Bull. Aust. Math. Soc. 110 (2024), 291-302
doi:10.1017/S0004972723001363

HOMOLOGICAL LINEAR QUOTIENTS AND EDGE IDEALS
OF GRAPHS

NADIA TAGHIPOUR®, SHAMILA BAYATI®™ and FARHAD RAHMATI

(Received 23 October 2023; accepted 13 November 2023; first published online 29 January 2024)

Abstract

It is well known that the edge ideal I(G) of a simple graph G has linear quotients if and only if G is
chordal. We investigate when the property of having linear quotients is inherited by homological shift
ideals of an edge ideal. We will see that adding a cluster to the graph G when /(G) has homological linear
quotients results in a graph with the same property. In particular, /(G) has homological linear quotients
when G¢ is a block graph. We also show that adding pinnacles to trees preserves the property of having
homological linear quotients for the edge ideal of their complements. Furthermore, /(G) has homological
linear quotients for every graph G such that G is a A-minimal chordal graph.
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1. Introduction

Let S = K[xy,...,x,] be the polynomial ring in the variables xi,...,x, over a field
K with its natural multigrading. Throughout, a monomial and its multidegree will
be used interchangeably and S(x*) denotes the free S-module with one generator of
multidegree x*. A monomial ideal / € S has a (unique up to isomorphism) minimal
multigraded resolution

F:0-F,—>:--—>F —F

Fi = @ S(xa)ﬂk,a'

ac’Z"
The kth homological shift ideal of I denoted by HS (/) is the ideal generated by the
kth multigraded shifts of 7, that is,
HS(I) = (x| Bra # O).

Recently, properties of monomial ideals which are inherited by their homological shift
ideals have attracted attention. It is shown in [1, Theorem 3.2] that if 7 is a matroidal

with
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ideal, then so are its homological shift ideals. It is still an open question whether a
similar statement holds if one replaces matroidal by polymatroidal. However, there
are some partial positive answers for some classes of polymatroidal ideals including
polymatroidal ideals satisfying the strong exchange property [13, Corollary 3.6],
Veronese-type ideals [13, Theorem 3.3], polymatroidal ideals generated in degree two
[7, Theorem 4.5] and for the first homological shift ideal of any polymatroidal ideal
[6, Theorem 2.2]. In [3, Proposition 3.1], analogues of these results for the property
of being equigenerated squarefree Borel are presented and in [2], a quasi-additive
property of homological shift ideals is studied.

Having linear quotients is another property that has received considerable attention.
Following [7], we say that a monomial ideal / has homological linear quotients when
I has linear quotients and HS; (/) inherits this property for every k. It is shown in
[3, Theorem 2.4] and [3, Theorems 2.4 and 3.3] that principal Borel ideals as well as
squarefree Borel ideals have homological linear quotients (see also [14]). It is shown in
[13, Theorem 2.2] that even c-bounded principal Borel ideals have homological linear
quotients. It is also proved in [7, Theorem 1.3] that if a monomial ideal [ has linear
quotients, then HS; (/) has the same property.

Regarding having homological linear quotients, we restrict our attention to edge
ideals of graphs. Let G be a simple graph on n vertices and I(G) C S be its edge ideal.
From [10] and [12, Theorem 10.2.6], /(G) has linear quotients if and only if G is a
chordal graph. It is shown in [7, Proposition 3.2] that if /(G) has homological linear
quotients, then adding a whisker to G¢ gives a graph such that the edge ideal of its
complement also has homological linear quotients. As a result, /(G) has homological
linear quotients when G€ is a tree. Generalising these two results, we show in Theorem
2.6 that when /(G) has homological linear quotients, then adding clusters to G leads to
a graph such that the edge ideal of its complement has homological linear quotients. In
particular, this implies that /(G) has homological linear quotients when G° is a block
graph (see Corollary 2.7).

Next, we consider another construction of adding pinnacles which preserves the
property of having linear quotients for homological shift ideals (see Section 3 for the
definition). We will see in Theorem 3.1 that if G¢ is obtained by adding pinnacles to a
tree, then /(G) has homological linear quotients. Finally, we see in Corollary 3.4 that
I(G) has homological linear quotients if G is a A-minimal graph.

