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Abstract

An inverse semigroup S is called E-unitary if the equations ea = e = e2 together imply a2 = a.
In a previous paper the author showed that every inverse semigroup is an idempotent separating
homomorphic image of an E-unitary inverse semigroup. The main question considered in this paper
is the following. Given an inverse semigroup S give a method for constructing E-unitary inverse
semigroups P and idempotent separating homomorphisms 4>: P —» S in such a way that the structure
of P as a P-semigroup is evident.

1. Introduction

We shall assume familiarity with the results and terminology of McAlister
(1974, 1974a). In these papers, E-unitary inverse semigroups were called proper
inverse semigroups; the present terminology was suggested by A. H. Clifford.

A one-to-one partial right translation of a semigroup S is a one-to-one
partial translation p of S such that Ap is a left ideal of S and (xa)p = x(ap) for
all x G S', a G Ap. The set S of all one-to-one partial right translations of S is an
inverse semigroup and it was shown by McAlister (1975) that, for inverse
semigroups, the association S ** S gives rise to a functor from the category of
inverse semigroups to itself. The properties of this functor are discussed in
Section 2. The semigroup S is calculated, in Section 3, for S an .E-unitary inverse
semigroup in the form P{G,9£,%). This calculation is used to obtain an
embedding of S into the semidirect product of a semilattice by a group and to
characterise the translational hull ft(S) of S.

The main theorem of Section 4 shows that the forgetful functor, from the
category of semidirect products of semilattices by groups and full homomorph-
isms, to the category of inverse semigroups and full homomorphisms, has an
adjoint Y. The structure of T(S), for an inverse semigroup S, is described
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[2] Inverse semigroups 189

explicitly in terms of S; likewise so is the projection homomorphism
ys: F(S)—> S. This description can be used to give necessary and sufficient
conditions for 5 to be a homomorphic image of a semidirect product of a
semilattice by a group and to characterise algebraically the semidirect product of
a semilattice by a group.

An inverse semigroup T is called a covering semigroup if yT: F(T)—* T is
onto. The results of Section 5 show that the problem of obtaining E-unitary
covers <}>: P—*S of an inverse semigroup 5 by E-unitary inverse semigroups P
can be replaced by the problem of embedding S in a covering semigroup T.
Given such an embedding, the functors of Section 2 and 5 are used to obtain a
covering y(T; S): T(T; S)—* S of S by an E-unitary inverse semigroup F(T, S).
Further, it is shown that the F(T; S) form a cofinal subcategory of E-unitary
coverings of S; in general, this category does not have a final object.

The last section of the paper consists of examples. The first of these
describes all E-unitary covers of a Brandt semigroup S and shows that, for such
semigroups, the category of all E-unitary covers does not have a final object.

2. One-to-one partial right translations of an inverse semigroup

DEFINITION 2.1. Let S be a semigroup. Then a one-to-one partial right
translation p of S is a one-to-one partial transformation of S such that

(i) the domain Ap of p is a left ideal of S;
(ii) for each a G Ap, x G S, (xa)p = x(ap).

The set S of all one-to-one partial right translations of a semigroup S is an
inverse semigroup under composition. It was studied, in detail, by McAlister
(1975).

DEFINITION 2.2. (Schein, 1973) A pair of elements a, b in an inverse
semigroup S is called compatible if ab~l and a ~lb are both idempotents. A set A of
elements of S is compatible if each pair of elements of A is compatible.

The importance of compatible elements stems from the fact that if elements
a, b in an inverse semigroup S have an upper bound, under the usual partial
ordering, in some inverse semigroup T, which contains S as a subsemigroup,
then a and b are compatible.

DEFINITION 2.3. (Schein, 1973) An inverse semigroup T is complete if each
compatible subset A of T has a least upper bound VA in T.

A homomorphism 6 of an inverse semigroup S into an inverse semigroup T is
complete if, for any subset A of S,

(VA)0= V(A0)

whenever VA exists in S.
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S is a complete inverse semigroup for each semigroup S; if S is an inverse
semigroup then the Preston-Vagner theorem, Clifford and Preston, (1961), page
30 provides an embedding TJS of S into S: for each a £ S, ar\s = pa where

Apa = Saa'1 and xpa = xa for each xESaa'.

THEOREM 2.4. Let 8 be a homomorphism of an inverse semigroup S into an
inverse semigroup T and for each p E S define

pO = {(t(ad), t{b)8) ETxT: tET\{a,b)E p}.

Then 8 : p >-» pO is the unique complete homomorphism of S into f such that the
diagram

commutes.

PROOF. It was shown in McAlister (1975) that 0 is a complete homomorph-
ism of S into T. The fact that the diagram commutes is a consequence of
straightforward computation. While the uniqueness of 0 follows because any
p EL S can be expressed as V{pep : e2 — e E Ap} where, as above, Apa = Saa~x

and xpa = xa for each x E Saa~'.
If we consider p as an operator on S rather than as a relation on S then the

definition of p6 can be rephrased as follows: p6 = p * where

Ap* = {tET:t~1t^e6 for some e2=eEAp}

a n d tp* = t(ep)0 if t'tSeO w h e r e e E Ap.

Because of this it is easy to see that the following corollaries hold.

COROLLARY 2.5. Let S be a homomorphism of an inverse semigroup S into an
inverse semigroup T. If 6 is idempotent separating so is d: S —» T; if 8 is a full
homomorphism (i.e. S8 contains all the idempotents of T) then so is 6.

COROLLARY 2.6. Let S be an inverse semigroup with semilattice of idempo-
tents E. Then the semilattice of idempotents of S is isomorphic to E.

COROLLARY 2.7. / / 8 is a full homomorphism of an inverse semigroup S into
an inverse semigroup T then 8 maps the group of units 2(S) of S into the group of
units 2 ( 7 ) of T.
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In a recent paper Schein, (1973), has shown that the translational hull Cl(S)
of an inverse semigroup S can be described as a semigroup of subsets of S. The
semigroup S can be described in a similar way.

DEFINITION 2.8. (Schein, 1973). Let S be an inverse semigroup. Then a subset
H of S is called permissible if

(i) aeH, b^a implies bEH;
(ii) a, b E H implies ab~\ a~lb idempotent.

THEOREM 2.9. Let S be an inverse semigroup. Then S is isomorphic to the set
of all permissible subsets of S under subset multiplication.

PROOF. For each p E S, let Hp = {ep: e2 = e G Ap} and let tf> be the
mapping of S into 2s defined by p<f> = Hp for each p G S. Then <f> can be shown
to be an isomorphism of S onto {H C S: H is permissible}.

