
meaning that one or more of these mechanisms should be at play. However, in the literature
(Parker 1957; Sweet 1958a,b), from (2.7), evaluations of characteristic reconnection time
τRM have been compared with observations in fusion plasma and disagreements have
been found. Indeed, in these evaluations based on the so-called Sweet–Parker model,
the characteristic reconnection time is derived from the mechanism driving the magnetic
reconnection (magnetic island in 2-D) growth, the mechanism at the origin of the
reconnection (the mechanism that breaks the frozen-in law) being not distinguished from
the growing one. Thus, it has been found that in fusion plasma, due to the high core
temperature, the resistivity is too weak to explain the growth of reconnected structures. In
the same way, although the growth of magnetic islands due to electronic inertia is faster,
it is commonly accepted that electronic inertia cannot explain the origin of the magnetic
island in a fusion machine (due to the narrowness of the non-ideal layer generated by
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FIGURE 4. Simple picture of 2-D magnetic reconnection process. Before magnetic
reconnection, P1 and P2 are connected by the same magnetic field line. The plasma-fluid element
P3 belongs to another magnetic field line. During the reconnection process, a narrow non-ideal
region (in orange) forms between the oppositely directed field lines: magnetic reconnection is
a non-ideal local process. After the reconnection, P2 is no longer connected to P1, but is now
connected to P3.

the electronic skin depth). Finally, the thermal electromotive field generates reconnected
structures of the order of ρi being too small to be relevant in the fusion context. As a
consequence, it is commonly accepted and stated that the origin of magnetic reconnection
is still unknown in a fusion device.

However, there is no fundamental reason that the non-ideal mechanism at the origin of
the reconnection (i.e. the mechanism which breaks the frozen-in law) is also the one that
allows the island to grow. Thus, here, starting from the general magnetic reconnection
definition, it is proposed to investigate the relevance in a fusion context of physical
mechanisms breaking the frozen-in law without considering the growth of the generated
magnetic island. In particular, typical time scales in line with magnetic reconnection will
be computed for three tokamaks of different sizes (TCV, WEST and JET) to check if
magnetic reconnection is indeed an unexplained phenomenon in fusion plasma.

2.2.1. Sweet–Parker model
Sweet and Parker were the first to propose a physical mechanism of magnetic

reconnection (Parker 1957; Sweet 1958a,b). The so-called Sweet–Parker mechanism is
a 2-D model of steady-state magnetic reconnection of a resistive current sheet in a plasma
flow of velocity u. To illustrate this model, let us consider a simple magnetic configuration
in a 3-D slab geometry such as B = Bzez + Byxey with Bz � By. Here, Bzez is called
the guide field, where ez is the parallel direction, and the reconnection process takes
place in the 2-D perpendicular plane (x, y). For such configuration, in (x, y), along the
line x = 0, the magnetic field is null and is of opposite sign on either side of the null
points line. Resistivity is supposed to play a role only in a thin layer called the resistive
or the diffusive layer of length 2L and width 2l and follows the null points line. In this
layer, following the well-known Ampère law, the parallel current j = μ−1

0 Byez induces a
non-zero ENI

‖ = ηj (where μ0 is the magnetic constant) leading to magnetic reconnection.
From the generalized Ohm’s law (2.7) in the resistive layer, E ∼ ηj, combined with the
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FIGURE 5. Illustration of the Sweet–Parker mechanism.

Faraday law, one can write the induction equation for the magnetic field: ∂tB ∼ η�B. It
is said that the magnetic field diffuses in the resistive layer. Outside the resistive layer,
the system is considered as ideal where the coupling between the generalized Ohm’s law
(2.7), E ∼ −u × B, and the well-known Faraday law gives the ideal induction equation
for the magnetic field, ∂tB ∼ ∇ × (u × B). In the (x, y) plane, the two components of the
plasma flow u does not play the same role regarding the reconnection phenomena. The
component along the x direction, i.e. ux = uin, ‘pushes’ the flow inside the resistive layer
where magnetic reconnection can take place by the resistive diffusion of the magnetic
field. Thus, it is assumed that uin is directed along increasing x when x < 0 and along
decreasing x when x > 0. The component along the y direction, i.e. uy = uout, is attached
to the magnetic field and drives the flow outside the resistive layer. An illustration of the
Sweet–Parker configuration is presented in figure 5.

First, the Sweet–Parker model proposes an elegant description of the physical
mechanism at play at the resistive layer during a steady-state (i.e. ∂t going to 0) magnetic
reconnection process. As mentioned previously, the flow pushes the plasma inside the
resistive layer. The counter-reaction to this flow pushing the magnetic field induces the
existence of a Lorentz force opposing uin. In the MHD framework, the Lorentz force can be
evaluated as FL ∼ j × B, where the current can be estimate taking the generalized Ohm’s
law (2.7) with only the inductive and resistive terms, i.e. j ∼ (u × B)/η = (uinBy/η)ez. It
follows an estimation of the Lorentz force FL ∼ −(uinB2

y/η)ex . Thus, in the ideal region
where uinB2

y �= 0 and where η → 0, magnetic reconnection is not allowed: the Lorentz
force is infinite and prevents flow from breaking magnetic field lines that can only be
distorted. However, in the resistive layer, By(x = 0) = 0 and since η is very small indeed,
but has a finite value, one can write that FL = 0. There is no more counter-reaction to the
incoming flow uin. The pressure applied by the incoming flow uin on the magnetic field
lines leads to the breaking of these field lines: magnetic reconnection occurs.

Then, the Sweet–Parker model gives an estimate of the magnetic reconnection time
defined by Sweet and Parker as τRM = L/uin. To evaluate τRM, uin has to be expressed as a
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TCV L ∼ 0.25 m, B = 1.43 T, η ∼ 10−5	 cm1 √
τητA ∼ 2 h

√
τ l
ητA ∼ 10 s

WEST L ∼ 0.25 m, B = 3.7 T, η ∼ 10−6	 cm1 √
τητA ∼ 3 days

√
τ l
ητA ∼ 2 min

JET L ∼ 1 m, B = 3.45 T, η ∼ 10−7	 cm1 √
τητA ∼ 115 days

√
τ l
ητA ∼ 16 min

TABLE 1. Estimation of the resistive characteristic reconnection time in the centre of TCV,
WEST and JET using τMR ∼ √

τητA (column 3) and using τMR ∼
√
τ l
ητA (column 4).

function of the system parameters. To this end, one can start by using the incompressibility
property of the flow (i.e. ∇ · u = 0) to write that uin/l ∼ uout/L. This leads to uin ∼
(l/L)uout. For the steady-state regime, the induction equation in the resistive layer (i.e.
considering the magnetic field Byxey in the reconnected plane (x, y)) gives ∇ × (u × B)+
η�B ∼ 0 ⇒ (uinBy/l) ∼ η(By/l2) ⇒ uin ∼ η/l. From these evaluations, one can express l
as l = (ηL/uout)

2. It results that τRM ∼ η−1/2u−1/2
out L3/2. To express uout, the fluid momentum

equation as well as the Ampère–Maxwell equation in the ideal region (meaning that the
total magnetic field B = Bzez + Byxey has to be considered) are used to give

ρ
uout

T
∼ B2

μ0L
⇒ ρ

u2
out

L
∼ B2

μ0L
⇒ uout ∼ B√

ρμ0
= vA, (2.11)

where vA is the well-known Alfvén velocity. Thus, the flow is driven out of the resistive
layer with the Aflvèn velocity. Finally, using the characteristic Alfvén time definition τA =
L/τA and the definition of the characteristic resistive time τη = L2/η, the characteristic
reconnection time based on the Sweet–Parker model can be expressed as

τRM ∼ √
τητA. (2.12)

2.2.2. Origin of magnetic reconnection in TCV, WEST and JET
In the past, evaluations of the reconnection time τRM (2.12) have been done taking L

as the ideal macroscopic length scale (i.e. corresponding to a fraction of the tokamak
minor radius ∼ of a few centimetres) leading to the conclusion that resistive magnetic
reconnection cannot occur in a fusion device: due to the high core temperature, the weak
resistivity gives a resistive time τη = L2/η and, as a consequence, a reconnection time
τRM too long compared with experimental observations. Such evaluations of τRM for three
modern tokamaks of various sizes (small size, TCV; medium size, WEST; large size, JET)
can be found in table 1 (third column).