2. Block graphs

Throughout, S = K[xy,...,x,] denotes a polynomial ring over a field K with its
natural multigrading. If u,v € § are monomials, then u : v denotes the monomial
u/gcd(u,v). For a monomial u € S, we set max u = max{k | x; divides u}. When
{ = max u, we may sometimes write x, = max u for ease of use.

Let I C S be a monomial ideal. We denote its minimal set of monomial generators
by G(I). A monomial ideal 7/ C S is said to have linear quotients if there exists an
ordering uj, ..., u, of the elements of G(I), called an admissible order, such that for
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FIGURE 1. A chordal graph such that HS,(/(G)) does not have linear quotients.

each i=1,...,r— 1, the colon ideal (uy,...,u;): (u;+1) is generated by a subset of
{x1,...,x,}. If I has linear quotients with respect to the ordering u,, ..., u, of G(I), we
define

set(uiy1) = {xj | x; € (g, ..., u) @ (Uig1)}

REMARK 2.1. Let a monomial ideal / € S have linear quotients. By [15, Lemma 1.5],
a minimal multigraded free resolution F of / can be described as follows: the S-module
F; in homological degree i of F is the multigraded free S-module whose basis is formed
by the monomials ux, .. .x,, for which u € G(I) and x¢,, ..., x,, are distinct elements
of set(u).

Henceforth, all graphs considered in this paper are simple graphs. Let G be a graph
on the vertex set V(G) = {x1,...,x,} with edge set E(G). The ideal

1(G) = (xix; | {xi, x;} € E(G) € S

is called the edge ideal of G. The complement of G, denoted by G, is the graph on the
vertex set V(G) whose edge set is

E(G) = {{xi,x;} | x; # x; and {x;, x;} ¢ E(G)}.

The set of all vertices adjacent to a vertex x; in G, denoted by Ng(x;), is called the
neighbourhood of x; in G. The distance between vertices x; and x; of a connected graph
G, denoted by (x;, x;j), is the number of edges in the shortest path connecting them.

A graph G is called a chordal graph if it has no induced cycle of length greater
than three. An ordering x; > x; > --- > x, of vertices of a graph G is called a perfect
elimination ordering if whenever a vertex x; is adjacent to vertices x; and x; with
i <j <k, then x; and x; are also adjacent. Chordal graphs are characterised in [5, 11]
as those graphs whose vertices admit a perfect elimination ordering.

REMARK 2.2. While it is known by [10] and [12, Theorem 10.2.6] that the edge ideal
I(G) of a graph G has linear quotients if and only if G is chordal, this property is not
inherited by homological shift ideals. For example, consider the graph G presented in
Figure 1. Here, the labelling of vertices gives a perfect elimination ordering of vertices
with respect to x; > - -+ > x¢ and even more with respect to xg > - -- > xj. One has

I(G) = (x1X4,X1X5, X1 X6, X2X6, X3X6),
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and
HS,(I(G%)) = (x122x3%6, X1 X4X5X),
which does not have linear quotients with respect to any ordering of its generators.

Let u = x;, ---x;, € S be a squarefree monomial with i; < --- < i,. We say that x;
is a source variable of u with respect to a graph G, or shortly a source of # when the
graph is clear from the context, if the following conditions hold:

e 1 <i, <maxu;
* Xx;, is adjacent to x;, in G for f < s < max u.

THEOREM 2.3 [13, Theorem 4.1]. Let G be a chordal graph. Suppose that x; > x, >
-+ > X, is a perfect elimination ordering of V(G). Then, for each k,

HSL(I(GS)) = (u u is a squarefree monomial of degree k + 2 )

which has a source with respect to G¢

A graph G is said to be a biconnected graph if it is connected and nonseparable,
that is, if we remove any of its vertices, the graph remains connected. A biconnected
component is a maximal biconnected subgraph. A graph G is called a block graph if
every biconnected component is a clique.

Let G be a graph and v € V(G). We say that the graph H is obtained from G by
adding a t-cluster or simply a cluster via v when we add ¢ — 1 new vertices yy, ..., V-1
to V(G), and add all edges {y;y; | 1 <i <j <t} to E(G) (note that we set v = y;).

The first statement of the following lemma is a special case of [13, Proposition 1.7].

LEMMA 2.4. Let I C K[x] = K[xy,...,x,] be a monomial ideal that has homological
linear quotients and consider the ideal m = (yy,...,y,) in K[y] = K[y1,...,Vm] with
m new variables. Then the kth homological shift ideal of mI C K[x, y] is

HSi(ml) = (y1, ..., y)HSK (D) + iy | 1 <7 < j < m)HS;_1(])
+ ik | 1 <i<j<k<mHS o)+ -+ (y1 - Y HSi 1 (D).