Schein (1973) has proved that the translational hull il(S) of an inverse
semigroup S can be identified with the idealiser in {H C S: H is permissible} of
{Ha: a e S}, where Ha = {x G S: x ^ a}. Under the isomorphism <j> defined in
Theorem 2.9, Ha corresponds to the inner right translation pa = arjs of S with
domain Saa~' and xpa = xa for each x E Saa'1. Hence we have,

COROLLARY 2.10. Let S be an inverse semigroup. Then there is a unique
isomorphism ips such that the following diagram commutes where TTS is the
one-to-one homomorphism of S into Cl(S) defined by airs = (A, p) where Ax = ax,
xp = xa for each x E S and / (ST) S ) is the idealiser of STJS in S.

\IU

LEMMA 2.11. Let A, B, C, D be inverse semigroups with C C A, D C B and
let 6 be a homomorphism of A into B such that CO C D. If C6 is a full inverse
subsemigroup of D, then I(C)d C I(D), where, for example, I(D) denotes the
idealiser of D in B. If 0 is also a full idempotent separating homomorphism of A
into B, then I(C)d is a full inverse subsemigroup of I(D).

PROOF. This is straightforward.
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If Lemma 2.11, Corollary 2.10 and Corollary 2.5 are combined, we obtain
the following result which is essentially due to N. R. Reilly (1974).

PROPOSITION 2.12. Let 6 be a homomorphism of an inverse semigroup S onto
a full inverse subsemigroup of an inverse semigroup T. Then there is a unique
complete homomorphism £1(0) of H(T) such that dvT = 7rsft(0).

/ / 9 is idempotent separating, then Cl(d) is idempotent separating and full.

COROLLARY 2.13 (Ault, 1972). Let S be an inverse semigroup with semilat-
tice of idempotents E. Then the semilattice of idempotents of £1(S) is isomorphic to

The intersection of a finite number of non-empty left ideals, of an inverse
semigroup S, is non-empty. Because of this, the set S* of non-zero elements of S
is an inverse subsemigroup. Further, if 8: S—> T is a homomorphism of S into
an inverse semigroup T, 0 maps S* into T*. It follows that the analogs of
Theorem 1.4-Corollary 1.7 hold with S replaced by S*. We shall use these
where necessary in the sequel.

Finally, the following lemma from McAlister (1975) is needed later in the
paper.

LEMMA 2.14. Let S be an inverse semigroup and let a G S. Then, for each
a G Aa, a*3)aa.

3. £-unitary inverse semigroups

DEFINITION 3.1. An inverse semigroup S is E-unitary if the equations ea =
e = e2 together imply a2 = a for all a, e E S.

E-unitary inverse semigroups were introduced by Saito (1965), who called
them proper inverse semigroups. The latter name was also used by McAlister
(1974, 1974a). .E-unitary inverse semigroups have also been called reduced
inverse semigroups, O'Carroll (1974). The present terminology was suggested by
A. H. Clifford.

Let 3? be a partially ordered set and let G be a group which acts on $C, on
the left, by order automorphisms. If "3/ is a subsemilattice of 3f then the set

P(G, %, <8/) = {(A, g ) G < 3 / x G : A A g B , g~\A A B ) G ® for all B G <&}

is an E-unitary inverse semigroup; McAlister, (1974), Lemma 1.1.
The following technical lemma shows that in some circumstances, the

definition of P(G, <%,<%) can be considerably simplified.

LEMMA 3.2. Let % be a partially ordered set and let G be a group which acts
on 9d by order automorphisms; let <3/ be a subsemilattice of X.

(A) Suppose that the following condition holds:
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[6] Inverse semigroups 193

if A, B, gA £ 9, where gEG and B S A, then gB £ 9.

Then

P(G, X, 9) = {(A, g) £ 9 x G : g~lA E 9}

(B) Suppose that the following condition holds:

if A, B £ 9 and gA g B, /or some g £ G, then gA E9.
Thew

9 is an ideal of2L = G9 and the following are equivalent

(i) for each g £ G, g<3/ D 9/ •

and

(ii) /or each A £ 3T f/tere exists B E9 such that A g B.

Furf/ier
", 9) = {(A, g) £ <S/ x G : g"A £ 9}.

PROOF. (A) If (A,g)G P(G, X, 9) then g''A = g~\A A A) £ # by defini-
tion. On the other hand, suppose that A, g 'A G <8/ and let B £ 9. Then
A A B £ < 3 / and A A B ^ A SO that, since g~lAG9, g~X(AAB)E9. Further
f ' A A B e ^ and g~'A AB S g~'A £ 9 so that, since A = g(g~'A)E <&,
A AgB = g(g~'A A B ) £ 3/. Hence (A,g)G P(G, Sf, 9).

(B) First, let C £ 2£ and suppose C § A where A E 9. Then C = gB for
iome g E G, B E 9. Hence, by the hypothesis in (B), C E 9. That is, 9 is an
deal of %.

Now suppose (i) holds and let A £ 2t; then A = gC for some C G 9. Let
D G 9 be such that gD G <&, by (i), such a £> exists, and set B = g(CAD). Then
B = g(CAD)ggD G<2/ and C A D G 9. Hence B G <& and B g gC = A.

Suppose (ii) holds and let A E 9, g E G. Then gHA g B for some B £ 9.
This gives g f lgA where A, B E 9. Hence, by the hypothesis in (B), gB £ 9 so
hat (i) holds.

Finally, it is clear that the hypothesis in (B) implies the hypothesis in (A) so
hat P(G,%, 9) = {(A,g)E9xG:g-'A £ 9} = P(G,% 9).

COROLLARY 3.3 // 9. is an ideal of 3£, as well as a subsemilattice, then
°(G, X, 9) = {(A, g)E9xG: g~'A E 9}.

DEFINITION 3.4. A partially ordered set S£ is a near semilattice if, for each
\E%, the set {X £ X: X § A} is a subsemilattice of X.

DEFINITION 3.5. An ideal 9 of a partially ordered set %C is essential if, for each
\E%, there exists BE9 such that B S A.

The main theorem of McAlister (1974a), (Theorem 2.6), can be stated as
ollows.
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194 D. B. McAllister [7]

THEOREM 3.6. Let 9£ be a near semilattice with •& an essential ideal and
subsemilattice of %. Let G be a group which acts on X by order automorphisms in
such a way that St = CM. Then P(G, %£,?y) is an E-unitary inverse semigroup.

Conversely, if S is an E-unitary inverse semigroup, then S « P(G, <£, <3/) for
some G, S£, <8/ as above, which are unique up to the equivalence of group actions.

In this section, we shall calculate the semigroup S for S = P(G, $?, <&).
Using this, we can obtain an explicit construction for O(S).

If #? is a partially ordered set we shall denote by 2f* the set of all non-empty
order ideals of JJf. If <3/ is an essential ideal and subsemilattice of 3f then, clearly,
fy* is an essential ideal and subsemilattice of 2£*. If a group G acts on #T by
order automorphisms then G acts on 'X* by order automorphisms as follows

g - A = { g - a : a £ A } for each A E T .

