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Insight into plasma dynamics under usual pulsed laser deposition (PLD) conditions for
NiO thin film growth is provided by implementing angle- and time-resolved Langmuir
probe (LP) methods. The selective separation generated an acceleration region that sepa-
rates ions based on nature and ionisation state. A maximum of the kinetic energy for most
plasma components was found for 0.5–2 Pa Ar, while the time-resolved analysis revealed a
multipeak evolution of the electron temperature, which widened and shifted with increas-
ing pressure. Evidence of two temperature structures for NiO plasma is presented, and the
estimation of the accelerating field generated between the two plasma structures reveals
selective in acceleration in the first microsecond. The acceleration field has a maximum
value for the O2 atmosphere at approximately 2 Pa, which shows the separation between
drift-dominated kinetics and reaction-based dynamics. Further investigation in this 2 Pa
region revealed the appearance of a perturbation consistent with the formation of a plasma
fireball on the probe. The dynamics of these perturbations is affected by the nature of the
gas having different incubation times.

Key words: plasma dynamics, NiO plasma, laser produced plasma, plasma diagnostics, plasma
properties

1. Introduction

NiO films are versatile materials with antiferromagnetic properties (Aytan et al.
2017) and p-type semiconductors (3.6 eV band gap) (Zhai et al. 2014; Mokoena,
Swart & Motaung 2019) with metal-deficient structures. Due to their excellent
chemical stability, natural NiO films have been proposed for multiple applications,
ranging from gas sensors (Soleimanpour, Jayatissa & Sumanasekera 2013) to cata-
lysts (Rahardjo & Shih 2023), electrochromic windows (Sutar et al. 2023) and even
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fuel cells (Elessawy et al. 2023). The NiO structure is stable for production across
major physical and chemical deposition methods. NiO thin films have reportedly
been produced by different techniques, including atomic layer deposition (ALD)
(Solanki et al. 2023; Wang, Lin & Lu 2023), sol–gel (Raimundo et al. 2023), RF
(Elmassi et al. 2022) or DC (Shen et al. 2025) magnetron sputtering and pulsed
laser deposition (PLD) (Hameed, Ali & Al-Awadi 2020; Jin et al. 2020; Farha
2023). Among the techniques used, PLD has shown room temperature heteroepitaxy
for NiO deposited on MgO substrates and generally provides a complex environ-
ment for tailoring structural, morphological and physical properties by adjusting the
deposition parameters. The implementation of plasma diagnostics as a tool for in
situ control and deposition control has recently been shown by our group for AgO
(Irimiciuc et al., 2022a), CuO (Volfová et al. 2023) and CuI (Irimiciuc et al. 2021)
systems, and has been implemented by the Geohegan group (Giuffredi et al. 2020;
Lin et al. 2020; Bertoldo et al. 2021; Harris et al. 2023) in what they have named
autonomous PLD, where in situ plasma diagnostics (Langmuir Probe and ICCD
camera imaging) are used as control tools to tailor the properties of the films.

Plasma diagnostic results for NiO laser-produced plasmas are scarce, with several
studies only providing the outcome of optical emission investigations or only focused
on metallic Ni plasma dynamics under various irradiation conditions (Berman &
Wolf 1998; Donnelly et al. 2009; Smijesh, Chandrasekharan & Philip 2014; Smijesh
et al. 2014; Svendsen, Ellegaard & Schou 1996). Jadoual et al. (2014) reported dif-
ferences in the optical emission spectra of Ni and NiO, with important differences in
the emission light intensity and spectral distribution induced by the different absorp-
tion and ablation mechanisms involved. Most of the reported work only addresses
the properties of the resulting films as a function of the various plasma condi-
tions (Fasaki et al. 2008; Kumar et al. 2015; Qiu et al. 2017; Thomas et al. 2018;
Hajakbari, Rashvand & Hojabri 2019; Zhao, Ho-Baillie & Bremner 2020; Iacono
et al. 2023) without providing clear characterisation of the deposition tool (laser-
produced plasmas, gas discharges, etc.). Therefore, to promote PLD as one of the
best tools for NiO production, information on the kinetics and gas phase reactions
for NiO plasma is mandatory.