Furthermore, the ideal HS(ml) has homological linear quotients for every k.

PROOF. Let = HSy(/) have linear quotients with respect to the ordering uy, uy, ..., u,
of its generators. Then m/ has simply linear quotients with respect to the order:

ULY1, UDYTs + o o s UgY T, ULY2, UDYDs oo s ULy o oo s ULYms U2Yims -+« « s UYm-
With this ordering of generators,
set(u;y;) = set(u;) U {y1,...,yj-1}

where set(u;) = {x; | x; € (uy,...,u;-1) : (u;)}. Using Remark 2.1 to construct HS;(m/I)
gives the conclusions in Table 1.
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TABLE 1. Conclusions for HS;(/) in Lemma 2.4.

yiHS () generated by u;yy, ..., usy; and their sets
voHS (1) + y1y, HSi -1 (1) generated by u;y», ..., usy, and their sets
v3HS (1) + y1y3HSi -1 (1) generated by uys, ..., usys and their sets

+y2y3HSi1(1) + y1y2y3HS 2 (1)

Vo HS (D) + -+ + y1 oo Y HSj 1 (D) generated by u v, ..., usy, and their sets

The sum of the ideals in the left column of Table 1 gives
HS () = (y1, ..., yu)HS (D) + (iyj | 1 < i <j < m)HS; (1)
+ iy |1 <i<j<k<mHS () +---
+ (yl o 'ym)HSk—m+1(I)-

Next we show that HS;(m/) has linear quotients for every k. Notice that each HS,(/)
has linear quotients by assumption. For each ¢, we fix an admissible ordering on the
minimal set of monomial generators of HS,(/), and set u >, v for each u and v in
G(HS/(I)) if u comes before v in the fixed admissible ordering. Next we show that
HS;(m/) has linear quotients with the following ordering of monomial generators of
HSy(m/): the monomial y;, ---y;u with u € HS;_;.1(I) comes before y;, ---y;v with
Vv E HSk,H](I) ifeitheryil © Vi Zglex Vit Y, O ifyil Vi = Vi Y and u >k—t+1 V.
Here >jex denotes the graded lexicographic order on K[y] induced by y; > -+ > y,,.
To see why this is an admissible ordering for HS;(m/), consider the colon

W= Yi o Yild LY VY
of elements of the minimal set of monomial generators of HS;(m/) in which y;, - - - y; u
comes before y; ---y; v in the ordering just described. Suppose that degw > 1. We

show that there exists yg, - - - v,V in the set of generators which appears before y;, - - - y; v
and

Yoy o YeV - i ViV
is a degree one monomial which divides w. We consider two cases.

Case 1. Assume that y; -+ -y;, >gex j, - -+ ¥j,- By Remark 2.1, the element v in the
minimal set of monomial generators of HS;_;. (/) is a product of an element ¥ in the
minimal set of monomial generators of / and k — s + 1 pairwise distinct elements of
set(V). If t > s, thenk —s+1>k—1t+1>0. Thus, kK —s+ 1 # 0. In particular, there
exists x, in the subset of set(d) that divides v/9. Since y;. divides y; -y 1 yj, = - - ¥j,, it
follows that

i)
Yie\ Vi i X,
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has the desired properties, that is, it comes before y;, - - - ;v and its colon with respect
1o yj, =+ yj,V IS i,

Otherwise, ¢ = 5. Suppose that y; ---y; 1y, - y;
Then

= Yo, ye, With €6 <--- < £,

s

ij
where j; = max(y;, ...y;,) has the desired properties.
Case 2. Now assume that y; ---y; =y, ---yj, and u >;_s1 v. Since HS;_¢, has linear
quotients with respect to the ordering given by >;_,,1, there exists ¥ in the minimal set
of monomial generators of HS;_y, (/) such that ¥ >;_¢,; v and ¥ : v = x, for some p

with x,, | u : v. Hence, yj, - - - y;, ¥ is the desired element since it comes before yj, - - - y; v
in the ordering of the generators of HS;(ml) described before and in addition

Vi ViV L Vjy e ViV = Xpe o
Let I, J and L be monomial ideals in S such that the minimal set of monomial
generators G(I) of [ is the disjoint union of G(J) and G(L). Then I = J + L is called a
Betti splitting if
Bra) = Bra(J) + Pra(L) + Br-1a(J N L)

for all k and all multidegrees a. In particular, as noted in [4, 7], if I = J + L is a Betti
splitting, then for each &,

HS; (1) = HS;(J) + HSy(L) + HS;_;(J N L).