PROPOSITION 3.7. Let 3f be a near semilattice with <& an essential ideal and
subsemilattice of X and let G be a group which acts on % by order automorphisms
in such a way that % = G • <&. Then, if P = P(G, X, <&), the nonzero elements off
form a semigroup P* isomorphic to P(G, %*,<&*).

PROOF. Let p 6 i " and let (A, l )£Ap. Then (A, l)p = (A,gA) for some
gA £ G by Lemma 2.14. For any B 6 » ,

(B A A, gBAA) = (B A A, \)p = (B, 1)[(A, l)p] = (B A A, gA)

so that gB*A = gA for all B G °H. In particular, gA = gB for all B G ^ such tha
(B, l )£Ap . Hence there exists gp G G such that, for each (B, l)GAp,

(B, l )p=(B,g P ) .

Let Ip ={B G<3/:(B, l )GAp}. Then /p is an order ideal of 3/ and, sinci
(B, gp)G P for each B £ /p, g; ' / p c <&. Hence the map »/r denned by

P-A = (/p, gp)

is a mapping of P* into P(G,%*, <&*). Since

(B, h)p = (B,h)[(hlB, l)]p = (B, fig,)

for each (B, h)GAp, i// is clearly one-to-one.
Suppose p,a&P*. Then (A, 1) £ Apo- if and only if A G /p and (A, gp) (

ACT. NOW (A, gp) G Ao- if and only if (g^'A, 1) G ACT which occurs if and only
gp'A G /„. Hence 1^ = Ip D gp/^. Further, for (A, 1)G Aptr,

(A, l)po- = (A,gp)(7 = (A, gp)[(gp' A, \)CT] = (A, gpg,,).

Thus g^ = gpgCT and ifr is a homomorphism of P* into P(G,%*, <3/*).
Suppose now that (/,g)G P(G, X*, <&*) and define p by
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[8] Inverse semigroups 195

Ap ={(A,h)&P:h~lA El} with (A, h)p = (A,hg) for (A, A)£Ap.

Then it is a straightforward matter to show that p £ P* and p</> = (/, g). This
shows that r/r is a one-to-one homomorphism of P* onto P(G, d£*, <&*). That is,
P*^P{G, %*,<&*).

DEFINITION 3.8 (Reilly, 1974). Let if be a partially ordered set and let I be an
ideal of "X. Then I is called a p-ideal of % if, for each A £ %, the set
{ X £ / : X § A } is a principal ideal of %; that is, if {X E I: X ^ A} has a
greatest element. We denote by 9t the set of non-empty p-ideals of aC; if $£ is a
semilattice, so is §!.

THEOREM 3.9. Let P = P(G, if,^)be an E-unitary inverse semigroup. Then

PROOF By Corollary 2.10, we need only show that the ideaiiser of T = Pr\Pip
in P(G,%*,<&*) is P(G, %*,<&).

For each (A, g ) £ P, (A, g)r]P has domain {(B, h): h'1 B § A} and for each
(B,l)£A(A,g)r,p, (B , l ) [ (A,gH] = (B,g), Hence ( A , g ) ^ = ((*-, A],g)
where (<- ,A] = { B G * : B g A } a n d g" ' («- , A] = ( « - , g"'A] C <3f. Thus T =
P(G,t%P,<&p) where, for any partially ordered set *%, %?p denotes the set of
principal ideals («—, A], A £ %C, of X.

Suppose ($ft,h)G I(T). Then, since /(T) is an inverse subsemigroup of
P(G,% *,<&*), (S8,1)£/(T) and (h "'98, l ) e / ( T ) . Thus (38,1)((«-, A] , 1)G T
for each A £ ^ That is, 38 D («-, A ] is a principal ideal of <& for each A E <&.
Hence 38 is a p-ideal of aiJ. Similarly, h~'5ft is a p-ideal of aH.

Conversely, let (38, h)E P(G, X*, <&*) be such that 38, fr'38 £ # and let
( ( ^ , A ] , g ) £ T . Then

for some B § A, since fr'S8 is a p-ideal of <3/. But hB &h(h~'®)= 38 C <% and
(ftg)-'(<-,ftB] = g " ' ( « - , B ] C g " ' ( < - , A ] C * so that ((<-,/iB], Jig)G T. Simi-
larly, ((<-, A],g)(38, / i )£ T because 38 is a p-ideal of <&. Hence

/(T) = {(38, h)EyxG:h-'@ £ # } .

The p-ideals of °H satisfy the relations 38 C ^ , with 38, si, gsi £ # imply
g38 £ #. Thus, by Lemma 3.2 (A), / (T) = P(G, 3f*, <3/).

COROLLARY 3.10. / / 5 is an E-unitary inverse semigroup, so are S* and
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DEFINITION 3.11 (McFadden and O'Carroll, 1971). An inverse semigroup S
is called F-inverse if each class of the congruence a = {(a, b)G S x S : ea = eb
for some e2 = e in S} has a maximum member under the usual partial ordering
on S.

It is shown in McAlister, (1974a), Theorem 2:8 that F-inverse semigroups
are, up to isomorphism, the semigroups of the form P(G, 3?, "3/) where 26 is a
semilattice and "2/ is a principal ideal of 26.

Let P = P(G,26, %) be an E-unitary inverse semigroup where 26 is a near
semilattice, <2/ is an essential ideal and subsemilattice of 26. Then the intersection
of any two non-empty order ideals of 26 is again non-empty. For, if A, B £ 26*,
there exist a £ A n * , d 6 B n ® since <% is essential and then a A b £ A f l f i
Hence if* is a semilattice and we have

PCP* = P(G, 3°*, <&*) C P(G, a?*, 26*)

where P(G, %*,%*) is F-inverse and P ( G , ^ * , ^ * ) is a semidirect product of
96* by G.

Thus we have the following result which is due to O'Carroll (1975).

THEOREM 3.12. / / S is an E-unitary inverse semigroup then S can be
embedded in an F-inverse semigroup. Further S can be embedded in the semidirect
product of a semilattice by a group.

4. Covering by semidirect products

Let 5 be an inverse semigroup. Then, by McAlister (1974a), Theorem 2.6
there is an £-unitary inverse semigroup P and an idempotent separating
homomorphism <f> of P onto S. It is a natural question to ask if there is a
universal such E-unitary inverse-semigroup P and homomorphism <f> of P onto
S. The answer, in general, is no; see Example 6.1 in Section 6. We shall show
that, if the category of E-unitary inverse semigroups is replaced by the category
of inverse semigroups which are semidirect products of semilattices by groups,
and onto homomorphisms by full ones, the answer is yes. Further, the universal
such object can' be constructed in a natural manner from S itself.

