THE ERROR TERM FOR THE SQUAREFREE INTEGERS

L. Moser and R.A. MacLeod

(received February 7, 1966)

Let Q(x) denote the number of squarefree integers $\leq x$. Recently K. Rogers [1] has shown that $Q(x) \geq 53x / 88$ for all x, with equality only at x = 176. Define R(x) to be $Q(x) - 6/\pi^2 x$. (We observe that $53/88 \stackrel{.}{=} 0.6023$ and $6/\pi^2 \stackrel{.}{=} 0.6079$.) Our objective will be to examine R(x). In particular, we show that $|R(x)| < \sqrt{x}$ for all x and observe that $|R(x)| < 1/2 \sqrt{x}$ for x > 8. The best result of this type obtained by Rogers was

(1)
$$|R(x)| < 12/\pi^2 \sqrt{x} + 8/3 x^{1/4}$$
.

We have

$$Q(x) = \sum_{\substack{d \leq x}} |\mu(d)| = \sum_{\substack{n \leq x}} \sum_{\substack{d \leq x}} \mu(d) = \sum_{\substack{d \leq x}} \mu(d) \sum_{\substack{n \leq x}} 1$$

$$= \sum_{d^2 < x} \mu(d) \left[x/d^2 \right],$$

so that

(2)
$$|Q(\mathbf{x}) - \frac{6}{\pi^2} \mathbf{x}| \le |\sum_{\substack{d < \mathbf{x} \\ d < \mathbf{x}}} \mu(d) \left(\frac{\mathbf{x}}{d^2} - \left[\frac{\mathbf{x}}{2} \right] \right) + \mathbf{x}| \sum_{\substack{d < \mathbf{x} \\ d > \mathbf{x}}} \frac{\mu(d)}{d^2} |,$$

where x - [x] denotes the fractional part of x. Thus, we have almost immediately

$$|R(x)| \leq 2\sqrt{x} + 1.$$

We direct our attention to improving (3). Let

Canad. Math. Bull. vol. 9, no. 3, 1966.

$$A(x) \quad \Sigma \quad 1, \quad B(x) = \quad \Sigma \quad 1, \quad C(x) = \max (A(x), \quad B(x)) .$$

$$d \leq x \qquad \qquad d \leq x$$

$$\mu(d) = 1 \qquad \qquad \mu(d) = -1$$

Then clearly

$$\left| \begin{array}{cc} \Sigma & \mu(d) \; (g(x,\; d) \; \text{-} \; [g(x,\; d)]) \; \right| \leq C(x) \; \; \text{for any } g \; . \\ d \leq x \\ \end{array}$$

Let
$$M(x) = \sum_{d < x} \mu(d)$$
. Then

$$C(x) = \frac{1}{2}(A(x) + B(x)) + \frac{1}{2}|A(x) - B(x)| = \frac{1}{2}Q(x) + \frac{1}{2}|M(x)|$$

Since every fourth integer is divisible by 4, and every ninth by 9, we have

(4)
$$Q(x) \le [x] - [\frac{x}{4}] - [\frac{x}{9}] + [\frac{x}{36}] \le \frac{2}{3}x + \frac{4}{3}$$
 for all x .

Let
$$f(x) = [x] - [\frac{x}{2}] - [\frac{x}{3}] - [\frac{x}{5}] + [\frac{x}{30}]$$
. Since $\sum_{d \le x} \mu(d)[\frac{x}{d}] = 1$,

Now, f(x) = 1 for $1 \le x < 6$ and 0 or 1 for $x \ge 6$, so that

(5)
$$|M(x) + 1| = |\sum_{d \le x} \mu(d) \{1 - f(\frac{x}{d})\}| \le \sum_{d \le \frac{x}{6}} |\mu(d)|$$