It is interesting to discuss these evaluations. Indeed, these are based on the Sweet–Parker
model which is a resistive and steady-state model, where reconnection occurs in the
resistive layer and where the drive of the reconnected structure is outside the resistive layer
and is led by the ideal induction term u × B. From that picture, the result obtained for the
expression of the reconnection time (2.12) is suitable: τRM is naturally derived from the
mechanism inside the resistive layer, i.e. τη, and from the mechanism outside the resistive
layer i.e. τvA . However, one can imagine that once the magnetic reconnection is initiated
in the resistive layer of radial size l, other physical mechanisms than the induction field
can drive the reconnection structures outside the layer (see § 3). In this new paradigm, the
evaluation of the resistive time has to be done taking in consideration the resistive layer
size l instead of the macroscopic size L, i.e. τ l

η ∼ l2/η. Considering τ l
η, a new evaluation of
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τRM has been done for the three modern tokamaks in the fourth column of table 1. A better
agreement with observations is found. Thus, one can argue that in modern tokamaks,
resistive reconnection can occur with reasonable characteristic time in a thin non-ideal
layer. The question is then to find relevant mechanism(s) that drive(s) the reconnected
structures (i.e. magnetic islands) outside the layer. From this analysis, one can define
a new general characteristic reconnection time as τRM ∼

√
τ l

originτ
L
drive. Here, τ l

origin is the
characteristic time of the physical process that originates from magnetic reconnection
by breaking the frozen-in law on the typical length scale l. Additionally, τ L

drive is the
characteristic time of the driving physical process that plays a role on the typical length
scale L. In the case where resistivity is at the origin of magnetic reconnection, τ l

origin = τ l
η.

In the same spirit, although the reconnection process due to electron inertia (see (2.7))
is faster (an evaluation of the characteristic reconnection time based on electronic inertia
for modern tokamaks gives τme

RM ∼ LτA/de ∼ 10−3 s), it was considered as non-relevant
in fusion devices. Indeed, the resulting reconnected structures are too small (of the
order of the electron skin depth de) compared with the centimetre magnetic islands
observed. However, in light of the above, one can consider electronic inertia as a source of
possible magnetic island(s) in modern fusion devices: after a initiating phase of magnetic
reconnection at small scale due to electronic inertia, another mechanism can drive island(s)
outside the non-ideal layer. In this case, one can define the characteristic reconnection time

as τRM ∼
√
τ

de
originτ

L
drive.

3. Drive

One can conclude from the previous section that resistivity (as well as electronic inertia)
can be relevant for modern fusion devices to originate in the required parallel electric
field to lead to magnetic reconnection. Following the recipe of the life of a magnetic
island, after the original breaking comes the question of the drive. In fusion devices,
various physical mechanisms can drive the magnetic reconnection process and accelerate
the magnetic island growth. Here, a non-exhaustive inventory of possible mechanisms at
play driving the magnetic reconnection process at large scale (§ 3.1) and at small scale
(§ 3.2) is presented. The relevance of these mechanisms for fusion devices is discussed.

3.1. Mechanisms driving large-scale magnetic island
3.1.1. Tearing mode, TM

The Sweet–Parker mechanism presents a physical picture of steady-state and resistive
magnetic reconnection. The first linear analysis of unsteady reconnection can be found
from Furth, Killeen & Rosenbluth (1963), where the linear investigation of finite resistive
instabilities in a current sheet pinch is proposed for the first time. In particular, the linear
dispersion relation is derived for the so-called tearing mode. The tearing mode instability
is the dynamical extension of the Sweet–Parker model where the resistivity originates in
magnetic reconnection in the current layer of size l and drives the growth of the island
outside the layer of size L thanks to the mechanism proposed by Sweet and Parker, i.e.
thanks to the ideal incoming flow that ‘pushes’ the magnetic field line towards the null
magnetic field line.

To investigate the linear tearing instability, one can consider a simple 3-D slab
configuration of a current sheet as seen in § 3 (figure 5), where B = Bzez + Byey + Bxex
with a strong guide field in the ez direction having Bz � By and Bz � Bx. In such a
configuration, the presence of a resistive layer (where η �= 0) induces the existence of
a current sheet in the perpendicular (to the guide field Bzez) plane (x, y) due to the parallel
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current jzez with j ≡ jz(x, y). Under particular conditions that will be developed just after,
such a current sheet can be unstable from the tearing instability point of view: in the
perpendicular plane, magnetic reconnection can take place and a 2-D magnetic island can
grow with the linear tearing growth rate.

To derive this linear growth rate, the magnetohydrodynamic framework can be used to
give a reduced (Strauss 1976) model of the dynamical behaviour of the plasma coupled
with the magnetic field:

∂tψ + [φ,ψ] = η∇2
⊥ψ, (3.1)

∂t∇2
⊥φ + [

φ,∇2
⊥φ

] = [
ψ,∇2

⊥ψ
] + μ∇4

⊥φ, (3.2)

where μ is the plasma viscosity. Here, all the quantities have been normalized using the
Alfvén velocity vA, a characteristic macroscopic perpendicular length L⊥ and the Alfvén
time τA = L⊥/vA. Equation (3.1) gives the time evolution of the magnetic flux function
in the reconnected plane, i.e. ψ(x, y) defined as B = Bzez + ∇ × (ψez) and represents
a reduction of Ohm’s law. In particular, ∇⊥ψ ≡ j(x, y), which is the current in the
parallel direction (i.e. along ez) due to the resistivity that breaks the frozen-in law and
allows magnetic reconnection. Equation (3.2) gives the time evolution of the electrostatic
potential in the reconnected plane, i.e. φ(x, y) defined from the fluid velocity in the plane
(x, y) u⊥ = −∇ × (φez) and represents the momentum equation. (One can emphasize that
symbols [ f , g] refer to the nonlinearity of the system and are the well-known Poisson
bracket with [ f , g] = ∂xf ∂yg − ∂yf ∂xg in such a configuration.)

The linear tearing mode instability of such a current sheet of size (Lx,Ly) can be
investigated by linearizing (3.1) and (3.2):

ψ (x, y, t) = ψ0 (x)+ ψ1 (x, ) exp (γ t) cos
(
kyy

)
, (3.3)

φ (x, y, t) = φ1 (x) exp (γ t) sin
(
kyy

)
. (3.4)

In (3.1) and (3.2), it has been assumed that the poloidal direction is a periodic direction
with ky = 2π/Ly being the poloidal wave number, and that the fields ψ and φ vanish at the
boundaries of the radial direction. Here,ψ0 represents the magnetic flux of the equilibrium
current sheet. Additionally, the stability of the well-known Harris current sheet (Harris
1962) is investigated, so ψ0(x) is such that the associated equilibrium magnetic field is
B0(x) = ψ ′

0(x) = tanh(x/a), where a represents the thickness of the magnetic field in
the resistive layer. For such a current sheet, B0(x = 0) = 0 and B0 is going in opposite
directions on either side of the x = 0 line, which are necessary conditions to have tearing
instability. For a linear unstable current sheet, the fluctuations ψ1 (� ψ0) and φ1 grow
exponentially with a linear growth rate γ .

To derive the linear dispersion relation of the tearing mode instability (considering the
non-viscous case where μ = 0), the domain has to be separated into an ideal region, where
η = 0, and a resistive region. The asymptotic matching between the two regions leads to
this linear dispersion relation.

In the ideal region (labelled as the outside region) of characteristic radial size L,
resistivity is neglected η = 0. Using the decomposition given by (3.3) and (3.4), the
linearization of Ohm’s law (3.1) leads to the following coupling φout

1 (x) = ψout
1 (x)/B0(x).

Moreover, it is supposed that the linear growth rate of the tearing mode γ is relatively
weak compared with the Alfvén time leading to 1 � γ � τη/τA and to ∂t∇2

⊥φ ∼ 0 in
(3.2). Thus, under this assumption and using (3.3) and (3.4), the linearization of (3.2)
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leads to [
ψ0 + ψout

1 cos
(
kyy

)
,∇2

⊥
(
ψ0 + ψout

1 cos
(
kyy

))] = 0, (3.5)

ψ ′′out
1 (x) =

(
ψ ′′′out

0 (x)
B0(x)

+ k2
y

)
ψout

1 (x), (3.6)

which, for fields vanishing at the the radial boundaries and Harris current sheet, the
solution is

ψout
1 (x) = exp(−ky|x|)

⎡
⎢⎣1 +

tanh
|x|
a

aky

⎤
⎥⎦ . (3.7)

Due to the presence of the resonant surface where η �= 0, this solution presents a
discontinuity at x = 0 from which the well-known index stability parameter Δ′ is defined:

Δ′ = lim
x→0

2ψ ′out
1 (x). (3.8)

Finally, for a Harris current sheet and assuming that the fields (ψ and φ) vanish at the
radial boundaries, one can derive

Δ′ = 2
(

1
a2ky

− ky

)
. (3.9)

It is important to note that Δ′ is entirely defined from the outside solution ψout
1 , which

is entirely defined by the equilibrium magnetic field in the ideal region. Here, Δ′ does not
depend at all on the mechanism that originates in the magnetic reconnection (i.e. resistivity
or electronic inertia).