In this paper, we present a comprehensive report on the dynamics of NiO plasmas
generated by laser ablation and expansion in various atmospheres. Insight into the
plasma dynamics of NiO under usual PLD conditions is provided by the angle-
and time-resolved LP methods. Angular acceleration and selective distribution of
charges based on their ionisation and nature are found to be general features of
NiO plasma. The formation of transient double-layer accelerating ions as a result of
plasma structuring is also addressed in this report.

2. Materials and methods

A NiO target (Kurt J. Lesker Company Ltd., 99.9 % pure, 25.4 mm diameter,
6.35 mm thick) was irradiated with a YAG laser (λ = 266 nm, 5 ns, 10 Hz) using
a 4.3 J cm−2 laser fluence. Irradiation occurred under conditions similar to those
of PLD, which involved continuous rotation of the target to provide a fresh surface
for each irradiation pulse and to avoid crater formation or local heating. A cylin-
drical Langmuir probe (tungsten wire from Advent Research Materials Ltd., purity
99.95 %, diameter 0.2 mm and exposed length 2 mm) was placed at 37 mm with a
metallic substrate positioned 50 mm from the target to simulate the PLD geometry
(figure 1). Plasma investigations were performed at various pressures of O2, N2 and
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FIGURE 1. Schematic representation of the experimental set-up.

Ar in a range from 5 × 10–5 Pa residual pressure to 10 Pa. Each investigation was
preceded by a cleaning procedure (1200 pulses at a 10 Hz repetition rate using a
fluence of 4.3 J cm−2), with the LP being shielded during the procedure from the
incoming transient plasma during the cleaning procedure. The time-resolved inves-
tigations involved the collection of ionic or electronic temporal traces by applying
a wide range of biases (±20 V with 50 intermediate values) and collecting the volt-
age signal across a load resistor (1 k�) with a Tektronix DPO 4140 oscilloscope.
The angle-resolved investigations were performed by placing the unbiased probe
at various angles (0◦–50◦) with respect to the main expansion axis (defined as the
axis orthogonal to the laser-target impact point). Each electrical measurement was
time-synchronised by a fast silicon photodiode (Thorlabs FDS100), which signals the
moment the laser beam arrives at the target.

3. Results and discussions
3.1. Angular acceleration and multistructuring

An angle-resolved approach (Giovanielli, Kephart & Williams 1976; Konomi,
Motohiro & Asaoka 2009; Donnelly et al. 2010a; Giovannini et al. 2015) to laser-
produced plasma (LPP) diagnostics was shown to be an important tool in attempting
to correlate the property dynamics inside the plasma plume with the outcome prop-
erties of deposited thin films. Figure 2 shows the evolution of the non-biased charge
current as a function of the measuring angle in the range of 45◦ with respect to
the main expansion plane, defined by the axis orthogonal to the irradiated surface.
Figure 2(a) shows that the net charge in the centre of the plume is negative, while the
edges of the plasma are dominated by a positive net charge. In our previous papers
(Irimiciuc et al. 2021; Irimiciuc et al., 2022a; Volfová et al. 2023), we showed that
the negative contribution to the floating current can be generated by electrons and
positively charged ions (in our case, O–), while the positive contribution contains
mainly charged ions (Ni+). Therefore, the NiO-generated plasma has a very partic-
ular angular distribution, which entails a stoichiometric break at larger angles. By
transferring these results and considering the cylindrical symmetry of the plasma,
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FIGURE 2. (a) Charged particle temporal traces for various measurement angles for NiO plasma
expanding in 10–5 Pa; (b) the current transition in a 15◦ measurement window; (c) the atmo-
sphere effect on the charge particle temporal traces and (d) the pressure effect on the structure
of the charged particle temporal traces at 20◦.

the optimum deposition conditions for stoichiometric NiO films under vacuum can
be achieved on a 1 cm2 surface area.