LEMMA 4.1. Let S be an inverse semigroup and let a £ S. Then, for each
e2 = e £ Va,

apea~l = pa • t

where

a -e =(ea ' ) ' ( « « " ' ) •

PROOF. Since apea~' is an idempotent we need only calculate its domain, in
order to evaluate it. Now,
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[10] Inverse semigroups 197

i £ A a p , a " ' » x £ A a and xa E Se

<=> x EAa and x e Sea'1 = S(ea"1)~'(e«~1) s i n c e e e Va =Aa"'

<=> x GE S(a • e) since a • e £ Aa.

Hence ap,.a ' = pa ,..

COROLLARY 4.2. Le/ S fee an inverse semigroup with semilattice of idempo-
tents Es. Then S(S), the group of units of S, acts on Es by order automorphisms as
follows

a • e =(ea~1)"'(ea'1)-

PROOF. By Lemma 4.1, S(5) acts as a group of automorphisms on the
subsemigroup of idempotents {pe : e

2 = e E E}, E = Es, of S. This action trans-
fers directly to an action on E as in the statement of the Corollary.

It follows from Corollary 4.2 that we can construct the semidirect product
= P(2(S), Es, Es) of Es by

LEMMA 4.3. Let S be an inverse semigroup with semilattice of idempotents E.
Then the mapping ys : F(S)—» S defined by

(e,a)ys = ea

is an idempotent separating homomorphism of F(S) onto a full inverse subsemig-
roup of S.

PROOF. We shall show that the mapping y* : F(S)—» ST/S defined by

(e,a)y* = pea = pea

is an idempotent separating homomorphism of F(S) onto a full subsemigroup of
ST/S. Then, since TJS is an isomorphism, the result follows.

By definition,

(e,a)y*(f,p)y* = peapfi = peapfa-'aP

= pepafa($ by Lemma 4.1

Hence y* is a homomorphism. Now (e,l)y* = pe so that y* is idempotent
separating and full.

The results so far in this section give a semidirect product F(S) for each
inverse semigroup S. The next lemma shows that the correspondence is
functorial.
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198 D. B. McAllister [11]

LEMMA 4.4. Let S and T be inverse semigroups and let 6 be a homomorphism
of S onto a full inverse subsemigroup of T. Then there is a unique homomorphism

of F(S) onto a full inverse subsemigroup of F(T) such that the diagram

r(5) ne) t r ( T )

commutes.

PROOF. Since 6 maps S onto a full inverse subsemigroup of T, it follows
from Corollary 2.2 that 0 : S—» T is a full homomorphism. Hence 6 maps
into S(T). Define F(0) by

(e,a)Y{6) = (eO,aO).

Then, by definition,

(e,a)r(6)(f, j3)F(0) = (ed, a§)(fd, 00) = (eO Aa§ • f$, (a

By the definition of the action of S(T) on the idempotents of T,

= (pa.f)O = Pia-f)e,

so that a<? - /0 = ( a • / ) » .

Hence

(e, a)r(0)(f, P)T(8) = (ed A (a • /)fl, (oj8)e) = (e A« • /, aji)Y(6)

so that F(0) is a homomorphism of F(S) into F(T).
Further

(e, o)r(e)yT = (e6, a6)yT = (eO)a§ = (ea)6 = (e,a)yD6

by the definition of ad, so that the diagram commutes. Finally, since ys0 is full
and yT is idempotent separating, F(0) must be full.

To show that F(0) is the unique homomorphism F(S)—> F(T) which makes
the diagram commute, suppose that ip : F(S)—»F(T) is such that i/ryr = ys8.
Then, by McAlister (1975), Theorem 6.1, there is a homomorphism

and a homomorphism i/>2: £(S)-> E(T) such that
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(e,a)tl/ = (eil>2,ail/1) for all (e, a ) £ F ( S ) .

Then ed = (e, \)ys6 = (e, \)iiiyT = (e<ii2, 1)?T = eip2 for all e £ E(S); thus i//2 = 6.
Further

(e0)(a«A,) = (eifc)(aiM = (e, a )^y T = (e, a)ys6> = (ea)O = (<r0)(a0)

for each e 6 £(S) . Hence, since 6 is full, /(ai/»i) = / (a0) for each idempotent
/ £ T. Let f e T, then, since at/»,, a0 £ 1(T),

t(a^) = t[(r't)(a^)] = t[(t lt)(a6)] = t(a§).

Hence aipi = aO for all a £ 2(S) and so ip = T(d).
Because of the uniqueness of F(0), T preserves identities and composites.

Thus we have the following theorem.

THEOREM 4.5. The mapping which associates with each inverse semigroup S
the semigroup F(S) and, with each full homomorphism 0 : S -» T, the full
homomorphism F(0): F(S)—»F(T) is a functor from the category 3 of inverse
semigroups and full homomorphisms to the category &"3) of semidirect products of
semilattices by groups, and full homomorphisms. The maps {ys : S £ 3} form a
natural transformation from F to the identity functor on 3>.

The functor F is the adjoint to the forgetful functor &"3) —*J. This follows
from the next result which describes F(S) for a proper inverse semigroup S.

LEMMA 4.6. Let S = P(G,%C, <2/) be an E-unitary inverse semigroup and let
H = {g £ G : g ^ = <&}. Then F(S) = P(H, <&, <&) where the action of H on <& is
inherited from that of G.

COROLLARY 4.7. If S is a semidirect product of a semilattice by a group, then
ys:F(S)-S.

THEOREM 4.8. Let S be an inverse semigroup and let T be a semidirect
product of a semilattice by a group. If 6 is a homomorphism of T onto a full inverse
subsemigroup of S, then there is a unique full homomorphism 4>ofT into F(S) such
that the diagram

F(S)

e

commutes.

PROOF. By Lemma 4.4, F(0) is the unique homomorphism F(T)—»F(S)
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such that r(0)ys = yT0. Hence, since, by Corollary 4.7, yT is an isomorphism,
y:

r
1r(0)= il> is the unique homomorphism such that 6 = ifrys-

COROLLARY 4.9. Let S be an inverse semigroup. Then the following state-
ments are equivalent:

(1) S is a homomorphic image of the semidirect product of a semilattice by a
group;

(2) ys is onto;
(3) each inner right translation of S can be extended to a one-to-one right

translation of S ontoS;
(4) each element of S belongs to some full permissible subset HofS,His full

if it meets each ££ and 5? class of S.

PROOF (1) <=> (2). Suppose there is a homomorphism 6 of T £ iFdb onto S.
Then by Theorem 4.8 there is a homomorphism i/r: T—> F(S) such that 6 = ipys.
Since 6 is onto ys must also be onto. The converse is immediate.

(2) => (3). Let aES. Then a = (e,a)ys = ea for some e G £(S) , a G 2(S).
Since (e, a)(e, a)'1 = (e, 1), it follows that e = aa~'. Let p = pea. Then p has
domain Se = Saa~' and xp = x(aa~')a = xa for each x G Saa'. Hence pa =
p = p€a g a.