In the thin resistive layer (labelled as the inside region) of characteristic radial size l,
the resistivity cannot be neglected any longer. Moreover, due to the large scale involved
in the linear tearing mode, it is assumed that radial gradients are larger than poloidal
gradients leading to ∇2

⊥ ∼ ∂2
x . It is also assumed that in these non-ideal regions, ψ1(x) is

constant having non-zero derivatives (this is the well-known ‘constant-ψ approximation’
Furth et al. 1963). Then, a Taylor development around x = 0 is done to derivate
ψ ′

0(x) = B0(x) ∼ −x/a for a Harris current sheet. Following these assumptions, the
linearization of (3.1) and (3.2) using (3.3) and (3.3) leads to a reduction of the system
to an equation independent of the physical parameters:

z + z2χ(x) = χ ′′(z), (3.10)

with x = (ηγ )1/4
√

a/kyz and φin
1 (z) = (ηγ )−1/4

√
kyaχ(z), and which is the linearized

Ohm’s law (3.1). The coupling between ψ and φ is given by the linearized momentum
equation (3.2):

ψ ′′in
1 (x) = γ 2a

k2
yx
φ′′in

1 (x). (3.11)

Finally, the linear dispersion relation is derived from the matching between the two
regions and using the definition of Δ′ from the ideal region (3.8):

Δ′ = Δ′(ψout
1 ) =

∫
in

ψ ′′in
1 (x)
ψ1(0)

dx. (3.12)
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(a) (b)

FIGURE 6. (a) Scaling law of the linear resistive tearing mode, reproduced from Takeda et al.
(2008), with permission from AIP Publishing. (b) Structure of the fields ψ and φ resulting from
a tearing instability in the (x, y) reconnected plane.

This matching condition can be solved by deriving a solution for ψ ′′in
1 (x) from (3.10)

and (3.11), and leads to the following expression of the tearing mode linear growth rate:

γ = 2.13Δ′5/4η3/5

(
a
ky

)−2/5

. (3.13)

Thus, the Harris current sheet is tearing unstable forΔ′ > 0. It is said thatΔ′ represents
the magnetic energy available in the ideal region for instability. During the magnetic
reconnection process, the magnetic energy stored in the equilibrium is converted into
kinetic energy. As expected, (3.13) shows that the linear drive of the tearing magnetic
island is resistive. Figure 6(b) (from Takeda et al. 2008) shows the scaling law in resistivity
of a linear tearing mode for linear simulations of (3.1) and (3.2), and is in agreement with
(3.13). It is interesting to note that the linear dispersion relation (3.13) has been obtained
here for a resistive tearing mode by considering the asymptotic matching of the ideal
region (which does not depend on the physics of the non-ideal layer) with a resistive
layer. As a consequence, the linear growth rate γ is a function of the resistivity η. For a
collisionless tearing mode, the solution in the ideal region is unchanged, i.e. the expression
for Δ′ given by (3.9) is still valid. However, the asymptotic matching with the non-ideal
layer originating from the electron inertia gives a different linear dispersion relation for
the tearing growth rate γ that depends on the electron skin depth. A detailed derivation
of the growth rate of the collisionless tearing mode can be found from Porcelli (1991) and
Porcelli et al. (2002).

The linearization of (3.1) and (3.2) leads to a characteristic radial parity of the tearing
mode and the associated flow. In figure 7(a), which shows the radial structure obtained
numerically of the fields, the tearing mode ψ1(x) is even while φ1(x) is odd. Figure 6(b)
shows in the (x, y) reconnected plane, the structure of the fields ψ and φ resulting from a
tearing instability. The dynamic of the flow (through φ) and the magnetic field (throughψ)
are strongly coupled. The characteristic quadrupole structure observed on φ is essential to
understand the drive of the magnetic island observed on ψ .

Except during the initial phase, where the current is increased to set the plasma
discharge, the tearing instability is usually not observed in modern fusion devices since
Δ′ < 0. Moreover, the drive of the tearing instability is led by the resistivity. As a
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(b)(a)

FIGURE 7. (a) Radial structure of the fields for a mode (at large scale m = 1) having a tearing
parity. (b) Radial structure of the fields for a mode (at small scale m∗ = 33) having an interchange
parity.

consequence, even with an unstable magnetic equilibrium (with Δ′ > 0), the resulting
growth of a magnetic island due to tearing instability would be too slow compared with
the characteristic discharge time of a fusion device. Although the tearing instability is
not relevant to explain the existence of magnetic island(s) in modern fusion devices, its
study is meaningful and it is useful to understand the physical mechanisms at play during
magnetic reconnection processes.

3.1.2. Neoclassical tearing mode, NTM
In fusion devices, neoclassical effects through the bootstrap current lead to a physical

mechanism that can drive nonlinear large-scale magnetic islands that are deleterious for
confinement and transport. Such ‘neoclassical tearing modes’ (NTMs) (Chang et al.
1995; La Haye 2006; Sauter et al. 2010) can become very large quickly and reach the
tokamak wall bringing with it fast and hot particles which can damage the device. More
precisely, the toroidal shape of the tokamak leads to a non-uniform magnetic field in
the poloidal direction. Such a magnetic configuration exhibits two classes of trajectory
for particles: passing particles that travel all around the torus and trapped particles that
are confined in a smaller device region following their well-known ‘banana’ orbits. The
bootstrap current results from the friction between trapped and passing particles. It has
been empirically defined as the current carried by the passing electrons and proportional
to the radial electronic pressure gradient (resulting from the collisions between the passing
electrons and the trapped particles): jBS = Cb∂xp(x), where Cb represents the strength
of the bootstrap current (Militello, Ottaviani & Porcelli 2008). From that definition, the
mechanism at play in the nonlinear drive of a large magnetic island by the bootstrap current
can be drawn. A seed magnetic island (see later for the origin of such an island) initially
flattens the pressure profile (Fitzpatrick 1995) leading to a perturbation of the bootstrap
current. This perturbation amplifies the magnetic island that grows until a fully flattened
pressure profile is obtained (at saturation of the island width). Such nonlinear dynamics
is well described by the so-call Rutherford model that will be investigated in § 4. To
investigate numerically the drive of a magnetic island by the bootstrap current, an heuristic
simple model can be derived in the (x, y) reconnected plane using the reduced-MHD
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(a) (b)

FIGURE 8. (a) NTM stability diagram obtained thanks to nonlinear simulations of (3.14)–(3.16).
(b) Pressure profile P0(x) is flattened while the NTM island grows (reproduced from Agullo et al.
(2014), with permission from AIP Publishing).

framework and giving the following time evolution equations (Muraglia et al. 2017):

∂tψ + [φ − P, ψ] = −v�∂yψ + η∇2
⊥ψ + ηCb∂xP, (3.14)

∂t∇2
⊥φ + [

φ,∇2
⊥φ

] = [
ψ,∇2

⊥ψ
] + μ∇4

⊥φ, (3.15)

∂tP + [φ,P] = −v�∂yφ + ρ�
2 [
ψ,∇2

⊥ψ
] + χ⊥∇2

⊥P. (3.16)

Equation (3.16) gives the time evolution of the electronic pressure P with v� being the
electronic diamagnetic velocity induced by the equilibrium electronic pressure (i.e. at the
equilibrium ∂xP0(x) = v�). Here, ρ� is the normalized ionic Larmor radius and χ⊥ is the
perpendicular conductivity. The model contains implicitly a parallel conductivity through
the coupling between (3.14) and (3.16) given by χ‖ = ρ�

2
/η (Agullo et al. 2014). This

term is required to initiate the pressure flattening inside the island when its radial width
becomes larger than (Fitzpatrick 1995)

wc =
√

8
(
χ⊥/χ‖

)1/4 √
a/ky. (3.17)

In fusion devices, the nonlinear drive of a magnetic island by the bootstrap current
requires a seed island of radial width wseed (which is not usually originated from the
tearing instability since Δ′ < 0). The NTM triggering is a threshold mechanism: for a
given bootstrap current (of strength Cb), wseed has to be large enough to initiate the NTM
mechanism. This is well observed in figure 8(a) that shows the NTM stability diagram
obtained thanks to nonlinear simulations of (3.14)–(3.16). In these simulations, Δ′ < 0
and the required seed island of radial width wseed is numerically implemented in the initial
conditions of the simulations. In figure 8(b) taken from Agullo et al. (2014), the evolution
of the pressure profile during the nonlinear NTM growth is shown. Once the island width
reaches the critical width wd, the pressure profile starts to become flat inside the island
until the saturation phase where the island width saturates and the pressure profile is
completely flattened.