Figure 2(b) shows the details of the electrical signals collected between 15◦ and
25◦. The transition between negative and positive net charges occurs over a plasma
distance of 5 mm and highlights the presence of three main contributions to the
current: two fast peaks with arrival times <1 µs and one in the tens of 1 µs range.
Multiple structures are expected due to the presence of multiple ionized states, and
the selective acceleration of Ni+ and O– in various plasma volumes can induce mul-
tiple peaks in the floating charge temporal traces. The particularities of NiO plasma
allow for fine control with variations in pressure. To confirm this, the dynamics of
NiO plasma were investigated with the addition of various gases (figure 2(c) for 20◦).
An Ar pressure of 0.5 Pa maintains the shape of the temporal trace with a 500 ns
shift in the negative peak and a 0.11 mA decrease in the Ni– contribution. The addi-
tion of N2 followed the same trend as Ar, with a stronger inhibition of the positive
peak (0.255 mA) and an 850 ns shift of the negative peak. The differences can have
a two-fold nature. They can be induced by scattering effects and by the differences
in scattering cross-section of the N2, O2, O, N or Ar species. Alternatively, if we
consider, secondary effects induced by the scattering processes such as: molecule
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dissociation, gas ionisation and acceleration, significant differences can be identified
for N2 dissociation (9.7 eV) and subsequent ionisation (14.5 eV) compared with Ar
(15.7 eV ionisation energy). The presence of 0.5 Pa of O2 resulted in a reduction of
approximately 99 % of the Ni+ positive peak and a shift of 970 ns of the positive
peak. These results confirm the occurrence of selective acceleration, which means
that the plasma structure becomes more uniform. In figure 2(d), it can be seen
that the increase of the Ar working gas pressure causes a confinement of the posi-
tive (Ni+) peak after 2 Pa and a slowing of the plasma, as identified by the higher
arrival times and the widening of the negative (O–) peak. The contribution associ-
ated with Ni– is considerable reduced at 20

◦
with the addition of Ar. This effect can

be attributed to the stronger angular separation of the charges within the plasma
volume as the pressure increase.

From the time of arrival temporal traces, according to previous approaches
(Torrisi & Gammino 2006; Mascali et al. 2008; Torrisi et al. 2008) and expanded by
our group (Irimiciuc et al. 2020; Irimiciuc et al. 2021), the charged particle energy
distribution can be computed. Figure 3(a) shows the angular distribution of the
fast particle charge density and the corresponding kinetic energy. The high-energy
particles are ejected from the sample via an electrostatic mechanism (Bulgakov &
Bulgakova 1999) and are accelerated in the field generated from the charge sep-
aration that occurs during the first femtosecond of the laser–matter interaction
(Ojeda-G-P et al. 2019; Yao et al. 2023). Under our irradiation conditions, according
to the previously reported procedure (Torrisi et al. 2002; Láska et al. 2004; Picciotto
et al. 2006; Cutroneo et al. 2015), the initial peak acceleration field is 224 kV cm−1.
Under vacuum conditions (10–5 Pa), the energy decreases monotonically following a
cosn(θ), as was reported by Toftmann et al. (2000). The overall kinetic energy of the
fastest group of particles from the plasma reaches a maximum of 1.6 keV in front
of the plume, decreasing towards 40 eV at the edge. The charge density reaches a
maximum of 9.5×1012 cm–3 at 10◦ for the negatively charged oxides and 1.27×1013

cm–3 at 35◦, which is in line with values reported for other investigated oxides (De
Giacomo, Shakhatov & De Pascale 2001; Irimiciuc et al., 2022a). The density max-
ima are reached immediately before and after the transition region of 15◦–30◦, which
confirms the selective acceleration of charges in this region and the formation of a
transient double layer that will expel the Ni+ ions out of the plasma core. Further
confirmation of the angular acceleration field can be seen in figure 3(b), where we
have represented the angular distribution of the fast and slow ionic groups. The two
angular distributions have shifted maxima of approximately 15◦, which is induced
by the selective angular acceleration and kinetic separation of the plasma across
the 20◦ axis. The introduction of various gases during the expansion generally shifts
this acceleration region to 35◦ for pressure values of 5 and 10 Pa. In these expan-
sion regimes, the dynamics is dominated by a greater number of collisions, with the
mean free path ranging from 6 mm for 5 Pa to 0.6 mm for 10 Pa and enhanced
chemical reactions in the gas phase for the N2 and O2 cases (Irimiciuc et al. 2022a).
Another main difference between the nature of the gas (reactive/inert) is shown in
figure 3(c,d), where under identical pressure conditions, the expansion velocities for
both negative and positive charges are shown. For the O2 atmosphere, the values
are overall greater by a factor of 2, reaching a maximum value of 9 km s−1 at 40◦,
for the positive charges, and a factor of 1.2, with values reaching 115 km s−1 for the
negative charges, while for Ar, the values are 3.2 km s−1 and 92 km s−1, respectively.
Another significant difference is that the addition of Ar induced a sharper transition
of just 5◦ (equivalent to a 3 mm plasma width) compared with that of reactive gases
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FIGURE 3. (a) Angular evolution of the particle density and kinetic energy of the high-energy
plasma ions for 10–5 Pa; (b) the angular shift plasma structures; and (c) the dependence of the
positively and negatively charged particle densities and their respective expansion velocities
on the measurement angle for 5×10−3 Pa Ar and (d) 5×10−3 Pa O2.