THEOREM 2.5 [8, Corollary 2.4]. Let I, J and L be monomial ideals in S such that
G(I) is the disjoint union of G(J) and G(L). If both J and L have linear resolutions,
then I = J + L is a Betti splitting.

THEOREM 2.6. Let G be a graph, and suppose that the graph H is obtained from G by
adding a cluster. If the edge ideal 1(G°) has homological linear quotients, then I(H®)
also has homological linear quotients.

PROOF. Let V(G) = {x1,x5...,x,} and H be obtained by adding a t-cluster to G via x,,.
Suppose that yi, ..., y, = x, are vertices of the new clique that is added to G. Then

IH) =1(G)+(xyj |1 <i<n—-land1<j<t-1).

SetI =1(H),J =1(G)and L = (x;y; | 1 <i<n-1and1 <j<t-1). Theideal L is
matroidal. So L has a linear resolution. The ideal J also has a linear resolution by the
assumption. Hence, by Theorem 2.5, I = J + L is a Betti splitting. In particular,

HS, (1) = HS(J) + HS (L) + HS,_1(J N L)
for each k. Observe that

JNL=xixye | {xi,x} € EGYand 1 < €<t —1)=(y1,...,y-1)J.
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Thus, by Lemma 2.4, HS;_;(J N L) has linear quotients and

HS;.1(UNL) =1,y DHS, (D) + iy | 1 S i< j <t = DHS 2 (J)
+ iyl 1 <i<j<k<t—DHS3(J)+:---
+ 1 Y- DHS 1 (D).

Writing the homological shift ideals of (x; | 1 <i <n—1) as Koszul complexes and
applying Lemma 2.4 yields

I1<ij<---<i,<n

HSk(L) = (xil XY Y 1 S]l < e <jq <t andp+q:k+2)‘
By our discussion, the ideals HSx(L), HS;-1(J N L) and HS,(J) have linear quo-
tients. Suppose that they have linear quotients with respect to the following ordering

of their minimal set of monomial generators:

* HSk(L) = (uy,...,up);
e HS;,_1(UNL) = (vy,... ,V,/);
e HS; (J) = (Wy,...,w,).

We claim that HS (/) has linear quotients with respect to the ordering of generators:

Uiyeooslp, Viiseo s Vi Wis oo o, W (2.1)
Here 1<j; <---<j;<q and the elements v;,...,v; are those elements of
GHS;_ (/N L)) ={vi,...,v,} which do not appear among uy,...,u,, that is, those

elements of G(HS;_;(J N L)) divided by x,,. Let v be a squarefree monomial in K[x, y].
Denote by deg,, v the number of y; which divide v forj = 1,..., 1.

First consider u : vj, for some i = 1,...,sand u € {uy,...,up,v1,...,vj }. Let z be
a variable dividing u : v;,. Then

- Vi
==z
xn
is a monomial appearing among u1,...,u,in (2.1)and it : v, = z.

Next consider u : w; forsomej=1,...,randu € {uy,...,up,vi,...,v;} (see (2.1)).
Since deg, u > 1 > deg, w;, one deduces that y;, divides u : w; for some ¢. So u =
(w;j/ max w;)yj, is simply an element of {uy,...,up,v(,...,v;} with u:w; =y, as
desired. |

COROLLARY 2.7. Let G be a block graph. Then the edge ideal 1(G°) has homological
linear quotients.

COROLLARY 2.8 [7, Corollary 3.3]. Let G be a tree. Then the edge ideal I(G°) has
homological linear quotients.
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3. A-minimal graphs

Let e = {x;,x;} be an edge of a graph G. By adding a pinnacle on e, we mean adding
anew vertex y, and edges {x;, y} and {x;, y} to G. We call the subgraph induced on these
two new edges a pinnacle and the vertex y its tip (see Figure 2).