3.1.3. Turbulence driven magnetic island, TDMI
NTM requires a seed magnetic island which is amplified by the bootstrap current. Some

‘NTM precursors’ have been identified in experiments. For example, sawtooth crashes,
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fishbone instabilities or edge-localized modes are some possible MHD events that can
generate the required seed magnetic island. However, the basic physical mechanism at
play in the seed island generation is still not understood. Moreover, in some discharges,
in particular, in high-poloidal-beta discharges, NTMs are observed without any MHD
precursor events (Isayama et al. 2013). Thus, many questions related to the NTMs origin
are still open. In hot fusion plasmas, large-scale MHD structures (like magnetic islands)
co-exist with small-scale turbulence. The recent work in the tokamak KSTAR (Choi et al.
2021) shows the existence of a mutual interaction between turbulence and the magnetic
island. Naturally, the small-scale turbulence could be one candidate to explain the origin
of the seed island required for NTM. In this last decade, several theoretical works have
addressed the question of the role of turbulence in the seed island generation. One of the
main results is that a magnetic island can be driven by small-scale turbulence and such an
island is called a turbulence driven magnetic island (TDMI) (Muraglia et al. 2011). Here,
the physical mechanism at play in the drive of a TDMI is presented as well as a review of
works devoted to TDMI.

Muraglia et al. (2009a,b) derived a reduced-MHD model for the multi-scale interaction
of a large magnetic island and interchange small-scale turbulence. Typically, this model
describes in the 2-D reconnected plane (x, y) the nonlinear time evolution of the magnetic
flux ψ , (3.18), of the electric potential φ, (3.19), and of the electronic pressure P, (3.20):

∂tψ + [φ − P, ψ] = −v�∂yψ + η∇2
⊥ψ, (3.18)

∂t∇2
⊥φ + [φ,∇2

⊥φ] = [ψ,∇2
⊥ψ] − κ1∂yP + μ∇4

⊥φ, (3.19)

∂tP + [φ,P] = −v�((1 − κ2)∂yφ + κ2∂yP)+ ρ�
2
[ψ,∇2

⊥ψ] + χ⊥∇2
⊥P. (3.20)

This model includes both the tearing physics through the magnetic equilibrium shaped
with a Harris current sheet (i.e. having B0(x) = tanh((x − Lx/2)/a)ey) and the interchange
physics through κ1 and κ2 terms. Indeed the κ1 represent the magnetic curvature and the
κ2 and v� parameters represents the equilibrium pressure gradient. When the curvature is
in opposition with this gradient, interchange instability develops at small scales.

Like for the linear tearing mode, in the box ([−Lx/2,Lx/2], [0,Ly]), the fields are
considered as periodic in the poloidal direction (i.e. in the y-direction) and vanish at the
radial boundaries. Therefore, one can decomposed the fields (ψ , φ and P) using a Fourier
decomposition with some of the poloidal modes m: ψ(x, y, t) = ∑

m∈Z
ψm(x, t) exp(ikmy)

with km = 2πm/Ly. The parity, i.e. odd or even symmetry in the radial direction, of the
eigenfunctions ψm(x, t), φm(x, t), Pm(x, t) provides a distinct marker of identification of a
given mode m and helps to pinpoint the instability mechanism generating it. Small-scale
interchange modes have (odd, even, even) parities with respect to x ∈ [−Lx/2,Lx/2] for
(ψm, φm, Pm), respectively. Usually, interchange modes are unstable at small scales, i.e.
m � 1. Tearing mode has (even, odd, odd) parities with respect to x ∈ [−Lx/2,Lx/2] for
(ψm, φm, Pm), respectively. Usually, the tearing mode is unstable at large scales, i.e. m ∼ 1
(see figure 7).

To understand how unstable interchange modes at small scales can drive the growth of
an m = 1 magnetic island, one can consider the linear spectrum with Cb = 0 (blue crosses)
presented in figure 9(a). This spectrum is obtained by a linear simulation of (3.18), (3.19)
and (3.20) using parameters such as at large scales, all the modes are stable and at small
scales, the modes are unstable. In particular, at small scales, the unstable modes present
an interchange parity and the most unstable mode is m� = 33 with a linear growth rate γ �.
At large scale, the mode m = 1 is stable and presents an interchange parity with Δ′ < 0.
Thus, linearly, there is no magnetic island. Then, from this linear spectrum, nonlinear
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(a) (b)

FIGURE 9. (a) Linear spectrum of a typical TDMI simulation. Two cases are considered:
without bootstrap current, i.e. Cb = 0 (blue crosses) and with bootstrap current, i.e. Cb = 40 �= 0
(purple circles). (b) Nonlinear TDMI simulations with Δ′ < 0 without (blue line) and with
(magenta line) bootstrap current.

(a) (b)

FIGURE 10. (a) TDMI generation mechanism. Time evolution of the kinetic energy of
the large-scale modes m = 1 and m = 0 at the beginning of the nonlinear simulation. (b)
Hornsby et al. (2016) observe TDMI in global gyrokinetic simulations including collisions.
Ion temperature gradient (ITG) turbulence accelerates the growth of a resistive tearing mode
following the rule γ NL

1 ∼ 2γ �.

simulation is performed without bootstrap current (i.e. Cb = 0) and the nonlinear growth
of a m = 1 magnetic island is observed whereas Δ′ < 0. Indeed, figure 9(b) gives the
time evolution of the island for a nonlinear simulation with Δ′ < 0 and without bootstrap
current (i.e. Cb = 0 with the blue line). The contour plot of ψ + ψ0 at the end of the
simulation is shown and exhibits a magnetic island in figure 9(b). This magnetic island
has been nonlinearly generated thanks to the nonlinear interaction between small scales
and large scales (Muraglia et al. 2011).

The time evolution of the kinetic energy of the large-scale modes m = 0 and m = 1 for
the nonlinear simulation with Δ′ < 0 and Cb = 0 is presented in figure 10(a). It clearly
reveals that the beginning of the simulation can be decomposed into three phases.
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First, for t/τA = [0, 200], there is the linear phase which is in agreement with the linear
spectrum presented in figure 9(b): the modes m = 0 and m = 1 are stable and present
an interchange parity. There is no magnetic island. Around the resonance surface x = 0,
small-scale modes grow.

Then, the second phase (t/τA = [200, 500] in figure 10a) is quasi-linear: a positive
growth with γ NL

0 ∼ γ NL
1 ∼ 2γ � of the large-scale modes m = 0 and m = 1 is observed.

During this phase, the parity of the large-scale modes m = 0 and m = 1 change into
a tearing parity: the magnetic island is generated. Using the parity properties of the
system, one can explain the physical mechanism at play during this phase where the
TDMI is generated. Indeed, at small scales, the two most interchangeable unstable modes
m� and m� + 1 with a comparable linear growth rate γ � (see figure 9a) beat together to
drive nonlinearly a magnetic island with γ NL

1 ∼ 2γ �. This nonlinear beating is dominant
in the simulation dynamics and leads to a change of parity of the modes m = 0 and
m = 1. Indeed, the nonlinear properties of (3.18), (3.19) and (3.20) are such that if the
system is linearly driven by small-scale (ss) interchange modes Iss, their mutual nonlinear
interaction can drive only a tearing parity large-scale (ls) fluctuation Tls: [Iss, Iss] → Tls.
More precisely, the projection of Ohm’s law (3.18) on the mode m = 1 illustrates the
nonlinear beating at small scales of the interchange modes driving a tearing parity mode
at large scale: ∂tψ1 ∼ [ψm∗, φm�+1 − pm�+1] + η∇2

⊥ψ1 (Muraglia et al. 2011; Ishizawa et al.
2019).

Finally, up to t/τA > 500 (figure 10a), the system enters into a fully nonlinear regime
and the island width is saturated as presented in figure 9(a) with Cb = 0.

Thus, one can conclude that the large-scale magnetic island generated by a nonlinear
beating of small-scale unstable interchange modes is a TDMI. The drive of such an
island is not governed by the resistivity. However, it is the resistivity that originates in the
island by allowing magnetic reconnection. This important result, which was first presented
by Muraglia et al. (2011) in the MHD context, was recovered later with gyrokinetic
simulations (Hornsby et al. 2015b, 2016) where the ITG turbulence accelerates the growth
of a resistive tearing mode following the rule γ NL

1 ∼ 2γ � (see figure 10b).
From this work, the question of the amplification of a TDMI by the bootstrap current to

lead to a NTM becomes natural. To answer this question, linear and nonlinear simulations
of (3.18), (3.19) and (3.20) including both the bootstrap current (Cb �= 0) and turbulence
(i.e. interchange small-scale unstable modes with κ1 �= 0 and κ2 �= 0) have been performed
with Δ′ < 0. In figure 9(b), the linear spectrum of such simulations is presented with
purple circles (Cb = 40). The bootstrap current does not affect so much the linear spectrum
which presents always unstable interchange modes at small scales and stable tearing mode
at large scales. Linearly, there is no magnetic island with bootstrap current. Nonlinearly,
as presented in blue in figure 9(a), without bootstrap current, a TDMI is generated.
Additionally, the magenta line shows the time evolution of the island when the bootstrap
current is included in the model: the TDMI is amplified by the bootstrap current to lead
to an NTM. Thus, one can conclude that the TDMI generation mechanism can explain the
origin of the required seed island for the growth of NTM in fusion devices (Muraglia et al.
2017).