(O2, N2), where the transition remains a gradual transition of approximately 15◦
(equivalent to a 9 mm plasma width).

Based on our previous results and on the correlation between the arrival time and
the atomic mass of the plasma components, each peak in the charged particle tem-
poral traces (figure 2) corresponds to a specific species from the plasma. Therefore,
the fastest negative peak corresponds to the electrons in the plasma, the second neg-
ative peak corresponds to the oxygen species and the positive peak corresponds to
the Ni species (Irimiciuc et al. 2022a). Figure 4(a–c) shows the impact of the gas
atmosphere on the kinetics of each plasma component. The addition of Ar under
vacuum conditions up to 10 Pa causes a decrease in the density peak attributed to
the electron from 1.6 keV down to 5 eV following a linear trend (Ekin = a + b · lnP)
function with two slopes for different pressure ranges (<2 Pa, b = −120; >2 Pa,
b = −412). The oxygen species follow a similar pattern, decreasing from 135 eV to
1 eV, with a local maximum at 2 Pa, which is in line with the data from mass spec-
trometry measurements (Yao et al. 2023). A similar maximum is observed in the
evolution of the Ni+ kinetic energy, which slightly increases up to 2 Pa, reaching
10 eV, followed by a decrease to 0.03 eV at 10 Pa. The values found for the Ni+

are lower than those reported for the LPP of pure Ni samples, where they can reach
180 eV (Castaño et al. 2010). The effect of N2 on NiO dynamics is represented in
figure 4(b). The electron-attributed peak follows a linear decrease defined by two
slopes (<2 Pa, b = −46.3; >2 Pa, b = −226.3) down to 332 eV at 10 Pa. The O–

attributed peak increases up to 0.5 Pa, where the ions reach 611 eV, followed by a
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FIGURE 4. Influence of pressure on the kinetic energies of the main plasma components and the
effect of pressure: (a) Ar; (b) N2; (c) O2.

steep decrease to 25 eV. The Ni+ kinetic energy reaches a maximum at the same
pressure, with significantly lower values ranging from 1 to 5 eV.

The O2 atmosphere induces a similar dynamic as that observed in the N2 case.
The electron-attributed peak follows a similar path (<2 Pa, b = −27.7; >2 Pa,
b = −299.4), reaching a minimum of 125 eV. The O–-attributed peak is described by
a slower increase, reaching a maximum of 500 eV at 0.5 Pa. The Ni+-attributed peak
follows a quasiexponential increase with an inflection point at approximately 2 Pa,
reaching a maximum of 17 eV at 10 Pa. These results are in good agreement with the
dynamics of Ag plasma in an O2 atmosphere, where two similar slope behaviours
were observed (Irimiciuc et al. 2022a). It is worth noting that in that case, the
inflection point was attributed to the start of the gas phase chemical reaction in the
plasma. Above 2 Pa, the background gas under our irradiation conditions becomes
an active element of the dynamic ionisation and can potentially accelerate the front
of the plasma.

By comparing the dynamic regimes in all three working atmosphere it can be
concluded that in the N2 case, due to the high energy of the electrons (maximum
of 1.6 keV), N+ are generated in front of the plasma, which accelerates the positive
charges in the plasma; thus, O– ions have the highest energy compared with the
Ar or O2 case. Additionally, the ionisation of O2 during expansion will accelerate
Ni+ ions defining the highest kinetic energy regime for the metal ions. Overall, it is
observed that 0.5–2 Pa represents a key pressure reange for NiO plasma dynamics,
with important ramifications for PLD and kinetic control only via background gas.
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Starting from 0.5 Pa, the mean free path ranges between 2 cm and 3 cm (depending
on the nature of the gas). By considering an average with the substrate distance
of 5 cm, it implies that along the expansion, there will be one minimum collision
between the plasma particles and the working atmosphere. Therefore, 0.5 Pa is the
region where the plasma transitions from free expansion to the collision-dominated
regime. This conclusion is supported by the steep decrease in the kinetic energy
of all particles for pressures higher than 0.5 Pa. The obtained value is confirms
our previous report (Irimiciuc et al. 2022a), where the transition was observed at
approximately 2 Pa, a difference explained here by the additional O atoms ejected
directly from the ceramic target.