(3) <=> (4). This is immediate from Theorem 2.6, since it is easy to see that
full permissible subsets correspond to one-to-one right transformations of S
onto S.

(3) =>(2). Let a G S and let a G 2(S) extend pa. Then

(aa~\ a)ys = aa'a = aa 'pa = a

since a extends pa. Hence ys is onto.

Although Corollary 4.9 gives necessary and sufficient conditions on an
inverse semigroup in order for it to be a homomorphic image of a semigroup in
yQ), these are, in general, hard to verify. The result does nowever give some
more amenable necessary conditions which, in certain situations, also turn out to
be sufficient.

PROPOSITION 4.10. Let S be an inverse semigroup and suppose that ys is onto.
Then

(1) for each a, e2 = e E S there exist b G S such that bb ' = e and ea = aa~'b
and (2) if e, f are 3) -equivalent idempotents then {g G E(S) : g g c ) is isomorphic
to {gGE(S) :gg /} .

PROOF. (1) Let a G S(5) extend pa and let b = ea. Then, by Corollary 1.11,
b b ' = e a n d (bb'aa'1)a = b b ~ ' ( a a l ) p a = bb'a w h i l e (aalbb')a =
aa '(bb')a = aa l b . T h u s aa~'b - e a .
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(2) Let eQ)f. Then there exists a £ S such that aai = e,a'la=f. Suppose
that aGi(S) extends pa. Then, by Corollary 4.2 the mapping (f>:Es-*Es

defined by e<t> = a ' • e is an order automorphism of E(S), and so maps
{geE(S):g^e} onto {g £ E(S): g ^ e<t>}. But e<f> = (ea)-'(ea)= a~la = f

since a extends pa.

PROPOSITION 4.11. Let S = S1 be an inverse semigroup. Then S is a
homomorphic image of the semidirect product of a semilattice by a group if and
only if for each a £ S there exists b £ S such that bb~l = 1 and a = aa''b.

PROOF. By Proposition 4.10, the condition is necessary. Conversely, sup-
pose that it is satisfied and let ft be a right unit of S. Then, by hypothesis, there is
a right unit c £ S such that b ' = b'bc; that is 1 = be. This implies c = b"1 is a
right unit so each right unit is invertible.

Now let a £ S and let b be a (right) unit such that a = aa'lb. Then it is a
straightforward matter to verify that pb £ S ( S ) and extends pa. Thus, by
Corollary 4.9, the condition is sufficient.

The final application of Proposition 4.10 gives a characterisation of the
semi-direct product of a semilattice by a group.

THEOREM 4.12. Let S be an inverse semigroup then S is isomorphic to the
semidirect product of a semilattice by a group if and only if

(1) S is E-unitary
and (2) for all a £ S, e £ E(S) there exists beS such that bb~x = e, ea =
aa~lb.

PROOF. By Proposition 4.10, the conditions are clearly necessary. Con-
versely, suppose they are satisfied. Then, by McAlister (1974a), Theorem 2.6, we
may suppose S = P(Gy %, <3/) for some G, 36, <& such that <3/ D g<&/ • for each
g £ G .

Let A £ <3f, g £ G. Then there exists B £ <3/ such that g'B £ <3/; that is
(B,g)GS. By (2), there exists (C,h)<ES such that (C, h)(C, h)'1 = (A, 1) and
(A, 1)(S, g )= (B , g)(B,g)-'(C,h). These equations imply C = A and h = g.
Hence (A, g) £ 5 and S = P(G, <&, 9). That is, S is a semidirect product of <% by
G.

Chen and Hsieh (1974), define an inverse semigroup S to be factorizable if
and only if there is a subgroup G and a set E of idempotent E such that S = GE.
They show that any fact&rizable inverse semigroup has an identity and it is easy
to see that factorizable inverse semigroups are exactly these inverse monoids S
for which ys : F(S)—* S is onto.
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5. Covering and embedding theorems 

Let 5 be an inverse semigroup and suppose that S can be embedded in an 
inverse semigroup T which is a homomorphic image of a semidirect product of a 
semilattice by a group. Then, by Corollary 4 . 7 , yT is an idempotent separating 
homomorphism of T (T) onto T. Thus P = Syr is an £-unitary inverse semi­
group and the restriction of yT to P is an idempotent separating homomorphism 
of P onto S. In general, however, P does not appear directly in the form 
P{G,9£,°y) with °y) with ^ an essential ideal and subsemilattice of %. In this 
section we characterise those embeddings of S which give rise in a natural 
manner to proper coverings P{G,9£, <3/) of S. 

DEFINITION 5 . 1 . An inverse semigroup S is a covering inverse semigroup if 
each inner right translation of S can be extended to a member of S ( S ) . 

The reason for this choice of name will become apparent later in the paper. 

LEMMA 5 . 2 . Let S be an inverse semigroup and let Fbe a subsemilattice of the 
semilattice E of idempotents of S. Then 

{a E S:{aa>, a~'a} U aFa1 U a'Fa C F} 

is the largest inverse subsemigroup of S with F as its set of idempotents. 

PROOF This is well known. 

LEMMA 5 . 3 . Let S be an inverse semigroup and let F be a subsemilattice of the 
semilattice E of idempotents of S. Suppose that F has the following property: 

if e ^ / and e2g where e € £ , fg G F then e G F. 

Then 

{a ES:aa\ a'la G F} 

is the largest inverse subsemigroup of S with F as its set of idempotents. 
PROOF. Set S ( F ) = ( a £ S : { a a " ' , a " ' a ) U aFa~' U a " 'Fa C F}. Then 

a G 5 ( F ) implies aa~\ a~xa G F. On the other hand, suppose that aa~\ a~'a G 
Fand let / G F. Then a~'fa S= a~la and a~xfa®a(a''fa)a~l = aa~'f. But aa'xf 
a 'a G F since F is a subsemilattice of E. Thus a~'fa E F. Similarly afa'&F 
so that a G S(F). Hence S(F) = {a G S : aa'\ a 'a G F } so that, by Lemma 4 . 1 , 
the result is proven. 

COROLLARY 5 . 4 . Let S be an inverse semigroup and let F be an ideal of the 
semilattice of idempotents of S. Then S(F) = {a G 5 : aa~\ a~'a G F } . 

DEFINITION 5 .5 Let S be an inverse subsemigroup of an inverse semigroup T. 
Then S is a thick inverse subsemigroup of T if 
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(i) e § /, e3)Tg with f, g E Es, e £ ET implies e £ £ s ;
and (ii) aa~\ a1 a E £ s implies a E S.
The inverse subsemigroup S of T is heavy if

(i)' Es is an ideal of £T;
and (ii) aa~\ a'1 a E £ s implies a E S.