In the first study by Muraglia et al. (2011), the model used is by nature 2-D (in the
reconnected plane) with a Cartesian geometry. Moreover, turbulence and island are located
at the same resonant surface whereas in fusion devices, magnetic reconnection can take
place at a different radial location than that of turbulence. As an example, a sawtooth
crash can generate magnetic island in the core of the machine while interchange-like
turbulence develops at the device pedestal where gradients are strong. In that context,
Poyé et al. (2015) investigated the resilience of the TDMI mechanism found by Muraglia
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(b)(a)

FIGURE 11. (a) Linear spectrum as a function of the radial coordinate q used in the 3-D
geometrical nonlinear simulations (reproduced from Poyé et al. (2015), with permission
from AIP Publishing). (b) Magnetic flux ψ obtained during the saturation phase of 3-D
cylindrical nonlinear simulations (reproduced from Poyé et al. (2015), with permission from
AIP Publishing).

et al. (2011) using an RMHD framework in 3-D cylindrical geometry in the situation
where interchange-like turbulence is located outside the q = 2 resonant surface, which
is the surface where a large (2, 1) magnetic island is usually observed. One can note that
here and in the following, the bootstrap current is not included. In figure 11(a), the linear
spectrum as a function of the radial coordinate q used in the 3-D geometrical nonlinear
simulations of Poyé et al. (2015) is shown: the input parameters of the simulations are
chosen to have stable tearing mode around the q = 2 surface and unstable interchange
modes in the region outside the q = 2 surface. So linearly, there is no magnetic island. As
shown in figure 11(b), nonlinearly, a (2, 1) magnetic island is observed on the magnetic
flux ψ. Here, after the linear phase, similar to 2-D, an efficient beating between turbulent
modes is produced with large tearing radial structure (5, 2), (7, 3) and (9, 4) using the
parity rule [Iss, Iss] → Tls. However, those modes are located in the region where the
interchange modes are unstable and so outside the q = 2 surface. In figflagfigure 12(a),
the radial structure of these modes is presented and shows that these modes, due to their
tearing structure, have an extended radial structure and reach the q = 2 surface. Using
the parity rule [Tss, Tss] → Tls, these modes beat together nonlinearly at the surface q = 2
giving birth to the growth of a (2 : 1) magnetic island with an interchange characteristic
time. From this work (Poyé et al. 2015), one can give rules for a 3-D nonlinear coherent
and non-local beating for TDMI growth: (1) the modes beat if they overlap; (2) the beating
is efficient if the resulting mode is resonant at its birth location.

Dubuit et al. (2021) added toroidal effects in the 3-D RMHD model. Two paths towards
TDMI are found. The first path, based on linear toroidal coupling, generates a turbulence
cascade from small scales to large scales. At small scales, local (as in 2-D) and non-local
(as in 3-D cylindrical) turbulence modes cascade together towards the large scale using
first the [Iss, Iss] → Tls rule and then the [Tss, Tss] → Tls rule to produce a (2, 1) magnetic
island. The second path is the nonlinear TDMI generation mechanism already investigated
in 3-D cylindrical configuration by Poyé et al. (2015). As shown in figure 12(a), the width
at saturation of the generated (2, 1) TDMI is proportional to the input power source, i.e.
to the turbulence level. Moreover, the path chosen by the system to generate the (2, 1)
TDMI depends also on the input power. For weak turbulence and input power source, the
toroidal linear interaction is dominant and the system follows the first path to generate a
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(a) (b)

FIGURE 12. (a) Radial structure of modes in a 3-D nonlinear simulation of Poyé et al. (2015).
(b) Reproduced from Dubuit et al. (2021), with permission from AIP Publishing, it is shown that
the saturated width of the (2, 1) TDMI generated in 3-D toroidal configuration is proportional to
input power source, i.e. to the turbulence level. One can note that after a input power source> 4,
the island becomes too large compared with the size of the numerical box.

(a) (b)

FIGURE 13. (a) Nonlinear time evolution of the m = 2 mode width in simulations of 2-D and
six-fieldsRMHD model (by courtesy of D. Villa et al.). (b) Time evolution of a (2, 1) magnetic
island in PIC and collisionless simulation, and in the presence of ITG turbulence (by courtesy of
F. Fidmer et al.). Thanks to the electronic inertia, a tearing mode grows linearly at the beginning
of the simulation. Then, an acceleration of its growth due to nonlinear beating of ITG modes is
observed.

TDMI. When the input power source increases, the nonlinear interactions overcome the
linear cascade and the second path is followed.

Recently, in a work just submitted, D. Villa et al. used a 2-D and six-fields RMHD model
(Frank et al. 2020) to find a new path towards TDMI involving coupling between kinetic
ballooning modes and zonal flows at low magnetic shear. In figure 13(a), the nonlinear
time evolution of the m = 2 mode width is presented. The kinetic ballooning modes get
tearing parity to drive TDMI at the beginning of the nonlinear phase. In the presence of
zonal flow, a coalescence of modes towards the m = 1 scale with a tearing structure is
observed.
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In a recent work of F. Widmer et al. (that is currently in the process for submission),
the acceleration by ITG turbulence of the drive of a tearing mode originated by electronic
inertia is observed in PIC and collisionless simulations (figure 13b).

Seto et al. (2024) used RMHD simulations to find that TDMIs (driven by drift
ballooning modes) can be interpreted as ELM precursors and, by consequence, can play a
role in the ELM triggering.

More generally, various examples exist in the literature where the magnetic island is
driven/accelerated by a physical mechanism that is not the one that initially breaks the
frozen-in law. Without being exhaustive, one can quote Ishii, Azumi & Kishimoto (2002),
where simulations show that the magnetic reconnection process is accelerated thanks
to a nonlinear interaction between two unstable tearing modes. Moreover, in the ELM
context, plasmoid-mediated reconnection is observed in MHD simulations of nonlinear
peeling–ballooning edge-localized modes (Ebrahimi & Bhattacharjee 2023). Finally,
Grasso et al. (2020) found by means of RMHD simulations that collisionless magnetic
reconnection (originating from electron inertia) can be accelerated in the presence of
Kelvin–Helmoltz instability.

Up to now, although the work of Choi et al. (2021) shows experimentally the existence
of a mutual interaction between turbulence and magnetic island in KSTAR, there is no
experimental evidence for the existence of TDMI in modern fusion devices and for the
generation of NTM from TDMI. This work is in progress thanks to collaborations between
European researchers.

3.2. Mechanisms driving small-scale magnetic reconnection
3.2.1. Relevance of the microtearing mode instability in modern fusion devices

The microtearing mode (MTM) is another example where a magnetic island is
originated from collisions, i.e. resistivity, that allow magnetic reconnection and another
physical mechanism to drive the growth of the mode: for MTM, the energy source for
the instability is the electron temperature gradient. Here, the mechanisms in the presence
of collisions will be highlighted (although an electron temperature gradient can also
destabilize MTM originating from electron inertia).

More precisely, microtearing instability corresponds to the destabilization at ion small
scales of a collisional current layer by the electron temperature gradient (Hazeltine et al.
1975; Drake & Lee 1977). Due to the characteristic length scale lMTM ∼ rLi (where rLi is the
ionic Larmor radius) that is involved in the MTM destabilization mechanisms, the MHD
framework is useless to investigate this instability. MTM analysis requires a kinetic or a
gyrokinetic framework.

For many years, on the argument that collisions were very weak in a high temperature
fusion plasma, MTMs have been the subject of few investigations with the assumption that
they were stable in fusion devices. However, in this last decade, several works have found
unstable MTMs in gyrokinetic simulations of fusion plasmas. In particular, they were
found to be unstable in the pedestal region where the gradients (and of course the electron
temperature gradient) are strong. Applegate et al. (2007) and Dickinson et al. (2013) found
unstable MTMs in the pedestal of the spherical tokamak MAST. Doerk et al. (2011) found
unstable MTMs for standard tokamaks like ASDEX-Upgrade. Then, Predebon & Sattin
(2013) found unstable MTMs in reversed field pinches. Later, Hatch et al. (2016) observed
that unstable MTM were found to play an important role in the pedestal of JET-ILW. Due
to their possible impact on the electron heat transport in the pedestal, theses results are
very important and lead to open questions. What exactly is the role played by collisions
in the MTM destabilization mechanism? Are there other physical mechanisms leading
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to an increase of MTMs drive and growth rate? Here, a review of the possible physical
mechanisms at play for the drive of the microtearing mode is presented.