3.2. Two-temperature dynamics
To further explore the dynamics of NiO plasma in various atmospheres, we imple-

mented the time sweeping technique (Donnelly et al. 2010b; Esposito et al. 2010;
Irimiciuc et al. 2021) to reconstruct and compute several plasma parameters. The
characteristic time series is shown in figure 5(a), where selected electron and ion tem-
poral traces are represented for a range of probe biases between ± 20 V, with the
inset containing a reconstructed I–V curve at 15 µs. Figure 5(b) shows the selected
temporal evolution of the plasma potential (Vp) and electron temperature (T e). T e

steeply decreases below 1 µs, followed by an increase that reaches a first maximum
of 3 eV at 6 µs and a subsequent maximum of 1.5 eV at 10 µs. The plasma poten-
tial has a modulated evolution similar to that for temperatures ranging from 1 V to
3.6 V. Due to the complicated temporal evolution, when attempting to analyse the
pressure effect on T e, the relevance of the time window sampled by the technique
needs to be addressed. Figure 5(c) shows the pressure impact on T e for various time
windows. The T e values range from 0.5 to 3.5 eV, depending on the Ar pressure and
the time window selected. For values below 1 µs, the temperature evolution is simi-
lar to the Ni+ ion evolution seen in figure 4(a), with a maximum at 2 Pa. Therefore,
in this temporal regime, the energy of the plasma is still dictated by the drift of the
ion and by electron–ion interactions. At later time windows, above 1 µs, we observe
a similar dynamic as that described by the electron kinetic energy, which implies
that at longer times, the value of T e is dominated by the thermal movement of the
electrons (electron–electron interactions). The global effect of the pressure over the
complete 30 µs sampled for this study is presented in figure 5(d). The multi-peak
structure is observed for all investigated pressures, and it becomes more pronounced
at high pressures above 2 Pa. This means that the temperature modulation in time
is a collision-induced separation and that the presence of background induced a
separation in terms of the thermal energy of the plasma during expansion. Similar
behaviours were also observed for O2 and N2 atmospheres, with slightly higher tem-
perature values found in the O2 case (0.3–4.6 eV, reached at 0.4 µs). Overall, the
T e evolution allows for the optimum NiO formation within the plasma volume as
a gas phase reaction in a region of 1–12 µs (where for all gases, the temperature
was generally above 2.5 eV), with no dissociation of the molecule due to thermal
interactions with the electrons.

To investigate whether the temporal modulation of the plasma is correlated
with the splitting of the plasma core into multiple structures, we analysed the
ln(Ie) = f (U ) representation in figure 6(a), following the approach proposed by
Chen (2001) and removing the contribution from both negative and positive ions.
There are two clear slopes in the logarithmic representation of Ie, which is a clear
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FIGURE 5. (a) Temporal traces characteristic of charges collected at a wide range of biases
(± 20 V, only ± 10 V shown here); (b) the temporal evolution of the temperature and the plasma
potential; (c) the effect of pressure on the temporal evolution of electron temperature; and (d)
correlations between the measurement time and the working pressure.

indication of a two-temperature distribution within the plasma plume (Te1 and Te2

in figure 6(a)). This means that as the plume expands, there is splitting into two
secondary plasma structures with different T e and Vp characteristics. With respect
to plume separation, previous reports (Harilal et al. 2002; Wu et al. 2013; Focsa
et al. 2017; Volkov 2021) have shown that separation into two or three struc-
tures is a hydrodynamic process induced by the kinetic separation of the particle,
which expands with different velocities and is correlated with the different ablation
mechanisms present during the nanosecond irradiation regime (Volkov 2021). The
two-temperature distribution of ln(Ie) actually shows that separation occurs at a
fundamental level, generating two different plasmas. When separation occurs, the
difference in temperature and potential will generate a double layer that will sepa-
rate the structures. The dimension of the double layer is generally correlated with the
Debye length, and in the vacuum expansion case, it is several hundred micrometres.
Across this double layer, electrons and ions can be accelerated and transferred from
one plasma structure.