Clearly, every heavy inverse subsemigroup of T is a thick subsemigroup of
T.

The importance of Definition 5.5, for our purposes, is indicated by the
following propositions.

PROPOSITION 5.6. Let % be a semilattice and let G be a group which acts on %£
by (order) automorphisms and let T be the semidirect product of 3? by G. Suppose
that S is an inverse subsemigroup of T with semilattice of idempotents QJ x {1},
where "3/ is a subsemilattice of %£.

If S is a heavy subsemigroup of T, then S = P(G, %, <3/).
/ / S is a thick subsemigroup of T then 2t = G • *3/ contains °H as an ideal and

PROOF. The results follow in a straightforward manner using the definitions
and Lemma 3.2.

Let S be an inverse subsemigroup of a covering inverse semigroup T. Then
we shall denote by F(T; S) the inverse subsemigroup Sy r1 of T(T) = P(2,(T), ET,
ET); we shall use y(T;S) to denote the restriction of yT to F(T;S).

PROPOSITION 5.7. Let S be an inverse subsemigroup of a covering inverse
semigroup T. If S is a thick (heavy) inverse subsemigroup of T then T(T; S) is a
thick (heavy) inverse subsemigroup of F(T).

PROOF. We prove the result for the case in which S is a thick inverse
subsemigroup of T. Because yT is idempotent separating, the idempotents of
T(T;S) are of the form (/, 1) where f E. Es. Suppose that (e, 1)S(/, 1) and
(e, l)2T(g, 1) where f, g E Es. Then e g / and e = a~' • g for some a G 2(T).
Now a~l • g = (ga)~'ga and by Lemma 2.14, g = ga(ga) ' so that, g3>re. Hence,
since S is a thick inverse subsemigroup of T, e G Es.

Let (e, a)E T(T) and suppose that (e, a)(e, a)"1 = (e, 1) and (e, a)~\e, a) =
(a~] • e, 1) are idempotents in T(T;S). Then, as above, e = ea(ea)~\ a"1 • e =
(ea)~\ea) so that, since S is a thick inverse subsemigroup of T, ea E S. This
means that (e, a) G T(T; S).

The results of the first two paragraphs, combined, show that T(T;S) is a
thick subsemigroup of F(T).

Propositions 5.6 and 5.7 show that, if S is an inverse semigroup, each
embedding of S, as a thick (heavy) inverse semigroup of a covering inverse
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semigroup T, gives rise to an £-unitary inverse semigroup F(T; S) = P(G, 3T, 9),
with <3/ an ideal of 2! and "X = G • *&, and an idempotent separating homomorph-
ism y(T; S) of F(T; S) onto S. We shall show, conversely, that each covering of
S by an E-unitary inverse semigroup P gives rise to an embedding of 5 as a
thick (heavy) inverse subsemigroup of a covering inverse semigroup T.

LEMMA 5.3- Let %! be a semilattice and let <W be a non-empty ideal of %. Let
G be a group which acts on %£ by order automorphisms in such a way that % = &&.
Then each idempotent separating congruence on P^G,^,^) can be uniquely
extended to an idempotent separating congrence on P(G, <8f, %!).

PROOF. Let p be an idempotent separating congruence on P = P{G,%, W)
and, for each A £ 9, let NA = {g £ G : (A, g)p(A, 1)}. Then NA is a subgroup of
G and

(A, g)p(B, h) if and only if A = B and gh "' £ NA.

Further, by McAlister (1974a), Theorem 3.3, the subgroups NA, A £ <%} obey the
following conditions:

(i) NACCA ={gEG:g-C for all C § A]

(ii) A g B implies NACNB;
(in) if B = g • A £ % where A G% then NB = gNAg~'.

For each D £ %, put ND = gNAg~' if D = g A, A £ <&. Then D = g-A=h-B

implies B = h~'g • A £ ^ which, by (iii), gives NB = h~lgNAg~xh\ that is,
hNBh' = gNAg~l. Hence, since 3T = G • <&, the assignment D •-» ND is a well
defined mapping of of into the lattice of subgroups of G.

It is a straightforward matter to show that the subgroups {ND : D E.9?) obey
the analogs of (i), (ii), (iii) above. Hence, by McAlister (1974a), Theorem 3.3, the
relation p on P(G, %, %) defined by

(A, g)p(B, h) if and only if A = B and gh ' e NA

is an idempotent separating congruence which, clearly, extends p.
Conversely, if p' is an idempotent separating congruence on P(G,%,2£),

which extends p, then it follows, from (iii) for p', that p - p'.

REMARK. Suppose that St?, °U are semilattices with % V ideals of 2?, ^
respectively, and let G, H be groups acting on dt, W by order automorphisms in
such a way that % = G • <&, °U = H • V. Then Lemma 4.8 shows that any
idempotent separating homomorphism 8 : P(G, $C, <S/)-* P(H, °U, Y) can be ex-
tended to a homomorphism with domain P(G, 3d, 3£). It may not be possible to
extend 6 to a homomorphism P(G,%,%)-^>P(H,°l/,6U); see Example 6.2.

We can use Lemma 5.8 to prove a converse to Proposition 5.7 for E-unitary
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coverings of S of the form P(G, 3d, <&) with 3£ a semilattice and 9 an ideal of 3d.
Note that if 5 is a heavy subsemigroup T, then T(T; S) = P(2(T), ET, Es) is of
the form above.

LEMMA 5.9. Let 0 be an idempotent separating homomorphism of an inverse
semigroup T onto an inverse semigroup °U. If S is a thick (heavy) inverse
subsemigroup of T then SO is a thick (heavy) inverse subsemigroup of °U.

PROOF. This is straightforward.

PROPOSITION 5.10. Let3£be a semilattice with °y an ideal of'3dand let G be a
group which acts on 3d by order automorphisms in such a way that 3d = G • 9.
Suppose that <f> is an idempotent separating homomorphism of P(G, 3d, 9) onto an
inverse semigroup S. Then there is a covering semigroup T, containing S as
a heavy subsemigroup, and an idempotent separating homomorphism
>lt: P(G, 3d, <3/)^ V(T; S) such that the diagram

r(T;S)

P(G,3d,9)
y(T;S)

S

commutes.

PROOF. Let p = <f>°4>"'; then, by Lemma 5.8, p can be extended to an
idempotent separating congruence p on P(G, 3d, 3d). Let T = P(G;3d, 3d)lp and
denote by 6 the natural homomorphism P(G;$H,3d)—*T. By Lemma 5.9,
S = P(G, 3d, <&)0 is a heavy inverse subsemigroup of T because P(G, 3d, 9) is a
heavy inverse subsemigroup of P(G, 3d, 3d).