3.2.2. Linear destabilization of a current sheet by MTM
To illustrate what could be an MTM, the slab configuration of figure 5 can be used. Here

again, there is a strong magnetic field in the parallel direction (ez) and the reconnection
process takes place in the (x, y) plane. The linear theory of the MTM follows the same
procedure as that for the large-scale tearing mode. First, the domain is decomposed into
an ideal region and a collisional region.

In the ideal region, there is no current, i.e. −μ0j‖out = ∇2
⊥ψout = 0. As for the large-scale

tearing mode, this leads to ψout(x) ∼ exp−km|x|, where it has been considered that the
boundary conditions are far (even at infinity) from the current sheet (which is a good
hypothesis for a small-scale MTM). In the collisional region, collisions lead to the
formation of a current sheet, where j‖in �= 0 and the magnetic flux is assumed to be constant
(the so-called ‘ψ-constant’ approximation already mentioned for the large-scale tearing
mode) ψin = cte. Then, the two regions are matched given the expression of the �′MTM

km

parameter:

�′MTM
km

= lim
L→0

1
ψ (0)

dψ
dx

∣∣∣∣
L

−L

=
∫ +∞

−∞
σ (x) dx = −2 |km| < 0, (3.21)

where σ(x) = j‖/ψ is the kinetic conductivity. Thus, for an MTM, Δ′MTM is always
negative. The destabilization is done by the electron temperature gradient which drives
the mode.

The kinetic theoretical derivation of the MTM linear dispersion relation has been
done by Hamed et al. (2019) taking into account collisions as the mechanism allowing
for the breaking of the frozen-in law (i.e. originating from the magnetic reconnection
process). Note that due to the scales involved, the resolution of the system in the non-ideal
layer has to be done using a kinetic framework. Following the Sweet–Parker mechanism,
where the coupling between the magnetic field and the flow is an essential key of the
dynamics, the electric potential is taken into account in the MTM linear theory through the
well-known Maxwell–Gauss equation. The magnetic drift is also added in the evaluation
of the collisional Vlasov equation given the time evolution of the electron distribution
function fe. This leads to a derivation of a model that couples the magnetic flux and
the electric potential in the reconnected plane. This model is the kinetic equivalent to
the reduced-MHD model for the large-scale tearing mode given by (3.1), (3.2) and it is
naturally called the kinetic reduced-MHD (KRMHD) model. In the 1-D-1V phase space
(x̂, v̂), it can be expressed as (Hamed et al. 2019)

∇2
⊥ψ̂

(
x̂
) + β̂σ̂ωd(x̂, v̂)

(
ψ̂

(
x̂
) − x̂

ω̂
φ̂

(
x̂
)) = 0, (3.22)

∇2
⊥φ̂

(
x̂
) + μ̂e

(
ω̂

) x̂
ω̂
σ̂ωd(x̂, v̂)

(
ψ̂

(
x̂
) − x̂

ω̂
φ̂

(
x̂
)) − Ĉintφ̂

(
x̂
) = 0, (3.23)

where β̂ is the well-known normalized beta parameter, σ̂ωd is the normalized conductivity
that depends on the magnetic drift ωd (for more details, see (Hamed et al. 2019)) and μ̂e
is a normalized quantity linked to the mass ratio me

mi
, to the magnetic shear length Ls, to

the electron temperature gradient length scale LTe and to the normalized mode growth and
frequency, i.e. ω̂ = ω̂r + iγ̂ . Finally, Ĉint is a normalized quantity linked to interchange
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FIGURE 14. Linear destabilization of the microtearing mode: theoretical linear growth rate γ
of the mode as a function of collisions ν (reproduced from Hamed et al. (2019), with permission
from AIP Publishing).

terms. The resolution of the KRMHD model given by (3.22) and (3.23) gives the linear
theory of MTM, i.e. the expression of ω̂, and the profile of ψ̂(x̂) and φ̂(x̂).

3.2.3. Impact of the electric potential and of the magnetic curvature on the MTM drive
To investigate the mechanisms at play in the MTM drive, the KRMHD model given

by (3.22) and (3.23) can be solved by using an eigenvalue code (here the SolveAP code)
taking into account the boundary conditions.

figure 14 represents the theoretical linear growth rate γ as a function of the collisions
ν for different models. Whatever the models used, the microtearing mode is stable in the
absence of collisions. As expected, collisions are the mechanism that originates in the
reconnection process. Although collisions are weak in a fusion device, they are strong
enough to allow magnetic reconnection (the vertical blue dash lines in figure 14 give the
experimental range for the collisions in the JET-ILW pedestal). Then, another physical
model drives the growth of the island. To investigate the possible mechanisms at play in
the drive of MTM, various models have been tested in figure 14.

The most simple model is represented by the red crosses, where the electrostatic field
and the magnetic drift have been removed from the model. In the absence of an electric
potential, the required coupling between the magnetic field and the plasma flow is assured
by the electronic pressure through the distribution function of the electrons (Muraglia et al.
2009a). In this model, the electron temperature gradient drives the MTM growth as in the
past work of Hazeltine et al. (1975) and Drake & Lee (1977). The impact of the electric
potential and the magnetic drift on the MTM drive is investigated by Hamed et al. (2019),
as shown in figure 14. The green circles show the linear MTM growth rate using a model
without electric potential and including the magnetic drift. The magenta triangles show the
growth rate for a model without the magnetic drift and with the electric potential. Finally,
the blue diamonds show the result for a model including both. One can conclude that the
electric potential and the magnetic drift do not destabilize MTM at the low collisional
regime, and in the presence of collisions, they amplify the MTM drive by the electron
temperature gradient and collisions.

It is interesting to highlight that here, the drive of MTM has been addressed only in a
linear regime. However, nonlinear interactions with others (turbulent) modes can affect the
nonlinear growth of MTMs. In particular, Maeyama, Watanabe & Ishizawa (2017) showed
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that MTMs can be suppressed in the presence of electron temperature gradient (ETG)
modes.

4. Saturation

The last step of an island life is its saturation: an island grows until it reaches its saturated
width. The understanding of the saturation mechanisms at play for magnetic reconnection
at large scales (or at small scales) is fundamental to understand the impact of the island(s)
on the magnetic confinement. This last section is dedicated to a review of the last results
on the theoretical understanding of saturation of a large-scale magnetic island (without
and with bootstrap current).

4.1. Understanding of large-scale tearing magnetic island saturation
4.1.1. History of Rutherford-like models and magnetic island width definition

To limit the impact of a large-scale NTM island, a theory on the saturation mechanisms
of tearing has emerged over the last decade giving a variety of Rutherford-like models.
From Ohm’s law, (3.1) or (3.14), these models give a zero-dimensinoal (0-D) time
evolution equation of the island radial width from which the width at saturation wsat
can be predicted (Rutherford 1973). Naturally, these models have been largely used in
experiments to control and reduce the width of a NTM(s) (Sauter et al. 2010; Kong
et al. 2022, 2020) (see figure 15b). However, up to now, systematic comparisons of
Rutherford-like models with numerical simulations evolving NTM have failed. Militello
et al. (2008) performed one of the first works dedicated to validation of Rutherford-like
model with simulations using the reduced-MHD model (similar to (3.14), (3.15) and
(3.16)). As shown by figure 16(a), in this work, only the prediction of the saturated island
width, and not the complete dynamics, has been investigated and good agreement is found
with theory only in the case of the metastable magnetic island having a small saturated
island width. Later, the work of Maget et al. (2016) used an extended MHD model to
investigate NTM computations to test the validity of the Rutherford-like model including
bootstrap current (Carrera et al. 1986). Agreement is found only by adjusting empirically
the theoretical model (by adjusting what will be called later ‘Rutherford parameters’) to
numerical results instead of computing these parameters from first principles. In the same
way, in the work of Westerhof, Blank & Pratt (2016), based on reduced-MHD simulations,
all NTM dynamics is not recovered numerically and only the contribution of the bootstrap
current agrees with theory. In fact, to understand the discrepancy between simulations
and Rutherford-like models in the prediction of NTM dynamics and saturation, some
preliminary steps are required: first, a discussion on the island radial width definition is
required, and then, a better understanding of the nonlinear dynamics and saturation of a
resistive tearing mode without bootstrap current is required.