Herzog and Ficarra, using an inductive argument by adding whiskers, showed in
[7] that if G is a tree, then the edge ideal /(G) has homological linear quotients. Here,
generalising their result, we determine a labelling on the vertices of trees with some
pinnacles to find an admissible ordering of generators for every HS;(/(G°)).

THEOREM 3.1. Let G be either a tree or obtained by adding some pinnacles to a tree.
Then the edge ideal I1(G°) has homological linear quotients.

PROOF. We may assume that {x1, x,, ..., x,} is the vertex set of G such that for some ¢,
the induced subgraph H on {x;, X;+1, ..., X,} is a tree and G is obtained by adding some
pinnacles to H with tips {x;,x, ..., x;—1}. By a suitable relabelling of vertices, we may

also assume that if 7 < i,j < n and (xj,xn) < (x,»,xn), theni <.

One can see that the labelling described above gives a perfect elimination ordering
on the vertices of G. In fact, if x; is the tip of a pinnacle on an edge {x;,,x;,} € E(H),
then

{xj € Ng(xp) | j > i} = {xj,, x;,}
is a clique. Otherwise, if x; is a vertex of the tree H with i < n, the set
{xj € Ng(x)) | j > i}

has exactly one element. In contrast, assume that distinct elements x;, and x;, belong to
{xj € Ng(x;) | j > i}. Then by labelling the vertices as described above, both d(x;,, x,)
and d(x;,, x,) are less than or equal to d(x;, x,). Hence, there exist a path P from x;, to
x, and a path P, from x;, to x, neither of which contains x;. This yields the existence
of two paths from x; to x,, one via the adjacent vertex x; and Py, and the other via
the adjacent vertex x;, and P,, a contradiction to the fact that H is a tree. Thus, the
labelling of V(G) gives a perfect elimination ordering and, by Theorem 2.3, for each
k, the kth homological shift ideal of I = I(G°) is

(3.1

HS, () (u u is a squarefree monomial of degree k + 2)
k =

which has a source with respect to G¢

Fix k in the set {0,...,projdim/}. We will show that HS;(/) has linear quotients
with respect to the lexicographic ordering of generators with x; > --- > x,,. For this
purpose, suppose that # and v are two monomials in the minimal set of monomial
generators of HSy(/), u > v, and

u:v:x,-l---x,-p
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FIGURE 2. A tree on the vertex set {xj, ..., x4} with three pinnacles.

with p>1 and i; <--- <i,. Since HSi(I) is generated in a single degree, the
monomial v : u is also of degree p, say

Viu=xg X, with &) <--- < ().
Notice that u >, v implies that
i <. (32)

We show that there exists a monomial w in the minimal set of monomial generators of
HS (1), such that w > v, and

WiV =X

forsomes=1,...,p.

First, suppose that i} > ¢, so that x;, is a vertex of the tree H. As discussed above,
the vertex x;, is adjacent to at most one vertex x; of the tree H with j > i;. From (3.2),
x;, is adjacent to at most one of x;, or x.,; say

{)Cj € Nc;(xi]) [j> i1} N{€, £} iseither @ or {£;}.

Then the variable x;, becomes a source of w = (v/x;,)x;, with respect to G°; here,
i1 < {, guarantees that i; # maxw. Furthermore, by (3.2), w > v. Thus, w is a
monomial with the desired properties.

Next, suppose that i; < t, so that x;, is the tip of a pinnacle. From the labelling given
to the vertices of G,

{xj € No(xi)) [j > i} = o, x, ) (3.3)

for vertices x;, and x;, on an edge of the tree H which is on a pinnacle with the tip x;, .
We consider three cases.

Case 1. If neither of the vertices x;, and x;, divides v, then x;, is a source of the
monomial w = (v/x¢,)x;, with respect to G°. By (3.2), i} < {, < maxw. Hence, the
squarefree monomial w = (v/x;,)x;, of degree k + 2 is an element of HS; (/) by (3.1).
Furthermore, w : v = x;, and, by (3.2), w > v, as desired.
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Case 2. Assume that exactly one of the variables x,, and x,, divides v, say x;,. Then
by (3.3), the variable x;, is a source of the monomial w = (v/x;, )x;, with respect to
G°. Here, i1 < maxw is a consequence of i; < {; < £, < maxv by (3.2). Now since
w = (v/x;,)x;, has a source with respect to G¢, this squarefree monomial of degree
k + 2 is an element of HS; (7). Moreover, from the labelling of vertices, i; < f; because
i1 is a tip, while ¢ is a vertex of the tree H. So w >jx v and w is a desired monomial.