By Theorem 4.8, there is a unique idempotent separating homomorphism
X: P(G, X, %)-+ V(T) such that 6 = XyT. Since P(G, 3d, 9)XyT =
P(G, 3d, 9)0 = S we find that P(G, f , « / ) X C SyT" = T(T; S) so that the restric-
tion I/I of X to P(G, 3d, <3/) is a homomorphism of P(G, 3d, 9) into T(T; S) such
that \}iy(T;S)= <*>.

The general situation, involving arbitrary E-unitary inverse semigroups, is
dealt with by combining Proposition 5.10 with the results of Sections 2 and 3.

LEMMA 5.11. Let 3d be a partially ordered set with 9 an essential ideal and
subsemilattice of 3d and let G be a group which acts on 3d by order automorphisms
in such a way that 3d = G • 9. Then P(G, 3d, 9) is a thick inverse subsemigroup of
P(G,3d*',3t*) where 3d* is the semilattice of non-empty order ideals of 3d.

PROOF This is straightforward.
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PROPOSITION 5.12. Let P be an E-unitary inverse semigroup and let <f> be an
idempotent separating homomorphism of P onto an inverse semigroup S. Then
there is a covering inverse semigroup T containing S as a thick inverse subgroup
and an idempotent separating homomorphism tp '• P{G,3C, <W)^>Y{T; S) such that
the diagram

T(T;S)

y(T.;S)

commutes.

PROOF. By Theorem 1.4, applied to the semigroup S* of non-zero elements
of S, there is an idempotent separating homomorphism <j>*: P* —>S*. Without
loss of generality, we may assume that P = P(G,%, <9f) where if is a partially
ordered set with % an essential ideal and subsemilattice and where G acts on d?
by order automorphisms in such a way that d£ = G • CH. Then, by Proposition 2.7,
P* = P(G, %*, <&*) where %* is the semilattice of non-empty order ideals of £?.
Further, by Lemma 5.8, p = <f>*°<t>*~' can be extended to an idempotent
separating congruence p on P(G,%*,%*). Let T = P(G,%*,%*)/p. Then,
Lemmas 5.11 and 5.9 show that S is a thick inverse subsemigroup of T and, as in
the proof of Proposition 5.10, <f> factors through y(T;S).

The results of this section can be put in a more global setting if we introduce
two categories; the category <££($) of covering extensions of an inverse
semigroup 5 and the category ^(S) of E-unitary coverings of S. An object in
^ ( S ) >s an embedding of S as a thick inverse subsemigroup in a covering
inverse semigroup T. A morphism between embeddings of S in T and S in U is
an idempotent separating homomorphism 0 : T—> U such that the diagram

6 +U

\

commutes.
An E-unitary covering of S is an idempotent separating homomorphism <j>

of an £-unitary inverse semigroup P onto S. A morphism form 0:P—>S to
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<(> : Q —» S is an (idempotent separating) homomorphism t/> : P —> Q such that
the diagram

commutes.

THEOREM 5.13. Let S be an inverse semigroup. Then the mapping, which
associates with each T £ ^ ( S ) the E-unitary inverse semigroup T(T;S) the
idempotent separating homomorphism y(T; S): T(T; S)—* S and which associates
with e.T^U in <£&(S) the homomorphism T(0) restricted to T(T; S) — S is a
functor from <#g(S) onto a cofinal subcategory of

PROOF. The only part of the theorem which still requires justification is that
r(0):r(T)->r([ /) maps T(T;S) into r(U;S). This is straightforward.

Similarly, Proposition 5.10 shows that an analogous result holds for
coverings P(G, <f, <3/) of S with £? a semilattice and <& an ideal of d£.

6. Examples

EXAMPLE 6.1. Brandt Semigroups
In this example, we describe the various constructions of Sections 4 and 5

for a Brandt semigroup 5 = M°(G; I, I; A) with | / | g 2. These can be used to
show that ^^(S) does not have a final object.

6.1.1. S is a covering semigroup.
We show that ys : F(S)—> S is onto. It is shown in Petrich (1973), page 165

that S(S) is the wreath product G wr S; of G by the group Si of all permutations
on /. It is easy to see that, for each e = (i, 1, i) in S, and each a = (/, y) G G wr S,,
a e = (i-y"', 1, iy"'). Thus, if we identify the idempotents of S with / U {0},
G wr S, acts on /° = / U {0} by a • i = iy'1, a • 0 = 0 for a = (/, y). Then T(S) =
P(G wr S,:/", 7°); the homomorphism -ys is given by

(', (J,y))ys = (i,f(i),iy)

(0,(/,y))rs = o .

It is onto, since for each (/, g, /)G S,

where f(k) = g for all fc e 7 and y is the transposition (i,y).
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6.1.2. The category
Suppose that P is an E-unitary inverse semigroup and that (j> is an

idempotent separating homomorphism of P onto S. Then, since <t> is idempotent
separating, P and S have "the same" ideal structure. Thus P has a kernel K and
P/K is a Brandt semigroup. Hence, from the construction for E-unitary inverse
semigroups in McAlister (1974a), P = P(K,K/H U{K}, {Hx,: i £ /} U{K})
where H is a subgroup of K and {x, : z G 7} is a set of elements, modulo H, such
that the costs Hx, are in one-to-one correspondence with /, with e E {x, : /' G I}.
The partial order is determined by Hx > K for each x G K and K acts by
g • Hx = Hxg ', g • K = K. The homomorphism </> gives rise to a homomorph-
ism ip of H onto G and <j> is given by

(Hx,, g)<(> = (z, A,/) where Hx.g = Hx, and fc = (x,gxJ')tl>

Thus, up to isomorphism, P is determined by a group K, a subgroup H of K
such that | /C/H | g /, and a homomorphism 0 of H onto G. Conversely, given
such K, H, <t> we can construct P = P(K, K/H U {K}, {Hx,; ( G /} U {K}) and an
idempotent separating homomorphism <f> of P onto S.

The semigroup T obtained by extending <j> ° </>"' to an idempotent separa-
ting congruence on P(K, K/H U {K}, K/H U {K}) is J<0(G; K/H, K/H; A) and
T(T; S) is F(G wrSK/H, K7H°, /") where / is embedded in K/H by a choice of
coset representatives; F(T; S) is independent of the particular embedding of /
into K/H.