First of all, an intuitive definition of the island width can be given from the ψ contour
plot in the reconnected plane shown in figure 6(a). Indeed, the radial width of the magnetic
island can be defined as the radial extension of the island envelop drawn from lines called
separatrices. In the following, the island width defined from this method is labelled wsep
and can be computed directly from simulations.

Then, Biskamp (2000) gives a first theoretical definition of the radial island width
associated to the width of the m = 1 mode and labelled w1:

w1 = 4
√

2aψ res
1 , (4.1)

which can be computed from the simulations by evaluating ψ res
1 .

Finally, following the pioneering work of Rutherford (1973), one can consider that the
saturation mechanism is mainly driven by the nonlinear interaction between the unstable
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(a) (b)

FIGURE 15. (a) Successful comparison between Rutherford-like model (using fitting
empirically the ‘Rutherford parameters’) and experimental results in TCV of the time evolution
of an NTM width (from Kong et al. 2022). (b) ‘Rutherford plot’ (island width w as
x-coordinateand time derivative of the island width dw/dt as y-coordinate) for a nonlinear
evolution of m = 1 tearing mode with Δ′ = 2.5 given by simulations of (3.1) and (3.2). In blue,
the Rutherford behaviour of wsep is plotted and compared with the Rutherford behaviour of w1
in orange and the first Rutherford model (4.2) in green.

(a) (b)

FIGURE 16. (a) Tearing mode magnetic island saturated width as a function of Δ′ for three
different magnetic equilibria (profile H, profile A and profile C)(reproduced from Poyé et al.
(2013), with permission from AIP Publishing). (b) Agreement between Rutherford-like model
and reduced-MHD simulations including bootstrap current for the saturated width prediction
in the case of a metastable magnetic island having a small saturated width (reproduced from
Militello et al. (2008), with permission from AIP Publishing).

equilibrium ψ0 and the mode m = 1. Thus, projecting this nonlinear interaction on Ohm’s
law given by (3.1) for the m = 1 mode, one obtains the first Rutherford-like model given
the nonlinear evolution of the m = 1 island width, i.e. wRuth

1 :

∂twRuth
1 = 1.22ηΔ′. (4.2)

The comparison between the time evolution of wsep and of w1 (computed from
simulations) to the first Rutherford model (4.2) is rich in teaching: in figure 15(a), a
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‘Rutherford plot’ is presented (i.e. plot having island width as x-coordinate and the
time derivative of the island width as y-coordinate) for a nonlinear evolution of m = 1
tearing mode withΔ′ = 2.5 given by simulations of (3.1) and (3.2). In blue, the Rutherford
behaviour of wsep is plotted and compared with the Rutherford behaviour of w1 in orange.
One can conclude that the definition of the island width from the computation of separatrix
positions wsep is not equivalent to the definition given by Biskamp with (4.1). Indeed, in
Biskamp’s definition, only the m = 1 mode is taken into account whereas in nonlinear
simulation, the resulting magnetic island observed on the contour plot of ψ results from
nonlinear interactions of all the simulation modes. It then comes that, naturally, the
evaluation of the island width from Biskamp’s definition is underestimated since only
one mode is taken into account. Then, the first model of Rutherford (4.2) is also plotted
in green in figure 15(a). This first model gives the maximum growth of the m = 1 tearing
mode, but fails at predicting the saturation width. The model has to be improved.

4.1.2. Discussion on the improved Rutherford-like models
These improvements were not long in coming. From the Rutherford behaviour of the

m = 1 mode (orange line in figure 15a), one can decompose the dynamics of a tearing
island into two phases. The first linear phase is called the ‘Rutherford regime’. Then, once
the island growth reaches its maximum given by (4.2), the system enters into the second
phase which is fully nonlinear and called the ‘exponential regime’ since the island growth
decays exponentially. Escande & Ottaviani (2004) and Militello & Porcelli (2004), with
the well-known ‘POEM’ model, improved the pioneering work of Rutherford with (4.2)
by catching this exponential phase and by giving a physical picture to the saturation of
the m = 1 tearing mode for the time. The method is equivalent to that used by Rutherford
to derive (4.2). Indeed, the POEM model is derived by projecting Ohm’s law (3.1) on
the m = 1 mode at the resonance following Biskamp’s definition of the island width (and
using ψ1(x = res)). However, this model takes into account for the first time the important
role played by the flow (i.e. φ) by keeping the magnetic flux advection term in Ohm’s law.
The saturation mechanism of the tearing mode can be understood only by considering the
energy transfer between the island and the flow. As a consequence, one can conclude that
the coupling between the island and the flow participates first to the drive of the island
growth (in the linear phase with the characteristic quadrupole structure observed on φ in
figure 6a). Then, once the magnetic energy has been transferred through kinetic energy to
the flow, the island growth decreases until the island reaches its saturated width which can
be predicted by the POEM model:

∂tw1 = 1.22ηΔ′ − 1.22η
0.41
a2

w1. (4.3)

Although this model gives for the first time an elegant physical picture of the role
played by the flow in the tearing physics (in linear phase as well as in nonlinear phase),
the hypothesis of the calculation (evaluation of only the mode m = 1, evaluation at the
resonant surface only, ‘ψ-constant’ approximation and smallΔ′ regime) limit strongly the
validity of the model (Poyé et al. 2014; Muraglia et al. 2021). Moreover, the Rutherford
behaviour of an m = 1 island predicted by the POEM model (4.3) (purple line in figure 17b
Muraglia et al. 2021) is a line describing the exponential growth that does not follow the
island dynamics computed from simulations taking into account evolution of m = 0 and
m = 1 modes (green dashed line in figure 17a).

Later, Smolyakov et al. (2013) improved the model again by taking into account the
perturbation of the equilibrium due to the magnetic island growth i.e. by taking into
account the nonlinear interaction between m = 0 and m = 1 modes. This model is known
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(a) (b)

FIGURE 17. From Muraglia et al. (2021). (a) Rutherford diagram for a tearing mode,
comparison of Rutherford-like models (POEM model and AAA model) with the island dynamic
obtained from simulations taking into account evolution of m = 0 and m = 1 modes. (b)
Comparison of the AAA model with numerical results for the prediction of the saturated width
as a function of Δ′.

as the ‘Smolyakov’ model (‘AAA’ model in the figures) and gives the island width
evolution taking into account the two modes (m = 0 and m = 1) at the resonance:

∂tw0,1 = α

(
1 + 0.0235 ∗ w2

0,1

a2

)3/2

− β
w0,1

a2

1 + (δ + 0.0235)w2
0,1/a

2

1 − (γ − 0.0235)w2
0,1/a2

×
(

1 + 0.0235 ∗ w2
0,1

a2

)
, (4.4)

where α = 1.22ηΔ′, b = ψ ′′
0 (0)/ψ

IV
0 (0),β = 1.22η 1.828

π
√

2
, δ = −0.0485 − 0.0732 ∗ k2

ma2 −
0.00201 ∗ a4/b4 and γ = 0.6710/8π. To test the validity of this model by comparing with
numerical results, Biskamp’s definition (4.1) cannot be used any longer since the mode
m = 0 is not taken into account. However, following Biskamp, one can define a new
definition of island width for the coupling between m = 0 and m = 1:

w1,0 = 4
√

2ã
(
ψ res

1

)
, (4.5)

where ã is the magnetic shear at saturation. Figure 17(a) (from Muraglia et al. 2021)
evaluates the ability of the AAA model (4.4) to predict the saturated island width as a
function of Δ′. The green crosses give the predictions from the AAA model (4.4) and
have to be compared with the orange circles that give the width prediction from numerical
simulations and using (4.5) as definition. The AAA model improves the prediction
(compared with the POEM model) to medium value of Δ′, but fails to give a good
prediction for large Δ′ values, i.e. large islands. Moreover, figure 17(b) shows that as for
the POEM model, the AAA model cannot predict the dynamic island (by comparing the
numerical dynamics in green and the dynamics given by the model (4.4) in orange).
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An important feature comes from figure 17(a): a good agreement (even for the large Δ′

regime) is found between the saturated width computed numerically from the separatrice’s
position (wsep in blue in the figure) and the width computed numerically with a definition
taking into account the nonlinear interaction between m = 0 and m = 1 modes. This
implies that taking into account higher modes (as m = 2 mode) in a new Rutherford-like
model will not improve the prediction. The discrepancy between models and simulations
is coming from other missing element(s) in the theory and currently, new method(s) have
to investigate how to improve the tearing mode saturation prediction. In particular, Loizu
et al. (2020) investigated tearing mode saturation through the energy principle (Strauss
1976; Biskamp 2000). Moreover, from Militello et al. (2014); Poyé et al. (2013), some
insights on the missing physics can be found. Indeed, the models presented, (4.2), (4.3)
and (4.4), have been compared (in figure 17) to simulation results using a Biskamp-like
definition for the island width, (4.2) and (4.5), where only the contribution of the
resonant surface to the perturbation of ψ is taken into account. This strong assumption
leads to the 0-D characteristic of Rutherford-like models where linear (growth rate) and
nonlinear (saturated width) dynamics can be deduced from only one scalar parameter
Δ′. However, Poyé et al. (2013) and Militello et al. (2014) showed that for two different
magnetic equilibria having the same Δ′ value, the resulting island dynamics is different.
In particular, in figure 16(b) taken from Poyé et al. (2013), it is clearly shown that three
different magnetic equilibria having the same Δ′ lead to three different saturation widths.
From this strong result, one can conclude that to improve the Rutherford-like model, one
can take into account the global feature of the magnetic equilibrium and not only the
contribution of the resonant surface to the saturation. This work is actually in progress.