The acceleration potential (EAcc) evolution over time is presented in figure 6(b).
The acceleration potential decreases from 65 kV cm−1 to 0 in the first 3 µs of expan-
sion, followed by oscillation at approximately ± 15 kV cm−1. These values are a few
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FIGURE 6. (a) Logarithmic representation of the I–V curve for a NiO plasma at 10 Pa; (b)
temporal evolution of the acceleration field; and (c) acceleration field dependence on the nature
of the gas (lines are visual guides).

orders of magnitude lower than the initial acceleration of ions induced by the electro-
static ablation mechanism. In the first moments of expansion, the negative ions are
accelerated to compensate for the charge separation during the Coulomb explosion,
followed by a constant exchange of particles, which occurs around this double layer
structure. The effect of the nature of the background gas on the acceleration poten-
tial is presented in figure 6(c). The acceleration potential increases for pressures
below 0.5–2 Pa. This means that the additional particles do not slow the plasma, but
contribute to charge separation (Bulgakov & Bulgakova 1999) and the enhancement
of the accelerating field. The pressure range also coincides with mean free paths
larger than the target-substrate distance. At higher pressures, neutralisation of the
plasma occurs due to the increased number of collisions (Chen & Bogaerts 2005;
Diwakar et al. 2015; Liu et al. 2016; Hussain et al. 2017). The evolution of the EAcc

is consistent with the evolution of the kinetic energies of the plasma components
with an O2 atmosphere, providing the best acceleration conditions for the charges
within the plasma volume.

Finally, the perturbative regime of the LP was investigated (figure 7a,b). On this
behaviour of the LP, our group has already published (Irimiciuc et al. 2022b) that
for pressures above 2 Pa, a fireball-like structure forms on the probe, leading to
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FIGURE 7. (a) Characteristic perturbative current traces for a probe bias of 1.5 V collected in 5
Pa of Ar, O2 and N2 and (b) influence of the nature of the gas on the perturbative behaviour.

kHz oscillations overlapping the natural evolution of the current. Figure 7(a) shows
the LP signal at 1.5 V, which indicates that the perturbance regime appears to be
independent of the nature of the gas. However, when comparing the onset of these
oscillations, it is observable that the perturbation is a feature of the slower core of
the plasma, as they appear after 20 µs for O2, 38 µs for N2 and 46 µs for Ar. The
nature of the gas also induces an increase in the amplitude for the O2 (120 µA)
and N2 (78 µA) cases compared with that for the Ar case (44 µA). The oscillation
frequency is constant in the full range of investigated pressures and is approximately
40 kHz, with differences below 2.5 % between the gases. These perturbations are
ionic in nature as per their interpretation given by Dimitriu et al. (2015), where these
plasma structures have a strong ionic core, and the oscillations are the breaking and
self-organisation of the double layer formed around the fireball.

4. Conclusions

The structure and dynamics of NiO plasmas generated by ns-laser ablation in
various atmospheres were investigated by angle- and time-resolved LP methods.
Angle-resolved measurements revealed angular separation of the charges, with pos-
itive charges dominating the edges of the plasma. Selective separation leads to the
formation of an acceleration region that separates ions based on their nature and
ionisation state. The addition of O2 leads to a widening of the core plasma, pushing
the positive charges to larger angles. An increase in the working pressure leads to an
increase in the kinetic energy of the Ni+ and O– ions, with a maximum of approx-
imately 0.5–2 Pa, while O2 allows for the continuous acceleration of metal ions
regardless of the pressure. The time-resolved analysis revealed a multipeak evolution
of the temperature, which widened and then shifted with increasing pressure. The
electron temperature has two dependencies on the pressure, based on the region in
time sampled with the technique. A maximum of approximately 2 Pa is observed for
the short moments of time, while for later times, an inflection point in a logarithm
decrease is observed around the same pressure point.

Evidence of two temperature structures for the NiO LPP is observed, and the esti-
mation of the accelerating field generated between the two plasma structures reveals
selective ion acceleration in the first microsecond followed by alternative dynamics
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around the double layer. The acceleration field has a maximum for an O2 atmosphere
at approximately 2 Pa, which shows the separation between drift-dominated kinet-
ics and thermal/reaction-based dynamics. Further investigation in this 2 Pa region
revealed the appearance of a perturbation consistent with the formation of a plasma
fireball on the probe. The dynamics of these perturbations is affected by the different
incubation times of the gas, while the gas remains ionic with oscillations in the same
range as the plasma–ion oscillation frequencies.
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