$$= Q(\frac{x}{6}) \le \frac{1}{9}x + \frac{4}{3} \text{ for } x \ge 30.$$

Hence

(6)
$$|M(x)| \le \frac{1}{9}x + \frac{7}{3} \text{ for } x \ge 30.$$

One readily checks that (5) holds for $x \ge 2$ and (6) for $x \ge 1$. Thus,

$$C(x) \le \frac{1}{2} \left(\frac{2}{3}x + \frac{4}{3} \right) + \frac{1}{2} \left(\frac{1}{9}x + \frac{4}{3} + 1 \right) = \frac{7}{18}x + \frac{11}{6} \text{ for } x \ge 1,$$
(7)

and
$$\left| \begin{array}{cc} \Sigma & \mu(d) & \left(\frac{\mathbf{x}}{d^2} - \left[\begin{array}{c} \frac{\mathbf{x}}{d^2} \end{array} \right] \right) \right| \leq C \left(\sqrt{\mathbf{x}} \right) \leq \frac{7}{18} \sqrt{\mathbf{x}} + \frac{11}{6} \text{ for } \mathbf{x} \geq 1.$$

Also,
$$\sum_{d > x} \frac{\mu(d)}{d^2} = \sum_{d > x} \frac{\{M(d) + 1\} - \{M(d - 1) + 1\}}{d^2}$$

$$= \sum_{d > x} \{M(d) + 1\} \left(\frac{1}{d^2} - \frac{1}{(d + 1)^2}\right) - \frac{M(x) + 1}{([x] + 1)^2}.$$

Hence

$$\frac{1}{9}\frac{1}{x} + \frac{4}{3}\frac{1}{x^2} \le \frac{1}{3}\frac{1}{x} + \frac{8}{3}\frac{1}{x^2}$$
 for $x \ge 2$;

i.e.

(8)
$$x \mid \sum_{\substack{d \\ d > x}} \frac{\mu(d)}{d^2} \mid \leq \frac{1}{3} \sqrt{x} + \frac{8}{3} \text{ for } x \geq 4$$

and

$$|R(x)| \le \frac{13}{18} \sqrt{x} + \frac{9}{2} \text{ for } x \ge 4,$$

whence,

(9)
$$|R(x)| < \sqrt{x} \text{ for } x \ge 263.$$

We note that $R(x) = Q(x) - \frac{6}{\pi^2} x$ is a decreasing function

for $n \le x < n + 1$ and positive for $x = 1, 2, \ldots, 263$, except at 28, 56, 153, 172, 173, 175, 176, 177, 180 and 181, so that it suffices to check that (9) holds for $x = 1, 2, \ldots, 263$ and to examine R(x) near the ten integers x where it is negative. This we have done, and (9) holds for all $x \ge 1$.

We observe that, using better bounds for M(x) in the above argument, one readily shows

(10)
$$|R(x)| \le \sqrt{3} (1 - \frac{6}{2}) \sqrt{x} = (0.6792...) \sqrt{x}$$

for all x, with equality only at x = 3, and

(11)
$$|R(x)| < \frac{1}{2} \sqrt{x} for x \ge 8.$$

We note that the strong form of the prime number theorem, which is equivalent (see e.g. Landau [2], p. 157) to

$$M(x) = 0 \left(\frac{x}{\log^{\alpha} x} \right) \text{ for each } \alpha,$$

implies

(12)
$$R(x) = 0 \left(\frac{\sqrt{x}}{\log^{\alpha} x} \right) \text{ for each } \alpha,$$

while the Riemann Hypothesis implies (Landau [2], p. 161)

$$M(x) = 0(x^{1/2 + \epsilon})$$
 for each $\epsilon > 0$,

which yields $R(x) = 0(x^{2/5 + \epsilon})$ for each $\epsilon > 0$. In the other direction, Evelyn and Linfoot [3] have proved $R(x) \neq o(x^{1/4})$.

REFERENCES

- 1. K. Rogers, The Schnirelmann density of the squarefree integers, Proc. Amer. Math. Soc. 15(1964), 515-516.
- 2. E. Landau, Vorlesungen Über Zahlentheorie, II, Chelsea (1947).
- 3. C. J. A. Evelyn and E. H. Linfoot, On a problem in the additive theory of numbers (Fourth paper). Ann. of Math. 32(1931) 261-270.

University of Alberta, Edmonton