4.2. About the predictability of the saturated width of neoclassical tearing mode(s) in
modern fusion devices

4.2.1. Prediction of NTM dynamics and saturation with generalized Rutherford model
In fusion devices, the tearing mode is usually stable. However, bootstrap current can

amplify a seed magnetic island and lead to the nonlinear growth of an NTM that can
have dramatic consequences for the discharge and the device itself. As a consequence,
the NTM predictability in terms of behaviour and saturation are of utmost importance
for successful fusion by magnetic confinement. In that context, Rutherford-like models
including bootstrap effects have been widely and successfully used in experiments to
control and reduce NTM (La Haye 2006; Sauter et al. 2010; Kong et al. 2020, 2022).
NTM leads to a current deficit in the island, and control strategies consist in compensating
for this deficit by depositing a highly localized power inside the island. More precisely,
to reduce and even suppress the island, electron cyclotron resonant heating and electron
cyclotron current drive are used to inject the required current. These techniques, which
have met with great success in various tokamaks, are based on the NTM dynamics
predictions from Rutherford-like model(s) including bootstrap current (Carrera et al. 1986;
Sauter et al. 1997):

∂tw1 = 1.22ηΔ′ − 1.22η
0.41
a2

w1 + αCbv
� w1

w2
1 + w2

d
. (4.6)

Here, wd is deduced from the critical island width wc (3.17) from which pressure flattening
starts, i.e. wd = 1.8wc (Fitzpatrick 1995; Militello et al. 2008; Agullo et al. 2014). The
parameter α should be equal to one and is added to fit the model to experimental or
numerical data. In figure 15(a) taken from Kong et al. (2022), a successful comparison
(by empirical fitting) between Rutherford-like model and experimental NTM width
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(a) (b)

FIGURE 18. From Muraglia et al. (2021). (a) Impact of the seeding mechanism on the NTM
dynamics. (b) NTM without turbulence and seeding by unstable tearing mode (Δ′ = 0.98), width
evolution from numerical simulations of (3.14), (3.15), (3.16) in green, from empirical fitting of
(4.6) and from (4.6) computing the exact value of wd and taking α = 1.

evolution in TCV is presented. This is typically what is used to control NTM width in
fusion devices. However, as expected by theoretical results on the tearing mode saturation
prediction, the comparison of the Rutherford-like model including bootstrap current (4.6)
and numerical simulations without fitting any parameters fails. Figure 18(a) taken from
Muraglia et al. (2021) shows disagreement between the evolution of w1 from the model
(4.6) with α = 1, and computing the exact value of wd (in purple) and the evolution of
w1 from nonlinear simulations of NTM using (3.14), (3.15) and (3.16) (with the dashed
green line). The discrepancy can be reduced with the condition of fitting α and wd: the
empirical fitting with α = 18 and wd = 1 (in orange) shows a relatively good agreement
with the numerical results (in green). One can note that the systematic comparisons
between theoretical models and simulations (Muraglia et al. 2021) do not take into account
the polarization current. However, in a recent work (Dudkovskaia et al. 2023), it has been
shown that this current impacts the NTM threshold. In future work, it could be very
interesting to investigate also its impact on NTM saturation.

4.2.2. Impact of seed island mechanism on NTM dynamics and saturation
The Rutherford-like model including bootstrap effects (4.6) is a 0-D model taking into

account for the seeding mechanism only the Δ′ parameter suggesting that the nonlinear
evolution of the NTM does not depend on the physical nature of the seed. In figure 18(a)
taken from Muraglia et al. (2021), the NTM has been seeded by an unstable tearing mode
with Δ′ = 0.98. However, in figure 18(b), numerical simulations are shown for NTM
having Δ′ < 0 and seeding by turbulence. The two evolutions suggest that the seeding
mechanism impacts the nonlinear evolution of the NTM and its saturated width. One
can conclude that future improved Rutherford-like model(s) taking into account bootstrap
current have to take into account also the seeding mechanism. One can also note that
the threshold mechanism of the bootstrap current is well recovered for NTM seeding by
turbulence: figure 18(b) shows that for weak bootstrap current (i.e. weak Cb), the TDMI is
not amplified to an NTM. Here, Cb has to be strong enough to drive NTM from TDMI as
in the absence of turbulence.
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5. Conclusion

Here, based on a review of past works, a new paradigm to understand the multi-scale
physics of a magnetic island in hot magnetized plasmas is proposed. The dynamics of
magnetic island can be decomposed into three different steps which are called here the the
magnetic island life steps.

First, the magnetic reconnection process at the origin of a magnetic island is the result
of a non-ideal phenomenon that breaks the frozen-in law by not conserving the magnetic
connectivity. Considering a slab configuration with a strong guide field going in the
direction labelled as the parallel direction, any physical phenomenon that leads to the
generation of a parallel electric field is at the origin of magnetic reconnection and of
magnetic island structure(s). In hot magnetized plasmas of a fusion device, resistivity
(i.e. collisions) and electronic inertia can originate at non-ideal small-scale magnetic
reconnection processes.

In the future, the relevance for a fusion device of other non-ideal mechanisms leading to
magnetic reconnection has to be explored. In particular, the question of the kinetic effect(s)
or small-scale turbulence as possible sources of a parallel electric field has to be addressed.

Second, the resulting magnetic island structure(s) has to be driven. Here, it has been
shown that a rich variety of possible mechanisms exists that drive the growth of a magnetic
island. The so-called resistive large-scale tearing mode is usually stable in a fusion device.
In general, the island(s) observed are neoclassical tearing mode(s) and result(s) from the
amplification of a seed island by bootstrap current. In theory and simulations (using MHD
as well as gyrokinetic frameworks), it also has been found that turbulence at small scale can
drive a large-scale magnetic island in the presence or not of collisions. These turbulence
driven magnetic islands (TDMIs) can be amplified by bootstrap current. At small scale, in
simulations of the JET-ILW pedestal, electron temperature gradient can drive microtearing
modes in the situation where the equilibrium magnetic field is stable from the tearing point
of view stability. The linear growth of the MTM is amplified by the presence of the electric
potential and the magnetic drift.

The novelty of this approach is to consider that the origin of magnetic reconnection (step
one) and the drive of the resulting magnetic island structure(s) (step two) are not led by
the same physical mechanism. This new approach allows to define a new characteristic
reconnection time τRM ∼

√
τ l

Originτ
L
Drive that reflects the multi-scale and multi-physics

aspects of magnetic reconnection process. This new definition of the reconnection time has
to be checked by simulations investigating different mechanisms that drive the island. This
is an ongoing work that will deserve future publication. Moreover, future works will also
investigate new relevant physical mechanisms driving large-scale or small-scale magnetic
island(s) in fusion devices.

Third, the magnetic island reaches a saturated state. The prediction of the nonlinear
behaviour and saturation of a large-scale magnetic island is of utmost importance in a
fusion device to limit and control its impact on the discharge. Rutherford-like model(s)
based on fits with experimental data have been used successfully in various fusion devices
to reduce and even suppress NTM. However, a lack of fundamental understanding of the
saturation mechanism persists, and systematic comparisons between models and nonlinear
MHD simulations(s) have failed.

In future works, the global radial of the magnetic equilibrium has to be taken into
account in new improved Rutherford-like model(s) predicting tearing mode saturated
width. Moreover, the origin of the NTM seeding mechanism has to be added in
Rutherford-like models including bootstrap current effects. At small scale, the saturation
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mechanism of the microtearing mode is a fully open question that should be investigated
to evaluate the impact of an MTM in the electron heat transport in a tokamaks pedestal.

Finally, the impact of saturated TDMIs on transport is still an open question that needs
to be investigated in future work in the context of disruptions as well as the context of
ELMs.
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