Case 3. Finally, assume that x; and x,, both divide v. Suppose that #; < f,. Since v
belongs to the minimal set of monomial generators of HS;(/), by (3.1), it has a source
variable with respect to G°. Suppose that x, is a source of v for some ¢. Since {x;,, x;,}
is an edge of H and we have assumed that 7| < 1,, it follows that x;, is not a source of
v with respect to G. In particular, x;, # x,. We show that if either #{ < € or £ < 1y, the
variable x, remains a source in w = (v/x,,)x;. When #; < ¢, it is clear that x, is still
a source of w = (v/x;,)x;, because the replacement of x;, by x;, in w occurs before x;.
However, if ¢ < t;, then £ is not adjacent to i; because #; is a tip in G with Ng(x;,) =
{x¢,,x,}. So the set

{x; | x; divides w and ¢ < j}

is still the empty set. Moreover, x; # max w because x;, divides w. Thus, x; is a source
of w as well. Again, note that we have set the tip x;, lexicographically greater than the
vertex x,, of H. Hence, w > v, as desired. O

PROPOSITION 3.2. Let G be either the complete graph K5 or obtained by adding some
pinnacles to K. Then the edge ideal I(G°) has homological linear quotients.

PROOF. Set I = I(G°). Assume that V(G) = {xi,...,x,} for some n > 3, the subgraph
H induced on {x,-», x,-1, x,} is a 3-clique, and G is constructed by adding pinnacles
with tips {xi,...,x,-3}. Fixing 0 < k < projdim /(G“), we are going to show that
HS;(1(G°)) has linear quotients with respect to the lexicographic ordering of its
minimal set of monomial generators induced by x; > --- > x,. For this purpose, first
we see that if w is an element of the minimal set of monomial generators of HS;(7),
then at most one of the vertices x,_», x,,—1, X, can divide w. Indeed, the neighbourhood
of each vertex of G intersects {x,_2, x,-1,X,} exactly in two vertices, and if more than
one variable among x,_», x,-1 or x, divides w, then w does not have a source with
respect to G, which is a contradiction. (See Theorem 2.3 where the generators of
HS(I) are described.)

Next, let # and v be two monomials in the minimal set of monomial generators
of HSy(I), u >jex v, and u : v = x;, -+ -x;, with p > 1 and i; < --- <1i,. Since HSy(/) is
generated in a single degree, we may write

viu=xg-oxg, Withly <0<l

Now on the one hand, u > v implies that i} < ; < {,. On the other hand, since at
most one of the variables x,_», x,,_; or x, divides v, we deduce that £; < n — 3. Hence,
i <n—3. In particular, the vertices x;,, and x; are the tips of two pinnacles in G.
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Consequently, if m = max v, then x;, is a source of w = (v/x,,)x;,. To see this, note
that i} < ¢; < {, < maxv and, by removing x,, from v, the monomial w can have only
variables corresponding to some tips in its support. So x;, is not adjacent to any of the
x; in the support of v/x,,. So w is a monomial in HS;(/), as described in Theorem 2.3,
withw > vand w1 v = x;,. O

The statement of Proposition 3.2 does not hold if we replace K3 by an arbitrary
complete graph. For example, consider the graph G in Figure 1 obtained by adding
two pinnacles to Ky, and refer to Remark 2.2 where HS,(1(G°)) is determined.

Let G be a graph and & be a positive integer. A k-colouring of G is a mapping from
V(G) to [k]. If f is a k-colouring of G, then the colour of each edge {x;, x;} is defined
to be {f(x;), f(xj))}. A k-colouring f of the graph G is called a line-distinguishing
colouring if every two distinct edges of G have distinct colours. The minimum number
k for which G has a line-distinguishing k-colouring, denoted by A(G), is called the
line-distinguishing chromatic number of G. The graph G is called A-minimal in [9] if
AG — e) = A(G) — 1 for each edge e.

THEOREM 3.3 [16, Theorem 2.4]. Let G be a chordal graph. Then G is A-minimal if
and only if G is either constructed by adding at least one pinnacle to each edge of
a star or constructed by adding at least one pinnacle to each edge of the complete
graph Kj.

COROLLARY 3.4. Let G be a A-minimal chordal graph. Then the edge ideal I(G) has
homological linear quotients.
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