REMARK. The covering semigroups T which arise in 5.1.2 are the semi-
groups M°(G; J, J'; A) where | J | S | / | . There are many covering semigroups
which contain S as a heavy subsemigroup. However, if U is a covering
semigroup which contains an inverse semigroup S as a heavy subsemigroup,
then T = {a G U : a3svx for some x G S} is also a covering semigroup and
r(U; S) = F(T; S). Thus, without loss of generality it suffices to consider
covering semigroups U containing S so that S meets each 3> -class of U. For
Brandt semigroups, these are precisely the semigroups M°(G; /, J; A) with

6.1.3. The category ̂ "^(S) does not have a final object.
Let J be any set, containing /, with | /1 g max {| / |, 5}; then the alternating

group Aj is simple and acts transitively on /. Let K = G x A,. Then K acts on J°
by (g, a) • /' = y'a ', (g, a) • 0 = 0. Since 7° is a semilattice, under / > 0 for each
/' G /, containing 7° as an ideal, we can form P(K, J°, 1°). The mapping
77v : P(K, J°, 7°)-+ S defined by
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(j, (g,a))iTj = (i,g,ia)

(0,(g,a))7r, =0

is then an idempotent separating homomorphism of P(K, J", J") onto S.
Suppose that <f>: P(H, X, <3/)-» S isa final object in 0><#(S). Then there is a

homomorphism ty : P(K, J°, I0)-* P(H, X, <&) such that W = it,. By McAlister
(1974a), ill gives rise to a homomorphism «/»i of K into H and an isotone mapping
i/»2 of J° into £* such that

and

Since Aj is simple, either i/>, is one-to-one on {1} x A} or is trivial on
{1} x Aj. But, since (g, a ) • i = ia~', the latter implies (ia)\\>2 = iifc for each i E /.
This means that P(K,J°,J°)il> is a union of groups; (i,(g, a))i/r belongs to the
subgroup with identity (i\\i2,1). But then ip<f> = IT, also implies S is a union of
groups which is a contradiction. Hence t/f, is one-to-one and | K | S | A, 11 for
each /. This is impossible.

EXAMPLE 6.2. Let G be any group and let % = G°, "̂  = {1,0} with JC > 0 for
all x G G. Then ^ is a semilattice and G acts on #f by g - x = jcg"'. The
E-unitary inverse semigroup P = P(G,9?,<&) is essentially G with an extra
identity adjoined. Thus there is an idempotent separating homomorphism <\> of P
onto {1,O} = P({1},{1}°,{1}0); it is given by (1,1)^ = 1, (0,g)4» = 0. The
homomorphism <f> cannot be extended to a homomorphism of P(G, #?, 26) into
{1,0}; the latter is already in the form P(H, U, U). The inverse semigroup T
corresponding to <f> and P is M°({1}; G, G; A) which contains {1,0} as a heavy
inverse subsemigroup.

The procedure which underlies the results of Section 5 can be used to
analyse the structure of inverse semigroups which arise in several concrete
situations. We give two examples.

EXAMPLE 6.3. The semigroup of relative isomorphisms of a field extension.
Let K and F be fields with K algebraic over F. Then a relative isomorphism

of K over F is an F-algebra isomorphism of a subfield of K onto a subfield of K.
Thus it is an element of 3>K. The set of relative isomorphisms is clearly closed
under composition and inverses so that it is an inverse subsemi-
group of $K\ we shall denote this semigroup by ^(K; F), the Galois semigroup
of K over F.

The idempotents of $(/C, F) axe the identity maps on the subfields of K
which contain F. Thus they form a semilattice isomorphic to the semilattice JC of

https://doi.org/10.1017/S1446788700015317 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015317


210 D. B. McAllister [23]

subfields of K which contain F. If L is such a subfield, then the maximal
subgroup of ^{K, F) corresponding to L is exactly the Galois group G(L, F) of
L over F.

Since (K,F) has an identity, £ («(K,F) ) = G(K,F) and so r (« (K,F) ) =
P(G(K, F), X, X) where "X denotes the semilattice of subfields of K, which
contains F, and where G(K,F) acts on 3{ by a • L = La' for each a G G(K,F).
Further (L,a)yT = a\L for each ( L , a ) G r ( T ) with T=^(K,F). Hence
^{K, F) is a covering semigroup if and only if each relative isomorphism of K
over F can be extended to an automorphism of K over F. In particular ^(K, F)
is a covering semigroup if K is normal over F.

Suppose that A is normal extension of F and contains K. Then ^(A, F)= T
is a covering inverse semigroup containing S = ^(K, F) as a heavy subsemig-
roup. Thus F(T; S) is a proper inverse semigroup and y(T; S) is an idempotent
separating homomorphism of F (T ;S) onto S. From the preceding paragraph,
r ( T ; S) = P(G(A, F), .stf, X) where ^ is the set of subfields of A containing F
and % is the set of subfields of K that contain F. Further, for each (L, a ) G
r ( T ; S ) , (L, a)y(T;S) = a \ L. The maximal subgroup of T(T; S) containing
(L, 1) is isomorphic to the stabilizer HL of L under G(A, F); the kernel
{a G G(A, F):{L,a)y{T; S) = (L, l )y (T ; S)} is G(A, L). Hence HL/G(A, L) =
G(L,F). In particular, if L is normal so that HL = G(A,F) we have
G(A, F)/G (A, L) = G (L, F ) .

EXAMPLE 6.4. Isomorphisms of cyclic subgroups of a group.
Let G be a group. Then, since the intersection of cyclic subgroups of G is

cyclic, it is easy to see that the set of isomorphisms between cyclic subgroups of
G is an inverse subsemigroup of J>a\ we shall denote this semigroup ^ ( G ) .

The semigroup ^ ( G ) is 0-bisimple if and only if any two nonidentity
elements of G have the same order. Thus ^ ( G ) is 0-bisimple if and only if either
G is torsion free or has exponent p for some prime p. In the first case ^ ( G ) has
infinite chains of idempotents; in the second it is a Brandt semigroup.

We shall concentrate on the case when G is a finite abelian group. By the
structure theorem for finite abelian groups G = Pi x P2 x • • • x P, where
Pi, • • •, P, are p,-primary groups for distinct primes p,, • • -,pr. It is easy to see
that ^ ( P ) = ^(P , ) x •• • x ^(Pr) so that, in order to calculate ^ ( G ) it suffices to
consider G p-primary for some prime p.

If G is embedded in a p-primary abelian group A which has the property
that, each a G ^ ( A ) can be extended to an automorphism of A, then we can
apply the ideas of Section 5 to get a proper covering for ^ ( G ) . Let X be the
semilattice of cyclic subgroups of A and "3/ that of G; & is an ideal of 3f. Then
Aut A acts on d£ by a • (x) = (xa~l) for each x E A , a G Aut A so we can
construct P( Aut A, #T, C3/). The mapping 17 given by ((x), a)rj = a | <»> is then an
idempotent separating homomorphism of P = P(Aut A, JJT, (3/) onto
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Simple group theory shows every aE.(€(A) can be extended to an
automorphism of A if and only if A if and only if A is a direct product of cyclic
groups of the same prime power order. Hence if G = Zp», x • • • x Zp°» where
a , S a2 = an we can take A to be the direct product of n copies of Zp»n. The
automorphism group of A is then GL(ZP-.) so that P can be calculated directly.
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